New Jersey Institute of Technology

Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Spring 2022

CE 634-104: Structural Dynamics

Mohamad Saadeghvaziri

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Saadeghvaziri, Mohamad, "CE 634-104: Structural Dynamics" (2022). *Civil and Environmental Engineering Syllabi*. 609.

https://digitalcommons.njit.edu/ce-syllabi/609

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

New Jersey Institute of Technology Department of Civil and Environmental Engineering CE 634 – Structural Dynamics

Instructor:

M. Ala Saadeghvaziri: Room 260L; (973) 596-5813; <u>ala@njit.edu</u> Office hours: Mondays: 1-2:30, and Wednesdays 4-5:30; or by appointment.

Textbook

Chopra, Anil K., "Dynamics of Structures: Theory and Applications to Earthquake Engineering," 4th Edition, Prentice Hall, Sept. 2012, ISBN 13: 978-0-13-285803-8

Outline:

Week(s)	Subject	Chapter(s)
1	SDOF: Introduction, Equation of Motion (EOM), Free Vibration, Rigid Body Assemblages	1, 2, 8
2-3	SDOF: Response to Harmonic Excitations	3
4-5	SDOF: Response to General Excitations	4
6-7	Numerical Integration of EOM; Application(s) for Dynamic Analysis of SDOF (such as NONLIN - <u>http://training.fema.gov/EMIWeb/nonlin.asp</u>)	5
8	Mid-Term (tentative), Project Definition	
9	Introduction to Earthquake Engineering: Response Spectrum Concept	6
10	MDOF: Introduction, EOM, Free Vibration, Mode Shapes, Frequencies	9-10
11-12	MDOF: Modal Analysis, Forced Vibration	12
13	Systems with Distributed Mass and Elasticity	16
14	Approximate Methods	8, 10
15	Final	

Grading:

Homework	25%
Mid-Term	25%
Project	25%
Final	25%