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CHAPTER 1

INTRODUCTION

1.1 Brain Image Registration

Image registration is a basic requirement in neuro-imaging and all methods aimed

to the construction and use of brain atlases (Toga and Thompson 2000). Data must

either undergo some alignment procedure or be assumed to be in register to allow

any analysis, within or across subjects or sessions. As it is for many image-

processing applications, also in neuro-imaging it is necessary to form a

voxel-by-voxel / pixel-by-pixel comparison of two images (3D / 2D) of the same object field

obtained from different sensors, or two images of an object field taken from the

same sensor at different times. To form this comparison, it is necessary to spatially

register the images and thereby correct for relative translational shifts,

magnification differences, and rotational shifts, as well as geometrical and intensity

distortions of each image (Althof et al. 1997).

Presently, neuro-imaging techniques such as fMRI (functional Magnetic

Resonance Imaging), MRI (Magnetic Resonance Imaging), PET (Positron

Emission Tomography) and CT (Computerized Tomography), among others,

require head motion correction. Correction of any head movements that may occur

during scanning must be employed prior to any data analysis, in order to minimize

head motion artifacts. Several automated methodologies have been applied in the

past with some success. Most of these methodologies rely on the assumption that

the human brain is a rigid body subject to rigid motion during the period of

scanning (Pellizzari et al. 1989; Alpert et al. 1990; Woods et al. 1992, 1993, 1998a,
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1998b; Maurer et al. 1997; West et al. 1997, 1999), others assume that motion-

related artifacts are still present after alignment is performed (Friston et al. 1996),

and some uses algorithms that can model elastic deformations (Thompson and

Toga 2000).

Registration of 3D medical images to a standard was obtained by the principal

axes method by Faber and Stokely (1988). The principal axes of an object were

defined as those orthogonal axes about which the moments of inertia are minimized

and thus it was shown that if two objects are identical, except for a rotation and/or a

translation, they could be registered by matching their principal axes. Alpert et al.

(1990) developed a computational technique called registration by the principal

axes transformation. This methodology assumes the brain to be a rigid body and

was developed for the registration of volumes, which are rotated and translated in

the transverse section plane. The performance of the method was studied with

image data from PET, CT and MRI. It was found that progressively, coarser

sampling of data sets led to some degradation in the performance of the method.

There is agreement in literature about the need in neuro-imaging for sub-voxel

registration accuracy. It has been estimated that registration accuracy of the order

of 0.05 voxels (typically 50 gm) is required to avoid mis-registration artifacts in

MRI (Lemieux et al. 1998). Maximization of mutual information (MMI) has

recently been proposed as a new approach for multi-modal medical image

registration. Mutual information (MI) was introduced as a robust similarity measure

for medical data (Viola and Wells 1995; Collignon at al. 1995) and proved superior

to optimize transformations of both mono and multi-modal registration. Since then,
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several separate studies have found excellent results for mutual information based

medical image registration (Wells and Viola 1996; Maes et al. 1997; Meyer et al.

1997; Studholme et al. 1997; Thevenaz et al. 1998, 2000; Holden et al. 2000).

Studholme et al. (1996) presented a comparative study of several voxel-based

registration methods (e.g. various correlation measures, corresponding variance,

moments of the joint histogram, joint entropy, and mutual information). In term of

robustness, they concluded that mutual information performed extremely well

when compared to other measures.

West et al. (1997) aimed recently to perform a blinded evaluation of a group of

brain image registration techniques using as a gold standard a prospective bone-

implanted marker-based registration method described by Maurer et al. (1997).

Their results indicated that brain registration techniques have the potential to

produce satisfactory results much of the time but that visual inspection is necessary

to guard against large errors and that the most accurate registration standard for

clinical data was is obtainable with the bone-implanted markers and has an

accuracy of around 500 The brain registrations made by West et al. (1997)

were performed in parallel at several sites with registration algorithms that were

published earlier in literature. Several authors participated to the experiment. Some

methods were used that were applicable only to CT-to-MR or PET-to-MR

registration, and some were suitable for both cases.

In order to distinguish between registration solutions that are clinically

satisfactory and those that are not, one approach is to rely on a human observer to

inspect the registration results and reject images that have been registered with
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insufficient accuracy. Therefore, a methodology was developed for evaluating the

efficacy of the visual assessment of registration accuracy (Fitzpatrick et al. 1998).

Such methodology was applied to the registration solution proposed earlier by

Maurer et al. (1997) and was obtained using external fiduciary markers screwed

into the patient's skull that were visible in both MRI and CT images. The latter, to

be fully automatic needs a technique for finding and localizing externally attached

markers. Thus, a method was developed and tested for CT (Computerized

Tomography) and MRI (Magnetic Resonance Imaging) by Wang et al. (1996).

Also, functional fMRI data series present the problem of head motion-related

artifacts. Despite restraints to inhibit head movement, even willing and co-

operative subjects still show head displacements (Friston et al. 1996). With some

subjects (i.e. very young), head restraints appear to be ineffective in preventing

motion. In such circumstances head movement of several millimeters or more is not

uncommon. As suggested by Friston et al. (1996) simply moving the images back

into register is not sufficient to remove all motion-related effects. Movement-

related effects will still persist even after perfect realignment. Grootoonk et al.

(2000) emphasized the existence of residual intensity errors in fMRI time series

even after realignment. In particular, it was demonstrated that if a non-ideal

interpolation scheme is used to resample realigned images, this could account for a

major component of the residual artifacts.
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1.2 Brain Image Rigid Registration

Brain imaging is a vast component of a larger set of applications in the modern

clinical setting and as such it assumes relevant importance since it consists of

imaging modalities devoted to recording from the human brain. Brain imaging can

be partitioned into two main categories: anatomical and functional. While the

former is devoted to the visualization of the anatomy of the human brain, the latter

aims to reveal information about tissue metabolism underlying anatomy. The

following anatomical imaging techniques were considered in this dissertation: X-

ray, CT (Computer Tomography) and MRI (Magnetic Resonance Imaging);

together with functional imaging techniques like: SPECT (Single-Photon Emission

Computed Tomography), PET (Positron Emission Tomography) and fMRI

(functional Magnetic Resonance Imaging).

Because signal intensities recorded from the human brain are very weak,

replications of recording need to be conducted in order to obtain successful

imaging (e.g. fMRI). Thus, registration of brain images obtained with the same

modality but at different times can be a necessity. Also, some brain imaging

applications are in their nature complementary to each other. An example of this

kind is the anatomical structure of the human brain recorded by MRI and the

functional activation of the same recorded with techniques like PET and/or fMRI.

Registration is then employed in order to determine a voxel-to-voxel mapping

(alignment) between images of different modalities (co-registration).

According to the elegant outline proposed by Rouet et al. (2000), a registration

algorithm is composed by several steps. Preliminarily, an optional pre-processing
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procedure is applied in order to segment the image or extract features of interest.

However, any processing procedures prior to registration can affect the results of

the subsequent alignment. Next the registration algorithm requires to adopt either

rigid or non-rigid body assumptions (Bookstein 1989; Miller et al. 1993; Collins et

al. 1995; Davatzikos 1996; Shormann et al. 1996; Thompson and Toga 1996;

Iosifescu et. al. 1997; Thompson et al. 1997; Toga 1994; Warfield et al. 1996;

Coley et al. 2000; Rouet et al. 2000; Toga and Thompson 2000; Wang and Staib

2000) to model the transformation. Then, a cost function between target and

transformed images and an optimization procedure that maximize it need to be

defined, so that the registration parameters can be found. The choice of the cost

function is the step of the registration algorithm that determines the approach used

to elaborate the relationships between images to align. The last step is that of fusing

and/or interpreting the registered images, which implies estimation of the voxel's

intensity from the values of the original image. This is accomplished by

interpolation. Similarly, Grootoonk et al. (2000) reports two processes governing

brain image rigid registration. The first is that of estimating for each image the six

rigid-body parameters, which define the spatial transformation. The second is that

of re-sampling each image according to the spatial transformation.

Previous research surveyed the broad topic of image registration (Brown 1992)

and compiled a general overview of the algorithms classifying them in: (i)

correlation-based; (ii) fourier-based; (iii) point-based and (iv) elastic registration

methods. Other research surveyed the more focused medical image registration and

its applications (Maurer and Fitzpatrick 1993; van den Elsen et al. 1993; Maintz
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and Viergever 1998; Fitzpatrick et al. 2000). Audette et al. (2000) reviewed surface

registration approaches and presented them as a subset of the medical image

registration techniques discussed by Maintz and Viergever (1998). Among the

surface-based algorithms, the authors did not include those approaches based on

manually identified landmarks. Consistent with Audette et al. (2000), this

dissertation considers approaches based on landmarks extracted automatically from

surfaces as feature-based algorithms and distinguish them from algorithms based

on manually selected landmarks. Also, consistent with Maintz and Viergever

(1998), principal axes based approaches, which reduce the image content to vectors

and scalars, are considered here as distinct from algorithms of the voxel-based

category, which for definition, uses the full image content. Therefore, on the basis

of the knowledge provided in literature, the present dissertation classifies the bulk

of registration algorithms that rely on the rigid-body assumption in either extrinsic

(artificial objects attached to the patient) or intrinsic: (i) voxel-based (e.g.

maximization of mutual information); (ii) feature-based; (iii) anatomical landmarks

based; (iv) segmentation-based and (v) principal axes based.

Brain imaging techniques necessitate automatic procedures in order to

determine voxel-to-voxel mapping between images. Mapping consists of

registration, which enables reliable analysis of brain images of the same modality

(e.g. fMRI), or co-registration, which enables projection of images of one modality

onto another. One example is functional recordings onto anatomical datasets. In

either case, a large body of literature has been reported and a rich web of
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methodologies has been proposed in order to determine the voxel-to-voxel mapping

using several different assumptions and/or properties of the brain images.

The most basic assumption that features a registration algorithm is that of rigid

or non-rigid (Rouet et al. 2000; Wang and Staib 2000; Toga and Thompson 2000;

Thompson and Toga 2000) motion. Several properties of the brain images have

been used: voxel relationships such as intensity differences (Friston et al. 1995),

statistical similarities such as variance of intensity ratios (Woods at al. 1992, 1993,

1998a, 1998b) or mutual information (Wells et al. 1995, 1996; Maes et al. 1997,

1999; Studholme et al. 1997; Thevenaz et al. 1998; Thevenaz and Unser 2000;

Holden et al. 2000), features (Maintz et al. 1995, 1996a, 1996b, 1997), landmarks

(Grachev et al. 1999; Kruggel et al. 1999; Pennec et al. 2000) and vectors and

scalars (Faber and Stokely 1988; Alpert et al. 1990). Also, extrinsic properties of

brain images determined by fiducial markers have been used (Maurer et al. 1993,

1994, 1995, 1996, 1997) and a mathematical formulation has been given to assess

accuracy of point-based registration (Fitzpatrick et al. 1998; Fitzpatrick and West

2001; West et al. 2001).

Focusing on brain image rigid registration, it can be inferred that in general: (i)

excellent results, independent from modality, can be obtained with fiducial markers

(Maurer et al. 1997); (ii) moment based registration algorithms provide simple and

fast methodologies (Alpert et al. 1990; Faber and Stokely 1988); (iii) mutual

information approaches provide robust co-registration of functional and anatomical

datasets (Hill et al. 1993, 1994; Collignon et al. 1995a, 1995b; Wells et al. 1995,

1996; Studholme et al. 1996); (iv) voxel-based approaches (Friston et al. 1995;
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Woods et al. 1992, 1993, 1998a, 1998b) are more prone to perform successful

within-modality registration. However, each of the above methodologies presents

limitations. Fiducial markers, for example, need to have consistency such to be

detected and imaged independently from any modalities. Also, either affixed or

screwed, markers necessitate algorithms to localize them accurately into the brain

images (Wang et al. 1996). Moment based registration algorithms are particularly

sensitive to sampling axial resolution (Faber and Stokely 1988). Mutual

information approaches are subject to long and time-wise expensive optimization

processes and need to be initialized close to the optimal solution (Maes et al. 1997).

Voxel-based methods provide excellent mean for within-modality registration but

their similarity measures are based on assumptions made on the nature of the

relationships between voxel's intensity.

Though literature on brain image rigid registration is rich and diverse, few

studies made comparative evaluation of performances across algorithms. The most

comprehensive one in term of variety of approaches compared and most consistent

in term of equality of modalities and size of brain images used for evaluation, was

reported by West et al. (1997, 1999). Other studies have focused on investigating

which optimization strategies were the best for multi-resolution rigid registration

based on maximization of mutual information (Maes et al. 1999), and which brain

image similarity measure was the best between joint-entropy (e.g. mutual

information) and correlation based cost-functions (Holden et al. 2000).
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1.3 Alignment of fMRI Time Series

Considerable efforts have been devoted to the alignment of functional Magnetic

Resonance Images. Cox (1996) released software for visualization and analysis of

fMRI, which by means of markers allow co-registration of anatomical and

functional datasets. As far as voxel-based methods are concerned, Friston et al.

(1995) developed the Statistical Parametric Mapping, which can also be used for

alignment of fMRI time series by a least-square non-iterative method that

minimizes differences between two images intensity values. Also Thevenaz et al.

(1998) proposed an algorithm based on least-square minimization of intensity

differences but proposed as an optimizer, a variant of the Marquardt-Levenberg

(ML) method.

Biswal and Hyde (1997) presented a contour-based technique and showed that

local changes in signal intensity, such as those due to magnetic field variations,

constitute a limitation for intensity-based fMRI registration. Along the same line,

Kybic et al. (1999) studied the non-linear geometrical distortions of echo-planar

images (EPI) that are caused by local magnetic field inhomogeneities and reported

an algorithm to register EPI images to MRI.

Eddy et al. (1996) explored the issue of within-plane motion in fMRI and

proposed a two-dimensional method that estimates, before image reconstruction,

translations and rotations in the Fourier domain (k-space). Also, Maas et al. (1997)

addressed the problem of in-plane motion and proposed the DART registration

algorithm, which was based on the separation of rotational and translational motion
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components and allowed reduction of complexity eliminating the need of iterative

implementations.

Lee et al. (1996, 1998) reported a prospective real-time methodology to solve

the problem of through-plane motion, which occurs when an anatomical section of

the brain goes in and out of the imaging plane.

As far as the accuracy obtainable by intensity correction, it has been shown

that motion related effects are still present after registration (Friston et al. 1996) and

is attributable to interpolation (Grootoonk et al. 2000) or magnetic field

inhomogeneities (Andersson et al. 2001). Various interpolation paradigms were

evaluated (Ostuni et al. 1997) and it was found the tri-cubic spline to be the most

accurate and the tri-linear to be the most practical in term of computational time.

Also, Freire and Mangin (2001) presented evidence supporting the argument that,

alignment algorithms, especially those based on least-square measures, might

produce artifacts in motion free fMRI data, suggesting not to resample time series

if motion estimates are small compared to the voxel's size.

1.4 Research Aims

This dissertation focus on fMRI and starting from the assumption that to screw

fiduciary markers into the patient's skull is not feasible either for research or for

diagnostic purposes proposes that fiducial markers can be automatically found by

principal axes transformation methods. At this purpose, the principal axes / tensor-

based transformation method reported by Alpert et al. (1990) and Faber and
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Stokely (1988), has been merged to a method that uses three points to identify the

position of the brain in the scanning volume. The latter was successfully employed

to co-register MRI with MEG data during previous work investigating the origin of

the 40 Hz Auditory Steady State Response (Ciulla et al. 1996) and the spontaneous

Alpha Rhythm (Ciulla et al. 1999). A new and fully automatic technique to align

fMRI time series has been developed, implemented and tested on a SGI Origin

2400 workstation and it consists of a software package written using Matlab, Open

GL and ANSI C.

Thus, aiming to both exploit accuracy of point-based registration and speed of

computation of moment-based registration, a fiducial markers methodology used

earlier (Ciulla et al. 1999, 2000) was combined with a tensor-based approach to

obtain the AUTOALIGN registration technique (Ciulla and Deek 2001a). This

dissertation gives a full mathematical description of the AUTOALIGN algorithm,

developed on the basis of the registration technique, and assesses its performance

by comparing results obtained in fMRI to those of SPM99 and AIR3.08 with the

same dataset. Issues explored by this research are discussed on the basis of the

knowledge provided in literature.

Also, this dissertation aims to bring further contribution to the literature by

focusing on brain image rigid registration and by placing emphasis on algorithmic

performance, extending the work of previous evaluations (West et al. 1997, 1999;

Maes et al. 1999; Holden et al. 2000) to a larger number of registration techniques.

A framework is advanced that groups the most successful brain image rigid

registration techniques on the basis of the imaging modality in which they were

12



employed, and analyze performance of each algorithm in term of accuracy,

computational time and approach used for validation.

1.5 Manuscript Organization

This manuscript is organized as follow. In chapter 2 is given a detailed outline of

the current published literature in brain rigid image registration. In chapter 3 is

explained what this research consists of, what scientific approaches were used and

technological efforts were spent in term of software implementation. A preliminary

study is described to develop and test separately AUTOALIGN components and

later pipeline them to form the novel approach. Also, advantages of the novel

computer based system are outlined together with the registration algorithm that

has been developed. Chapter 3 also includes a detailed description of all

mathematics incorporated into the AUTOALIGN algorithm and implemented into

software. In chapter 4, components of the software system are defined by

architectural diagrams based on object oriented methodologies. Diagrams describe

AUTOALIGN internal functions. A picture of the Graphical User Interface (GUI)

is included such to provide the reader with all the functionality elements of the

software system. A data description is given in Appendix A that refers to the terms

used in both object oriented diagrams and structure charts. In chapter 5 results are

given to show the potentiality of the new algorithm and how it compares in terms

of performance to existing methods. Chapters 6 and 7 respectively discuss value of

this dissertation with respect to the current knowledge and outline conclusions.
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CHAPTER 2

RELATED RESEARCH

This chapter presents a review of the literature on algorithms that adopt the rigid-

body assumption to solve the problem of brain image registration. It is also

advanced a framework that considers two important issues in order to outline

performance in brain image registration: methodology used to elaborate

relationship between the volumes to register and imaging modality. Using the

literature as a basis, identified methodologies were classified in either extrinsic,

which rely on external objects affixed to the head, and intrinsic, which rely on

information provided by the brain images alone. Performance of published

algorithms was analyzed devoting particular attention to accuracy, computational

time and validation approach. It was found that algorithms offering the best

performance are, within the extrinsic classification, those based on fiducial markers

and, within the intrinsic classification, those using relationships between voxel's

intensity. For each imaging modality, the framework also identifies the algorithm

that is most promising in term of accuracy.

2.1 Performance of Rigid Registration in Brain Imaging

2.1.1 Extrinsic Algorithms

Extrinsic algorithms rely on external objects (attached or screwed) to the subject's

head in order to determine the matching transformation between brain images to be
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registered. As such, these algorithms are easy to implement and require no need of

optimization procedures. External objects can be fiducial markers (Erickson and

Jack 1993; Maurer et al. 1993, 1994, 1995), stereotaxic frames (Zhang et al. 1990)

or head-holding devices (Evans et al. 1988, 1989). They provide fixed reference

points into the brain images.

While use of stereotaxic frames is invasive, head-holding devices present the

disadvantage of difficult and not precise positioning during each scanning. A

drawback with the use of external fiducial markers is that the technology must

ensure that the markers are always imaged. Since the physics may vary from one

imaging modality to another, type and consistency of markers may vary also. For

the high resolution requirements of CT and MR images, specific fiducial marker

systems that fit onto stereotaxic frame-base rings have been used, but these can

cause pain and discomfort for the patient (Henri et al. 1991).

Also, as indicated by research, all of the above methods require prospective

planning studies, making relatively difficult retrospective analysis of scans without

extrinsic reference (Hogan et al. 1996). Registration results have been documented

with either two (Dobbins et al. 1993) or four (Arendsen and Bentum 1991; Bellers

and De Bruijn 1993) fiducial markers. The mismatch error obtained in co-

registration of SPECT and MR studies by use of fiducial markers has been

reported, with a phantom model, to be no greater than 3 mm (Erickson and Jack

1993).

Later, Maurer et al. (1997) developed a method based on invasive fiducial

markers and reported a registration accuracy of 0.5 mm for CT, MR and X-ray
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images. To date, this is claimed to be the most accurate fiducial markers

registration method; also one of the most accurate among all co-registration

techniques and had been used by West et al. (1997, 1999) as "gold standard" within

an experiment aimed to compare the accuracy of several other alignment

techniques.

Fitzpatrick et al. (1998b) developed a methodology for the evaluation of the

efficacy of the visual assessment of registration accuracy and applied it to the

registration solution proposed earlier by Maurer et al. (1997). Table 2.1

summarizes the most accurate results that can be obtained by the use of fiducial

markers. Data are presented together with the modality and the approach chosen for

validation.

Table 2.1 Performance of Fiducial Markers Algorithms

From left to right are reported author, modality, accuracy, time, validation approach, resolution and

computer technology.

16
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content to find the matching transformation between images to align, accuracy of

fiducial-based algorithms is largely dependent on a number of factors determined



by the fiducials themselves. These factors have been clearly outlined and a

mathematical expression (Target Registration Error — TRE) that characterizes their

influence on registration accuracy has been provided (Fitzpatrick et al. 1998a;

Fitzpatrick and West 2001; West et al. 2001). It was demonstrated that the target

registration error, which provides a more objective measure of accuracy than the

fiducial registration error (FRE), depends on number of fiducials, fiducial

configuration and localization error (FLE). According to Fitzpatrick et al. (1998a),

an increase of number of fiducials is accompanied by a reduction of TRE if the

root-mean-square distance of the reference points (fiducials) from the principal

axes of the fiducial configuration, remains constant. Earlier work (Schonemann

1966) showed that the problem of fitting two three-dimensional point sets has

unique solution if and only if the point sets contain at least three non-collinear

points. Combining such knowledge with the work of (Fitzpatrick et al. 1998a;

Fitzpatrick and West 2001; West et al. 2001) and provided that fiducials are

accurately localized (Wang et al. 1996), allows fiducial marker based registration to

step on a solid scientific ground.

2.1.2 Intrinsic Algorithms

2.1.2.1 Voxel Based. Registration algorithms using patient related image

information maximize a similarity measure between two images. The similarity

measure may apply directly to the original gray value images (van den Elsen et al.

1994; Thevenaz et al. 1998) particularly when two images of the same modality are

to be registered. In multi-modality image registration, however, the physical
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realities of the two images can be quite different, thus statistical similarity based

registration might be preferred (Woods et al. 1992, 1993; Hajnal et al. 1995; Chen

et al. 1998, 1999; Ashburner et al. 1999).

Cross-correlation is the basic statistical approach to brain image registration

(Maintz et al. 1994, 1995, 1996a; van den Elsen et al. 1994). Other cost-functions

were also employed: (i) Fourier-based correlation (De Castro and Morandi 1987;

Eddy et al. 1996); (ii) variance intensity ratios (Hill et al. 1993, 1994; Woods et al.

1992, 1993, 1998a, 1998b); (iii) intensity differences - least square methods

(Hajnal et al. 1995; Jacq and Roux 1995; Friston et al. 1995; Thevenaz et al. 1998b;

Nikou et al. 1998), which work best under Gaussian noise assumptions; (iv) motion

flow (Vemuri et al. 1998); (v) Bayesian statistics (Ashburner et al. 1999) and (vi)

entropy (Atkinson et al. 1997).

Various optimization strategies were used in the literature: (i) steepest descent

(Ashburner et al. 1999); (ii) multivariate Newton methods (Woods et al. 1998a,

1998b); (iii) quasi-Newton methods (Vemuri et al. 1998); (iv) simplex

minimization (Eddy et al. 1996); (v) simulated annealing (Nikou et al. 1998); (vi)

Powell method (van den Elsen et al. 1994) and (vii) Levenburg-Marquardt methods

(Hajnal et al. 1995; Unser et al. 1995; Woods et al. 1998a, 1998b; Thevenaz et al.

1998b).

Best results in terms of accuracy were reported in (Friston et al. 1995; Hajnal et

al. 1995; Nikou et al. 1998). It is significant to report that all of these studies have

used intensity differences as cost-function to minimize in the least square sense. In

term of computational time the fastest optimization procedures were: Levenburg-
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