
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2003

Data recording and analysis of American sign language Data recording and analysis of American sign language

Robert Michael DeMarco
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
DeMarco, Robert Michael, "Data recording and analysis of American sign language" (2003). Theses. 616.
https://digitalcommons.njit.edu/theses/616

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/616?utm_source=digitalcommons.njit.edu%2Ftheses%2F616&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DATA RECORDING AND ANALYSIS OF
AMERICAN SIGN LANGUAGE

by
Robert Michael De Marco

American Sign Language (ASL) is a form of communication that is used by the Deaf. It

consists of hand shapes and gestures to express words and phrases. Translators on the

market today consist of interpreting a simple form of ASL known as finger spelling. In

order to develop a more effective translator, instrumentation was developed utilizing a

Flock of Birds and Cyberglove system to record in hand shapes and movements in a

LabVIEW environment. Experimentation done included reading in data and subjectively

analyzing the data recorded for accuracy. Initial results have show that the

instrumentation worked and data was recorded successfully.

DATA RECORDING AND ANALYSIS OF
AMERICAN SIGN LANGUAGE

by
Robert Michael De Marco

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2003

APPROVAL PAGE

DATA RECORDING AND ANALYSIS OF
AMERICAN SIGN LANGUAGE

Robert Michael De Marco

Dr. Richard Foulds, Thesis Advisor 	 date
Associate Professor of Biomedical Engineering, NJIT

Dr. Tara Alvarez, Committee Member 	 Date
Assistant Professor of Biomedical Engineering, NJIT

Professor Michael T. Bergen, Committee Member 	 date
VA New Jersey Health Care Center, East Orange, New Jersey
Adjunct Professor of Biomedical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Robert Michael De Marco

Degree:	 Master of Science

Date:	 May 2003

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering
New Jersey Institute of Technology, Newark, NJ, 2003

• Bachelor of Science in Computer Engineering
New Jersey Institute of Technology, Newark, NJ, 2001

Major:	 Biomedical Engineering

Presentations and Publications:

Robert M. De Marco and Richard A. Foulds,
"Sensory-Motor Substitution for Improved Ambulation,"
Proceedings of the IEEE 28 th Annual Northeast Bioengineering Conference
Philadelphia, PA, April 2002.

Robert M. De Marco and Richard A. Foulds,
"Data Recording and Analysis of American Sign Language,"
Proceedings of the IEEE 29 th Annual NorthEast Bioengineering Conference
Newark, NJ, Mar. 2003.

Kiran V. Patel, Robert M. De Marco, and Richard A. Foulds,
"Integrating Biomedical Engineering Design into the Freshman Curriculum"
Proceedings of the IEEE 28 th Annual NorthEast Bioengineering Conference
Philadelphia, PA, April 2002.

K.D. Beck, M.T. Bergen, R.M. De Marco, R. Patel, M. Ocasio, R.J. Servatius,
"The Use of a Videogame for Assessing Sensory-Motor and Cognitive
Interference Effects in Humans,"
Proceedings of the IEEE 29 th Annual NorthEast Bioengineering Conference,
Newark, NJ, Mar. 2003.

iv

F.B. Chua, A. Daftari, T.L. Alvarez, R. De Marco, M.T. Bergen, K.D. Beck, R.J. Servatius,
"Effect of Light Flashes on the Saccadic Oculomotor Control,"
Proceedings of the IEEE 29 th Annual NorthEast Bioengineering Conference,
Newark, NJ, Mar. 2003.

A. Daftari, T.L. Alvarez, F. Chua, R.M. De Marco, K. Ciuffreda,
"The Dynamics of Convergence Insufficiency,"
Proceedings of the IEEE 29 th Annual NorthEast Bioengineering Conference,
Newark, NJ, Mar. 2003.

Abstracts:

T.L. Alvarez, K.D. Beck, A. Daftari, F. Chua, R.M. De Marco, M.T. Bergen, R.J. Servatius,
"The Effect of After Image on Saccadic Eye Movements,"
Proceedings of ARVO's 2003 Annual Conference, Ft. Lauderdale, FL, 2003.

To my parents Joseph and Maria De Marco
and my brother Anthony De Marco

vi

ACKNOWLEDGMENT

Sincerest thanks to Dr. Richard Foulds for his support and guidance throughout

this research. Also, I would like to thank Dr. Tara Alvarez for her guidance and for being

my committee member. Special thanks to Mr. Michael Bergen for believing in my

abilities to accomplish anything and for serving as a committee member.

The author would like to thank my fellow graduate students in the Neuromuscular

Engineering lab for there support and help. Much thanks to Gene Moore for his wisdom

and assistance in building the experimentation apparatus.

Many thanks to my family and friends for their support, patience, and

understanding. Special thanks to Florence Chua for her support and helping to show me

that compassion can save the world.

vii

TABLE OF CONTENTS

Chapter	 Page
1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 The Hand 	 2

1.2.1 Structure 	 2

1.2.2 Physiology 	 3

1.3 Hearing 	 9

1.4 Hearing Loss 	 11

1.5 The Deaf 	 12

1.6 Cochlear Implants 	 12

1.7 American Sign Language 	 14

2 INSTRUMENTATION 	 17

2.1 Tracking American Sign Language 	 17

2.2 Serial Communication 	 17

2.2.1 RS-232 	 17

2.2.2 Baud Rate 	 18

2.3 Digital Systems 	 19

2.3.1 Numbering Systems 	 19

2.3.2 American Standard Code for Information Interchange 	 20

2.4 Flock of Birds 	 22

2.4.1 Magnetic Tracking 	 24

2.4.2 Communication Setup 	 25

2.4.3 Back Panel on Flock of Birds 	 27

viii

TABLE OF CONTENTS
(continued)

Chapter	 Page
2.4.4 Output Types 	 28

2.4.5 Communication between Host and Flock of Birds 	 29

2.4.6 Decoding 	 31

2.5 Cybergloves 	 33

2.5.1 Bend Sensors 	 33

2.5.2 The Cyberglove Interface Unit 	 34

2.5.3 Communication between Host and Cybergloves 	 35

2.5.4 Decoding 	 35

2.6 Software 	 37

2.6.1 LabVIEW 	 37

2.6.2 Jack 3.0 	 37

3 CALIBRATION 	 39

3.1 Cybergloves 	 39

3.2 Flock of Birds 	 42

4 LABVIEW 	 51

4.1 Cyber Flock Overview 	 51

4.2 Cyber Flock Initialization 	 53

4.2.1 Loading Calibration 	 53

4.2.2 Initialization of Serial Ports 	 54

4.2.3 Flock Manager 	 54

4.2.4 Writing a Header 	 60

ix

TABLE OF CONTENTS
(continued)

Chapter	 Page
4.2.5 Initialization of Master and Slave Birds 	 63

4.2.6 FBB Auto Configuration and Group Mode 	 64

4.2.7 Initialization of Frame Rate and Byte Count 	 65

4.3 Cyber Flock Main 	 67

4.3.1 Pause and Tick 	 67

4.3.2 Get Data 	 68

4.3.3 Read Cyberglove Data 	 68

4.3.4 Read Flock of Birds Data 	 69

4.3.5 Writing ASCII File 	 73

4.3.6 Dynamic Timing 	 74

4.4 Jack Converter 	 77

4.5 Flock Plot 	 81

5 METHODOLOGY 	 83

5.1 Experimentation 	 83

6 RESULTS 	 87

6.1 Simple ASL Experimentation 	 87

6.2 FOB Experimentation 	 88

6 CONCLUSIONS 	 90

APPENDIX A — CYBER FLOCK CODE 	 91

APPENDIX B — JACK CONVERTER CODE 	 110

APPENDIX C — FLOCK PLOT CODE 	 112

TABLE OF CONTENTS
(continued)

Chapter	 Page
APPENDIX D — FLOCK OF BIRDS COMMANDS 	 113

APPENDIX E — CYBERGLOVE COMMANDS 	 114

APPENDIX F — JACK FILE STRUCTURE 	 115

APPENDIX G — POTENTIOMETER DATA SHEET 	 118

REFERENCES 	 120

xi

LIST OF TABLES

Table Page
1.1 Extrinsic Anterior Muscles and their Actions 	 5

1.2 Extrinsic Posterior Muscles and their Actions 	 6

1.3 Intrinsic Muscles and their Actions 	 9

2.1 Comparing the Number Systems Decimal, Binary and Hexadecimal 	 20

2.2 Standard ASCII Character Set 	 21

2.3 Extended ASCII Character Set 	 22

2.4 Baud Rate and Dipswitch Setting on Flock of Birds 	 28

2.5 Data Byte Ordering on the Cybergloves 	 36

3.1 Results of Measured Roll Angles with No Yaw 	 45

3.2 Results of Measured Roll Angles with 15-Degree Yaw 	 46

3.3 Results of Measured Roll Angles with 30-Degree Yaw 	 47

3.4 Results of Measured Roll Angles with 45-Degree Yaw 	 48

4.1 Output Types with Corresponding Number, Hex and ASCII Values 	 55

D.1 Flock of Birds Commands and Output Types 	 113

E.1 CyberGlove Interface Unit Commands 	 114

xii

LIST OF FIGURES

Figure Page
1.1 The structure of the human hand 	 3

1.2 Superficial muscles on the anterior side of arm 	 4

1.3 Middle muscles on the anterior side of arm 	 4

1.4 Deep muscles on the anterior side of arm 	 4

1.5 Posterior muscles that act on the hand at the wrist joint 	 5

1.6 Posterior muscles that act on the fingers 	 6

1.7 Posterior muscles that act on the thumb 	 6

1.8 Intrinsic muscles of the hand, the thenar group 	 7

1.9 Intrinsic muscles of the hand, the hypothenar group 	 7

1.10a Intrinsic muscles of the hand, the short finger muscles 	 8

1.10b Intrinsic muscles of the hand, more short finger muscles 	 8

1.10c Intrinsic muscles of the hand, more short finger muscles 	 8

1.11 The structure of the human ear 	 10

1.12 How cochlear implants work 	 13

1.13 ASL finger spelling and the letters they represent 	 15

1.14 Dynamic hand gestures in ASL 	 16

2.1 Male RS-232 connector with pin assignments 	 18

2.2 The transmitter for the Flock of Birds 	 23

2.3 The sensor for the Flock of Birds 	 23

2.4 The main Flock of Birds unit containing signal processing electronics 	 23

2.5 Flock of Birds flow chart showing how data flows 	 25

2.6 Flock of Birds in a stand alone configuration 	 26

LIST OF FIGURES
(continued)

Figure Page
2.7 Flock of Birds in a master slave configuration 	 27

2.8 Back panel on the Flock of Birds showing dipswitches 	 27

2.9 A visual example of yaw, pitch and roll 	 29

2.10 Communication setup of test experiment showing output type 	 30

2.11 An example of how position from the Flock of Birds gets decoded 	 32

2.12 The Cyberglove 	 33

2.13 The Cyberglove interface unit 	 33

2.14 The bend sensors and the axis they measure 	 34

2.15 Back Panel of the Cyberglove interface unit 	 35

3.1 The first stage in calibration of the right hand 	 40

3.2 The second stage in calibration of the right hand 	 40

3.3 Animated hand that mimics Cyberglove movement 	 41

3.4 Display that allows for fine tuning of gain and offset 	 41

3.5 Pendulum calibration setup for the Flock of Birds 	 43

3.6 Plot of Squared Error at 0 degrees 	 49

3.7 Plot of Squared Error at 15 degrees 	 49

3.8 Plot of Squared Error at 30 degrees 	 50

3.9 Plot of Squared Error at 45 degrees 	 50

4.1 Custom LabVIEW program flow chart 	 51

4.2 Front panel design of cyber flock program 	 53

4.3 How gain and offset is read from calibration file 	 54

xiv

LIST OF FIGURES
(continued)

Figure Page
4.4 Detection of how many sensors are active 	 56

4.5 Byte count determined and builds output type array 	 58

4.6 Takes output type array and shrinks to active birds only 	 59

4.7 Output type of master bird is inserted into array 	 61

4.8 Replacement of letter 'b' to give proper header to ASCII file 	 62

4.9 Writes proper header for Cyberglove is active 	 63

4.10 Initializes all slave birds using FBB array and output type array 	 64

4.11 Auto configuration and group mode 	 65

4.12 Determines how many milliseconds per loop from frame rate picked 	 66

4.13 Outputs the byte count for active birds dependent on output type 	 66

4.14 Pauses program and produces a tick count at first stage of loop 	 67

4.15 Writes characters to serial port requesting data 	 68

4.16 Data being read from serial port and converted into 18 joint angles 	 69

4.17 Data being read from serial port and converted into proper output type 	 70

4.18 Separates array at proper indices to be converted 	 71

4.19 Decoding outputted array into hex string 	 72

4.20 An example of the decoding process 	 72

4.21 Conversion of hex string into inches 	 73

4.22 Writing data into an ASCII file 	 73

4.23 An example of an outputted ASCII file 	 74

4.24 First stage of dynamic timing used to detect how long loop took 	 75

xv

LIST OF FIGURES
(continued)

Figure Page
4.25 Second stage of dynamic timing outputs error if frame rate exceeded 	 76

4.26 Final stage of dynamic timing used to warn user if frame rate to fast 	 76

4.27 Sample of the file structure of Jack 3.0 	 77

4.28 ASCII file being stripped of headers and unneeded information 	 78

4.29 Data being separated for input into Jack file 	 79

4.30 Writes header for each subsection for Jack file 	 80

4.31 Inputs data in proper file structure for Jack file 	 80

4.32 Adds a 'I' at the end to signify end of specific header 	 81

4.33 ASCII file being stripped of headers and unneeded information 	 82

4.34 Data is separated into x, y and z for plotting 	 82

4.35 Data is plotted in 3D graph 	 82

5.1 The Cyberglove placed on the right hand of subject 	 83

5.2 Subject placing FOB close the center of chest 	 85

5.3 Subject with arms extended straight out in front 	 85

5.4 Subject with arms straight over their head 	 86

5.5 Subject with arms extended to the left 	 86

5.6 Subject with arms extended to the left 	 86

6.1 Visual results displayed from Cyberglove 	 87

6.2 Top view of 3D plot from the Flock of Birds 	 88

6.3 Side view of 3D plot from the Flock of Birds 	 88

6.4 Front view of 3D plot from the Flock of Birds 	 89

xvi

LIST OF FIGURES
(continued)

Figure	 Page
6.5	 3D plot from the Flock of Birds 	 89

A.1	 First stage of initialization 	 92

A.2	 Second stage of initialization 	 93

A.3	 Third stage of initialization 	 94

A.4	 Fourth stage of initialization 	 95

A.5	 Fifth stage of initialization 	 96

A.6	 Sixth stage of initialization 	 97

A.7	 Seventh stage of initialization 	 98

A.8	 Eighth stage of initialization 	 99

A.9	 Ninth stage of initialization 	 100

A.10 Last stage of initialization 	 101

A.11 First stage of data acquisition 	 102

A.12 Second stage of data acquisition 	 103

A.13 Third stage of data acquisition 	 104

A.14 Fourth stage of data acquisition 	 105

A.15 Fifth stage of data acquisition 	 106

A.16 Sixth stage of data acquisition 	 107

A.17 Seventh stage of data acquisition 	 108

A.18 Eighth stage of data acquisition 	 109

A.19 Final stage of data acquisition 	 110

B.1	 Wiring diagram for Converter. VI 	 111

xvii

LIST OF FIGURES
(continued)

Figure	 Page
C.1	 Wiring diagram for Flock Plot. VI 	 112

xviii

CHAPTER 1

INTRODUCTION

1.1 Objective

According to the National Center of Birth Defects and Developmental Disabilities, about

one to two children out of every thousand are born with moderate to severe hearing loss

in both ears (2002). It is often quite difficult for the Deaf to interact with people outside

the Deaf community. This inability to communicate often leads to many learning and

social impairments. Most people who are born deaf or develop deafness at a young age

learn to communicate through American Sign Language (ASL) (Nakamura, 2002).

Though it is an effective way of communicating, most people outside the Deaf

community do not understand ASL. This gives rise to the question, "Can ASL be

effectively translated through technology instead of human translators?"

Currently, the Neuromuscular Engineering lab at New Jersey Institute of

Technology is working towards sign language recognition. This thesis is just one of

several on this topic. Involved are other thesis including sign language segmentation,

sign recognition using neural networks and hidden Markov models, and sign language

animation. The foundation to all these is a data collection system capable of recoding

hand shapes and arm movement data. The goal of this thesis is to develop the methods

needed to record a subject performing signs and gestures from ASL, and to analyze the

accuracy of the captured movements so they can be used for further development of a

translator. A key aspect of this study is to provide a tool for kinematic analysis of sign

language. It is essential to explore how the movements of articulators blend together as

1

2

signs are produced in a vocal conversation. This coarticulation of trajectories and

modifies how signs are produced sequentially in continuous production.

1.2 The Hand

1.2.1 Structure

There are 27 bones in each hand that can be divided into three sections: eight Carpal

bones (wrist), five Metacarpal bones (palm), and 14 Phalanges (fingers) (See Figure 1.1)

(Martini, 1998). The Carpal bones are arranged in two rows of four, and are the small,

cube-shaped pieces. The row that is closest to the forearm is called the proximal row,

while the row nearest the palm is called the distal row. The Metacarpal bones are the five

long bones in the palm. They are called first (thumb), second (index), third (middle),

fourth (ring) and fifth (pinkie) metacarpal. The Phalanges are the bones in the fingers

with each finger containing three bones, except for the thumb, which only has two.

3

Figure 1.1 The structure of the human hand (Martini, 1998).

1.2.2 Physiology

The hand is a versatile instrument; it can execute both powerful grasping tasks as well as

delicate ones (Scavone, 2002). The large, forceful muscles that perform the powerful

grasping tasks are located in the arm and forearm. These muscles attach to the hand and

wrist by way of long tendons, but since their main muscle mass and origins are far from

the hand, they are called extrinsic muscles. Intrinsic muscles on the other hand are small

and are located within the hand itself.

To help keep track of all these muscles that control the hand we can group them

into section by where they are and what they do. Muscles are separated into extrinsic or

intrinsic muscle groups. The extrinsic muscles in the forearm can be subdivided, so the

muscles that control the hand can be separated into the two groups: anterior and

posterior. The muscles contained on the anterior (volar) side of the forearm helps to flex

4

the hand. These muscles can be further broken down into three subgroups: superficial

(Figure 1.2), middle (Figure 1.3) and deep (Figure 1.4).

Figure 1.2 Superficial muscles on anterior side (Scavone, 2002).

Figure 1.3 Middle muscles on anterior side (Scavone, 2002).

Figure 1.4 Deep muscles on anterior side (Scavone, 2002).

5

Table 1.1 Extrinsic Anterior Muscles and their Actions
Superficial Muscles on Anterior Side

Muscle Action
Flexor Carpi Radialis Flexes and abducts wrist

Palmaris Longus Flexes wrist
Pronator Teres Rotates forearm

Flexor Carpi Ulnaris Flexes and abducts wrist
Middle Muscles on Anterior Side

Muscle Action
Flexor Digitorum Superficialis Flexes middle phalanx

Deep Muscles on Anterior Side
Muscle Action

Flexor Pollicis Longus Flexes thumb
Flexor Digitorum Profundus Flexes distal phalanges

Pronator Quadratus Rotates forearm

The muscle on the posterior (dorsal) side of the forearm helps to extend the hand.

The posterior muscles can be broken down into subgroups designated by the action they

perform: wrist-level hand motion (Figure 1.5), finger motion (Figure 1.6), and thumb

motion (Figure 1.7).

Figure 1.5 Posterior muscles that act on the hand at the wrist joint (Scavone, 2002).

Figure 1.6 Posterior muscles that act on the fingers (Scavone, 2002).

6

Figure 1.7 Posterior muscles that act on the thumb (Scavone, 2002).

Table 1.2 Extrinsic Posterior Muscles and their Actions
Superficial Muscles on Anterior Side

Muscle Action
Extensor Carpi Radialis Longus Extends and abducts wrist
Extensor Carpi Radialis Brevis Extends and abducts wrist

Extensor Carpi Ulnaris Extends and abducts wrist
Middle Muscles on Anterior Side

Muscle Action
Extensor Digitorum Extends fingers and hand

Extensor Digiti Minimi Extends little finger
Extensor Indicis Extends and abducts index finger

Deep Muscles on Anterior Side
Muscle Action

Abductor Pollicis Longus Abducts thumb
Extensor Pollicis Brevis Extends thumb and abducts hand
Extensor Pollicis Longus Extends thumb and abducts hand

7

The intrinsic muscles within the hand can be grouped according to the digit they

help move. There are three intrinsic muscle groups, the Thenar muscles that control the

thumb (Figure 1.8), the Hypothenar that controls the 5 th or pinkie finger (Figure 1.9) and

the short finger muscles that affect mostly all of the fingers (Figures 1.10a, 1.10b and

1.10c).

Figure 1.8 Intrinsic muscles of the hand: thenar group (Scavone, 2002).

Figure 1.9 Intrinsic muscles of the hand: hypothenar group (Scavone, 2002).

Figure 1.10a Intrinsic muscles of the hand: short finger muscles (Scavone, 2002).

8

Figure 1.10b Intrinsic muscles of the hand: short finger muscles (Scavone, 2002).

Figure 1.10c Intrinsic muscles of the hand: short finger muscles (Scavone, 2002).

9

Table 1.3 Intrinsic Muscles and their Actions
Thenar group

Muscle Action
Abductor Pollicis Brevis Abducts the thumb

Flexor Pollicis Brevis Flexes and abducts thumb
Abductor Pollicis Abducts thumb
Opponens Pollicis Opposition of thumb

Hypothenar group
Muscle Action

Abductor Digiti Minimi Abducts little finger and flexes its proximal phalanx
Opponens Digiti Minimi Opposition of fifth metacarpal bone

Flexor Digiti Minimi Brevis Flexes little finger
Short finger muscles

Muscle Action
Flexor Digitorum Profundus Flexes distal phalanges

Lumbricals Flex metacarpophalangeal joints and extend
interphalangeal joints of fingers

Palmar interossei Flex metacarpophalangeal joint while extending
interphalangeal joints

Doral Interossei Same as above

1.3 Hearing

The ear can be divided into three anatomical regions: the external ear, the middle ear,

and the inner ear (Figure 1.11) (Martini, 1998). The external ear comprises the outer

most portions that are visible on the human body. The external ear is used to direct sound

waves into the auditory canal, which move toward the eardrum. The middle ear is the

next portion the sound waves reach, and directs sound waves to appropriate portions of

the inner ear. The inner ear contains all the sensory organs for hearing with the most

notable structure being the cochlea. The cochlea is small and snail-shaped that is filled

with fluid and contains sensitive cells known as hair cells, which have tiny hair like

structures on top of each cell.

10

Figure 1.11 Structure of the ear (Martini, 1998).

The way humans hear can be broken down into basic steps. First, a sound from

the environment is directed into the auditory canal, and travels to the eardrum (tympanic

membrane). Next, the eardrum vibrates in resonance with the sound waves acting on the

eardrum. The frequencies at which the eardrum can resonate are between 20 and 20,000

Hertz. In addition, as the eardrum vibrates the auditory ossicles begin to vibrate, which

amplifies the sound. Furthermore, as the auditory ossicles vibrate they begin to vibrate

the oval window, which in turn vibrates the fluid within the cochlea. When the fluid

within the cochlea vibrates, it moves the hair cells within the cochlea. As they move,

they generate electrical signals that are detected by the auditory nerve. The auditory

nerve finally transmits these signals to the brain, where they are decoded and interpreted.

11

1.4 Hearing Loss

There are three main reasons that someone loses their hearing. The first cause of hearing

loss is called conductive hearing loss [2]. This type of hearing loss prevents sound waves

from vibrating the eardrum or bones within the middle ear. Another type of hearing loss

is sensorineural (The Massachusetts Eye and Ear Infirmary, 2003), which is caused by

the hair cells in the cochlea not transferring movement into electrical signals to the

auditory nerve. An additional type of hearing loss is neural hearing loss and is due to a

damaged auditory nerve or in some cases the nerve is no longer there.

When a person loses his/her hearing they typically fall into one of four categories;

they are profoundly deaf, Deafened, hard of hearing and Deafblind [2]. The typical

person that falls into the profoundly deaf category is born deaf, and often prefers using

sign language as the primary form of communication. A person who is considered

deafened is one who loses his/her hearing in the adult stage of life. Someone who is

considered deafened primarily uses spoken language in tandem with lip reading to

communicate. The hard of hearing are people who can hear but the decibel level

(loudness) that someone must speak in order to be heard is greatly increased.

Furthermore, the frequency range at which they can hear is greatly decreased. The hard

of hearing are typically older people but in rare instances can occur in younger people.

The last category that a deaf person can fall into is the Deafblind category. The person

loses both the ability to hear and the see and must rely on other various forms of

communications such as brail, or tactile finger spelling.

12

1.5 The Deaf

What causes a person to become deaf is still not fully understood. About 60 percent of

deafness is believed to be genetic, but researchers are not sure if the gene is causing the

ear to fail or if the nerves connecting the brain fail (Gantz, 2000). Deafness occurring

over time can be attributed to the hair cells in the cochlea wearing away or no longer

performing the job correctly. This is influenced by genetics, but also how much damage

one inflicts to their ears plays a large part also. One can inflict damage to the ear by loud

noises and sounds such as music from a rock concert or a jet engine.

However, in children, disease can also be the cause of deafness. Although a

middle ear infection is relatively common and can be healed, it sometimes leaves

permanent damage to the ear. Also such diseases, such as diabetes, MS, syphilis and

herpes can cause hearing loss as a side effect (Gantz, 2000).

1.6 Cochlear Implants

To help give deaf people the ability to hear again cochlear implants are used. A cochlear

implant is an electronic device that is implanted in the ear to provide sound information

for adults and children who have a profound sensironeural hearing loss (The

Massachusetts Eye and Ear Infirmary, 2003). The cochlear implant bypasses the inactive

or damaged hair cells in the cochlea and stimulate the auditory nerve directly (Figure

1.12).

Figure 1.12 The overall architecture or a cocniear implant is:

1. Sound waves enter through a microphone and are converted into electrical signals.
2. The signal is sent through a thin cable to the speech processor.
3. The processor converts the electrical signals into a code
4. The signal is sent back up the wire and transmitted across the skin to the interior implant
5. The implant decodes the signals and delivers it to electrodes that have been placed in the cochlea. These

electrodes act as the hair cells that have been damaged or absent.
6. The electrodes directly stimulate the hearing nerve fibers within the cochlea
7. This electrical stimulation causes impulses to be sent through the auditory nerve.

Although cochlear implants help in communication they also have their problems.

Installing the cochlear implant is a surgical procedure and with any type of surgery there

are certain risks. These risks include: bleeding, infection, and problems with anesthesia,

dizziness, and injury to the facial nerve. The device can also have problems such as

mechanical or electrical failure and can also be rejected by the human body. Another

problem associated with receiving cochlear implants is that any ability to hear prior to the

operation will be lost once they are installed (The Massachusetts Eye and Ear Infirmary,

2003). This is one of the biggest problems associated with the cochlear implants is that

the user becomes high dependant on the device. If the device fails it leaves the user loses

the ability to hear, which in turn means they lose the ability to communicate if they have

not learned a previous method. Also cochlear implants only work if the cochlear is the

14

reason for the hearing loss. If the auditory nerve has been damaged cochlear implants

would not work. Since cochlear implants do not work for everyone and even if cochlear

implants can be used a second form of communication should be learned.

1.7 American Sign Language

American Sign Language (ASL) is a visual-spatial language that is used by the Deaf

community in the United States and in the English speaking parts of Canada (Stewart,

1998). A common misunderstanding about American Sign Language is that many people

think it is based on the English language. ASL is a linguistically complete, natural

language and is used by many in the Deaf community. ASL uses hand gestures and hand

movements to express words and phrases. However, ASL is not strictly a language made

up of hand gestures and uses facial features to help express certain words and phrases. A

supplement to ASL is known as finger spelling and is used mainly to express names and

words that have no existing sign for them (Figure 1.13). Finger spelling works by having

a hand shape (sign) for every letter of the alphabet. A static hand shape with the

exception of J and Z represents each letter, which have dynamic components.

Figure 1.13 Each letter in ASL finger spelling and what letter they represent (Indiana
Institute of Disability and Community, 1998).

When someone using ASL wishes to express a word or phrase and is using finger

spelling they must spell out each letter in that word or phrase. However, finger spelling

is a very small part of ASL and most words and phrases have hand gestures that mean the

entire word (Figure 1.14). To truly understand ASL these hand shapes and gestures must

be analyzed and understood before one can begin to translate ASL.

16

OH-I-see 	 BE-CAREFUL 1T

Figure 1.14 Examples of hand gestures used to express entire words in ASL (Stewart,
1998).

CHAPTER 2

INSTRUMENTATION

2.1 Tracking American Sign Language

To understand ASL all hand movements and gestures must be recorded so further

analysis can be done. The instrumentation in recording both hand movements and hand

shape had two components. First, a tracking system is used to record hand movement.

While a subject moved his/her arms, a computer was used to read hand position in space

by an electromagnetic tracking system. In order to record hand shape, a separate tracking

system is used to determine the angles of joints within the hand. These two tracking

methods must be combined into a common output file that can be used in analysis of the

biomechanics of ASL. The output file (.xls) will contain all the data recorded in decimal

form as well as a header that consists of output type, sampling rate, and sensor number.

2.2 Serial Communication

2.2.1 RS-232

All devices in the experimental setup use serial ports to communicate with the computer.

The serial port on the computer being used is full duplex, meaning that it can send and

receive data at the same time. To have this ability separate lines must be used for

transmitting and receiving data. The serial port on most computers use the RS-232C

protocol, which stands for Recommended Standard number 232, revision C. The

computer being used for experimentation utilizes a nine-pin connector (Figure 2.1).

17

18

Two terms that must be known when looking at serial communication are Data

Terminal Equipment (DTE) and Data Communications Equipment (DCE). DTE is the

computer side of communication while DCE is the remote device that the computer

wants to communicate to. The RS-232 standard states that DTE devices use a 9-pin male

connector, while the DCE device utilize the female connector (Taltech Instrumentation

Software, 2003). By having this setup connection from a DCE to a DTE device can be

done by a straight pin-to-pin connector. This means that pin 1 connects to pin 1, pin 2 to

pin 2 and so on. However, when connecting two devices of the same type (DTE to DTE

or DCE to DCE) a null modem cable must be used. The only difference in this cable is

pin 2 on one device is connected to pin 3 on the other and vise versa.

9 Pin Connector on a DTE device (PC connection)

Pin Number Direction of signal:
1 Carrier Detect (CD) from DCE) Incoming signal from a modem

2 [Received Data (RD) Incoming Data from a DOE

3 Transmitted Data (TD) Outgoing Data to a DOE

4 Data Terminal Ready (DTR) Outgoing handshaking signal

Signal Ground Common reference voltage

Data Set Ready (DSR) Incoming handshaking signal

Request To Send (RTS) Outgoing flow control signal

[8- [Clear To Send (CTS) Incoming flow control signal

9 Ring Indicator (RI) (from DOE) Incoming signal from a modem

Figure 2.1 A male RS232 connector with pin numbers and direction of signals (Taltech
Instrumentation Software, 2003).

2.2.2 Baud Rate

The baud unit is named after Jean Maurice Emile Baudot, who was an officer in the

French Telegraph Service. Baud refers to the modulation rate or the number of times per

19

second a line changes state. This is usually the same as bits per second as in the case of

two serial devices communicating with each other. However, in other cases like in

communication with a modem this is not always true.

2.3 Digital Systems

2.3.1 Numbering Systems

When working with digital electronics there are many ways numbers can be represented

and many formats they can hold. The number system that has been taught to most people

and is most common is the base 10 system (Predko, 2002). Base 10 means that all

numbers are represented by ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. Once the number

exceeds nine multiple digits are used, with each digit representing the power of ten of the

digit (Predko, 2002). For example the number 945 is nine hundreds (10 to the power 2),

four tens (10 to the power 1) and five ones (10 to the power 0) (reference the digital

handbook). Written out the formula looks like:

The reason ten digits are used is because most people have ten fingers. When

learning to count, the easiest counting devices to use are fingers. In fact, another word

for finger is digit, which is why the word digit is used to represent numbers. However, as

simple as base 10 numbers seem, computers need to communicate in an even simpler

form. Computers use base 2 numbers because it is the simplest number system one can

use. This numbering system consists of ones and zeroes, where each number is called a

bit and is represented by a 1 or a 0. A series of eight bits in a row is called a byte, so

Decimal
0
1

3
4

Binary
0
1

10
11

100

Hexadecimal
0
1

3

101
6 110

111
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101
14 1110 E
15 1111 F
16 10000 10
17 10001 11

Etc....
	M111111119111.1EMBIN14.1,10111,411511ENSIMIT,

20

eight bits equals one byte (Wakerly, 1994). Binary numbers can become complex so for

convenience the numbering system hexadecimal is used. Hexadecimal is a base 16

numbering system utilizing 0 through 9 and A through F. Four bits in binary can be

combined to form a single hexadecimal digit. The table below shows the three

numbering systems: hexadecimal, binary, and decimal.

Table 2.1 Three Numbering Systems

2.3.2 American Standard Code for Information Interchange

American Standard Code for Information Interchange (ASCII) is a standard seven-bit

code that was proposed by ANSI in 1963, and finalized in 1968. Computers can only

understand numbers, ASCII code is the numerical representation of a character such as

21

the letter 'a' and `#'. The standard ASCII character set consists of 128 decimal numbers

ranging from zero through 127 assigned to letters, numbers, punctuation marks, and the

most common special characters (ASCII Table, 2003). There is also an Extended ASCII

Character Set also consisting of 128 decimal numbers and ranges from 128 through 255

representing additional special, mathematical, graphic, and foreign characters. Table 2.2

shows the standard ASCII character set with their decimal and hexadecimal

representation. Table 2.3 represents the extended ASCII character set with their decimal

and hexadecimal representation.

Table 2.2 Standard ASCII Character Set (ASCII Table, 2003)
Dec 	 Hx Oct Char Dec Hx Oct 	 Html 	 Chr Dec Hx Oct Html Chr Dec Hx Oct Html Chr

0 0 000 NUL (null) 32 20 040 6432; Space 64 40 100 6464; 8 96 60 140 `
1 1 001 SOH (start of heading) 33 21 041 6433; ' 65 41 101 6465; A 97 61 141 6497; 	a
2 2 002 STX (start of text) 34 22 042 6434; " 66 42 102 6466; B 98 62 142 6498; 	b
3 3 003 ETX (end of text) 35 23 043 6435; # 67 43 103 6467; C 99 63 143 6#99; 	c
4 4 004 EOT (end of transmission) 36 24 044 6436; 68 44 104 D 0 100 64 144 d d
5 5 005 ENO (enquiry) 37 25 045 6437; ", 69 45 105 6469; E 101 65 145 64101; e
6 6 006 ACK (acknowledge) 38 26 046 6438; 6 70 46 106 6470; F 102 66 146 64102; f
7 7 007 BEL (bell) 39 27 047 6439; ' 71 47 107 6471; G 103 67 147 64103; g
8 8 010 BS (backspace) 40 28 050 6440; (72 48 110 6472; H 104 68 150 64104; h
9 9 011 TAB (horizontal tab) 41 29 051 6441;) 73 49 111 6473; I 105 69 151 64105; i

10 A 012 LF (NL line feed, new line) 42 2A 052 6442; '' 74 4A 112 J 0 106 6A 152 64106; j
11 B 013 VT (vertical tab) 43 28 053 6443; + 75 48 113 6475; K 107 68 153 64107; k
12 C 014 FF (NP form feed, new page) 44 2C 054 6444; 76 4C 114 6476; L 108 6C 154 64108; 1
13 D 015 CR (carriage return) 45 2D 055 6445; 77 4D 115 6477; M 109 6D 155 64109; w
14 E 016 SO (shift out) 46 2E 056 6446; , 78 4E 116 6478; N 110 6E 156 64110; n
15 F 017 SI (shift in) 47 2F 057 6447; 79 4F 117 6479; 0 111 6F 157 64111; o
16 10 020 DLE (data link escape) 48 30 060 &448;i_ 80 50 120 6480; P 112 70 160 64112; P
17 11 021 DC1 (device control 1) 49 31 061 6449; 1 81 51 121 6481; 0 113 71 161 64113; q
18 12 022 DC2 (device control 2) 50 32 062 6450; 82 52 122 6482; R 114 72 162 64114; r
19 13 023 DC3 (device control 3) 51 33 063 6451; 3 83 53 123 6483; S 115 73 163 64115; s
20 14 024 DC4 (device control 4) 52 34 064 6452; 4 84 54 124 6484; T 116 74 164 64116; t
21 15 025 NAK (negative acknowledge) 53 35 065 6453; 5 85 55 125 6485; U 117 75 165 64117; u
22 16 026 SYN (synchronous idle) 54 36 066 6454; 6 86 56 126 6486; V 118 76 166 64118; v
23 17 027 ETB (end of trans. block) 55 37 067 6455; 7 87 57 127 6487; V 119 77 167 64119; w
24 18 030 CAN (cancel) 56 38 070 6456; 8 88 58 130 6488; X 120 78 170 64120; x
25 19 031 EM (end of medium) 57 39 071 9 9 89 59 131 6489; Y 121 79 171 64121; Y
26 1A 032 SUB (substitute) 58 3A 072 6458; : 90 5A 132 6490; 2: 122 7A 172 64122; z
27 1B 033 ESC (escape) 59 38 073 6459; ; 91 58 133 6491; [123 7B 173 64123; 	(
28 IC 034 FS (file separator) 60 3C 074 6460; < 92 5C 134 6492; % 124 7C 174 64124; 	I
29 ID 035 GS (group separator) 61 3D 075 6461; = 93 5D 135 6493; I 125 7D 175 64125; 	}
30 1E 036 RS (record separator) 62 3E 076 6462; > 94 5E 136 6494; ' 126 7E 176 64126; -
31 IF 037 US (unit separator) 63 3F 077 6463; ? 95 5F 137 6495; _ 127 7F 177 64127; DEL

Table 2.3 Extended ASCII Character Set (ASCII Table, 2003)

22

2.4 Flock of Birds

The device that will be used to record hand movements is known as Flock of Birds (FOB)

manufactured by Ascension Technology Corporation. The Flock of Birds is a six degree-

of-freedom magnetic tracking system that can be used to determine position and

orientation of up to 30 sensors (Ascension Technology Corporation, 1999). The Flock of

Birds system consists of a transmitter (Figure 2.2), transmitter driver circuit, sensor

(Figure 2.3) and signal processing electronics. The transmitter driver and the signal

processing electronics are contained within one unit (Figure 2.4). Each sensor is capable

of making 144 measurements per second per sensor when measuring position and

orientation in a standalone configuration (Ascension Technology Corporation, 1999).

The Flock of Birds has two independent serial interfaces depending on the setup. The

first type of communication is strictly for communication between the computer and the

Flock of Birds system. The interface is a full duplex RS-232C connection. The second

23

type of connection is for communication between other Flock members, and is known as

the Fast Bird Bus (FBB).

Figure 2.2 The transmitter tor the Hock of Birds.

Figure 2.3 The sensor for the Flock of Birds.

Figure 2.4 Three Flock of Bird units where each unit contains the transmitter driver and
the signal processing electronics are contained.

24

2.4.1 Magnetic Tracking

The Flock of Birds was chosen because of availability to the designer as well as its

strengths over other tracking systems. The direct current (DC) Flock of Birds magnetic

tracking system allows for tracking of multiple sensors and overcomes many operational

weaknesses that can be linked with an alternating current (AC) magnetic tracking system

(Ascension Technology Corporation, 2003). It also does not experience the problems of

occlusion that can be experienced when using an optical tracking system.

The transmitter consists of three individual antennae arranged concentrically and

orthogonally that generate a pulsed DC magnetic field. This pulsed DC current generates

the magnetic field produced by the transmitter. The sensors consist of three axes of

antennae that are sensitive to these magnetic fields. The output from the sensor goes

directly to the signal processing electronics. The Flock of Birds determines their position

and orientation in space by measuring magnetic fields and comparing the difference

between fields. For the first magnetic field, the sensor measures the x, y and z

components of the Earth's magnetic field. Using a differential amplifier the sensor signal

processing electronics subtract the Earth's magnetic field from the antennae signal from

the transmitter. This signal passes through an analog-to-digital converter that converts

the DC signal into a digital format that can be read by the computer (Figure 2.5).

25

Figure 2.5 Flock of Birds flow chart showing the data flow between all components.

2.4.2 Communication Setup

The Flock of Birds can be configured in two ways for multiple sensors. The first is to

provide each sensor its own serial port on the computer. This method is known as a

stand-alone configuration (Figure 2.6). The benefit of this setup is the Flock of Birds

achieves the maximum bandwidth. The disadvantage of this setup is the number of serial

ports needed to run multiple sensors. For each sensor, one serial port is needed, and most

modern computers the number of serial ports is limited to one or two.

Figure 2.6 Flock of Birds configured for multiple sensors by giving each sensor its own
dedicated serial connection to the computer. The XMTR is the transmitter and the RCVR
is the sensor (Ascension Technology Corporation, 1999).

The other method of communication is through a master-slave configuration.

Only the master sensor connects directly to the computer through a serial port. An

additional sensor is added by directly connecting to the master sensor through the FBB.

Subsequent sensors are connected to the previous slave sensor. Hence all slaves are daisy

chained to the master through the FBB (Figure 2.7). The benefit of this setup is that only

one serial port is needed. However, the disadvantage is, as more sensors are added, the

sampling rate is limited by the bandwidth of the single serial line.

Figure 2.7 Flock of Birds configured for multiple sensors by using the master slave
configuration, which utilized the FBB. For each bird, the XMTR is the transmitter and
the RCVR is the sensor (Ascension Technology Corporation, 1999).

2.4.3 Back Panel on Flock of Birds

When the FOB is configured in either the stand-alone or the master slave configuration

the Birds must be set via an 8-pin Dipswitch on the back (Figure 2.8). The 8-pin

Dipswitch on the back is used to set three settings: test mode, baud rate and addressing.

Pin 8 is used to set the bird in regular mode or in test mode.

Figure 2.8 Back of the Flock of Birds system showing where the receiver is piugged in
as well as the RS-232 connector and the 8-Pin Dipswitch.

Pins 4, 5, 6, and 7 are used to set the address of the bird. How these pins are set is

dependent on the communication setup. In a stand-alone configuration all birds are set to

0000 binary, this tells the birds that they are in a stand-alone configuration. In a master

r

Table 2.4 Baud Rate and Dipswitch Settings
Dipswitch number

1 	 2
Off (0)

Off (0)
Off (0)

Off (0)
Off (0) 1 Off (0)

On (1)
On (1)
Off (0)
Off (0)
On (1)
On (1)

Baud
Rate

Not Used
2400
4800
9600
19200
38400
57600
115200

3
Off (0)
On (1)
Off (0)
On (1)
Off (0)
On (1)
Off (0)
On (1)

28

slave configuration the master bird gets set to address 0001 binary with each slave bird

being set to the next following address. In an example of a four-bird setup in a master

slave configuration that master is set to address 0001 binary with each slave set to 0010,

0011 and 0100 binary respectively.

Pins 1, 2 and 3 are used to set the baud rate of the Birds. Table 2.4 summarizes

all the baud rates the birds a capable and the Dipswitch settings to set each baud rate.

2.4.4 Output Types

The Flock of Birds system is capable of multiple output types (Ascension Technology

Corporation, 1999). There are four main types of outputs as well as various combinations

of the four. The first output type is position and reports back an x, y, and z coordinate of

each sensor with respect to the transmitter. Each sensor coordinate is represented by two

bytes giving a total of six bytes to report x, y and z coordinates of a single sensor. The

position accuracy has a resolution of 0.5 millimeters. The second type of output is

angles, which is the yaw, pitch and roll of the sensor relative to the transmitter (Figure

2.9). Each orientation is also represented by two bytes giving six bytes total to represent

yaw pitch and roll. The yaw, pitch and roll have a resolution of 0.1 degrees. The third

29

type of output from the Flock of birds is a position matrix. This matrix outputs a nine-

element rotation matrix that defines the orientation of the sensor's X, Y and Z-axes with

respect to the transmitter's x, y and z-axes. The matrix is made up of 18 bytes with 2

bytes representing each element of the matrix. The fourth type of output is a quaternion.

The four quaternion parameters describe the orientation of sensor with respect to the

transmitter. The quaternion consists of eight bytes with two bytes representing each

quaternion. The Flock of Birds however can also output a combination of the four output

types. They are position/angle (12 bytes), position/matrix (24 bytes) and

position/quaternion (14 bytes). There are several other commands that the computer can

send to the Flock of Birds configuring the settings. A summary of all FOB commands

can be seen in Appendix D.

Figure 2.9 An example of what yaw, pitch and roll looks like.

2.4.5 Communication between Host and Flock of Birds

Once the proper setup for the application is achieved the computer and the Flock of Birds

are ready to begin communicating. To begin this process the computer must first send

specific ASCII commands to the Flock of Birds to initialize it. To get a greater

understanding of how these procedures work, an example will be used to demonstrate.

30

For the test experiment, four sensors will be used connected in a master slave

configuration. Each bird will output different data types, the master will output

position/angles and the slaves will output matrix, quaternion and position only

respectively (Figure 2.10).

Figure 2.10 Communication setup of test experiment with output type.

To begin the mater bird must receive an ASCII 'Y' to inform the bird that the

output type is position/angle. The next step is to inform the slave birds what output type

each slave should be. The output type of the slave birds is defined by sending a two-byte

hexadecimal value to the birds. The first byte is F2 Hex representing the second slave

bird followed by the output type '58 hex' representing the output type matrix. This step

is repeated for each following slave with the first byte changing to the number of slave

that is being configured. After the output type for each sensor is defined the birds must

be configured.

The FBB auto configuration command defines how many sensors will be used in

the experiment and turns them on. In the test experiment, four sensors are being used so

the auto-configuration must be sent a hexadecimal value four. The auto configuration

command must receive four bytes to be configured. The first byte received is a '50 Hex'

31

telling the birds to change a value. This is followed by a second byte '32 Hex' telling the

bird that value to be changed is the auto configuration command. The last two bytes are

used to tell the birds how many are to be used. The first byte defines the number of birds

'04 hex' followed by a '00 Hex'.

The last step in configuring the Flock of Birds is to set the sensors into group

mode. Group mode is used in a master slave configuration when multiple birds are used.

To enable group mode three bytes must be sent to the birds. The first byte that must be

sent is a '50 Hex', which tells the birds to change a value. This is followed by a '23

Hex', which tells the bird that the value to be changed is group mode. This is followed

by a '01 Hex' turning group mode one. If group mode is to be disabled the last byte

would be a '00 Hex'. Enabling group mode allows for more efficient communication by

allowing the computer to get the output information from all the bird by only talking to

the master bird (Ascension Technology Corporation, 1999).

2.4.6 Decoding

After initialization, the Flock of Birds is ready to transmit information. When the host

computer sends an ASCII 'B' this tells the Flock of Birds we want one point from the

sensor at that given moment. The bird then determines the position and orientation in

space and reports it back to the host. The information from the Flock of Birds is encoded

and therefore when received by the host computer it must be decoded. When the Bird

sends back information to the host computer each position and orientation is represented

by two bytes. These two bytes are 16 bits total and are sent to the host computer by

sending the Least Significant Byte (LSByte) first followed by the Most Significant Byte

32

(MSByte). To show how the information is decoded an example will be used where the

information being decoded is the x position of the sensor (Figure 2.11).

Figure 2.11 Example of a sample position being decoded (Ascension Technology
Corporation, 1999).

The Bird sends a two-byte string to the computer consisting of 16 bits with the

LSByte (10001111) first followed by the MSByte (00001111). The MSBit on the

LSByte is called the leading one and tells the computer when the data has started. To

begin the decoding process this leading one is changed to a zero making the LSByte

(00001111) and the MSByte remains (00001111). The LSByte is then shifted left with a

zero added to the right side of the shifted value make the LSByte (00011110). The

MSByte and the LSByte is then combined with the MSByte leading giving the long string

(00001111 00011110). This new string is then shifted left once more again adding a zero

to the shifted value giving the string (00011110 00111100). This binary value is the x

position that is desired. This binary string is then converted to a hexadecimal number (1E

3C). To convert this position into inches the following equations is used:

33

2.5 Cybergloves

The Cybergloves are used to determine joint angles of the fingers. The Cyberglove

contains 18-position sensors used in determining joint angles in the hand (Virtual

Technologies, Incorporated, 1998). The Cyberglove is made up of two devices, the glove

worn on the hand (Figure 2.12) and the Cyberglove Interface Unit (CGIU) (Figure 2.13).

Figure 2.12 The Cyberglove.

Figure 2.13 The Cyberglove Interface Unit (CGIU).

2.5.1 Bend Sensors

On the version of the Cyberglove being used there are 18 'bend' sensors used in

determining joint angles (Figure 2.14) (Virtual Technologies, Incorporated, 1998). On

the thumb there are two sensors, which measure the metacarpophalangeal and

interphalangeal (MP and IP) joints. On the other four fingers there are two bend sensors

to measure the MP joint as well as the proximal IP joints. Abduction sensors on the

34

glove are located between the thumb-index, middle-index, ring-middle and the pinkie

ring finger. There are two additional sensors used to measure how the thumb rotates

across the palm as well as a sensor to measure the pinkie rotation across the palm. The

last two sensors contained on the glove are used to measure wrist yaw and wrist pitch.

Figure 2.14 The hand showing where the bend sensors are located and the axis they
measure. On the Cyberglove being used there are no DIJ sensors (Virtual Technologies,
Incorporated, 1998).

2.5.2 The Cyberglove Interface Unit

The Cyberglove communicates with the host computer be means of the serial port

through the Cyberglove Interface Unit (CGIU) (Virtual Technologies, Incorporated,

1998). The CGIU is used to set the baud rate via dipswitches on the back of the CGIU

(Figure 2.15). The CGIU is also responsible for the amplification and digitization of the

35

information coming from the Cybergloves. By digitizing the signal it allows for direct

communication with the computer.

Figure 2.15 Back of the Cyberglove Interface Unit

2.5.3 Communication between Host and Cybergloves

The Cyberglove sends data to the host computer via the serial port. When the host

computer reads joint angles from the Cyberglove it sends an ASCII 'G' (Appendix E) to

the CGIU. The CGIU reads the bend sensors on the Cyberglove and transmits the angles

to the host computer. The output voltage from each of the bend sensor varies linearly so

there is no loss of resolution at the extreme ends of a joint. The resolution of the

Cyberglove is one degree for each of the joints. This value was empirically determined

to be sufficient for interpreting ASL. Each joint is represented by one byte giving a

resolution of 0 to 255.

2.5.4 Decoding

The Cyberglove outputs 20 bytes total when the computer requests data from it (Virtual

Technologies, Incorporated, 1998). The first byte is a copy of the command that was sent

36

to the glove. In the case of requesting joint angles, the first byte would be a 'G'. The

next 18 bytes represent the 18 joints of the Cyberglove (Table 2.5). The last byte is a '00

Hex' and is a null byte letting the computer know where the data ends. Each byte varies

from '00 Hex — FF Hex' and is converted into its decimal equivalent 0 — 255. The

decimal equivalent is converted to degrees by a linear equation using two parameters,

gain (slope) and offset (y-intercept) (equation 2.2).

Angle = Gain x (Decimal sensor value — Offset) 	 Equation 2.2

Table 2.5 Sensor Data Byte Ordering (Virtual Technologies, Incorporated, 1998)
Byte Index j	 Sensor Name (Description)

0	 I Thumb rotation/TMJ (angle of thumb rotating across palm)

1	 Thumb MPJ (joint where the thumb meets the palm)

2	 Thumb U (outer thumb joint)

3	 Thumb abduction (angle between thumb and index finger)

pa- 4	 Index MPJ (joint where index meets palm)

5	 i Index PIJ (second joint from the finger tip)

6	 I Middle MPJ

7	 Middle PIJ

8	 j Middle — Index abduction (angle between middle and index finger)

9	 Ring MPJ

10	 Ring PIJ

11	 Ring — Middle abduction (angle between ring and middle finger)

12	 Pinkie MPJ

13	 i Pinkie PIJ

14	 Pinkie — ring abduction (angle between pinkie and ring finger)

15	 I Palm arch (causes pinkie to rotate across palm)

16	 Wrist pitch (flexion/extension)

17	 i Wrist yaw (abduction/adduction)

37

2.6 Software

2.6.1 LabVIEW

LabVIEW (National Instruments, TX) is a graphical programming language with built-in

functionality for data acquisition, instrument control, measurement analysis, and data

presentation (National Intstruments Corporation, 2003). LabVIEW gives the flexibility

of a powerful programming language without the complexity of other traditional

development environments. The object oriented graphical environment of LabVIEW

allows developers to develop programs without writing a single line of code unlike text-

based languages. Programs are built using pre-developed blocks, called Virtual

Instruments (VI's), which perform specific tasks. The developer interconnects these

blocks by using "wires" similar to a flowchart. When the final code is complied its

execution speeds are comparable with a complied C program. One most notable trait of

LabVIEW is its ability to interface with outside hardware and to digitize data from these

devices at real time.

LabVIEW is the workhorse of the instrumentation produced in this thesis. It is

the main programming language in acquiring data from the Flock of Birds system as well

as the Cybergloves. LabVIEW is also be used in performing visual data verification of

the Flock of Birds by plotting 3-Dimensional plots and converting recorded data into

other forms.

2.6.2 Jack 3.0

Jack is an ergonomic and human factors product that helps to improve the ergonomics of

products in the work environment (Electronic Data Systems, 2002). Jack 3.0 uses

38

biomechanically accurate virtual humans in a digital environment to assess how Jack

would perform. Jack's Motion Capture (Mocap) toolkit is a set of tools that interfaces

with virtual reality (VR) devices and develops a virtual human that can perform specific

tasks in its environment. These motions that Jack 3.0 makes when performing tasks can

be recorded and played back. Jack 3.0 can display recorded FOB and Cyberglove data to

provide visual data verification of the Cybergloves.

CHAPTER 3

CALIBRATION

3.1 Cybergloves

The Cyberglove is used to measure joint angles by means of bend sensors within the

glove. The bone structure and skin tissue in hands differ from person to person. In order

to adjust how the bend sensor measures joint angles small translations need to be made

from the raw angle value. The calibration is done through software on the host computer.

The first program used is named Device Manager and is used to establish communication

between the Cyberglove and computer. Once Device Manager is loaded, then the main

calibration program runs. The software program provided with the Cyberglove named

Device Configuration Utility (DCU) will allow for changes in the gain and offset values

(Device Configuration Utility, 2001). By adjusting the gain, the slope of linear equation

used to represent the calibration curve is increased or decreased. As the slope increases

or decreases, the range of joint angles produced either increases or decreases. By

adjusting the offset, the zero value is adjusted up or down.

To begin calibration, the program tells the subject to make a series of hand

shapes. The first hand shape is the hand flat on a table with all the fingers together and

extended (Figure 3.1). The second hand shape is made by putting the index and thumb

finger together forming a circle with the other three fingers extended (Figure 3.2). The

DCU will now adjust the animated hand on the screen to more closely fit the subject's

hand (Figure 3.3). The movements of the animated hand can be used to determine the

accuracy of the calibration. If there are small discrepancies, the gains and offsets can be

39

40

adjusted manually (Figure 3.4). When the calibration is completed an ASCII file is

produced containing all the calibration information needed to adjust raw gain and offset

values.

Figure 3.1 First stage is calibration of the right hand (Device Configuration Utility,
2001).

Figure 3.2 Second stage in calibration of the left hand (Device Configuration Utility,
2001).

41

Figure 3.3 Animated hand displayed on the screen that mimics the subject's hand
movements in the Cyberglove (Device Configuration Utility, 2001).

Figure 3.4 Fine tuned adjustments can be made to the gain and offset values (Device
Configuration Utility, 2001).

42

3.2 Flock of Birds

The Flock of Birds was tested to measure the true accuracy with which it records.

According to technical documentation, the FOB has a resolution of 0.1 degrees and an

accuracy of 0.5 degrees (Ascension Technology Corporation, 1999). Tests were run to

validate the accuracy of the data outputted from the FOB using the output types

position/angle and position/matrix. The experimental setup consisted of one FOB and a

potentiometer in a pendulum setup (Figure 3.5). The potentiometer (Appendix G) is set

at the pendulum's axis of rotation such that as the pendulum swings the potentiometer

turns (McQuade, 2002). As a current passes through the potentiometer a new voltage is

outputted depending on the angle of the potentiometer shaft. As the shaft of the

potentiometer turns, the resistance changes making the output voltage higher or lower.

At the bottom of the pendulum an FOB sensor is attached and set in an orientation so that

only the roll value changes and yaw and pitch stay zero. The goal is to measure the roll

angle from the FOB at select angles determined by the potentiometer. Using the

potentiometer as the gold standard the angles outputted from the output types

position/angle and position/matrix are measured and compared.

Once the experimental setup is completed, data are recorded in the vertical

orientation 0 degrees determined by gravity, and -90 degrees and 90 degrees using a

gravity-base fluid level. Calibration of the potentiometers output to angle was completed

by recording the voltage at +/-90 degrees from vertical and linearly interpolating the

potentiometers output to degrees. Static measurements of the roll angle and rotation

matrix were made in ten-degree increments as determined by the potentiometer. The

pendulum was held at each angle for three seconds to eliminate any dynamic effects, and

43

the rotation matrices and roll angle of the middle 0.5 seconds were recorded. The

expected results of the angles measured by the FOB should differ from the potentiometer

angle by 0.5 degrees.

Figure 3.5 Pendulum calibration setup with potentiometer and FOB.

44

To achieve the roll angle from a positional matrix the following steps were used.

First, the inverse of the zero degree matrix is found (M 0-1). Next, the inverse of the zero

matrix is multiplied by the rotation matrix of the sensor (Equation 3.1). The trace of the

new matrix is then taken (Trace(Mn)) and set equal to 2Cos(θ) + 1. Solving for theta

gives the angle between the position of the initial orientation (0) and the sensor (Equation

3.2). The angle is an arbitrary plane that is not necessarily one of the three primary

planes (x, y, z) of the transmitter. When this arbitrary plane coincides with the (x, y, z)

plane, the rotation matrix of the sensor replaces only the rotation about the y-axis, which

corresponds to the roll angle of the sensor. Thus, in this orientation, the roll angle equals

the angle computed with the rotation matrix (Table 3.1). However, if the plane of

movement is not parallel to the y-axis, then the roll angle does not represent the true

angle. Alignment with the y-axis results in angles of zero degrees for both pitch and yaw

angles. Non-zero pitch and yaw implies misalignment.

45

Table 3.1 Results of Measured Roll Angles with No Yaw or Pitch
Angle (Degrees) Potentiometer Roll Measured Angle

(Degrees)
Matrix Angle (Degrees)

-90 9.676562 -90.4 -90.2
-80 9.625694 -80.7 -80.1
-70 9.574826 -70.6 -70
-60 9.523958 -60.8 -60.4
-50 9.47309 -50.9 -50.2
-40 9.422222 -40.3 -40.6
-30 9.371354 -30.7 -30.3
-20 9.320486 -20.1 -20.3
-10 9.269618 -10.3 -10.4

0 9.21875 -0.7 0
10 9.168207 8.2 9
20 9.117664 18.7 18.9
30 9.067121 28.9 29.5
40 9.016578 39.3 39.3
50 8.966035 48.6 49.4
60 8.915492 59.1 59.5
70 8.864949 70 70
80 8.814406 79.9 79.4
90 8.763863 89.6 89.7

Sum Squared Error (SSE) 13.2 4.96

Three additional tests were conducted to see how accuracy changes with the yaw

misaligned by 15, 30 and 45 degrees. It was expected that the squared error measured

from position/angle would increase as the misalignment was increased, while the error

using the rotation matrices would show no increase due to misalignment. The results

seen in Table 3.2, Table 3.3 and Table 3.4 show how the sum squared error remains

constant for position/matrix as yaw misalignment increases and shows that position/angle

error increases drastically with misalignment. The Squared Errors are plotted in Figure

3.6, Figure 3.7, Figure 3.8 and Figure 3.9. It shows while yaw misalignment increases

the output from position/matrix stays approximately linear while the output roll angle

from position/angle becomes very non-linear.

Table 3.2 15-Degree Yaw Misalignment and Resulting Roll Alleles
15-Degree Yaw Misalignment

Angle (Degrees) Potentiometer Roll Measured Angle
(Degrees)

Matrix Angle (Degrees)

-90 9.675293 -90.2 -90.2
-80 9.624501 -80.7 -80.4
-70 9.573709 -69.1 -70
-60 9.522917 -59.4 -60.1
-50 9.472125 -49 -49.8
-40 9.421333 -39 -39.9
-30 9.370541 -29.4 -30.6
-20 9.319749 -19.6 -20.5
-10 9.268957 -10.3 -10.2

0 9.218165 -0.1 0
10 9.167285 8.4 9.1
20 9.116405 19 19.1
30 9.065525 28 29.4
40 9.014645 37.8 39.2
50 8.963765 47.8 49.1
60 8.912885 58 59.9
70 8.862005 68.9 69.3
80 8.811125 79.3 79.5
90 8.760245 89.9 90

Sum Squared Error (SSE) 27.27 5.09

46

Table 3.3 30-Degree Yaw Misalignment and Resulting Roll Angles
30-Degree Yaw Misalignment

Roll Measured Angle
(Degrees)

Matrix Angle (Degrees)Angle (Degrees) Potentiometer

-90 9.675293 -88.4 -90.2
-80 9.624533 -78.9 -80.4
-70 9.573773 -67.3 -70
-60 9.523013 -56.6 -60.1
-50 9.472253 -46 -49.8
-40 9.421493 -35.9 -39.9
-30 9.370733 -26.8 -30.6
-20 9.319973 -17.2 -20.5
-10 9.269213 -8.8 -10.2

0 9.218453 -0.1 0
10 9.167533 7.7 9.1
20 9.116613 16.5 19.1
30 9.065693 25.6 29.4
40 9.014773 34.9 39.2
50 8.963853 44.9 49.1
60 8.912933 55.4 59.9
70 8.862013 67.2 69.3
80 8.811093 78.5 79.5
90 8.760173 90.2 90

Sum Squared Error (SSE) 195.17 5.09

47

Table 3.4 45-Degree Yaw Misalignment and Resulting Roll Alleles
45-Degree Yaw Misalignment

Angle (Degrees) Potentiometer Roll Measured Angle
(Degrees)

Matrix Angle (Degrees)

-90 9.674805 -89.7 -90.2
-80 9.624125 -75.6 -80.4
-70 9.573445 -61.6 -70
-60 9.522765 -50.3 -60.1
-50 9.472085 -38.8 -49.8
-40 9.421405 -29.8 -39.9
-30 9.370725 -21.6 -30.6
-20 9.320045 -13.7 -20.5
-10 9.269365 -6.7 -10.2

0 9.218685 -0.3 0
10 9.167893 6.4 9.1
20 9.117101 13.3 19.1
30 9.066309 21.2 29.4
40 9.015517 29.4 39.2
50 8.964725 39 49.1
60 8.913933 49.1 59.9
70 8.863141 61.5 69.3
80 8.812349 75.9 79.5
90 8.761557 90.6 90

Sum Squared Error (SSE) 1111.69 5.09

48

49

Figure 3.6 Plot of squared error at 0 degree yaw showing how the squared error differs
for different output types.

Squared Error with 15 Degree Yaw

Degrees

Figure 3.7 Plot of squared error at 15-degree yaw showing how the squared error differs
for different output types. The roll from angle starts to increase while roll from matrix
remains semi-linear.

Figure 3.8 Plot of the squared error at 30-degree yaw.

50

Squared Error with 45 Degree Yaw

Figure 3.9 Plot of the squared error at 45-degree yaw.

CHAPTER 4

Lab VIEW

4.1 Cyber Flock Overview

To record position and angles for the FOB and Cybergloves, a custom LabVIEW

program named Cyber Flock was developed (Appendix A). The program was designed

to be user-friendly and flexible to meet the needs of any individual wishing to use the

Flock of Birds and/or Cybergloves. To make the program flexible the user should have

the ability to change parameters such as frame rate, number of birds, number of

Cybergloves and their output types. To make the program user-friendly indicators are

provided to show the experimenter the outputs in real time as well as indicators to inform

the user how well the computer is handling the selected frame rate.

The Cyber Flock program performs a series of tasks while executing. Some of

these tasks can be divided into subprograms allowing for better manageability of code as

well as better structure (Figure 4.1). The file type of all Labview programs are

designated as Virtual Instruments (vi's) while all subprograms are called subvi's.

Figure 4.1 The custom LabVIEW program flow chart showing the main program as well
as all subvi's that are called.

51

52

To show the inner workings of this custom LabVIEW program an example will

be used to demonstrate its capabilities. For the experimental trial, two Cybergloves will

be used, as well as four sensors set up in a master-slave configuration. The output types

for each FOB sensor are position/angle, position/matrix, position/quaternion and angles

respectively. The frame rate will be set to 30 Frames Per Second (FPS), this is a

sufficient resolution for recording ASL. Since ASL can be interpreted in video, which is

recorded at 30 FPS, it was determined that 30 FPS was a sufficient speed for analyzing

ASL. The communication port for the serial connection for the FOB will be COM1. All

these settings are designated on the front panel of the LabVIEW program (Figure 4.2).

The front panel serves as the user interface between the computer and experimenter. The

program will read in data from the FOB, the Cybergloves and store them to an ASCII

file.

53

figure 4.2 Front panel design of the Cyber Nock program

4.2 Cyber Flock Initialization

4.2.1 Loading Calibration

The program begins by first asking the experimenter where to store the data that is to be

recorded and what the file name will be. After the user enters a file name the program

will then prompt the user to enter the location of the Cyberglove calibration file generated

by the DCU. The user will be asked for the left Cyberglove calibration file first followed

by the right Cyberglove. Two subvi's then break down the multiple line calibration file

into single lines with each line containing the offset and gain values for one of the 18

bend sensors (Figure 4.3). These subvi's then proceed to divide the single line down into

their offset and gain value. The offset value is achieved by indexing the single line string

54

at 4 while the gain is achieved by indexing at 12. When each of the subvi's is finished

executing it outputs numbers that represent the gain and the offset values. This is

repeated 18 times with the line index changing each time. When this is completed two

arrays of 18 values are outputted with the first containing the gains for each of the 18

bend sensors and the other values are the offset.

Figure 4.3 Gain and offset subvi's.

4.2.2 Initialization of Serial Ports

When the loading of calibration files is completed the program initializes the serial ports

by defining the baud rate and the communication port number. The baud rate is fixed by

the hardware and is defined in the program as 115200 bps. The communication ports are

user-defined as: COM1 for the FOB, COM3 for the left Cyberglove, and COM4 for the

right Cyberglove for this test experiment.

4.2.3 Flock Manager

When the experimenter first begins, the output type of each bird is designated by

selecting one of the eight types from a drop down menu on the front panel. An additional

Dutput type labeled 'not active' is used to determine if the sensor is going to be used. The

table below summarizes the output type with their corresponding Hexadecimal value,

ASCII equivalent and the decimal number that represents the output type. Included in the

55

table is also the byte count of each output type. Included in the byte count is an

addressing byte used to determine which bird is sending information. For the master bird

the addressing byte is 01, and for each slave bird the addressing byte starts at 02 and

increases to the amount of birds used.

Table 4.1 Output Type with Equivalent Number, Hexadecimal ASCII Equivalent
and Byte Count

Once the serial port is initialized the program proceeds by determining what

settings the user has selected and generating values to help the program proceed. The

input type of each bird enters into a subvi called 'flock manager'. The subvi begins by

first determining which of the ten sensors is active (Figure 4.4). This is determined by an

additional subvi flock detect, that determines if the output type is not active. By using a

true/false case statement, if the output type is equal to seven (not active) the case is true

and a zero is outputted. If the output type is equal to some other number, the case is false

and a one is outputted. The outputs of ones and zeros are added together to give the total

number of sensors active. In the case of the test experiment, four birds would be active

giving a total number of birds active equal to four.

Figure 4.4 A portion of the subvi flock manager showing how the total number of
sensors active is detected.

The subvi flock manager is also used to produce a total byte count and to generate

an array of hexadecimal values representing each sensor's output type (Figure 4.5). A

case statement is used for each sensor where each case statement has eight possibilities.

The output type selected determines which of the eight possibilities the case statement

will go to. In the test experiment the master case statement would be set to 0 representing

position/angle. Each slave above the master would be set to 1, 2, 4, 7, 7, 7, 7 and 7

respectively; where 1, 2 and 4 represent the output types position/matrix,

position/quatemion and angles respectively and the 7's represent the output type not

active. The output from each case state is dependent on if the sensor is active or not.

The first value outputted is a 2 for active sensors or a 9 for non-active sensors and will be

used to initialize all of the slave birds. These values are built into an array that will

57

contain nine values made up of 2's and 9's. In the test experiment three slaves are being

used so the array of 2's and 9's will contain three 2's and six 9's. The array produced

and the order would be [2, 2, 2, 9, 9, 9, 9, 9, 9]. The second value outputted from the

case statements is the hexadecimal equivalent of the output type of all slave birds. These

values get built into an array that will contain nine numbers made up of the hexadecimal

equivalents of the output types. The test experiment would produce the array [5A

(position/matrix, SD (position/quaternion), 57 (angles), 69 (not active), 69, 69, 69, 69, 69]

representing the output type of each slave bird. The last value that comes from the case

statement is the number of bytes needed to represent the output type selected. These

numbers are added together to produce the total byte count that will be needed when

reading in data from the birds. With the text experiment, the total byte count would be

60, which comes from the addition of the four output types being used (equation 4.1).

58

Figure 4.5 A portion of the subvi flock manager showing the ten case statements.

The last part of the subvi flock manager is to divide down the array of output

types into an array of active output types only (Figure 4.6). To do this, the array of 2's

and 9's is utilized to determine where in the output array non-active birds are. A for loop

is used with the number of loops determined by how many total flocks are active. If four

birds are active then six birds are not active. By subtracting the number of total birds

59

active from 10 the proper number of loops is achieved. The values that enter the for loop

is a constant array designated FBB array made up F2, F3, F4, F5, F6, F7, F8, F9 and FA.

These nine numbers represent the nine possible slave birds. The two other values

entering the for-loop are: the array of 2's and 9's and the array of output types. The

values that are output are a condensed version of the FBB array as well as a condensed

version of the output type array. For every loop, the array of 2's and 9's is searched for

the value nine. When a nine is found the index value is outputted and entered into a

block designed to delete from an array at a specified index. A new array is outputted

minus the value that just got deleted generating an array that is now smaller by one. This

array is returned to the beginning of the loop and is deleted from again until looping is

complete. At the end, the output FBB array and output type array (active birds only)

should be as large as the number of slave birds in the experiment. The size of these

arrays should be three for the text experiment. The FBB array generated would be [F2,

F3, F4] and the output type array (active birds only) would be [5A, 5D, 57].

Figure 4.6 A portion of the subvi flock manager showing how the output type array and
FBB array are trimmed down using the array of 2's and 9's.

60

4.2.4 Writing a Header

The next step in the program is to write a header file for the ASCII file that is being

developed. The subvi labels was developed to write a header file that would label each

column in the outputted ASCII file. The subvi utilizes the output array generated from

the subvi flock manager and uses it to produce the appropriate header. The condensed

output type array generated from flock manager enters into the subvi. The subvi starts off

by first adding into the array the output type of the master bird. This generates the new

array [59, 5A, 5D, 57], where the master bird output type is position/angle (Table 4.1).

The array then enters into a for-loop where the number of birds active determines how

many loops. In the test experiment, this would equate to four loops total. The for-loop

contains a counter that can be used to show what loop it is currently on. When the

number of loops is equal to four the counter will count each loop starting at zero and

ending at three in increments of one. The subvi uses this counter to index the output type

array with each passing loop. On the first loop, the output would be 59, followed by a 5A

on the second loop and a 5D and 57 on the third and fourth loop respectively (Figure 4.7).

At the same time, the counter is incremented on every loop and turned into a decimal

string value. By incrementing the counter in every loop a count of 1, 2, 3 and 4 is

produced rather then 0, 1, 2 and 3.

61

Figure 4.7 A portion of the subvi labels showing how the output type from the master is
inserted into the output type array and how the loop counter is used to index the array.
The loop counter is also incremented and converted into a string.

Every time the program loops, the loop counter produces a value that indexes the

output type array and at the same time is incremented and converted into a decimal string.

For the first loop, a hexadecimal 59 would be sent out of the array for the test experiment.

The loop counter on the first loop would be incremented from zero to one and converted

into decimal string. The output from the index array feeds into a case statement that is

composed of seven cases, one for each output type. The '59 Hex' would make the case

statement go to case position/angle (Figure 4.8). The decimal string converted from the

loop counter would then enter the case statement into a block called search and replace.

The position/angle case contains constant strings labeled Flock b (x), Flock b (y), Flock b

(z), Flock b (yaw), Flock b (pitch) and Flock b (roll). Flock b; x, y and z are

concatenated together and are tab delimited. This concatenated string enters a search and

replace block. This block searches the string entered for a value and replaces it with a

new one. The block is set up so that it searches the string for the letter b and replaces it

with the decimal string from the loop counter. This converts Flock b x, y and z to Flock

1 x, y and z giving the proper label for Flock 1. The subvi will loop three more times

producing the proper header for flock 1, 2, 3 and 4.

Figure 4.8 Demonstrates how the b is replaced with a decimal string.

Contained within the for-loop are true/false statements used to output the proper

header for the Cybergloves. When the buttons are true two concatenated strings of 18

labels each are outputted (Figure 4.9). These strings are concatenated with the FOB

string producing one long header containing the labels for both Cybergloves and FOB.

Figure 4.9 A case state showing how the 18 labels for Cyberglove are concatenated and
outputted.

4.2.5 Initialization of Master and Slave Birds

After the header has been written, the birds must be initialized with their output types.

To initialize the master bird, a one-byte hexadecimal value of the output type is sent to

the master birds via the serial port. In the text experiment, a hexadecimal 59 would be

sent indicating the output type is position/angle. To initialize the slave birds, a two-byte

hexadecimal value must be sent to the master bird. The first byte tells the master what

slave birds to send the output type to, and the second byte contains the output type of the

slave. The FBB array generated in flock manager is used to define the first byte and the

output type array generated by flock manager is used for the second byte. For the test

experiment a F25A would be sent to the master bird. This tells the master bird that the

63

64

output type is position/matrix and it belongs to the second bird, which is equivalent to the

first slave. This would be followed by F35D for position/quaternion for the third bird,

and F457 for angles for the fourth bird (Figure 4.10). The number of slave birds present

defines the number of loops. For each loop, the FBB array and output type array are

indexed starting at zero for the first loop. This would produce the F2 from the FBB array

and 5A from the output type array. The two values are concatenated and written to the

serial port. The looping continues until all slave birds are initialized.

Figure 4.10 A portion of the VI Cyber Flock showing how all slaves are initialized.

4.2.6 FBB Auto Configuration and Group Mode

The next phase in initialization is to run FBB auto configuration and to enable group

mode. FBB auto configuration utilizes the total number of birds active generated by the

subvi flock manager. Four bytes are needed for the FBB auto configuration command.

Three are constants with the fourth being the number of birds active. The four bytes are

concatenated into one long string and sent to the master bird (Figure 4.11). To enable

65

group mode a three-byte sting is written to the serial port. A hexadecimal value 01

enables group mode (Figure 4.11).

Figure 4.11 How to run FBB auto configuration and how to enable group mode.

4.2.7 Initialization of Frame Rate in Byte Count

The final phase before data acquisition begins is to first set the frame rate and receive the

byte count that each active bird will produce. When the frame rate is entered on the front

panel it must be translated into the amount of milliseconds needed between each point

when recording. In order to achieve the desired 30 frames per second a data point must

be collected every 33 milliseconds. As the frame rate increases, the amount of time

between each point decreases. At 60 frames per second, that amount of time between

each data point would be 17 milliseconds. The speed of the computer as well as how

efficient the code is written determines how fast the frame rate can be. Another problem

also develops when reading the Cybergloves and FOB simultaneously. The maximum

frame rate at which data can be recorded from the Cyberglove is 80 frames per second.

This frame rate is the limiting factor, meaning that the frame rate cannot exceed 80

66

frames per second. The frame rate is set by using a case statement to determine what

frame rate was chosen and outputting the proper time in milliseconds (Figure 4.12).

Figure 4.12 Takes the inputted frames per second and converts it to a millisecond value.

The byte count for each output type needs to be outputted at this point. The byte

count for the individual output types will be used to help determine where in the data is in

the string of information outputted. The full output type array created by the subvi flock

manager is used to determine the output type of each individual bird. The output type

full array determines which case to enter and produces the byte value for the output type

from that case (Figure 4.13).

Figure 4.13 Two samples of the case statements from several outputting the byte count
for each bird.

67

4.3 Cyber Flock Main

Once initialization is complete the data-collecting portion of the main program is ready to

begin. The main part of the program is an eight-stage sequence.

4.3.1 Pause and Tick

The first part of the sequence allows the experimenter to pause the program if needed

(Figure 4.14). If the pause button is pressed it is considered true and the while loop will

loop indefinitely. When the pause button is released the program exits out of the while

loop and continues to the rest of the program. If the pause button is not pushed, the loop

counter will be less than one so the greater than statement will always be false. The

output that is generated is an empty string. If the pause button is pressed the loop counter

will become greater then one. The case statement then becomes true and sends an end of

line character when the pause is released. This places a blank line in the recording ASCII

file allowing for easy interpretation during offline analysis. Another feature of stage one

is the tick count. This icon generates the current time of the system with a resolution of 1

millisecond. The outputted string tells the exact time at which this stage has occurred and

passes it out of this stage of the program.

Figure 4.14 The Pause button and the Tick count being used.

68

4.3.2 Get Data

Stages two, three and four are very similar in the tasks that they do (Figure 4.15). Stage

two writes the hexadecimal number 42 to the serial port COM1. This tells the FOB to

send its current location to the host computer. The output type it sends is dependent on

how it was initialized. Stage three sends the ASCII character G to the serial port COM3.

This tells the Cyberglove to output its data to the host computer. Stage four also sends

and ASCII character G but to COM4 instead. This tells the second Cyberglove to output

its data.

Figure 4.15 How LabVIEW writes characters to the serial port.

4.3.3 Read Cyberglove Data

Stages five and six of the sequence are used to read in data from the left Cyberglove and

right Cyberglove respectively (Figure 4.16). The process begins by reading 20 bytes

from the serial port the Cyberglove is connected to. The resulting hexadecimal string is

then converted into an integer array. The first and last bytes are then stripped off the

array leaving the 18 bytes that represent the 18 bend sensors on the Cyberglove. The

angles of the joints are then calculated by subtracting the offset array generated from the

load calibration offset subvi from the output array. The resulting array is then multiplied

by the gain array generated by the load calibration gain subvi. The resulting output is

the position of the joints in radians. To change to degrees multiply by 180 and then

divide by pi.

69

Figure 4.16 Data being read in from serial port for left Cyberglove and is then
manipulated.

4.3.4 Read Flock of Birds data

Stage seven reads in the data from the flock of birds and converts it into inches from a

hexadecimal value (Figure 4.17). The first step in this stage of the sequence is to read in

the proper amount of bytes from the serial port. The subvi flock manager defined the

total amount of bytes present on the serial port in the initialization phase. The string that

is read from the serial port is then converted into an integer array. This integer array

feeds into ten different case statements, one for each bird sensor, where each case

statement contains the eight output types including the not active statement. For the test

experiment, the first values case statement goes to position/angles. Inside this case, the

integer array enters into the two subvi's flock xyz and flock angle. When it emerges from

the subvi's the x, y and z coordinates are in inches and the yaw, pitch and roll are denoted

in degrees. These values are then sent to a build array block where they are combined to

form a one-dimensional array of data. It is then combined with the other case statements

and Cyberglove data to form a two dimensional array of data to be saved to a data file.

The subvi flock xyz is used to convert position data into inches (Figure 4.18). The

inputs into this subvi are the input array containing the data, the flock number and the

byte count. The flock number is multiplied by the byte count from the previous slaves

and master and used to determine where to start reading data bytes. For the test,

experiment the master bird has a byte count of zero and a flock number of zero because it

does not have any sensors before it. For the second flock, the flock number becomes one

and the byte count is the amount of bytes used by the previous bird. In the test

experiment the byte count in would be 13 for position/angle. This tells the computer that

the data for bird two does not start until the 14 th byte. For the subvi flock xyz the input

array is indexed at six locations. Three of these locations are for the x, y and z coordinate

while the other three are to break each coordinate down into its LSByte and its MSByte.

71

For example, if the input array were the six-byte string [8234 1111 2222] Hex, coordinate

x would be the first two bytes [8234] Hex. This would then be broken down into its

LSByte and the MSByte with the LSByte being outputted first from the FOB. This

would make the LSByte [82] Hex and the MSByte [34] Hex. These two values get

merged together and converted into inches. The value of inches is then converted one

step further into millimeters by dividing inches by 25.4.

Figure 4.18 The subvi flock xyz reading an input array and producing the corresponding
xyz coordinates in millimeters.

The subvi flock xyz disassembles the input array and feeds it into another subvi

FOB decoder (Figure 4.19). This subvi indexes the input array at the locations defined

by the subvi flock xyz. Working with the previous example, the input array for the x

coordinate would be the array [8234] Hex. This array would then be indexed into its

MSByte [34] Hex and the LSByte [82] Hex. When each byte is separated it is converted

into an 8-bit binary string and then begins the decoding process of the FOB. The first

step is to drop the leading ones of the two bytes by performing an AND operation. By

performing an AND operation on the 8-bit binary string of the LSByte and the MSByte

with the 8-bit binary value of the decimal number 127 the leading ones are dropped. The

8-bit binary strings are then converted back into integer values. The LSByte is then

72

multiplied by two to produce the shift left needed when decoding. The integer values are

then converted to a hexadecimal string with the MSByte coming first followed by the

LSByte (Figure 4.20).

Figure 4.20 A flow chart of an example of how the two-byte value [8234] would be
decoded.

When the subvi FOB decoder returns a hexadecimal value, the subvi hex to inches

converts the hexadecimal number into inches (Figure 4.21). The Hex string is converted

into a decimal value where it is then multiplied by two. This shifts the binary equivalent

left by one-byte. The number is then converted into a signed integer and converted into

inches. The signed integer is converted to inches by first multiplying by the operational

limitation of the transmitter. For this standard transmitter, this value is 36 inches. The

next step is to divide by 32767; which is the decimal range a signed two-byte number can

represent.

73

Figure 4.21 The subvi hex to inches converts a hexadecimal string into inches.

4.3.5 Writing ASCII File

When the data is finished being read and processed, the next stage is to save all data to an

ASCII file (Figure 4.22). The data is converted from an array into a spreadsheet string

and is then concatenated with a timestamp. This allows all data points to be time

stamped at when they occur. The file is written and saved for post acquisition analysis.

Figure 4.22 A portion of the VI Cyber Flock showing the data being converted into a
spreadsheet sting and concatenated with a time stamp.

When the program is completed the data that have been saved to an ASCII file is

in columns with each row time stamped (Figure 4.23). Each column is labeled with the

data type it represents and is tab delimitated. The ASCII file can now be used in post

acquisition analysis of hand movements and gestures.

74

Figure 4.23 A sample output of data collected using the Cyber Flock program.

4.3.6 Dynamic Timing

The last stage in the sequence is to adjust timing so that each loop lasts the specified

number of milliseconds. In the case of 30 frames per second, each loop should last 33

milliseconds. A simple delay cannot be used however; instead the timing must be

dynamic to account for fluctuation in the time it takes to complete the eight-stage

sequence per loop. In the last stage, another tick count is taken and compared with the

tick count from the first stage. By subtracting the two a total loop time can be achieved.

This number is subtracted from 33 milliseconds to give the amount of time needed to

wait in order to achieve the desired 33 milliseconds per loop. For example, if it took 23

milliseconds for the loop to complete then the computer must wait ten more milliseconds

to reach the desired 33 milliseconds. One limitation with this design comes from the

Cybergloves. After processing of all stages is complete, the Cybergloves need a

minimum delay time of 12 milliseconds. If the delay is less then 12, the Cybergloves

lose communication and output noise. To fix this problem an algorithm was developed to

75

determine if the delay time is less then 12. In the example, the loop time was 23

milliseconds giving a 10-millisecond delay time in order to achieve 33 milliseconds.

This time is 2 milliseconds less then the minimum time it can be. The program detects

this value and makes the delay time 12 milliseconds and takes the 2 milliseconds extra

and passes it back to the beginning of the loop (Figure 4.24). It is then added to the tick

count in the first stage of the sequence when the program loops. This makes the

minimum time of 12 milliseconds shift to 0 milliseconds. This is helpful when the

computer has intermittent slow downs for various reasons, such as when the computer

polls the Internet. If the delay time continues to fall under 12 milliseconds, the overshoot

will become greater then 12 milliseconds and the program will give an error message that

the frame rate has been exceeded. This is to keep the frame rate constant and to prevent

the loss of frames (Figure 4.25).

Figure 4.24 A part of the dynamic timing that detects the loop time and adjusts the
timing if the calculated delay time is less then 12 milliseconds.

Ter, Terre STerrerrere ' SC ' SCereerr reererepree 	 ",:reSreetn:Nreeeenretngenrerngeeeeet,,,FAI: True 2 .

..:
:::: 	la . --. good:,..:
....:	 .::
P 	.. GI ...I Warning ll

.::

':i
Danger

False

WV2502271527212i2ZSZeiM

False

76

Figure 4.25 A part of dynamic timing that produces error if the frame rate is exceeded.

This stage of the sequence also provides the front panel with indicators to warn

the experimenter if the frame rate is dangerously high. If the calculated delay time is

between 10 and 40 milliseconds the program is not going to exceed the frame rate. If the

delay time drops to between five and nine milliseconds the program will still run but the

green light changes to yellow to warn the user that the delay time is low. If the delay

time falls to between one and four milliseconds the light becomes red telling the user that

the frame rate is dangerously low and the frame rate is close to being exceeded (Figure

4.26).

Figure 4.26 A portion of the dynamic timing showing how the indicators are calculated.

77

4.4 Jack Converter

An additional LabVIEW program was written to provide visual analysis of the

Cyberglove (Appendix B). To provide the experimenter with a quick method of

determining if the data recorded from the Cyberglove was accurate Jack 3.0 was used.

Jack 3.0 can record motions from the Cybergloves and write them to a file to be

displayed at a latter date. Instead of recording from Jack 3.0, the data collected from

LabVIEW will instead be converted into the file that can be used by Jack 3.0 for display.

The file structure used by Jack 3.0 consists of headers defining various joint types as well

as the joint values that must be in radians (Figure 4.27).

Figure 4.27 A small portion of the file structure needed to play back in Jack 3.0. The full
file structure can be seen in Appendix F.

The LabVIEW program writes the Jack 3.0 file by taking the ASCII file recorded

and isolating the data for the Cybergloves and FOB. The program begins by asking the

user where the Jack 3.0 data file is to be stored. It then prompts the user to enter in the

location of the ASCII file that will be converted. Once the ASCII file is loaded the

program deletes any data that will not be used, such as the header, time stamp and

position data from the FOB (Figure 4.28).

Figure 4.28 A portion of the Jack Converting VI that shows how the file is prepped.

In order to show complete Cyberglove data in Jack 3.0, the program needs to

create 15 different headers, each one defining at least one joint. The program enters a

for-loop that will loop 15 times in order to write all the headers with their data. The data

from the ASCII file is then broken into three with each array used to define a movement

in the x, y, and z directions. A case statement is used to determine where to index each

array depending on what loop the program is on. The size of the array is requested in

order to know how many frames to write for each header (Figure 4.29).

79

Figure 4.29 A portion of the Jack Converting VI show how the array is broken into three
and indexed depending on the loop.

The program then enters a three-stage sequence loop used to write the header and

all the data for each joint. The first stage of the sequence loop is to write the header

containing the joint name, the object type and profile file type (Figure 4.30). The next

stage of the sequence is to read in all the data points from the ASCII file. Within this

sequence loop is a for-loop. The amount of iterations of the loop is defined by the array

size. If there are 1000 data points for a joint then the program will loop 1000 times

writing each data point (Figure 4.31). The last stage of the sequence is to place a 1' at

80

the end, which tells Jack 3.0 where the header ends (Figure 4.32). This repeats 15 times

before exiting the program. After the program is done the user has a Jack 3.0 file that can

be opened and played.

Figure 4.30 A portion of the Jack converting VI. This is the first stage of the sequence
showing how one of the 15 headers is written.

Figure 4.31 The second stage of the sequence showing how the data is written for each
header. The loop counter indexes the multi line array so each data point comes out one at
a time.

81

Figure 4.32 The last stage of the sequence show how the '}' is written and concatenated
with a line return.

4.5 Flock Plot

The final LabVIEW program written for the ASL experiment was used to do 3-

dimensional plots of the x, y and z coordinates from the FOB (Appendix C). This was to

help visually verify the accuracy of the data by checking for breaks in the plot. The

program begins by first asking the user to enter in the ASCII file recorded earlier. The

file is then loaded and its headers and timestamps are deleted. The Cyberglove data are

also removed from the file (Figure 4.33). The remaining array is indexed to divide it into

its x, y and z component (Figure 4.34). The program written is capable of handling two

birds simultaneously while plotting. The data then enters a for-loop whose iterations are

defined by the size of the array (Figure 4.35). Each data point is plotted one at a time

providing the experimenter with animated points representing the sensors. When the plot

is complete the resulting plot produced contains all the data points recorded from the

FOB.

82

Figure 4.33 A portion of the plotting VI. The ASCII file is loaded and all non-essential
information is removed.

Figure 4.34 A portion of the plotting VI. The array is indexed for one sensor into its x,
y, and z coordinates.

Figure 4.35 A portion of the plotting VI. The x, y, and z array from two birds are
plotted.

CHAPTER 5

METHODOLOGY

5.1 Experimentation

The experimental setup for a simple ASL experiment used one Cyberglove with one

Flock of Birds. The glove is place on the right hand with the Flock of birds attached to

the Cyberglove with nylon screws (Figure 5.1). The Flock of Birds is configured in a

master slave configuration with one master and no slaves. The Cyberglove and the Flock

of birds are set to a baud rate of 115200 from the Dipswitches on back of each device.

When the subject is comfortable, the Device Calibration Unit (DCU) is ran to calibrate

the Cyberglove to the subject's hand. The subject is asked to begin by first making the

required hand shapes needed in calibration. If the calibration appears incorrect, the

experimenter should fine-tune the calibration in the advanced settings. When calibration

is complete the calibration file should be saved to a known directory.

Figure 5.1 A subject with the right Cyberglove on forming the letter C.

83

84

The program Cyber Flock is ran and all of the proper settings are made. The

Flock of Birds is set to output position/angles and the Cybergloves will transmit

information in radians to the host computer. The communication port is set to COM1 for

the FOB and COM3 and COM4 for the Cybergloves. The frame rate for ASL

experiments will be 30 frames per second. For this simple ASL experiment, only finger

spelling will be looked at to check the accuracy of how data are recorded. The Cyber

Flock program was modified slightly to display signs and the letters they represent

randomly. Each letter is displayed on the screen for six seconds and the subject is asked

to make the shape and hold it until another shape is displayed. Once a trial is complete

the program is stopped and the subject is given time to rest. This process was repeated

until ten trials were achieved. When the experiment is concluded the subject is asked to

wait for a couple of minutes while one of the trials is randomly tested to check its

validity. The ASCII file is converted into a Jack 3.0 file and played back. The

experimenter checks for any flaws in the data such as joints bending in the wrong

direction. The Flock of Birds data are also plotted using the plot VI to check the validity

of the FOB data. The experimenter checks for any flaws in the graph such as spikes in

the graph or breaks. If flaws are noticed the equipment settings should be checked. If

equipment settings were incorrect and the subject has time to redo to the experiment data

should be retaken.

A separate experiment was conducted to determine how well the FOB performs in

an experiment. Since the simple ASL experiment had little x, y and z movement, a FOB

experiment was done with big movements in the x, y and z direction. This FOB

experiment used two bird sensors attached at the wrists and utilized the Cyber Flock code

85

to read in the FOB data from an ASCII file. The subject began by keeping her hands

close to her chest (Figure 5.2). When instructed by the experimenter the subject extends

her arms straight out in front of her and performed two big circles with the right hand

moving clockwise and the left hand moving counter clockwise (Figure 5.3). When the

two circles are completed the subject brings her hands back to her chest where she next

extends her arms straight up over her head (Figure 5.4). She then brought her hands back

to her chest and extended both arms left (Figure 5.5) and then both arms right (Figure

5.6).

Figure 5.2 Subject instructed to hold hands at chest.

Figure 5.3 Subject instructed to extend hands from chest.

Figure 5.4 Subject instructed to extend hands up.

86

Figure 5.5 Subject instructed to extend hands left.

Figure 5.6 Subject instructed to extend hands right.

CHAPTER 6

RESULTS

6.1 Simple ASL Experiment

The data recorded in the simple ASL experiment was converted into a Jack 3.0 file and

displayed in Jack 3.0. In one experimental trial, data recorded from the Cyberglove using

the Cyber Flock program were displayed in Jack 3.0. Random letters picked from the

data file are shown in Figure 6.1 and show the accuracy of the data recorded.

Data recorded from the Cyberglove did have some flaws and can be attributed to

how well the Cyberglove is calibrated before an experiment. Using Jack 3.0 is a

subjective way to determine if the output of the Cyberglove is correct, but it still is a good

analysis tool to use. By using Jack 3.0 how the data is recorded from the custom

LabVIEW program Cyber Flock can be verified that it is being done correctly.

Figure 6.1 Sample outputs recorded from Cyber Flock and converted to Jack 3.0

87

88

6.2 FOB Experiment

The data recorded from the FOB experiment were recorded and displayed in the custom

made LabVIEW program plot.vi. The graphing is shown from a top view (Figure 6.2),

side view (Figure 6.3), front view (Figure 6.4) and a 3-dimensional view (Figure 6.5).

Data recorded from the FOB was relatively flawless for all experimental trials.

For all trials ran in the FOB experiment, all data points were correctly displayed.

Although this measurement is a subjective way of analyzing data, it still provides a quick

and easy method for data verification.

Figure 6.2 Top view of 3D plot.

Figure 6.3 Side view of 3D plot.

Figure 6.4 Front view of 3D plot.

89

Figure 6.5 Three-dimensional view of plotted FOB experiment.

CHAPTER 7

CONCLUSIONS

The overall goal of this project was to develop instrumentation to record data from a pair

of Cybergloves as well as from a Flock of Birds system. The results achieved show that

data was recorded correctly to an ASCII file, which can be used for post acquisition

analysis. The program Cyber Flock will be a key tool in the analysis of how Deaf people

sign when performing ASL.

Some of the future work that will done with the Cyber Flock program will be to

utilize the developed instrumentation and record in a person performing continuous ASL.

Using the data recorded in the ASCII file, how a person moves their hand and forms hand

shapes during ASL can be better understood. The goal will then be to help develop an

efficient translator that will recognize the signs a Deaf person makes and convert them

into spoken English. Also, the reverse can be done by taking spoken English and

converting it into sign that can be displayed on a screen. This will help provide a greater

quality of life to those who utilize ASL, but have difficulties communicating with the

outside world.

90

APPENDIX A

CYBER FLOCK.VI

Cyber Flock. VI is the primary program used in recording Cyberglove data and Flock of

Birds data simultaneously. The code can be broken into two stages, initialization and

data acquisition. In the initialzation phase a ten-stage sequence is executed in order to

achieve all desired settings for the Cybergloves and FOB. For the data acquisition phase

a nine stage looping sequence is used to attain data from the Cyberglove and FOB.

91

92

Figure A.1 First stage in initialization passes gain and offset values for calibration to the
main sequence.

93

Figure A.2 Second stage in initialization writes a header file to the ASCII file to be
recorded.

94

Block Diagram

Block Diagram

95

Figure A.4 Fourth stage in initialization sets the output type for active slave birds.

Block Diagram

96

Figure A.5 Fifth stage in initialization is a delay of one second to allow the FBB auto
configuration command time to start.

Block Diagram

97

Figure A.6 Sixth stage in initialization is the FBB auto configuration command used to
turn on active slave birds.

Block Diagram

98

Figure A.7 Seventh stage in initialization is a delay of one second to allow the FBB auto
configuration command time to finish.

99

Block Diagram

Figure A.8 Eighth stage in initialization is used to enable group mode.

100

Block Diagram

Figure A.9 Ninth stage in initialization is used to intialize the serial port for the left
Cyberglove and to pass the byte count for each sensor into main loop.

101

Block Diagram

Figure A.10 Last stage in initialization, is used to turn on ready light and intialize the
serial port for the right Cyberglove.

Block Diagram

102

Figure A.11 First stage in data acquisition takes a tick count of the computer and is when
the program can be paused.

Block Diagram

103

Figure A.12 Second stage in data acquisition requests data from the Flock of Birds.

Block Diagram

104

Figure A.13 Third stage in data acquisition requests data from the left Cyberglove.

Figure A.14 Fourth stage in data acquisition requests data from the right Cyberglove.

105

Block Diagram

106

Figure A.15 Fifth stage in data acquisition reads data from the left Cyberglove.

Block Diagram

107

Figure A.16 Sixth stage in data acquisition reads data from the right Cyberglove.

Block Diagram

108

Figure A.17 Seventh stage in data acquisition converts hexadecimal Cyberglove and
FOB data into the desired output type.

Block Diagram

109

Figure A.18 Eighth stage in data acquisition writes Cyberglove and FOB data to an
ASCII file.

Block Diagram

110

Figure A.19 Last stage in data acquisition is for dynamic timing.

APPENDIX B

CONVERTER.VI

Converter. VI is used to convert an ASCII file recorded from the program Cyber Flock. VI

and convert it to a MOCAP file utilized by Jack 3.0.

Figure B.1 Wiring Diagram for Converter. VI.

111

APPENDIX C

FLOCK PLOT.VI

Flock Plot. VI is used to read an ASCII file and plot x, y and z coordinates in a three

dimensional graph.

APPENDIX D

FLOCK OF BIRDS COMMANDS

List of the output types the Flock of Birds can output with their corresponding

hexadecimal value, ASCII value and byte count (Ascension Technology Corporation,

1999).

Table 1l_1 Flock of Birds Commands and (Output Hypes

113

J

q

u

w

y

•include-glove-status on/off

set switch status on/off

set external sync on/off

set send-Quantized-values on/off

APPENDIX E

CGIU COMMANDS

Cyberglove commands are sent to the CGIU via the serial port from the host computer.

These commands allow for change in settings, and changes in the output.

Table E.1 CyberGlove Interface Unit Commands

ASCII Character	 Description
send 1 Glove data record

stream glove data (at set period)

set Baud rate (+1 word)

c calibrate hardware offset and gain

m	 set software sensor mask (+3 bytes)

p

set number of sensors to sample (+1 byte)

set parameter flags (+3 bytes)

set sample period (+2 words)

Ar

reinitialize glove information

restart CGIU firmware program

include-Time-Stamp on/off

set Filter on/off

set Switch-Controls-Light on/off

turn Light on/off

114

APPENDIX F

JACK 3.0 FILE STRUCTURE

After data is recorded to an ASCII file using Cyber Flock. VI it is converted into a

`mocap' file using Converter. VI. After conversion the new file outputted will follow the

structure below.

channelset captured {
size = 238;
fps = 30;
}
sharedchannel lthumb0 {/* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lthumb0"; /* R(-z) * R(y) */
frame[0] = (0.343468,0);

}
sharedchannel lthumb1 {/* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lthumb1"; /* R(-x) */
frame[0] = (0.000000);

}
sharedchannel lthumb2 { /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lthumb2"; /* R(-x) */
frame[0] = (-0.015893);

}
sharedchannel left finger30 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "left_finger30"; /* R(z) * R(-x) */
frame[0] = (0.129951,0.031046);

}
sharedchannel left finger20 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "left_finger20"; /* R(z) * R(-x) */
frame[0] = (0.094101,0.092400);

115

}
sharedchannel left_finger10 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "left_finger10"; /* R(z) * R(-x) */
frame[0] = (0,0.200574);

}
sharedchannel left_finger00 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "left finger00"; /* R(z) * R(-x) */
frame[0] = (0.121499,0.029814);

}
sharedchannel lmidfinger11 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lmidfinger 1 1"; /* R(-x) */
frame[0] = (-0.000000);

}
sharedchannel lmidfingerl2 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lmidfinger12"; /* R(-x) */
frame[0] = (-0.000000);

}
sharedchannel lringfinger21 {/* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lringfinger21"; /* R(-x) */
frame[0] = (-0.046324);

}
sharedchannel lringfinger22 { /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "lringfinger22"; /* R(-x) */
frame[0] = (-0.008562);

}
sharedchannel 1pinfinger32 /* joint angles */

type = 'joint";
protofiletype = "mocap_male";
object = "lpinfinger32"; /* R(-x) */
frame[0] = (-0.043415);

}
sharedchannel 1pinfinger31 {/* joint angles */

116

type = "joint";
protofiletype = "mocap_male";
object = "lpinfinger31"; /* R(-x) */
frame[0] = (-0.188500);

}
sharedchannel linfinger01{ /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "linfinger01"; /* R(-x) */
frame[0] = (0);

}
sharedchannel linfinger02 /* joint angles */

type = "joint";
protofiletype = "mocap_male";
object = "linfinger02"; /* R(-x) */
frame[0] = (0);

}

sharedchannel left_wrist /* joint angles */
type = "joint";
protofiletype = "mocap_male";
object = "left_wrist"; R(y) * R(x) * R(z) */
frame[0] = (0.399795,0.236417,0.000000);

}

117

APPENDIX G

POTENTIOMETER DATA SHEET

Data sheet for the Bourns® 3400 potentiometer with a linearity of 0.15 and resistance

range of 400k ohms.

118

Electrical Characteristics'

Standard Resistance Range 	 :100 to M(K ohms
Total Resistance 'Tolerance. 	
Independent Linearity. 	 20,15
Effective Electrical Angle 	 „ . „ ... 	 ,, , 	 , , .. 	 ,,,, 	 .. 	 -0 '
Absolute Minimum Resistance, ,,,, 	 ohm or 0.15 % m aximum (whichever is greater)
Noise , ,, 	 °he's ENR maximum

Dielectric Withstanding Meltage...„:,..„:„„:..,,,,—„„.„..„„,.„„.K:IlleSID-202, Method 301
Sea Level 	 , • 	 , •	 • .1.000 VAC minimum
80,000 Feet 	 , 	 • 	 • • 	 . 	 • 	 „ 	 • 	 . •. • 	 • ,300 VA(114111:1M

Power Rating (Voltage Limited By Power Dissipation (40◦C) 5 watts
1,0 VAC, Whichever Is Less): , 	 , . ,, , „ , 	 'C) 0 watt

Insulation Resistance (CO 	 megohms minimum

	

011. I Resolution „ „ „„ „ 	 , , „„ ,, 	 „„ ,„. „., „..,„ _See recommended part number

••:,:,,,,, , •:,,eneme.,:eeee., 	 • 	 Art
Operating Temperature Range 	 'C to +125 'C
Storage Temperature Range , s, , , , , „ , „..,..—.„ ,,,, , "C to 4125 'C;
Temperature Coefficient Over Storage Temperature Range ^2,„.,±20 ppm/◦C maximum/unit
Vibration .„:.: , . , . . „ . ,, , ,, ,,,,, , G

Wipes Bounce 	 „.0.1 millisecond maximum
Total Resistance 	 , „ , 	 , , 	 , , 	 2 X, maxi 111L1111
"conga Ratio Shift ,, ,, , 	 , , 	 ,,,, , , , ,, , „,„,.....20.1 W.. maximum

Wiper Bounce,." , 	 , 	 ,, , 	 i 1 millisecond maximum
Total Resistance Shift 	 , 	 % maximum
'Voltage Ratio Shift, 	 20 1 	 maximum

Load life 	 , 1 000 hours, 5 watts
Total Resistance Shift 	 	 2% maximum

Rotational Life (No 	 , , 	 , , 	 shaft revolutions'
'total Resistance Shift 	 / % max imum

Moisture Resistance (MIL-STD-202, Method 103. Condition l3)
Total Resistance Shift 	 , 	 , 	 % ma 1111.1111

Mechanical Characteristic:IllaitailiW7ift , .1•4. 	 • .:::::•12:„ekesteoee,na:ma.-
Stop Strength 	 — .388 N-cm (550 oz,-in,) minimum
Mechanical Angle 	 , 	 +4 -0 '
Torque (Starting & Running) ... „,.. • ,• „ „ • 	 1.4 N-cm (2.0 oz.-in) maximum

Mounting „., , 	 , 	 „ „.„, , „ , 	 N-cm (15-18 Ib.-in,) maximum
Shaft Runout„..„ , „ , 	 , 	 , 	 , „ , :“„0,05 mini (0.002 in.) T.I,R,
Lateral Runout 	 • 	 • 	 „.„•• „ „ 	 „ „ „ 	 „ n.13 nun (0:005 in.)
Shaft. End Play 	 , , 	 , ,, , 	 (0.005 in.) T.I,R.
Shaft Radial Play—.—,. ,, , 	 ,, 	 mm (0.0025 ill) TI.R.
Pilot Diameter Runout 	 .0: 05 min (0,002 in.) T.I,R.
Backlash 	 1.0 ' 	 Xi 1111.1111
Weight 	 „ , 	 Approximately 110 g
Terminals 	 • 	 Gold-plated solder lugs

Soldering Condition ,„: , 	 , , „,„.,....„.Recommended hand soldering using Sn95/Ag5
no clean solder, 0.025 wire diameter.

Maxim 11111 temperature 399 "C (750 "F) for 3 seconds.
No !wash process to be used with no clean flux.

Markings 	 , „....—Manufacturer's I L name and part number, resistance value
and tolerance, linearity tolerance, wiring diagram, date cede

Ganginq (Multiple Section Potentiometers) „.„.,.., , , ,, 	 , , 	 clips maximum
Hardware 	 One lockwas her (H-37-2) and one [TV mounting nut (H-38-2)

is shipped with each potentiometer.
'At room ambient: ,A T withal and 50% relaive humidity nominal, except as need.
Consult manufacture for complete specification details for resistance below 500 dims and above 100 K ahms.

119

REFERENCES

Ascension Technology Corporation, The Flock of Birds instillation and operation
guide, Burlington, Vermont, 1999.

Ascension Technology Corporation, The Flock of Birds ® Technical Description
of DC Magnetic Trackers, Burlington, VT, 2003.

ASCII Table, http://www.asciitable.com/, 2003.

Device Configuration Utility, DCU.exe, Calibration Program. 2001.

Electronic Data Systems (EDS), Jack 3.0 Distributors,
http://www.eds.com/products/plm/efactory/jack/, 2002.

Gantz, B., Virtual Children's Hospital, Cochlear Implants: FAQ,
http://www.vh.org/pediatric/patient/otolaryngology/faq/cochlearimplant.html,
2000.

Indiana Institute on Disability and Community, American Manual Alphabet Chart,
http://www.iidc.indiana.edu/cedir/kidsweb/amachart.html, 1998.

Martini, F. H., Fundamentals of Anatomy and Physiology, Prentice Hall, Upper
Saddle River, NJ 07458, 1998.

McQuade, K. J., Dynamic Error Analysis of Ascension's Flock of Birds 0
Electromagnetic Tracking Device Using a Pendulum Model, Journal of Applied
Biomechanics, p.171-179, 2002.

Nakamura, K., About American Sign Language, Deaf Resource Library,
http://www.deaflibrary.org/asl.html, 2000.

National Center of Birth Defects and Development Disabilities, Division of Centers
for Disease Control and Prevention, http://www.cdc.gov/ncbddd/, 2002.

National Instruments Corporation, LabVIEW help forum, http://www.ni.com , 2003.

Predko, M., Digital Electronics Guidebook, McGraw-Hill, Two Penn Plaza,
NY 10121, 2002.

Scavone, W., Human Anatomy, Muscles of the Wrist and Hand,
http://www.dartmouth.edu/~anatomy/wrist-hand/muscles/, 2002.

Stewart, D. A., American Sign Language The Easy Way, Barron's Educational Series,
Inc., Hauppauge, NY 11788, 1998.

120

Taltech Instrumentation Software, Introduction to Serial Communication,
http://www.taltech.com/TALtech_web/resources/intro-sc.html, 2003.

The Massachusetts Eye and Ear Infirmary, Teaching Affiliate of Harvard Medical
School, Cochlear Implants,
http://www.meei.harvard.edu/shared/oto/cochlear.htm, 2003.

Virtual Technologies, Inc., Cyberglove® Reference Manual, Palo Alto, CA, 1998.

Wakerly, J. F., Digital Design Principles & Practices, Prentice Hall, Edgewood
Cliffs, NJ 07632, 2nd ed., 1994.

121

	Data recording and analysis of American sign language
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Instrumentation
	Chapter 3: Calibration
	Chapter 4: LabVIEW
	Chapter 5: Methodology
	Chapter 6: Results
	Chapter 7: Conclusions
	Appendix A: Cyber Flock. VI
	Appendix B: Converter. VI
	Appendix C: Flock Plot. VI
	Appendix D: Flock of Birds Commands
	Appendix E: CGIU Commands
	Appendix F: Jack 3.0 File Structure
	Appendix G: Potentiometer Data Sheet
	References

	List of Tables
	List of Figures (1 of 6)
	List of Figures (2 of 6)
	List of Figures (3 of 6)
	List of Figures (4 of 6)
	List of Figures (5 of 6)
	List of Figures (6 of 6)

