New Jersey Institute of Technology

Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2024

ME 343-003: Mechanical Lab I

Pushpendra Singh

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Singh, Pushpendra, "ME 343-003: Mechanical Lab I" (2024). *Mechanical and Industrial Engineering Syllabi*. 608.

https://digitalcommons.njit.edu/mie-syllabi/608

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME 343 Mechanical Laboratory I (Fall 24)

Instructor: Dr. P. Singh

Office: 316 MEC Phone: 973-596-3326 Email: singhp@njit.edu

Textbook: J. P. Holman, <u>Experimental Methods for Engineers</u>, 8th Edition, McGraw Hill, 2011

Course Content

Topic	Reading Assignment	Key concepts	
Introduction;	15.4; 2.7, 3.3,3.4, 3.6, 3.8,	Lab report writing; linear aggression; Uncertainty	
Data analysis	3.9, 3.11-3.14, Notes 1-3	analysis	
Speed Measurements and	4.12, 4.15	Filtration theory; Oscilloscope applications	
Signal Filtration	Notes 4-5		
Temperature measurements	8.5,8.6, 8.8, 8.9, 2.7	Thermocouple; thermo-resistance; pyrometers	
	Notes 6-7		
Force and Torque	10.3-10.8	Strain-stress relationship; strain gage; Wheatstone	
Measurements (Strain gage)	Notes 8-9	bridge	
Flow rate & Velocity	7.3, 7.4, 7.6, 7.13	Bernoulli equation; Venturi meter; Pitot tube; Laser	
Measurements	Note 10; supplements	Doppler Velocimetry; Flow visualization	
Control (PLC & PID)	Note 12; supplements	PLC, Ladder logic diagram; PID	
Acoustics	11.5; Note 11	Sound pressure level (dB); attenuation	

Course Arrangement

Week						
	Topic	Homework	Topic	Report Due		
1	Introduction: Chap 15, Chap 3	-	-	-		
2	Data analysis Chap 3, Chap 4	HW#1	Dotation amond &	-		
3	Sample analysis	-	Rotation speed & signal filtration	HW#1		
4	Thermometry: Chap 8, Chap 2	HW#2	Temperature	Rot. Sp. & Fil.		
5	Sample analysis of Temperature	-		HW#2		
6	Strain gage: Chap 10	-	Strain 1; Mid-term	Temperature		
7	Strain gage (continue)	HW#3	Strain 2	-		
8	Sample analysis of Strain Gage	-	Suam 2	HW#3		
9	Pressure and flow: Chap 7	HW#4	Flow	Strain gage		
10	Sample analysis of Flow	-		HW#4		
11	Acoustics: Chap 11	-	Acoustics	Flow		
12	Control Theory (PLC; PID)	HW#5	PLC Control	Acoustics (abstract)		
13	Sample analysis		PID Control	HW#5, PLC (Abstract)		
14	Review	-	-	PID (Abstract)		
	Final Exam					

ME 343 Mechanical Lab I

Course requirements and grading

(1) Grading:

50% Lab Report (5) and 5% Lab Abstract (1)

Lab attendance is required

5% Class Attendance (14)

10% Homework (5)

15% Midterm Examination

15% Final Examination

Final Grade:

90% and above "A" grade; and below 60% "F" grade.

(2) Lab Report Requirement

All reports should be completed individually and submitted on Canvas on time. Group discussions are encouraged, but you must write your own report.

(3) Homework and Lab Report Requirements

- (a) Five Assignments will be given, with 4-5 problems per assignment.
- (b) Assignments are due biweekly and must be submitted on canvas on time
- (c) Late submission will be accepted, but you will lose 50% points.
- (d) Homework grade will be based on the effort.
- (e) Homework will be returned in about one week.

(4) Midterm/Final Exam Requirement

- (a) Mid-term exam: It will cover the following topics: Uncertainty Analysis, Filtration Theory, and Theory for Temperature Measurement.
- (b) Final exam: It will cover the following topics: Strain-gage Theory, Theory of Flow Measurement, PLC & PID Control Concept, and Theory of Acoustics Measurement.
- (c) Both exams will be open book/notes

Statement on academic integrity:

Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: NJIT Academic Integrity Code.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the Code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu.