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ABSTRACT

HIGH SOLID LOADING AQUEOUS BASE METAL/CERAMIC FEEDSTOCK
FOR INJECTION MOLDING

by

Mohammad Behi

Increasing volume fraction of metal powder in feedstock provided lower shrinkage.

Reduction of the shrinkage results in better dimensional precision. The rheology of the

feedstock material plays an important role to allowing larger volume fractions of the

metal powder to be incorporated in the feedstock formulations. The viscosity of the

feedstock mainly depends on the binder viscosity, powder volume fraction and

characteristics of metal powder.

Aqueous polysaccharide agar was used as a baseline binder system for this study.

The effect of several gel-strengthening additives on 1.5w0/0 and 2wt% agar gel was

evaluated. A new gel-strengthening additive was found to be the most effective among

the others. The effect of other additives such as glucose, sucrose and fructose on

viscosity of baseline binder and feedstock was investigated. Two new agar based binder

compositions were developed. The use of these new binder formulations significantly

improved the volume fraction of the metal powder, the stability of the feedstock, and

reduced the final shrinkage of the molded articles. Two types of 17-4PH stainless steel

metal powders, one gas atomized and, the other water atomized, were used for this

research.
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CHAPTER 1

INTRODUCTION

Conventional injection molding is one of the most common forming processes for

polymers that melt on heating. This process is probably the most interesting method for

mass production of small, medium and large sized parts having complex geometries. This

method, which is well known for producing plastic parts, was adopted for oxide ceramics

in the mid-thirties [I]. This process also has been implemented to develop a new

technology known as Powder Injection Molding (O1M), which is applicable to forming

(shaping) metal and ceramics articles. A subset of P1M is Metal Injection Molding

(MIM). This process emerged in the 1980's as a manufacturing process to form complex

and near-net shape components.

The feedstock material for this process is a combination of 35-50 viol% of binder

with metal, ceramic or mixture of both powders [2] that can be molded in simple or

complicated shapes using conventional injection molding machines. The attributes of the

binder are crucial for successful MIME production. It is not only a necessary aid for

viscous flow of the powder into the mold but should also ensure stability of the green part

[3]. A variety of different low molecular weight polymer material such as polyethylene

glycol (OEG), polyethylene (PE), polystyrene (OS), paraffin wax (OWE), polyethylene

carbonate (PECK), and polyvinyl chloride (PVC) are among the common binders used for

O1M process. In general, thermoplastic and thermosetting compounds are two forms of

polymers that are used in P1M. The viscosity of thermoplastic polymer is thermally

reversible. Their viscosity decreases upon heating and increases (hardens) on cooling.
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The process is independent of the number of cycles. The thermosetting polymers are not

thermally reversible. They permanently form cross-links upon heating. The

thermosetting polymers do not soften on re-heating but decompose at elevated

temperature. Candle wax and polyurethane are two examples of these two forms of

polymers. The melting temperature of low molecular weight thermoplastic polymers

ranges from 60°C for paraffin wax to 140-200°C for polypropylene [I]. Many different

binder compositions have been designed to be used for O1M process. Most of them are

thermoplastic binders comprising of a mixture of wax and polymer. Chung [4] used a

commercial polyethylene wax (OEW) as a binder system. Cao [5] selected a mixture of

OEG with Ohenoxy, OMMA and OPEW in his binder formulation. Anwar [6] [7] used a

combination of three different grades of OEG with OMMA (polymethyl Methacrylate) for

his study. A mixture of Oolybutyl-methacrylate and Oolystylene was employed by

Kankawa [8 . Table 1.I illustrates several examples of P1M binder formulation and their

compositional diversities.

The feedstock material is produce by incorporating the fine metal powders with

the selected binder. The flow characteristics of the feedstock significantly are affected by

the properties of binder system, metal powder/binder ratio, particle sise, shape and

particle sise distribution of the metal powder and mixing techniques. Mechanical mixing

is conducted at the melting temperature of the binder and followed by palletising and

molding the feedstock. Unlike the binder systems, limited information has been published

in detail on techniques for preparation of feedstock. Libb and Patterson [9] used vacuum

assisted sigma mixer to produce feedstock and evaluated the homogeneity and specific

gravity of the feedstock.
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Rebinding is a critical step before sintering. At this step, the majority of the

binder is extracted from molded parts by heat, solvent or combination of both. Every

binder system has its own removal characteristics. In some systems, hot nitric acid

vapors are used for rebinding [10]. In others, an organic solvent is used. Frequently, a

combination of plastic with waxes is used as binder systems to aid Rebinding. The wax

can melt and flow out of the part at a low temperature, leaving behind an interconnected

network for brown strewth and handleability prior to vaporisation of the plastic during

sintering cycle [9]. Difficulties associated with rebinding impose a major barrier for AIM

processes. Rue to the extremely small sises of powders, it is difficult to mix a binder

with fine powders to form a mixture and, later in the production cycle, to take the binder

out of the mixture [4 . A long rebinding time from several hours to several days which is

impractical in a manufacturing setting, is usually practiced to avoid any distortion or

blowout of the green parts during rebinding. The choice of rebinding depends on the

binder system. It could effects process economics, dimensional tolerance and wastes.

Sintering is a high temperature bonding and densification process taking place

between the metal particles. It can occur by evaporation and condensation, liquid phase,

or solid-state mechanism. Sintering is a diffusion process, which is effected by

temperature, time, particle sise and inter-particle space between the particles. It is

conducted under inert gas or vacuum or combination of air, vacuum and inert gas.

Various sintering schedules have been developed to generate maximum density for MIM

parts, but the detail of the processgenerally is proprietary. Bloemacher [11] applied

sintering temperature of 1300-1400°C for less than 2 hours to sinter 316-L tensile bars.

He defined the detail of the sintering condition except the sintering atmosphere.
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Table 1.1 Various Binder Systems

Type of Linder Binder Composition [I] 6	 7]

Thermoplastics 50% paraffin wax, 40% polypropylene, 10% camauba wax

69% paraffin wax, 20% polypropylene, 10% camauba wax, 1%
stearic acid
67% polypropylene, 22% microcrystalline wax, 11% stearic acid

1
33% paraffin wax, 33% polyethylene, 33% beeswax, 1% stearic acid

65% polyethylene glycol, 30% polyvinyl butyric , 5% stearic acid

55% paraffin wax, 25% polyethylene glycol, 10% stearic acid, 10%
dibutyl phthalate
8% PEG800, 8% PEG1000, 64% PEG15oo, 20% PMMA

Thermosetting 65°	 epoxy resin, 25% paraffin wax, 10% butyl stearate



CHAPTER 2

BACKGROUND INFORMATION

In general, the feedstock material is a mixture of one or more metal or ceramic or mixture

of both powder and the binder used in shape forming processes such as injection

molding. Various feedstock formulations based on different powders and binder

formulation have been developed by others. Ideally, the feedstock should be designed to

be stable with time, easy to mold and to have sufficient uniformity to provide

dimensional control suitable for commercial application. Factors determining the

attributes of the feedstock are, type of alloy powder, particle sise and shape of the

powder, chemical stability of the powder, binder composition, powder-binder ratio,

moisture content and mixing method.

In this study, agar is used as the primary binder system and 17-4OH water and gas

atomised stainless steel powders are used as a major component of the feedstock. The

17-4OH (Precipitation-Hardening) stainless steels alloy were developed during World

War 1I as a new group of stainless steels with precipitation-hardening characteristics [12].

The first of these nonstandard grades of stainless steels, 17-4PH, was made available in

1948. The nominal chemical composition of some representative precipitation-hardening

stainless steels is given in Table 2.I. In general, they have lower nickel content and may

have elements such as copper or aluminum that tend to form coherent alloy precipitates.

The feedstock comprises of metal powder, polysaccharide (Agar) binder and R.I H20.

Minor amount of two types of biocides (Methyl-p-hydroxybensoate and propyl-p-

hydroxybensoate) are included in the feedstock formulation to prevent bacteria growth

and deterioration of the agar with aging.

5
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A 3000 cc Abbe sigma mixer is used for all the experimental batch preparation.

The mixer is equipped with variable mixing speed up to 35 rpm maximum. The mixing

temperature is controlled by a Cincinnati Milacron water heater, model MWC-75, with a

temperature range of 1 to 121°C. A Hobart shredder is used to shred the feedstock to

adequate sises for ease feeding into an injection machine. A rotary pan drier designed and

used to adjust the moisture content of the shredded feedstock material. A Boy 22M (22

tons) and a 55 tons Cincinnati injection molding machines were used for molding and

evaluating different feedstock formulation. Figure 2.1 presents a schematic drawing of

an injection end of reciprocating screw machine [13].



Figure 2.1 Schematic drawing of an injection end of reciprocating screw machine.
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CHAPTER 3

STUDY OF VARIOUS ASPECTS OF POWDER SELECTION FOR MIM
PROCESS

3.1 Effect of Particle Size Distribution

Oowder characteristic is among one of the important factors affecting the rheology of the

feedstock. Particle sise distributions and particle shape, packing density, stability of the

powder in an aqueous environment are the initial considerations for selecting a metal

powder for a feedstock formulation. The attributes of an ideal powder has been reported

by many researchers to have a particle sise between 0.5 and 20 j_tm with D50 between 4 to

8 tap density over 50% of theoretical density and particle sise distribution of 2 or 8

(R 90/D 1 0=19 or 2).

The particle sise distribution number is calculated from the slope of the particle

sise distribution curve. Larger values correspond to narrower particle size distribution

and small values indicate broad distribution. Non-agglomerated powder is highly

preferred. When using aqueous Agar gel binder, at least two other requirements should be

considered as critical requirements, stability of the powder in aqueous medium and

specific surface area of the powder. As the specific surface area increases, the powder

becomes less desirable to be used with Agar binder system. The powders with large

surface area have a tendency to agglomerate and also require more binder (low solid

loading) to produce a moldable feedstock. Concern with small particle sise is inter-

particle friction, which, adversely affects the powder flow and packing. The inter-

particle friction in powder mass increases as the particle sise decreases [14]. This type of

powder generally requires more binder, and vigorous mixing, and thus creates feeding,

8
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flowing, packing, and cracking problems during molding. On the other hand, a powder

with low inter-particle friction creates problem with shape preservation during debinding

and sintering. However, the desire for larger sised powder for molding must be balanced

by the desire to have a small particle size to increase the green density and promote

densification during the downstream sintering process.

The compacted angle of repose is used as a simple tool to compare and evaluate

inter-particle friction of different powders [15]. The powder is compacted by vibration to

high packing density. The angle of resistance to shear is measured by tilting the

compacted powder from horisontal to cause shear. Large spherical particles will exhibit

an angle of repose near 30° and it ranges up to 38° for free flowing powder [14]. When

the angle of repose exceeds approximately 45 0 , the powder is termed cohesive.

The specific surface area of a powder can be calculated from the mean particle

sise 8vA [16] using the equation

A shape factor ratio ip,Afr, of 6 is usually assumed when the specific shape factors of the

particles are unknown, av/A (M3 /1112) is the average particle sise of powder, R a is apparent

density of the powder. The specific surface area becomes more sensitive to variation in

the shape and sise of particles finer than 1
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The apparent surface area S a of powder can be evaluated from equation 3.2 by using tap

density pup and average particle sise of powder R50.

Higher p up associated with broader particle size distribution and higher spherically

shaped powder. This indicates that powders with smaller average particle sise and /or

broader particle size distribution is not an ideal powder to be selected for MIM feedstock.

To show the effect of broad particle size distribution on tap density, three different 17-

4OH powders were evaluated. Two gas atomised and one water atomized 17-4OH

powder were selected for this study. Table 3.I shows the effects of particle size

distributions on tap density for these powders. Figure 3.1 shows the SEM of the powders

and their particle size and shape differences. The 17-4OH Anval gas atomized powder

gained highest tap density of 61.7% of theoretical density. The water-atomized powder

having irregular and semi-round particle shape was gained lowest tap density of 56.8%.

The gas atomized UFO powder gained 57.8% of theoretical density.



Table 3.1 Effects of particle sise distribution on tap density

Oarticle Size Ristribution Theoretical

Type of Oowder R10 D50 R90 R90/R1 0 Rensity Tap Density

Gull (11m) (1-1111) (g/cm3) (% TAR)

17-4OH (Gas) 4.85 12. 1.1 21.59 4.45 7.78 4.50 	 57.8)

17-4OH (Water)* 1 3.38 9.33 23.93 7.08 7.78 4.30 (55.3)

17-4OH (Gas)*** 7.I 15.2 25 3.52 7.78 4.80 (61.7)

*UFO gas atomized powder, **Atmix water atomized powder, ***Anval gas atomized powder



(a) (b)

12

(c)

Figure 3.1 SEM micrograph of the powders, a) 17-4OH gas-atomised UFO, b) 17-4OH
water-atomised Atmix, and c) 17-4OH gas-atomised Anval powders
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Large value for D90/D10 correspond to narrow particle size distribution and small

values indicates broad distribution. Data in Table 3.1 shows that the tap density increases

for broader particle sise distribution. The 17-4OH Anval powders, which have a lowest

D90/D10, were gained highest 61.7% of theoretical density. The particle size distribution

can be tailored to improve the tap density. The following experiment shows the effect of

mixing ratio on tap density. Stainless steel gas atomised 316L Anval -53 and -22

microns powders were used for this experiment. The tap densities of five samples with

90:10, 80:20, 70:30, 60:40, and 50:50 ratio of -53:-22 micron powder were evaluated.

Figure 3.2 shows the result of the experiment. The optimum ratio was determined to be at

60:40 ratios for this powder.
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The tendency of the powder to form voids between its particles can be evaluated

by calculating the void volume from the tap density.

Avoid is volume of the void in cm 3 , m is weight of the powder in gram, p ap and true are tap

and theoretical densities of powder in g/cm 3 respectively. The shearing action of the

mixer during the compounding and injection pressure during molding could eliminate

major portion of the voids. The residual voids after molding can be calculated by

measuring green density of the part and compares it with theoretical green density.

3.2 Type of Powders

Two types of stainless steel 17-4OH alloy powder are selected for this study, gas

atomised powder 17-4OH-UFP and water atomised 17-4OH Atmix powder (refer to

Appendix A for detail on powder atomization processes). The gas atomised powder

satisfies well the required qualification for MIM application. Loth powders have the

same chemical composition containing 16-17% chromium. Table 3.2 shows typical

chemistry for these powders.
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Figure 2a and 2b show the SEM micrograph of the powders. The major difference

between these two powders is the particle shape. The gas-atomized powder 17-4OH

consists of round powder particle with an average particle sise ranging from 8 to 13

microns. The water atomised powder 17-4PH Admix has semi-round and irregular

particle shape ranging from 1 to >23 microns. The theoretical density of the material is

7.78 g/cm 3 .

The tap density of both powders was evaluated by using ASTM B 527-92

procedures. To obtain the tap density, 50 g of powder was weighed in a 50 ml graduated

cylinder using an electronic balance with ±0.I gram accuracy. The cylinder is then

placed on the tap platform and the locking collar is attached to the platform over the base
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of the cylinder. The counter preset to 3000 taps. The machined turned on and allowed to

complete the cycle. The volume of the material was recorded by visually gauging the tap

level of the material with the corresponding measurement mark on the cylinder. The

procedure was used to determine the average tap density of the 17-4P}1 gas and water

atomic wzed powder to be 4.50 and 4.30 g/cm 3 respectively. The 17-4PH gas atomized

powder with round particle shape lower value of D90/D10 gained higher tap density.

Powders with wide range of particle size will gain higher tap densities. As it is shown in

the previous section the particle size distribution could be engineered by mixing two or

more different size powders to optimize the tap density.

3.3 Stability of Metal Powder in Aqueous Media

The stability of the powder in aqueous media (aqueous binder system) is the first

important factor to consider for powder selection. The stability of 17-4OH gas and water

atomized powder evaluated by monitoring the pH of a mixture of metal powder and D1

water vs. time at room temperature. The samples were prepared by mixing 15 g of metal

powder with 20 g of D141 2 0. The pH of the mixture measured initially and periodically

for about 60 days. Figure 3.3 presents a comparison result of the several metal powders.

The results show that both powders have similar behavior and stability for more than 50

days. Similar results for other powders are shown for comparison. In contrast to the

stainless steel powders, the instability of Fe2Ni powder can be detected easily. The pH

of this powder initially changes rapidly and continues to change with time. This is

because the pure iron powder lacks the passivation occurring in stainless steels due to

high chromium content. This pure iron powder is not suitable to be incorporated with the
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aqueous agar binder system to produce feedstock. The powder quickly oxidizes in

contact with the binder and produce iron oxide and hydrogen gas. The instability of this

powder could be improved dramatically by adding small amount of sodium silicate or

combination of sodium silicate and potassium tetraborate as an additive to the binder

formulation [ 1 7] .



CHAPTER 4

THE AQUEOUS BINDER

4.1 Agar Binder

Powdered agar is creamy white, odorless and tasteless. Agar is a hydrophilic colloid

extracted from certain marine algae of the class Rhodophyceae [18]. Agar as it is known,

is the dried extract from the seaweed of Geliddium, Gracillaria and other related species

of red-purple algae. It is insoluble in cold water, alcohol and most organic solvents, but

soluble in boiling water. A 1.5%wt% solution is clear, and when cooled at 32-39°C forms

a firm, resilient gel that does not melt below 85°C [19]. Other gums resembling agar but

not meeting all the specifications of this definition are termed agaroids.

Agar was discovered by Minoya Tarozaemon [20], a Japanese innkeeper in about

1660. He threw some surplus seaweed jelly into the winter night, expecting it to thaw in

the morning sun and disappear into the soil. He found, however, after several days of

alternate freezing and thawing, a porous mass that could be re-boiled in water and cooled

to yield a gel equal to the original. He had discovered agar.

Agar became popular in Asian regions as food, food ingredient, and medicine.

Popularity spread steadily and rapidly, and in about 1866, European use of agar for food

began [21]. It is used widely in microbiology, medicine [22], pharmaceuticals and food

products for its emulsifying, stabilising and its gelling properties. In 1881, Dr. Walther

Hesse used agar for growing colonies of bacteria [19]. Poller [21] discovered in 1924

that agar gels had the requisite qualities for a moulage material capable of reproducing

fine details with great accuracy, thus opening the way for its use as an impression

material for criminologists, museum curators, plastic surgeons, and artists. From 1935

18
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onward, dental prosthesics made wide use of agar compositions in precise inlay, crown,

and bridge work, as well as in ordinary denture models [23]. Agar is among the most

potent gel-forming agents known, for gelation is perceptible at concentrations as low as

0.04% [19]. Low concentration gel is valuable for its protective action, diffusion

prevention, and texture enhancement effects. The gelling property and non-toxicity of

agar are among the prime reasons for its variety of applications. For the same reason, an

agar based binder system was adopted by AlliedSignal / Honeywell [24] to be used for

Metal Injection Molding (MIM) and Ceramic Injection Molding (CLVI) processes. This

binder system will be used as a baseline for this study.

The production of agar starts with collection and washing of seaweed. It is then

boiled for 30 to 40 hours, and allowed to settle. The solution is poured into trays and

allowed to cool and set. The resulting gel is forced through press holes emerging as

stripe, which, are laid out to sun dry. The strips are flaked or powdered and sized. Agar

has been known to commerce since 1870 and mainly produced in Chile, Japan, Spain and

Morocco. Commercial methods of processing agar include [19]: (I) cleaning raw

material, (2) Chemical pretreatment, (3) pressure extraction, (4) chemical post-treatment,

(5) filtration, (6) gelation, (7) freezing, (8) post-treatment, (9) washing, (10) drying, (11)

sterilization, (12) bleaching, (13) washing, (14) drying. Agar can be efficiently extracted

from seaweed with hydrochloric acid solutions of 0.007 M with a 1-hr cooking time [25].

An official specification shown in Table 4.I [18] has been established to control the level

of impurity in agar.
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4.2 Viscosity of Agar Gel

In addition to the characteristics of metal or ceramic powder, the viscosity of agar at

melting temperature plays an important role on metal and ceramic feedstock solid

loading. It will influence the solid content of the feedstock and its flowability during the

molding process. The viscosity of the agar gel is affected by its solvent content,

temperature and the type of raw material and processing conditions [19]. An agar gel

with high solvent content (H20) exhibits lower viscosity at melting temperature. It is

desirable to minimise the amount of solvent in the gel and maintain the low viscosity.

This will facilitate to reduce the total binder amount and increase the solid loading of the

feedstock. Maintaining low viscosity of agar gel binder with low solvent has been

investigated by modifying the pH [26] of the solvent (H20), or changing the agar gel

composition with an addition of glucose (GH1206), sucrose ( C12H22O11) and, fructose
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The viscosity of agar gel decreases as temperature increases. Figure 4.I illustrates

the apparent viscosity of a 2wt% aqueous solution of agar 100 (from Meer Inc.) at

various temperatures [24]. The viscosity of the agar gel at this temperature range reaches

its low viscosity at 70°C. The viscosity increases slowly to about 40°C and gelation starts

rapidly at about 39°C.

4.3 Study of Gel Strength of Agar Binder

The ability of agar to form strong gels at transition temperature plays an important role

on rheology of the feedstock. The effect of agar (T1C 100 from T1C Gums, Inc.)

concentration on gel strength was studied. The gel strength of agar increases with
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concentration of the agar. The gel strength is almost directly proportional to the

concentration of agar. The gel strength of six samples having 0.5, 1.0, 1.5, 2.0, 2.5 and

3wt% agar was evaluated. The following is the details of the gel sample preparation and

gel strength testing.

4.4. EDperimental Procedure

Sample preparation:

Six gel samples having 0.5, 1.0, 1.5, 2.0, 2.5 and 3w1% agar (TICI0O) concentration in

DI/H20 were prepared. Rry agar was weighed and placed in a clean 250 ml beaker.

DI/H2O was added to the beaker to bring the total weight to 100 g. A magnetic stirrer bar

was placed inside the beaker. Plastic wrap (like Saran Wrap) was affixed by a rubber

band to the beaker with a slight opening at the beaker tip. The beaker was then set inside

a 1000w Panasonic microwave oven and heated for approx. three minutes on medium

power or until the mixture started to boil. The beaker was placed on the magnetic stiffing

device for approx. one minute at half speed. The beaker was then placed back into the

microwave and the process was repeated twice more. The temperature and the weight of

the beaker contents were monitored. The mixture must reach 93-98°C and any weight

loss due to evaporation of water was restored. After the heating cycle was completed, the

gel was placed in a tray with 2 inches of water at room temperature (24-25°C) for at least

one hour. A puncture test apparatus was used to evaluate the gel strength of the samples.

Figure 4.2 shows the puncture test apparatus.



Figure 4.2 Puncture Apparatus

After the cooling phase, the gel sample is placed on one end of a balance with an

empty beaker on the other. The balance was leveled by moving the attached weight on

the side of the balance. A one-centimeter diameter aluminum rod was attached to a frame

with clamps. The end of the rod was placed so that it comes in contact with the gel

surface, but exerts no force. An overhead tank is then allowed to drain into the water

ballast tank on the other end of the balance at the rate of approx. 200 g/min. until the rod

cleanly breaks through the gel surface.

The amount of water added to the beaker was weighed and recorded for each

time. The test was repeated three times to calculated the average gel strength. The gel

strength was calculated by dividing the weight of the ballast water at the break point to

the rod head surface area.
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5gel —WIT20/Arod (4.I)

A rod=7r 2 (4.2)

Ggel —W1120/ 7Ir2 (4.3)

Nagel is the gel strength g/cm2, WH2Q  is weight of the water in grams, Arad is the rod head

surface area in cm 2 .

Figure 4.3 presents the result of the experiments. It is show that there is a linear

relationship between gel strength and Agar content.

Figure 4.3 Effect of agar T1CI00) concentration on gel strength

Table 4.2 shows a summary of the experimental result. The gel strength of agar (T1CI00)

is increases significantly from 240±7 g/cm 2 to 2073±89 g/cm2 as the agar concentration

increases from 0.5wt% to 31A70/0.
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CHAPTER 5

BINDER ADDITIVES

5.1 Effect of Additives on Gel Puncture Strength of Agar

The effect of gel strengthening additives on gel strength was tested on two types of agar,

Meer100 and T1CI00. It has been found that the gel strength of these agars is increased

when small quantities of additives such as magnesium hydrate, zinc hydrate, and calcium

hydrate were added [28]. In this case, the gel strength for fixed amount of agar

significantly improved depending on type and the concentration of the additives. This

effect plays an important role in feedstock formulation since gel strength enhancing

additive substantially reduces the amount of binder needed to provide adequate gel

strength. It provides easier part removal from the die cavity, part durability and damage

resistively during molding process. Using high gel strength binder could reduce the

molding cycle time, which increases the production rate. High gel strength and less

binder facilitate shape stability for the molded articles and enhancing dimensional control

during sintering. The effect of several hydrate compounds on gel strength of 2wt% Agar

gels was studied. Agar gel samples containing hydrates of sinc, magnesium, calcium,

ammonium, and tetramethylammoniurn as well as hydric acid were prepared and tested

following same procedure described previously. Table 5.I shows the effect of hydrate

compounds on gel strength of both agars gel. The result shows that the gel puncture

strength of TIC agar with no additives is substantially better than Meer agar. The data

suggests that calcium hydrate is a preferred gel strengthening additives for hydth types agar.

Other gel enhancing additives shows lesser or insignificant effects.

26
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5.2 New Gel-Strengthening Additive

The effect of a new gel-strengthening additive on gel properties of agar has been studied.

The study conducted with two different levels of agar I.5 and 2w196 containing none, 0.I,

0.2 and 0.3wt% potassium tetrahydrate tetraborate (K2B407.4H20 from Aldrich). The

potassium tetrahydrate unlike the other hydrate shown in Table 7 is highly soluble in H 2 0 at

room temperature and doses not have tendency to precipitate out of the solution with
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time. The stability of 0.4wt% potassium tetrahydrate concentration in H 2 O was monitored

for more than six months. It did not show any sign of precipitation.

Aqueous solution containing of 0.I, 0.2 and 0.3wt% potassium tetrahydrate was

prepared. The first set of gel samples was prepared by adding 1.5wt% agar to potassium

tetrahydrate solutions. Same gel preparation and gel strength measurement procedure,

which, previously described was followed. The average strength of gel containing

I.5w0/0 agar at three concentration levels of potassium tetrahydrate is shown in Figure 5.I.

The gel strength of the agar proportionally increased as the concentration of the

potassium tetrahydrate increased from 0.I to .03wt%. At low concentration of 0.1wt%

borate the effect was not significantly changed from virgin agar. Table 5.2 Illustrates a

summary of the result.
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The second set of gel samples was prepared with same levels of potassium tetraborate

concentrations of 0.I, 0.2, 0.3wt% using 2wt% agar. The average gel strength of these

samples was evaluated. The gel strength of 2wt% agar containing 0.3wt% of calcium,

zinc, and lithium metahydrate and lithium tetrahydrate was also tested and compared with

potassium tetrahydrate additive. Figure 5.2 presents the effects of potassium tetrahydrate

additive on gel strength of 2wt% agar (TIC 100) gel. The summary of the results in Table

5.3 indicates that the gel strengthening effect of potassium tetrahydrate is more effective

than the other types of hydrate at an equal concentration.
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Among the other advantages of using potassium hydrate as a gel strengthening additive are

good solubility and cost effectiveness of this additive. Calcium hydrate is partially soluble

in water. This will limit the desired concentration of this additive in the H20. Because of

this limitation, the addition of this additive was performed by reaction of calcium oxide

and hydric acid in pH controlled H 2 0. The process is time consuming and expensive. One

litter of in-situ H 2 O containing O.2wt% calcium hydrate costs ahydut $43 with this process.

In addition to cost the calcium hydrate is not stable and precipitate out of the solution with

time. In comparison, the potassium hydrate is highly soluble in H 20 and it is very stable

in the solution. The cost is significantly lower $0.03-0.04/gram of dry powder.

Consequently, the cost of one litter of in-situ water with this additive was extensively

lower ahydut $0.06. The preparation of in-situ water with this additive was simply

accomplished by mixing and stirring for 5 minutes.



CHAPTER 6

THE AQUEOUS BASELINE METAL FEEDSTOCK

6.1 Baseline Formulation

The baseline feedstock composition comprises of 17-4PH gas or water-atomized metal

powder, agar gel as a main binder constituent. The agar gel contains ahydut, 7.5-81,vt%

water, as a gel forming liquid. A mixture of two types of biocides, Methyl-p-

Hydroxybensoate (C 8 1-1 8 0 3 ) and Propyl-p-Hydroxybensoate (CI 0H 1 203)(from Pentad

Manufacturing) was incorporated with the agar gel. The total biocide is ahydut I.6w0/0

based on the agar amount in the formulation. The function of the biocides is to prevent

the growth of bacteria and degradation of the agar gel binder in the feedstock. The

baseline feedstock composition contains 89.9wt% (55.1vol)%) 17-4PH powders, 2.1wt%

(6.7vol)%) agar (TIC100) containing biocides and 8wt`)/0 (38.2vol%) [).I/H20. This

baseline composition has been used with water or gas atomized 17-4PH stainless steel

powder to make experimental and production feedstock batches.

The baseline formulation for metal is applicable for compounding ceramic

feedstock. The amount of binder content for ceramic feedstock formulation varies from

2-4wt% depending on the type of ceramic powder being used. For most of the ceramics

powders such as aluminum oxide, silicon nitride and hydne china, compounding the

feedstock material starts with slip preparation and optimisation. The prepared slip must

be stable and not change its viscosity with time prior to mixing with agar binder. For

example, AM aluminum oxide feedstock was made from aluminum oxide powder (C90

alumina powder from Alan Co.) [42]. The powder was mixed with dc-ionizcd water,

which contained 0.2-1wt% ammonium polyacrylate solutions as dispersant additives.

32
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The pH of the water adjusted to 9-10 using tetramethyl ammonium boroxide. The

mixture was milled for ahydut 24 hours with alumina milling media. The resulting slip

was transferred to a sigma blender and mixed with 2-3wt% agar at 85-95°C for one hour.

The compounded feedstock was cooled to room temperature and shredded. The

feedstock material showed good moldability at 17-17.5% moisture content. In another

example, recycled hydne china ceramic powder was incorporated with the agar binder

system to formulate hydne china feedstock for injection molding process [43]. The

preparation steps of this feedstock are similar to aluminum oxide feedstock. Refer to the

patents for complete details on feedstock formulations, and processing steps of these

ceramics feedstock materials (reference 42 and 43).

6.2 EDperimental Batch Using Water Atomized Powder

Several experimental batches were made using 17-4PH (Atmix) water atomised powder.

Each batch was made with 6400 grams of metal powder, 134.4 grams agar (TIC100)

containing biocides and 700 grams of D.FH2O. The agar powder was mixed with the D.I

water at room temperature and then transferred into a sigma mixer. The mixture

gradually heated to 95°C (205°F) with continuos mixing until the agar mixture was

completely melts. Half of the metal powder was added to the melted agar and mix for

15-20 minutes. The rest of the powder was added and mixed for 45-60 more minutes.

The compounded batch was allowed to cool to 38°C (100°F) and then removed from the

mixer. Removing and shredding the compounded batch becomes very difficult at lower

temperature due to the rigidity of the material. The compounded batch was shredded to

small particulate, using a Hobart (Model OF350) shredder shown in Figure 6.Ia.
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The moisture content of the feedstock was evaluated using a Computrac' MAC-2000XL

Arizona Moisture Analyzer shown in Figure 6.Ib. It accurately detects moisture levels

from 50 PPM to 100% and accommodates sample weights of 150 mg to 40 grams. The

heating range is 25°C to 275°C, controlled to an accuracy of +I°C.

A feedstock sample ahydut 36 grams was placed into the analyzer compartment.

Analyzer automatically records the initial weight of the sample, and then gradually raised

its temperature to 160°C (320°F), and holds the temperature until the sample was

completely dried (ahydut 10-15 minutes). The analyzer uses the initial (undried) and the

final (dried) weight to calculate the moisture content of the feedstock using following

expression.

Where is undried and WD is dried weight.

The moisture content of the feedstock sample was measured to be 8.36wt% (91.64wt%

solid). The batch was initially formulated with 9.86wt% (90.I4wt% solid) moisture

content to compensate for any moisture lost during the batch mixing and preparation.

The difference between the starting and final moisture content shows that l.5wt%

moisture was lost during the batch preparation. The moisture content of this batch was

adjusted to 8w0/0 (92wt% solid). The excess moisture of 0.36wt% was removed by

evaporation. A rotary drier was used to remove the excess moisture from the feedstock.



Figure 6.1 Schematic of (a) Hobart Shredder, (b) Arizona Moisture Analyzer

The target moisture was achieved by determining the initial moisture content of

the material using Arisona moisture analyzer and weight lost calculation by applying the

following expression.

Where Wt is target weight, W initial weight, Mid initial moisture, and A the target

moisture. The target moisture is selected and insert in the equation. Since target

moisture, initial weight and, initial moisture are known, the target weight is calculated.
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The target weight, which represents the target moisture, is reached by evaporating or

adding moisture to the feedstock material. Other batches were compounded with 17-4PH

6.3 Flow Characteristics of Baseline Formulation

Apparatus:

Injection Molding Machine:

A hydraulic Boy 22M injection molding machine from Loy Machines Inc. was used to

study the flow characteristics of various feedstock compositions. The barrel capacity of

the machine is ahydut 0.9 oz and has a I:I compression screw. The barrel has four zones,

heated with four separate electric heating bands with maximum temperature of 450°C

(841°F). The machine operating and molding variables can be adjusted through a control

panel. The machine has three operating modes: manual, semi-automatic and automatic.

ranges from 0-250 rpm. The injection speed capability of the machine is 0-160 mm/sec.

6.4 Spiral Flow Mold

84/90 T Style) designed for testing the flow of various thermoplastic materials. The mold

is constructed with a 65-inch flow distance and is engraved in one-inch increments to
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allow for easy flow comparisons. The cross section is approximately 0.125 inch deep and

0.225 inch wide and is trapezoidal in design. The cavity area is polished to SPE-SPI

number 2 finish. The mold has a center gate with 0.2-inch diameter. The mold equipped

with a Cincinnati Milacron water heater to control the mold temperature.

Spiral mold was developed to better evaluate the movability of material [29]. The

spiral flow is an excellent method for comparing flow properties of different batches of

the same material and of the same material from different source [30]. It is used as a

common practice to measure the flow characteristics of various thermoplastic materials.

The effects of various additives and their amounts on flow behavior of material can be

evaluated by spiral flow testing. It is used to determine the effect of changing various

molding conditions such as injection speed, melt temperature of material, and mold

temperature on flow properties. The flow data also can assist the part designer in making

gate decisions, especially for parts of constant wall thickness [31].



Figure 6.2 (a)"A" and "B" sides of the spiral mold and, (b) the cavity of spiral mold

38
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The flow characteristics of the 17-4PH (Admix) water atomized baseline feedstock

composition have been investigated. The flow behavior was studied as a function of solid

loading at 500, 1000 and 1500 psi injection pressure. The center gated spiral die shown

in Figure 6.2 was used to evaluate the flow variation of the feedstock material. The

molding conducted under a fixed set of conditions. Table 6.I presents the applied

molding conditions for the flow experiments.

6.5 EDperimental Procedure

The moisture content of four experimental batches of 17-4PH water atomized (Admix)

feedstock was adjusted to various levels ranging from 8.97 to 7.Iw0/0. The molding

parameter listed on Table 4.3 was dialed into the Loy 22M injection molding machine

and the barrel temperature of the machine was allowed to reach its set point temperature
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of 83°C (180°F). The mold temperature was set at 22°C. The hopper of the machine was

filled up with the shredded feedstock and the screw was manually rotated to transfer the

feedstock into the hot zone of the barrel. The machine was set on semi-automatic mode.

The mold was closed and molten feedstock was injected into the spiral mold cavity at 63

cm/sec. (25 in/sec). The molded spiral sample cooled in the mold for 10 second. After

the cooling time expired, the mold was opened and spiral sample ejected from the mold.

The samples were collected and dried at room temperature for 30-45minutes and, flow

distance of each sample was recorded. The flow characteristics of the feedstock were

tested at 500, 1000 and 1500psi injection pressures. Ten spiral samples were molded at

each injection pressure level. The average flow of the feedstock calculated and recorded

to compare with the feedstock material having different moisture content.

Four batches of 17-4PH (Atmix) baseline composition were compounded at

different moisture levels for flow evaluation. The moisture content of these batches was

and 1500psi injection pressure.

6.6 Results

The effect of injection pressure on flowability of the 17-4PH (Atmix) baseline feedstock

material was evaluated. The flowability of four batches was studied at 91.03, 92.07,

92.60, and 92.90wt% solid content. Figure 6.2 depicts the flow behavior of the feedstock

material vs. injection pressure. The flowability of the feedstock material increases as

injection pressure increases. The average flow distance of the feedstock material having
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91.03wt% solid was increased from 8.6 to 19.5 inches as injection pressure increased

from 500 to 1500psi. It is also shown in Figure 6.2 that the flow distances are shifted to

lower values at any injection pressure, as the solid content increases. The flow

characteristic significantly affects the moldability behavior of the materials. The

moldability of the material deteriorated as the flowability of the material decreases.

Figure 6.3 Effect of injection pressure on flowability of 17-4OH (Atmix)
baseline compositions

The flowability was also affected by the solid content of the feedstock material.

Figure 6.3 Illustrate the effect of solid % on flovvability of 17-4PH (Atmix) baseline

feedstock material at 500 and 1000 psi injection pressure. The flowability decreases as

the solid content of the feedstock increases. The flow length decreases form 8.56 to 2.15

inch as the solid content increases from 90.O3wt% to 92.60w0/0 solid at 500 psi injection
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pressure. Similar effects have been observed at 1000 psi injection pressure. When the

solid content increases from 90.03 to 92.6Owt%, the flowability also decreases from 15.0

to 5.9 inches. The flow becomes very sensitive to solid loading higher than 92.6wt%. It

reached its critical solid loading at 92.9wt% solid, where the material completely lost its

flowability. The flow behavior of the material improves as solid loading moves away

from critical solid loading. The optimum solid loading for the 17-4PH (Atmix) baseline

composition is determined to be 0.4 +0.1wt% lower than the critical solid loading. The

feedstock material at this solid loading demonstrated proper flovvability for molding.
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6.7 EDperimental Batch Using Gas Atomized Powder

Five experimental batches were made using 17-4PH (UFO) gas-atomised powder. The

batches were made with 6400 grams of metal powder, 134.4 grams agar (TIC100)

containing biocides and 700 grams of D.I1H20. The agar powder was mixed with the D.I

water at room temperature and then transferred into a sigma mixer. The mixture was

gradually heated to 95°C (205°F) with continuos mixing until the agar mixture

completely melts. Half of the metal powder was added to the melted agar and mixed for

15-20 minutes. The rest of the powder was added and mixed for 45-60 more minutes.

The compounded batch was allowed to cool to 38°C (100°F) and then removed from the

mixer and shredded to small particulate. The moisture content of these batches was

adjusted to various levels to study the flow characteristics of the baseline feedstock

composition containing gas-atomised powder.

6.8 EDperimental Procedure

The moisture content of five experimental batches of 17-4PH gas-atomised (UFP)

evaluation. The molding parameter listed on Table 10 was dialed into the Boy 22M

injection molding machine and the barrel temperature of the machine was allowed to

reach its set point temperature of 83°C (180°F). The mold temperature was set at 22°C.

The hopper of the machine was filled up with the shredded feedstock and the screw was

manually rotated to transfer the feedstock into the hot sone of the barrel. The machine

was set on semi-automatic mode. The mold was closed and molten feedstock was
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injected into the spiral mold cavity at 63 cm/sec. (25 in/sec). The molded spiral sample

cooled in the mold for 10 second. After the cooling time expired, the mold was opened

and spiral sample ejected from the mold. The samples were collected and dried at room

temperature for 30-45minutes and, flow distance of each sample was recorded. The flow

characteristic of the feedstock was tested at 500, 1000 and 1500psi injection pressures.

Ten spiral samples were molded at each injection pressure level. The average flow of the

feedstock was calculated and recorded to compare with the feedstock material having

different moisture content.

Five batches of 17-4F'1-I (UFP) baseline composition were compounded at about

10w0/0 moisture content. The moisture content of these batches was adjusted to 8.97wt%

flowability of the feedstock. Spiral flow evaluation was conducted on these batches at

500, 1000, and 1500psi injection pressure.

6.9 Results

The effect of injection pressure on flow behavior of the baseline feedstock composition

containing gas-atomized (UFP) powder was evaluated. The spiral flow experiment was

conducted on this material at 500, 1000, and 1500 psi injection pressure. Figure 6.4

shows that the flow length increases as the injection pressure increases from 500 to 1500

psi. The highest flow length demonstrated by the feedstock material containing 8.97wt%

moisture content. The flow distance shifted to lower values for the feedstock material

with lower moisture content. The result shows a linear relationship between flowability
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and the injection pressures. However, the material becomes less responsive to applied

pressure at lower moisture content. This can be observed by examining the slope of the

lines. The slope value reduces by about 36% as the solid content changes from 91.0 to

93.10w0/0. In comparison with 17-4PH (Atmix) feedstock, this material shows better

flowability at 500, 1000 and 1500 psi injection pressures.

The flow characteristic of the baseline feedstock comprising 17-4PH (UFP) gas-

atomised powder was effected by solid loading. Figure 6.5 shows that the flow was

effected by the solid loading. The flow distance become shorter as the solid content of

the feedstock increases. The flow starts decreasing drastically at solid content greater

than 92.7wt% and reaches sero value at critical solid loading of 93.3wt%. A feedstock

material that shows the ability to flow greater than 2.5 and 6.5 inches at 500 and 1000psi
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for a particular solid loading is considered a moldable material at that solid loading. The

17-4OH (UFO) feedstock material indicates sufficient flowability at 92.8 and 92.8wt%

solid loading for molding. The result shows that this feedstock material could be molded

at 92.8wt% with no difficulty.

In comparison with 18-4OH (Atmix) water-atomised feedstock, the gas atomised

feedstock material demonstrates higher flowability. For example, the 17-4OH gas-

atomized feedstock at 92.7wt% solid and l000psi injection pressure flows ahydut 44%

more than water atomised material. The flow differences between gas and water

atomised feedstock material is clearly associated to the characteristics of the starting

powder, since hydth feedstock materials were prepared with an identical formulation and

mixing procedures.



CHAPTER 7

BINDER SYSTEM COMPONENTS

7.1 Effect of Binder System Components on Density of the Feedstock

It is desirable to increase the density of feedstock material to a maximum possible level.

Feedstock material with high density pushes the solid loading and weight of the green

part to a higher value resulting in lowering the final shrinkage and increasing sintered

density, other factors being equal. In a simple polymer binder system, which primarily

deals with one type of binder component, higher feedstock density is achieved by

reducing the binder content and increasing the metal powder accordingly. The maximum

solid loading is based on the critical solid loading of each powder-binder system. The

critical solid loading is an experimentally determined parameter that varies with each

powder-binder system [32].

Unlike the polymer binder system, the agar binder system is composed of two

major components, i.e.; agar powder and DI water, as well as, minor amount of two types

of biocide additives, methyl-p-Hydroxybensoate and Propyl-p-hydroxybensoate. Each of

these components can have a different effect on the density of the feedstock material. The

theoretical density of the feedstock as a function of water and agar was calculated to

evaluate the effect of these components on the density. The effect of the biocides was not

included in the calculation because the amounts of these additives are not significant in

the feedstock formulation. First, the density of 17-4PH feedstock material containing

8wt% moisture was calculated as a function of agar content. The density of the feedstock

was calculated using the following expression.
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Where pts is density of the feedstock, W1, W2, W3, and W4 are weight of the feedstock,

weight of metal powder, weight of agar and weight of the water in grams respectively.

The effect of water content on theoretical density of 17-4PH feedstock material

containing 2w0/0 agar powder was evaluated. The density of the feedstock calculated as

a function of moisture variation in the feedstock formulation using equation (8.I). Figure

8.2 predicts the effect of moisture variation on density of 17-4PH feedstock. The straight

line was drawn through the calculated data points for comparing with the slope in Figure

8.I.
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Figure 7.2 Effect of moisture content on feedstock density containing 2wt% agar

The result shows that reducing hydth water and or agar in the feedstock

formulation increases the density of the feedstock. However, reducing the water content

increases the density of the feedstock more effectively. Reducing the moisture content by

1% the density increases by 3.90%, whereas the reduction of agar by 1% improves the

density by 2.57%. The reduction of moisture improves the density of the feedstock by

51.7% more than reducing the agar content. By the same token, reducing the moisture

content more effectively increases the solid loading of the feedstock.
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7.2 Effect of Additives on Rheology of 17-4PH Feedstock

Improving the solid loading of the feedstock is among one of the key factors that

influences the molded green weight, sintered density and final shrinkage of the molded

article. It was pointed out in the previous section that reducing the moisture content more

effectively increases the solid loading of the feedstock. It also showed that the critical

solid loading of the baseline composition 17-4PH (Atmix) water atomised and (UFP) gas

atomised feedstock formulation can not be exceeded more than 92.9 and 93.Iwt%,

respectively. The flowability of the 17-4PH (Atmix) feedstock sharply decreased at solid

loading greater than 92.6wt%, thus a loading near 92.5Owt% is preferred, for the fixed

solid loading (metal + agar) of 9O.8wt% and 2wt%. Similarly, the 17-4PH gas atomized

feedstock shows rapid increase in viscosity at solid loadings higher than 93.1wt% making

flow. The preferred solid loading for this material was 92.7-92.8wt%, for the fixed metal,

agar solid loading of 9O.8wt% and 2wt%. These solid levels are called the maximum or

optimum solid loading of the feedstock. At maximum solid loading, the feedstock

materials have lowest possible moisture with proper flowability for molding.

It is desirable to minimise the moisture content (increase the metal solid loading)

of the feedstock beyond its maximum solid loading and maintain sufficient flowability.

For this purpose, several additives were studied. Three types of additive, i.e. glucose (D-

Glucose, Anborous CH2 OH(CHOH) 4CHO from Fisher), sucrose, and fructose were

evaluated. Initially, several binder compositions were designed with glucose additives

and used for compounding 17-4PH (UFP) gas atomised powder. The first experimental

feedstock composition "A" was compounded with glucose additive, containing total of

2wt% binder (agar + glucose) with agar/glucose ratio of 2.2.
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7.3 EDperimental Procedures

A mixture of 50 grams glucose and 680 g of DI/H2O was stirred at room temperature

until the glucose completely dissolved. Agar powder was pre-mixed with 1.6 and 1.2

grams of methyl-p-boroxybensoate and methyl-p-boroxybensoate respectively. The

water-glucose solution was added to 110grams of TIC agar powder and mixed

thoroughly. The mixture was placed in a sigma mixer and gradually heated to 95°C

(205°F) with continuous mixing until the binder was completely melted. A total of 7842

grams of 17-4PH (UFP) gas-atomised powder was added to the binder. First, half of the

metal powder was added to the melted binder and mix for 15-20 minutes. Then, the rest

of the powder was added and mixed for 45-60 more minutes. The compounded batch

was allowed to cool to 38°C (100°F) and then removed from the mixer and shredded to

small particulate. The feedstock contained total of 2wt% binder (agar + glucose) and

agar/glucose ratio of 2.2. Spiral testing was conducted on this feedstock composition at

two moisture levels.



CHAPTER 8

THE FLOW PROPERTIES OF AGAR-GLUCOSE COMPOSITIONS

8.1 Flowability of Composition "A"

The feedstock of composition "A" was divided into two equal portions. The moisture

content of the feedstock materials was adjusted to 8.84% (94.16w0/0 solid) and, 8.2%

(94.80wt%). The flow behavior of the materials was evaluated for these moisture levels

at 8OO, lOOO, and 18OO psi injection pressures. The material with 8.84% moisture content

flowed 2.66+O.3O inches at 18OO psi and did not flow at 8OO and lOOO psi pressures.

It is shown in previous sections that the flowability of the 17-4PH gas atomised

baseline feedstock was diminished completely at 6.7% moisture level (93.3wt% critical

solid loading) and minimum moisture level for the material to be moldable was 7.2%.

The glucose additive improved the flow characteristics of the feedstock beyond the

critical solid loading of the baseline composition. The addition of glucose helped to

lower the moisture content by l.36% and maintained the flowability at proper level.

8.2 Flowability of Composition "B"

The second composition "B" was formulated with agar/glucose ratio of 1 and total

binder of 2.8%. The other batch constituents and their amount were kept the same as

composition "A". The same experimental procedure was followed for preparation of this

composition. The spiral flow for this composition was evaluated at 8.18% (94.82wt%

solid) and 4.96% (95.O4wt% solid) moisture levels. The average flow at 8.18% moisture
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and at 500, lOOO, and 1500 psi injection pressures was I.85 ±O.26, 3.O4 ±O.37 and 4.74

±O.16 inches, respectively. The feedstock material at 4.96% (95.O4wt% solid) moisture

level totally lost its flowability at 500 psi injection pressure. At higher injection

pressures the material demonstrated poor flowability. The average spiral flow was only

2.70±O.33 inches at lOO0 psi. and 3.51±O.31 inches at 1500 psi.

8.3 Flowability of Composition "C"

This composition contains an agar/glucose ratio of O.82 and total of 2.6wt% binder in its

batch formulation. The spiral flow properties of this batch were evaluated at

5.51%(94.49wt% solid) and 4.98% (95.O2wt% solid) moisture contents. The average

flow at 5.51% moisture content was 5.05±O.45, 8.59±I.45 and 9.22±I.08 inches at 500,

lOOO, and 1500 psi injection pressures. The respective average flow at 4.98% (95.02wt%

solid) moisture level was I.68±O.08, 2.56±O.10 and 5.68±O.24 inches at applied injection

pressures of 500, 1000, and 1500 psi.

8.4 Flowability of Composition "D"

Composition "D" comprises of 2.3wt% binder and agar/glucose ratio of l. The

agar/glucose ratio of this composition is same as composition "L", but contains O.8wt%

lower binder in its formulation. The spiral flow testing was conducted at 5.50%

(94.50wt%solid) moisture content. The material did not flow at 500 psi pressure and had

impotent flow at higher injection pressures. The average flow was only 3.05±O.13 and

5.73±O.51 inches at lOOO and 1500 psi respectively.
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8.5 Flowability of Composition "E"

This composition was prepared with an agar/glucose ratio of O.72 and 2.7wt% binder.

The moisture content of the feedstock material was adjusted to 5% (95.0wt% solid). The

composition "E" did not illustrate sufficient flowability at this moisture level. The

material showed an average flowability of l.85±O.I4, 3.32±O.28 and 6.01±O.28 inches at

500, lOOO, and 1500 psi pressure respectively.

8.6 Flowability of Composition "F"

The feedstock material comprises of 3.4wt% binder and agar/glucose ratio of O.5. Spiral

experiment was conducted at 5.44% (94.56wt% solid) and 5.09% (94.91% solid)

moisture contents. The material showed excellent flowability at 5.44% moisture level.

The average spiral flow was 9.68±O.55 and 16.60±I.28 inches at 500 and 1000 psi

pressures. The feedstock material was not tested at 1500 psi pressure because of its high

flowability. The feedstock illustrated a decent flowability at 5.09% moisture content.

The average flow at this moisture level was 4.55±O.93, 7.28±O.92 and 9.62±O.23 inches

at 500, lOO0 and 1500 psi injection pressures.

8.7 Flowability of Composition "G"

This composition was slightly different from composition "F". The agar/glucose ratio of

O.56 was higher by 0.06 from composition "F". The feedstock material showed sufficient

flowability at lowest moisture contents of 5.O%. However, the total binder was as high as

3.6%. In contrast with composition "F" this material became more responsive to
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injection pressures, especially at 1500 psi. The flow distances were 5.O±O.30, 8.I±O.21

and lO.9±O.18 inches at 500, lOOO and 1500 psi pressures, respectively.

8.8 Results and Discussion

The addition of glucose in the binder formulation caused the cross-linking of agar gel to

untangle and lowered the viscosity of the binder. The low viscosity binder helped to

improve the flow properties of the feedstock at higher solid loading. Table 7.I presents a

summary of the compositions and their flow properties. The results clearly show that the

addition of glucose in the composition made a significant improvement on flow

properties of the 17-4PH feedstock material containing gas-atomized powder.

Composition ^ 1L`` agar/glucose ratio of 1 and total binder content of 2.8 had a poor

fiowability at 5.18% moisture. The material lost its fiowability at 4.96% moisture level.

Composition ^^[)`` same agar/glucose ratio of 1 and O.5% (total binder 2.3%) lower

binder than composition "A" could not be processed at 5% moisture content.
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At higher moisture level of 5.50% the material did not flow at 500 psi and had an

indigent flow at lOO0 and 1500psi injection pressures. Comparing composition "E" with
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"B" and "C" indicates that the material flowability at ahydut 5% moisture content has a

tendency to improve as the agar/glucose ratio is reduced to O.72.

Composition "F" with agar/glucose ratio of O.50 and 3.4% binder showed decent

flowability at 5.09% moisture content. In comparison with composition "E" it is

indicated that lowering the agar/glucose ratio to O.5 and increasing the binder content to

3.4% improved the flowability at 5% moisture level from I.9 to 4.6 inches at 500psi

applied injection pressure.

Composition "G" formulated with 3.6% binder and agar/glucose ratio of O.56,

which are slightly higher than composition "F". In comparison with composition "F"

composition "G" showed better flowability especially at 1500 psi pressure. This

composition contains lowest moisture content of 5% and highest binder amount of 3.6%.

The lower moisture content facilitates shorter drying cycle for the molded articles.

Composition "A" contains highest agar/glucose ratio of 2.2. It has lowest binder

content of 2%. The binder system comprises of 31% glucose and 69% agar powder.

This composition with 5.84% has an optimum moisture content with lowest binder

amount compared to other compositions in Table 8.I except, the baseline composition.

This composition demonstrated the best flowability at applied injection pressures. It also

contains the highest metal loading of 62.50vol%. This composition has the potential for

reducing the overall cost of the feedstock material, since 31% of the total binder is

glucose ($3.96/1b), which, is 66.3% cheaper than agar ($11.75/1b) powder.

The results show that two best compositions are composition "A" and "G". Each

of these compositions has its advantages and disadvantages. Some of the advantages of

composition "A" are low binder content, lower binder costs, high metal content of
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62.5vol%, and excellent flow properties. The disadvantage is the 5.84% moisture

contents, which prolongs the drying cycle of molded articles prior to sintering process.

Storing the feedstock material of this composition in a closed container had the tendency

to develop slight moisture condensation on the wall of the container (Rainforest effect).

This requires the incorporation of the condensed moisture with the feedstock material

prior to usage by tumbling the container. In contrast with baseline feedstock,

composition "A" significantly enhanced the metal solid loading from 57.1 to 62.Svol%

and lowered the required moisture in the composition by l.5%.

The advantages of composition "G" are very low moisture content of 5.O%, good

flow properties and no rainforest effect. The disadvantage is the high binder content of

3.6%. However, composition " G`` improved the baseline feedstock

formulation of 17-4PH (UFO) feedstock. The metal loading increased by 4.3vol% and

moisture content reduced by 2.3%.

8.9 Effect of Solid Loading on Molded Weight

Feedstock material with high solid loading plays an important role on improving as-

molded weights, green density, better dimensional control and lowering the final

shrinkage of molded articles. The molded weight of the parts increased as the solid

loading increased. Since the volume of the cavity is constant the green density is directly

effected by the green weight. To study the effect of solid loading on molded weight

(queen weight) and green density, several experiments were conducted on feedstock

material with composition "G". A batch of feedstock material with ^^{]`` 	 was

prepared. The material was divided in two equal portions. The moisture content of the
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materials was adjusted to 5.46% (94.54wt% solid, 60.1vol% metal) and 5.O% (95.Owt%

solid, 61.7vol% metal). Eleven tensile bars were molded at each solid level to evaluate

the effect of solid loading on as-molded weights and green density.

The tensile bar samples were molded using 55 tone Cincinnati Milacron injection

molding machine. The samples were molded at 600 psi injection pressure, 300 psi

holding pressure, 3 second holding time and O.5"/sec injection speed. The mold

temperature was maintained at 77°F (25°C). Figure 8.1 shows the tensile bar mold cavity

and the cavity dimensions of the mold.

Figure 8.1 Shows the tensile bar mold and the cavity dimensions of the mold.

Figure 8.2 presents the weight variation of samples molded with 17-4PH (UFP)

gas atomized feedstock material with 5.46 and 5.O% moisture contents. The average as-

molded weight of the tensile bars with 5.46% moisture content was 42.66±O.07 grams.
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The average green density of the samples was calculated to be 5.36+O.01 g/cm 3 by

dividing the average green weights to 7.96 cm (0.49 in 3 ) the volume of the mold cavity.

The average weight with 5.O% moisture was 43.18+O.09 grams and average green density

determined to be 5.43+O.01 g/cm 3 . The result indicates that reducing the moisture

content by O.46% enhanced the as-molded weight by l.2%.

Figure 8.2 Effect of solid loading of 17-4OH (UFP) materials on as molded weighs of
tensile bar samples.



CHAPTER 9

FEEDSTOCK CONTAINING 17-4PH ATMIX POWDERS

9.1 Study the Effect of Additives on 17-4PH (AtmiD) feedstock

In this section, the effect of three additives on flow properties of feedstock material

containing 17-4PH water atomised (Atmix) powder was investigated. These additives

were glucose, sucrose and fructose. The maximum and critical solid loading of feedstock

containing water- atomized powder was evaluated. The experimental formulations for

the feedstock using this powder was that of composition "G" and "A" which generated

good results for gas atomized powder. This way the effect of different powders on the

rheology of the feedstock can be compared.

9.2 Glucose Additives

An experimental batch of feedstock using water atomized 17-4PH supplied by the Atmix

company was compounded using 3.6% binder and O.56 agar/glucose ratios. This

formulation is the same as composition "G" applied to gas atomised powder described in

the previous chapter. For the water atomized formulation, the nomenclature "G," will be

used. The batch was prepared with 7842g of stainless steel 17-4PH (Atmix) water

atomised powder, lOOg of agar (TIC 100), 18Og of glucose (CH 2OH(CHOH)4CH0), and

68Og of D1/H20. A mixture of I.6 g of Methyl-p-boroxybenzoate and l.2 g of Propyl-p-

boroxybenzoate was added to the batch as an anti fungal agent. The batch preparation

steps and conditions were identical to that of the gas atomized feedstocks.

The feedstock material was divided in three portions and the moisture contents

adjusted to 5.98% (94.O2% solid), 5.5% (94.50% solid) and 5.O% (95.O% solid). The
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spiral flow experiments were conducted on the feedstock material at these moisture

levels. The feedstock material with 5.98% (94.02%solid) moisture content showed

excellent flow properties. The average flow was 4.42+O.20, 9.82+O.37 and 19.54+I.57

inches at 500, 1000, and 1500 psi, injection pressure respectively. The results also

showed that the material became more responsive to flow at higher shear. When the

injection pressure changed from lOO0 to 1500 psi, the flow increased significantly from

9.82 to 19.54 inches.

The flowability of the feedstock declined drastically at 5.5% (94.50% solid)

moisture level. However, it still showed sufficient flowability for processing. The average

flow measure to be 2.54+O.20, 5.60+O.18 and 9.35+O.26 inches. Lowering the moisture

level by O.48% degraded the flowability by more than 42% at 500 and 1000 psi and about

52% at 1500 psi pressures. At 5.O% (95.O% solid), moisture content the feedstock

material became very difficult for processing and eventually jammed the injection

molding machine. The material at this moisture content is considered unusable.

9.3 Sucrose Additive

The effect of sucrose (C12H22011 from Alfa Co.) on flow properties of 17-4OH (Atmix)

feedstock material was evaluated. An experimental batch with this additive was

prepared. The batch compounded using 640Og 17-4PH (Atmix) powder, 81.6g agar

(TICIOO), 146.9g sucrose, 60Og H20, I.2g rnethyl-p-hydroxybenzoate and 1 g propyl-p-

hydroxybensoate. This batch comprises of 3.6% binder (agar + sucrose) and agar/sucrose

ratio of O.56 (same as composition "G,"). The moisture content of the feedstock was

adjusted to 6.O% (94% solid). The flow distance of the material at 500psi injection
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pressure was only 2.12+O.15 inches. The flow distances were 5.62+O.73 and 10.82+O.97

inches at 1000 and 1500 psi pressure respectively. The feedstock material at 5.5%

(94.5% solid) moisture content did not flow at 500 psi and the flow was insignificant at

higher pressures. Thus, it appears that the sucrose degraded the flow properties

compared to the agar only binder.

9.4 Fructose Additive

A batch of 17-4PH (Admix) materials was prepared with fructose (C6Hp06 from Alfa

Co.) additive. The feedstock material was compounded with an agar/fructose ratio of

0.56 and 3.6% binder. Spiral flow experiment conducted at 6% (94.O% solid) moisture

content. At this moisture level, the material was very difficult to be fed effectively into

the injection molding machine. Also, the material did not demonstrate any flowability at

applied injection pressures. The addition of fructose did not provide any advantages.

Fructose, like sucrose, degraded the flow properties compared to agar only binder.

9.5 Results and Discussion

The addition of glucose (CH 2 OH(CHOH) 4CHO) as a part of the binder system was

effective in changing the rheology of the 17-4PH (Admix) feedstock material. The 17-

4PH (Admix) feedstock with agar/fructose ratio of O.56 and total binder of 3.6% showed

good flowability. The spiral experiments were conducted on water-atomized feedstock at

5.98% (94.O2% solid), 5.5% (94.50% solid) and 5.O% (95.O% solid) moisture content.

The flowability of the material at 5.98% (94.02% solid) was 4.42+O.20, 9.82+O.37 and

19.54+I.57 inches at 500, lOOO, and 1500 psi injection pressure respectively. Excessive
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flow was observed at this moisture level, especially at higher shear rate (1500 psi

injection pressure). The material could not be fed into the injection molding machine at

5.O% (95.O% solid) moisture level because of high viscosity due to low moisture content.

The best result in terms of moisture content and flowability was achieved at 5.5%

(94.50% solid) moisture level. The material at this moisture level demonstrated a flow of

2.54+O.2, 5.60+O.18, and 9.35+0.26 inches at 500, lOOO,and 1500 psi injection pressures.

It is shown that the same binder formulation developed for gas atomized powder

feedstock effectively improved the flow properties of the water atomized powder.

Applying the "G," formulation significantly improved the solid loading of the water-

atomized feedstock. However, the material could not be processed at 5.O% (95 wt%

solid) moisture content while the gas atomised feedstock with the same formulation

molded at this moisture level. This is very well related to the morphology and

characterizations of these powders i.e. angel of repose, particle shape and size

distributions, which were discussed in previous chapters.

Using a sucrose additive did not show significant advantages. The feedstock

material with "G„"(agar/sucrose of 0.56 and total binder of 3.6wt%) formulation

containing sucrose tested at 6% (94.0wt% solid). The average flow at 500 psi was

2.12+O.15 inches, and 5.62+O.73 and lO.82+O.97 inches at lOOO and 1500 psi injection

pressures. The flowability of the material at 5.5% (94.5wt% solid) moisture content was

sero at all applied pressures. This additive was not effective at solid loading higher than

94wt%. Replacing sucrose with fructose in the feedstock formulation deteriorated the

flowability of the material. The feedstock material at 6.O% (94.Owt% solid) moisture was
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very difficult to be processed and showed no flowability. Figure 9.1 shows the effect of

these additives on flowability of 17-4PH (Atmix) feedstock materials.

The best result with water atomised powder and glucose additive was achieved using

"G„" composition at 5.5% moisture level. The material with 5.98% moisture had excess

flowability, and material with 5.O% was unusable due to lack of flow.

9.6 Effect of Solid Loading on As-Molded Weight

levels. Thirty rings samples were molded at 6% (94wt% solid) moisture level to monitor
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the as-molded weight variation and determine the average weight of the samples. The

cooling time was set for 50 second (from end of injection time to the time mold is open)

for molding these samples.

Twenty-five additional samples were molded using 30, 20 and 15 second to find

the minimum applicable cooling time. The samples with 15 seconds cooling time were

not sufficiently solidified and tend to stick to the mold cavity upon removal. With 30 and

20 seconds cooling time, the samples could be remove from the mold cavity with no

difficulty. Therefore, the minimum cooling time was determined to be 20 seconds.

Thirty samples were molded with the feedstock material containing 5.45%

(94.55wt% solid) moisture. The cooling time was set for 50 seconds for molding the

parts. The as-molded weight variation and average weight of the parts was compared with

samples molded at 6% (94wt% solid) moisture content. The minimum cooling time for

the parts was found to be 15 seconds. Lesser cooling time was found to be insufficient.

Figure 9.2 shows a run chart for samples that were molded at 6% (94wt% solid) and

5.45% (94.55wt solid) moisture levels.
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Comparing with the baseline composition, the addition of glucose in the feedstock

formulation improved the as-molded weight of the samples by ahydut 7.I% and reduced

the cooling time by 50%. The average as-molded weights also increased by ahydut 3% as
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the moisture content of the feedstock containing glucose reduced from 6.O% to 5.45%.

The cooling time improved by 25%.

9.7 Composition "A" containing 17 -4PH (AtmiD) Powder

It was shown that composition "A" (agar/glucose ratio of 2.2 and total binder of 2wt%)

could produce a feedstock material having the highest atomised metal powder content for

the gas-atomized powder used. Three experimental batches were compounded with this

composition using water atomized 17-4PH (Atmix) powder to evaluate the maximum and

critical solid loading of this formulation in water atomized powder. The batch

composition was identified as "A," which stands for the composition "A" containing

water atomised metal powder. The moisture content of these batches was adjusted to

6.69% (93.31% solid), 6.49% (93.51% solid) and 6.O% (94% solid). The moldability of

this formulation was evaluated by molding more than 40 tensile bar specimens using 55

tons Cincinnati injection molding machine. The feedstock material at 6.69% (93.31%

solid) and 6.49% (93.51% solid) moisture levels was molded with no difficulty.

However, the material with 6.O% (94% solid) moisture content completely lost its

moldability. Consequently, the maximum and critical solid loading for this formulation

was identified as 93.5 lwt% and 94.Owt% respectively.

Figure 9.3 shows the as-molded weight variation of tensile bar samples molded at

6.69% (93.31% solid) and 6.49% (93.51% solid) moisture levels. The average as-molded

weight of 46 samples molded at 93.3 let% solid was 41.40+O.O46 grams. The average

weight for the samples molded at 93.51wt% solid was 41.66+O.O41 grams. A summary

of the molding results for "A„" feedstock formulation is shown in Table 9.2.
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9.8 Results and Discussion

It was shown in previous sections that the maximum solid loading for the baseline

composition comprising of 17-4OH (Atmix) water atomized powder was 92.7wt% (7.3%

moisture). The effect of glucose, sucrose and fructose additives was evaluated for

enhancing the solid loading of the feedstock material containing water-atomized powder.

The effect of sucrose was not significant and fructose additive did not provide any

advantages. However, the glucose additive improved the properties of the feedstock

material by increasing the amount of metal loading while still maintaining useful flow.

Two formulations "G„:" and "A," were employed to incorporate the glucose

additive in the feedstock material. Both formulations significantly increased the solid

loading of the feedstock. The maximum solid loading of 94.50wt% (5.SOwt% moisture)

was achieved with G„ (agar/glucose ratio: O.56 and total binder: 3.6wt%) formulation.

The maximum metal powder content was 59.90vo1.

The material with A„ (agar/glucose ratio: 2.2 and total binder: 2wt%) formulation

was molded at 93.51wt% solid (6.49wt% moisture). This solid loading is ahydut let%

lower than the G, formulation and, contains Iwt% more moisture. However, this

formulation improved the maximum metal powder content by O.3vol% (60.20vol%).

Table 9.3 presents a summary for hydth formulations.



Loth of these formulations significantly improved the rheology of the material

compared with the baseline, which resulted in the increase of the solid loading of the

feedstock. The advantage and disadvantage of these formulations should be evaluated

from several points of view, cost saving, effects on final shrinkage, microstructure and

final chemistry of the material after sintering. Except for the cost evaluation the other

issues will be investigated in later sections.

The addition of glucose significantly reduced the cost of the binder. Agar powder

is the most expensive constituent of the binder system (ahydut S23.SO/kg). The glucose

powder is ahydut I/3 of the agar's cost ($8.40/kg). Replacing the portion of the binder

with glucose can reduce the cost of the binder. The binder composition for the "G„"

formulation comprises of 36% agar and 64% glucose. Substituting 64% of the total

binder with glucose reduced the cost of the baseline binder by 42.4%. Even though this

composition contains 1.6w0/0 more binder than the baseline formulation, the cost saving

remains significant. The binder system for "A," formulation contains 68.75% agar and

31.25% glucose. This formulation reduced the cost of the baseline binder by 20.6%. It

was shown that feedstock material produced with "A," formulation contains highest

metal powder content. The lowest binder cost was achieved with this formulation.



CHAPTER 10

THE SINTERING PROCESS

10.1 Debinding

Rebinding is a very critical primary step between molding and sintering where, the binder

is extracted by heat, solvent or other techniques. The process of removing the binder and

other contamination prior to sintering temperature has a significant effect on final

chemistry, density and properties of a part. This step in polymer binder system controls

the part size and thickness limitation. The total removal of the binder becomes very

difficult and economically infeasible as the part size and thickness increases. Long

debinding time and cracking are among major obstacles for this binder system. The

debinding process has been considered the most critical step in powder injection molding

(PIM) because of the long time needed to burn out the binders without introducing

defects such as blistering, warping, and skin exfoliation [33]. A major limitation on the

processing of ceramics by injection molding is the long time taken to burn out the

polymeric binder [34]. A 3mm thick Injection molded aluminum test bar samples

containing polypropylene-based binder system required 28 hours debinding time in air

and nitrogen to completely remove the binder [35]. The effect of doubling the section

thickness to 6mm was an increased of the debinding time by 3.6 times (ahydut 100 hr.).

The debinding process commonly conducted in a separate furnace. The debinded parts

are then transferred to a sintering furnace to complete the densification process. In

contrast, for the agar binder system debinding is followed by sintering in the same

furnace. An agar-based sample with 2.5cm thickness could be debinded within 30 to 45

minutes at 2SO-300°C.
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10.2 Sintering

Sintering or densification is an irreversible thermodynamic phenomenon to convert

unstable packed powder having excess free energy to stable sintered agglomerates [36].

The process involves the fusion of particles, volume reduction (shrinkage), decrease in

porosity, and increase in grain size. Sintering is a high temperature consolidation

process that usually takes place at close to the melting temperature of the material.

Sintering time, temperature, as well as sintering atmosphere, heating rates, material

composition and powder particle sise plays an important role in this process. The process

creates strong bonding between the particles and enhanced the density and mechanical

properties of the material. The following criteria must be met before sintering can occur

[37]: a) A mechanism for material transport must be present; b) A source of energy to

activate and sustain this material transport must be present. The primary mechanisms for

transport are diffusion and viscous flow. Heat is the primary source of energy, in

conjunction with energy gradients due to particle-particle contact and surface energy.

Reed [38] explains that the driving force for sintering compacted ceramic particles is due

to the reduction in the total free energy ACT  of the system

Where AG,, AGE , and AG, represent the change in free energy associated with the

volume, hydundaries, and surfaces of the grains, respectively. The major driving force in

conventional sintering is AC, but the other terms may be significant in some stages for

some material system.



74

The sintering process has been divided in three main stages, initial, intermediate

and final [37]. During the initial stage, neck is forming at the contact point of particles.

At the intermediate stage neck growth, pore rounding and elongation occur. Density

increases significantly at this stage. In the final stage, grains continue to grow, the

number of pore decreases and final densification transpires. A combination of several

mass transport mechanisms such as grain hydundary, surface and volume diffusions,

plastic flow and evaporation condensation could take place during the sintering stages.

Figure 10.I shows the alternative paths for the atoms to form hydnding during the first

stage of sintering [39].

Figure 10.1 Alternative paths for matter transport during the initial stages of sintering.
Courtesy M. A. Ashby.
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The kinds of changes that may occur during sintering are illustrated in Figure 10.2

[37][39]. The contacted particles were fusing together and the shape of the pore between

them is changed. Dimensional changes or shrinkage (AL o) also occurred.

Figure 10.2 Change of pore shape and dimensional changes during sintering process.

Shrinkage, is a decrease in physical dimensions of a particulate compact, occurs

during sintering. Shrinkage is sensitive to sintering time and temperature. Ly extending

the sintering time, it is possible to reduce the process sensitivity to small fluctuation [40].

It is indicating that errors in sintering time have less influence on final dimensions. The

effect of sintering temperature is much larger; there is more shrinkage at higher

temperature. Figure 10.3 shows the effect temperature and time on dimensional

shrinkage [401. Sintering shrinkage increases exponentially with temperature. Therefore,

at higher temperature a small change leads to a greater dimensional variation. Sintering
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shrinkage is less sensitive to time. As the time progresses, there is less change in

shrinkage.

Aarious sintering conditions have been developed and employed for sintering

different types of alloys. The specific details of the repeatable successful sintering

conditions have been kept as proprietary practices. The sintering atmosphere is an

important contributor in a sintering process. Some of the common types of sintering

atmosphere are; air, vacuum, inert gases, borogen and combination of two or more.

Exner [41] studied the effect of nitrogen, air, borogen, argon and mixture of 25%

nitrogen and 75% hydrogen on sintering of stainless steel powder. The level of

sensitivity to sintering atmosphere varies with different materials. For stainless steel
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alloys, the sintering atmosphere should be selected and controlled carefully to hold the

final oxygen and carhydn content to a desirable level.

The sintering of 17-4PH samples was conducted in a nine cubic feet Elnik batch

furnace. The samples molded with baseline composition as well as "A" and "G"

compositions were sintered under the same sintering conditions. The following sintering

conditions were employed for sintering tensile bar samples molded with 17-4PH

feedstock materials. At the initial stage, the samples were held at 110 C for 1 hour in air

to remove any residual moisture. The temperature was raised to 320 C and held for 4

hours in air. The binder content is eliminated at this stage. The debinding followed by

vacuum pump down and then introducing borogen gas into the furnace. Temperature

was raised to 1010 C and held for 1 hour then followed by 1365 C and 2 hours soaking.

At the final stage, the furnace temperature was ramped down at 5 Clmin. to room

temperature.

10.3 Shrinkage Prediction and Measurements

The starting dimensions of molded part changes during the sintering process and all final

dimensions become smaller than the green part dimensions. This dimensional change has

the potential to be a source of part distortion and cracking. Reducing the sintering

shrinkage helps to eliminate the sources for these defects and provides better control on

dimensional tolerances. Shrinkage is inversely effected by volume percent of the metal

powder in the feedstock (lower binder content). This provides more particle contacts and

higher packing during molding.
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A shrinkage prediction model, based on conservation of mass, has been developed

to guide work on a shrinkage adjustment and compound development. The shririlcage

was calculated based on the initial volume percent of metal content of the compound at

the time of molding and final density of the sintered part. Shrinkage and density are

interrelated. Higher sintered density is associated with higher shrinkage for a given

solids loading and green part pack profile. Figure 10.4 shows the effect of volume

percent of metal content and final sintered density on shrinkage. For comparison, the

actual data are shown on the model with open symbols.

Figure 10.4 Shrinkage model predictions and data for 17-4PH compounds
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Two generalisations based on this model are (I) a I% increase in volume percent of

metal content decreases the final shrinkage by about O.47%, (b) a I% decreases in sinter

density causes about O.28% decrease in shrinkage.

The effect of feedstock composition on final shrinkage was evaluated. Tensile bar

samples molded with baseline, "A" and "G- compositions and sintered at 1365 C for 2

hours in hydrogen atmosphere. The percent shrinkage was calculated by comparing the

sintered dimensions to the mold dimensions (ALLY). The density of the sintered samples

evaluated using Archimedes' principle. Table 10.I presents the effect of the feedstock

formulation on the final shrinkage of the tensile bar samples.

In the case of water atomized (Admix) powder, an average low shrinkage of 14.76 ±O.13

resulted using "A°"' formulation. The lowest shrinkage of 13.63 ±O.25 was

obtained with "C" formulation containing gas atomized (UFO) powder.
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The microstructure of sintered samples of baseline composition containing gas

and water-atomized powder were compared with the samples made with "C"

composition (containing glucose). The addition of glucose had no effect on

microstructure of the sintered samples. On the other hand, the experimental observation

indicated that increasing the glucose in the binder formulation reduced the green strength

of the as-molded samples. This was noticed in samples molded with composition "G"

which had higher glucose content. The as-molded tensile bars with this composition

were more susceptible to break or damage during the removal from the mold cavity.

Carhydn and oxygen content in the sintered 17-4OH materials have significant

effect on mechanical and corrosion properties of this material. These elements react with

chromium and deteriorate the corrosion resistance of the sintered parts. The level of

these elements has to be controlled within a certain specification (O.07% max. carhydn and

max. O.I% oxygen) to insure the final properties. The carhydn and oxygen content of the

as molded hyddies are high due to presence of oxide impurities and binder content in the

17-4PH feedstock. The concentration of hydth elements must be reduced to an acceptable

level in the sintered product. The selection of sintering atmosphere and sintering

temperature profile becomes very critical for achieving final concentration of these

elements. Table 10.2 shows the carhydn and oxygen content of the as molded and the

sintered samples.
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These samples molded with baseline, "G„" and "A," compositions were sintered

under the standard sintering conditions (see previous section for details). After sintering,

the carhydn and oxygen concentration in the baseline composition are in the acceptable

range of O.008, and O.O44wt% respectively. However, compositions "G„," and "A,"

responded differently under standard sintering conditions. The final carhydn content

(O.240 wt%) in composition "G„" was higher than specification limit but the oxygen

content was (O.012 wt%) within the limit. In the case of composition "A mp ", the oxygen

content (O.38 wt%) is ahydut four times greater than the maximum allowable limits. In

contrast, its carhydn content (O.008 wt%) is in the adequate range. The results show that

the standard sintering conditions is not a desirable setting for sintering composition "G"

and "A,". It is suggested that different sintering conditions should be developed for

these compositions to meet the proper carhydn and oxygen content in the sintered parts.



CHAPTER 11

CONCLUSIONS

11.1 Concluding Remarks

This study shows that increasing the volume fraction of the metal powder in the feedstock

formulation has significant effect on lowering the final shrinkage of the sintered articles.

For this purpose, the effect of several factors was investigated.

1) Two types of metal powder, 17-4OH (Atmix) water atomized and 17-4OH (UFP) gas

atomised were evaluated for high solid loading feedstock formulation. The particle size

and shape of these metal powders effected the maximum and critical solid loading of the

baseline feedstock formulation. The maximum solid loading using 17-4PH (Atmix)

water-atomized powder was 95.8w0/0 (57vol% metal powder). The maximum solid

loading was slightly improved to 95.7wt% (57.6vol% metal powder) by using 17-4OH

(UFO) gas-atomized powder with baseline formulation.

2) The gel strength of agar depends on several factors such as type of agar, concentration

of agar, and different additives. The gel strength of high concentration (>1wt%) agar gel

was improved by ahydut 46% by replacing Meer agar with TIC agar. Increasing the

concentration of TIC agar from O.5 to 1wt% enhanced the gel strength from 540 ±7 to

5073 ±89 g/cm 2 . Potassium tetrahydrate was identified to be the most effective gel-

strengthening additive as compared to other hydrates shown in Table 5.3. The gel strength

of 5wt% TIC agar increased from 1195±12 to 1639±16 glcm 2 by increasing the

concentration of potassium tetraborate to more than 0.lwt%.

3) The effect of sucrose, fructose and glucose additives on flowability of the 17-4OH

feedstock was evaluated. The addition of sucrose and fructose were ineffective.
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Addition of glucose significantly improved the flowability of feedstock made of either

gas or water atomised 17-4PH metal powder. Seven different feedstock compositions

were evaluated using gas atomized 17-4PH (UFP) powder and the glucose additive.

Two compositions were found to be the most effective, composition "G" and "A". These

compositions significantly improved the metal powder loading of the feedstock to 6L7

and 62.5vol% respectively. Representing 4.I and 5.0vol% improvement in loading

compared with the baseline.

4) The effect of these compositions was evaluated with 17-4PH (Atmix) water atomized

powder. Loth compositions "G„" and "A„" enhanced the metal powder loading of the

feedstock. The maximum solid loading of 59.9 and 62.5vol% was achieved with

composition "C„"and "A„" respectively, Representing 5.9 and 3.5vol% improvement in

loading compared with the baseline.

5) A shrinkage prediction model was developed based on conservation of mass and was

shown to give predictions in good agreement with data over a range of volume

percentage of metal powder loading. The model presents the variation of shrinkage with

initial solid loading (viol% of metal powder) and part sinter density.

6) Using the formulations with the glucose additive, significantly reduced the sinter

shrinkage. In the case of 17-4PH (Atmix) water atomized powder the reduction

shrinkage of 14.756% was obtained by using -A," composition. Laseline shrinkage was

17.15%. Representing a 5.4% improvement in shrinkage minimization. Shrinkage of

13.63% was achieved with using 17-4PH (UFP) gas-atomized powder. Baseline

shrinkage was 16.15%.
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7) The sintered samples from baseline composition showed an acceptable carhydn and

oxygen concentrations of 0.008, and 0.O44wt% respectively. The carhydn and oxygen

levels in the sintered samples made with feedstock formulation containing glucose were

varied. The final carhydn content (O.540 wt%) in composition "G" was higher than

specification limit but the oxygen content was (O.015 wt%) within the limit. In the case

of composition "Awe ", the oxygen content (O.38 wt%) is ahydut four times greater than the

maximum allowable limits. In contrast its carhydn content (O.008 wt%) is in the adequate

range. The samples containing glucose additive require additional development of the

sintering conditions to obtain the target carhydn and oxygen contents.

11.2 Future Research

0ther related issues for future investigation are:

1- The effects of glucose on agar gel strength that contains gel-strengthening additives

such as calcium or potassium hydrates.

2- Increasing the critical gelation of agar to higher temperature >40°C. This will drive

the molding cycle time to lower values and help to speed up the molding process.

3- Studying the effectiveness of formulation "A" and "G" with aluminum oxide ceramic

powder and non-ferrous metal powder such as copper alloys.

4- Reveloping a method to measure the as molded green strength of the samples

immediately after molding.

5- Examining other possible agarlglucose formulations or alternative additives to further

reduce the final shrinkage.
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