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ABSTRACT

A CLUSTERED BACK-BONE FOR ROUTING IN AD-HOC NETWORKS

by
Delzad Kothawala

In the recent years, a lot of research work has been undertaken in the area of ad-hoc

networks due to the increasing potential of putting them to commercial use in various

types of mobile computing devices. Topology control in ad-hoc networks is a widely

researched topic; with a number of algorithms being proposed for the construction of a

power-efficient topology that optimizes the battery usage of the mobile nodes.

This research proposes a novel technique of partitioning the ad-hoc network into

virtually-disjoint clusters. The ultimate aim of forming a routing graph over which

power-efficient routing can be implemented in a simple and effective manner is realized

by partitioning the network into disjoint clusters and thereafter joining them through

gateways to form a connected, planar back-bone which is also a t-spanner of the original

Unit Disk Graph (UDG). Some of the previously proposed algorithms require the nodes

to construct local variations of the Delaunay Triangulation and undertake several

complicated steps for ensuring the planarity of the back-bone graph. The construction of

the Delaunay Triangulation is very complex and time-consuming. This work achieves the

objective of constructing a routing graph which is a planar spanner, without requiring the

expensive construction of the Delaunay Triangulation, thus saving the node power, an

important resource in the ad-hoc network. Moreover, the algorithm guarantees that the

total number of messages required to be sent by each node is 0(n). This makes the

topology easily reconfigurable in case of node motion.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to undertake a detailed survey of the research

problems currently being studied in the area of ad-hoc networks, particularly those

related to the construction of a sparse power-efficient topology and routing in ad-hoc

networks.

This research also proposes the distributed construction of a routing back-bone

which is a connected, sparse, planar spanner of the original Unit Disk Graph (UDG).

Several useful properties of the back-bone, like sparseness, planarity and the stretch-

factor have been proved by detailed theoretical analysis and the simplicity and

construction-efficiency of the algorithm, in terms of the computation and communication

cost incurred by the nodes have been compared with some recently proposed back-bone

constructions. The constructed topology can be effectively used by ad-hoc routing

protocols like the GPSR (Greedy State Perimeter Routing) that require the underlying

topology to be planar.

1.2 Background Information

An ad-hoc network consists of a set of mobile wireless nodes, not connected through any

fixed infrastructure like a base-station as in cellular networks. The communication

between any pair of nodes occurs by the transmission of radio waves. Since the

1
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transmission range of each node is limited and there is no fixed infrastructure, the

communication between two nodes not within range of one another takes place by

forwarding the information through intermediate nodes which act as routers. Hence, any

node in an ad-hoc network can behave as a router. Ad-hoc networks are mainly used in

the battle-field as the networks formed by the military personnel, sensor networks, etc.

Gradually their application in commercial devices like PDA's and laptops is becoming

increasingly popular.

Nodes in an ad-hoc network are mobile and battery-operated. This makes power a

very valuable resource in the ad-hoc network. The goal of each node is to communicate

with every other node of the network using the minimum possible power. Conservation

of nodal power has a direct influence on the lifetime of the ad-hoc network. Network

Lifetime is the time duration until the first node of an ad-hoc network becomes non-

functional. Also, if each node communicates at its maximum power level, the nodal

transmissions would interfere with one another and obstruct the communication between

nodes. Therefore, it is important to either have an optimal transmission power assigned to

the nodes of an ad-hoc network or construct a network topology which enables

communication using the minimum power at each node.

Two kinds of problems are most widely studied in ad-hoc networks: i) Topology

Control, which involves construction of a connected, power-efficient topology and ii)

Routing which is concerned with proposing power-efficient ways of exchanging

information in an ad-hoc network. The topology control problem is very closely related to

Computational Geometry and several algorithms proposing the construction of various

topologies have been suggested. Similarly, several routing algorithms using power as the
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metric have been proposed for power-efficient routing in ad-hoc networks. The rest of

this section discusses these problems, particularly topology control in detail and also

highlights the research work undertaken in these areas.

1.2.1 Topology control

1.2.1.1 Modeling Ad-Hoc Networks. An ad-hoc network can be modeled as a set

of points in Euclidean space, where each point represents a node. Each node is

characterized by its transmitting and computing power. The computing power is required

for the internal processing by the node. The wireless medium is susceptible to path-loss,

interference between transmissions, signal loss due to physical obstructions and noise. As

a result, the reception power is smaller than the power with which the radio signal is

transmitted. If Pr and Pt respectively denote the reception and transmission power-levels

and if d is the distance between any two nodes,

and the hidden constant in the big Oh notation depends on the antenna

gains and carrier frequency. [16]

While the model above is more suitable for modeling at the physical layer, at the

network layer the ad-hoc networks are often modeled as graphs. The UDG (Unit Disk

Graph) is very widely used to model the ad-hoc networks.

According to the UDG model, a graph G = (V, E) represents an ad-hoc network.

Each vertex corresponds to a wireless node, whereas there exists an edge e E E between

nodes u and v only if u and v can directly communicate with each other. In a Unit Disk

Graph (UDG), each node has a transmission range limited to a disc of radius 1 unit
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centered at the node. Hence, each edge e E E in a Unit Disk Graph has length less than or

equal to 1 unit.

If each node transmits with its maximum power i.e. retains the entire transmission

range consisting of the unit disk centered at it, the resulting Unit Disk Graph will be

extremely dense, with each node having a very large number of neighbors. This would

give rise to interference among node transmissions and an unnecessary wastage of nodal

power, resulting in a reduction of the Network Lifetime.

1.2.1.2 Useful Properties of the Topology. It is clear from the above discussion

that if each node retains all its neighbors, it won't help form a power-efficient topology.

As a result, most of the work undertaken in topology control is concentrated towards the

formation of a sub-graph of the original UDG, at the same time ensuring that the

formation of the sub-graph does not give rise to a disconnected network, thereby

hindering communication between nodes. Besides, several algorithms have also been

proposed to construct a topology having some other useful properties such as a bounded

maximum and average node-degree, constant-bounded maximum and average

transmission power, constant stretch factor, planarity, constant number of messages

required to be sent by each node, etc. The importance of each of these properties is listed

below:

1) Total Messages: In ad-hoc networks, lesser message-passing between nodes for
topology construction will result in lesser consumption of their battery-power and
hence, a longer Network Lifetime. Moreover, the algorithm should be able to
reconfigure the network topology quickly in case of node motion, which again
requires lesser rounds of information exchange among the nodes. The goal of a
topology control algorithm should be to construct a topology which requires at the
most linear (0 (n)) total messages sent by each node.

2) Average Node Degree: The node degree is a measure of the number of neighbors
with which each node will be interacting for sending/receiving messages. Hence, a



5

smaller average node-degree will imply lesser contention and lesser interference
among nodal transmissions, thereby increasing the throughput of the network.

3) Maximum Node Degree: A larger node degree at a node will cause a greater usage of
power at the node and also lead to more interference. Topology control algorithms
aim to produce a sub-graph with a constant-bounded maximum and average node
degree.

4) Average and Maximum Node Power: The maximum power used at each node is
proportional to the longest edge incident on the node. Hence, a smaller node power
will obviously save power and contribute towards increasing Network Lifetime. At
the same time it is important not to lose network connectivity in an effort to reduce
the average and max node powers because this can lead to partitioning of the network
and hinder communication between every pair of nodes in the network.

5) Stretch Factor: Let C (V, E') be the sub-graph of the UDC (V, E). For any two
arbitrary nodes, u and v, the maximum ratio of the length of the shortest path u...v in
C to the length of the shortest path u...v in the original UDC is called the length-
stretch factor of the graph C. When the length of the path is measured in terms of
number of hops, it is called the Topological Stretch Factor. Topology control
algorithms strive to construct a network topology with a constant stretch factor which
will enable power-efficient routing to occur across the network. Such graphs are
called t-spanners.

In an ad-hoc network, the topology construction needs to take place in a distributed

manner by all the nodes forming the network. Each node needs to select a subset of

neighbors from among all the nodes within its transmission range to form a connected

topology, preferably satisfying the above mentioned properties. The topologies proposed

by several previous algorithms vary in their degrees of simplicity, quality of the

constructed topology and the ease with which they can be constructed in a distributed

manner. In addition to these properties, certain routing algorithms which guarantee a high

packet delivery success rate require the underlying topology to be planar. The CPSR

(Greedy Perimeter Stateless Routing) algorithm is one such example. Besides the

underlying topology being a planar spanner, it is also important that the total

communication cost for the topology construction be as small as possible, since this will
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have a direct impact on the battery power consumption of the nodes and hence, on the

network lifetime.

1.2.1.3 Commonly Used Geometric Structures. Most of the research work

undertaken so far relies on certain basic geometric structures in one way or another for

the topology-construction. These structures are either used directly or are combined with

other structures with useful properties to obtain a hybrid structure satisfying as many of

the above discussed properties as possible. One such set of graphs commonly used are the

proximity graphs, wherein two nodes u and v are said to be in proximity of each other

and are connected by an edge if they satisfy some geometric property. Some of the most

widely used structures for topology control are described below:

1) Relative Neighborhood Graph (RNG): Defined as a sub-graph RNC = (V, E') of
the UDC = (V, E), any two nodes u and v in a relative neighborhood graph are
connected by an edge uv if and only if uv < 1 and the lune formed by the unit discs
centered at u and v contains no other node w (w #u and w # v). In the equation form:

2) Gabriel Graph (GG): Similar to the RNC, any two nodes u and v are connected by an
edge uv in the CC if and only if uv < 1 and the disc with uv as the diameter does not
contain any other node w (w #v and w # u). In the equation form:
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3) Delaunay Triangulation (DT): For a set of points in the plane, the Voronoi diagram
partitions the plane into convex polygonal faces such that all points inside a face are
closest to only one site. The Delaunay Triangulation is the dual graph of the Voronoi
diagram, obtained by connecting the sites whose faces are adjacent in the Voronoi
diagram.

Figure 1.3 Voronoi Diagram and Delaunay Triangulation
of a set of points.
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4) Yao Graph (YGk): For the construction of the Yao graph, each node divides the area
around itself into k-equal sized cones and connects itself with the nearest neighbor in
each cone. The Yao graph is also called 0-graph.

Figure 1.4 The Yao graph (YCk) of a set of points.

All the four structures above can be categorized as Flat Structures, the other category

being that of Hierarchical Structures. With respect to the above listed properties desirable

in an ad-hoc network topology, the structures described above can be compared as shown

in the table below:



Table 1.1 Comparison of widely used geometric structures

9

Besides, it is also true that RNC, CC and DT are all sparse i.e the total number of edges

is 0 (n) and:

As shown in the table above, the RNC and the CC, though planar, are not good spanners.

Thus, two points directly connected by an edge in the UDC may end up being several

hops apart in the RNC and CC. The Yao graph is a good spanner, but not planar. The

Delaunay Triangulation is the only structure above which has both a constant stretch

factor and is also planar. However, the main drawback of a DT is that it cannot be

constructed efficiently in a localized manner. Some edges of the DT can be longer than

the range of the node.

Most of the efforts in topology control are concentrated towards the formation of

a planar sub-graph of the original UDC, which is also a t-spanner. Hence, much of the

research work done in this area either uses the flat structures described above or a

combination of these forming a hierarchical structure, often called a back-bone, to realize
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the goal of constructing a planar spanner as the underlying topology. While topology

control mainly involves formation of a sub-graph of the UDC, routing is concerned with

the implementation of power-efficient ways of forwarding information among nodes. The

next section undertakes a comprehensive review of some of the research work done in the

area of topology control.

1.2.2 Routing

Power-efficient routing in ad-hoc networks is also a very widely researched topic.

Several routing algorithms have been proposed to enable communication between each

pair of nodes in the network such that the total power used is minimized. The routing

algorithms proposed for ad-hoc networks can be classified as flat, hierarchical or

geographical [16]. While this research is primarily concerned with proposing a power-

efficient topology, [12], [21], [22] deal with the routing problem by proposing newer

power-efficient routing techniques.



CHAPTER 2

TOPOLOGY CONTROL: A SURVEY OF RELATED WORK

R. Rajaraman [16] conducted a detailed survey on two major aspects of ad-hoc networks:

topology control and routing. It contained an excellent description of the entire topology

control process right from modeling the network at the physical and network layers to

describing the various techniques recently proposed towards realizing the objective of

topology control. The paper clearly explains how the problem of topology control has

been formulated as one in computational geometry by various researchers and also

explains the desirable properties that an efficient topology control algorithm must possess.

The ultimate goal of any topology control algorithm is to construct a topology which can

enable power-efficient routing to be implemented in the ad-hoc network.

Karp and Kung [12] proposed the use of two planar sub-graphs: CG and the

RNC as the underlying topology for routing using the CPSR (Creedy Perimeter Stateless

Routing), which combines greedy forwarding on the full network graph with perimeter

forwarding on the planarized network graph where greedy forwarding is not possible.

The effectiveness of their technique in terms of packet delivery success rate, path length

and routing protocol overhead is shown using network simulations.

Recently, Wattenhoffer et al. [1,3] proposed a cone-based topology control

algorithm, very similar to the Yao graph. They claimed that the power efficiency of the

routes obtained using their topology can be made arbitrarily close to optimal by a careful

choice of parameters. As mentioned above, in spite of having a constant-bounded stretch

factor, the Yao graph cannot guarantee planarity and constant-bounded node degree that

11
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could lead to interferences among node transmissions and improper use of the spatial

bandwidth.

In [6] and [7], X.Y. Li et al. proposed various combinations of the CC, RNC and

the YCk and also proved some important points about the length and power-stretch

factors of the resulting constructions. The First Yao then Cabriel graph, First Cabriel then

Yao graph and the Yao plus Reverse Yao graph are some examples of the structures

proposed. They also proposed the Yao and Sink topology, which has a constant-bounded

node degree and is also a length-spanner, but not a hop-spanner. Also, it is a bit difficult

to construct it in a distributed manner. Moreover, all the Yao-graph based topologies,

though good spanners are non-planar.

Since no flat-structure topology exhibits all the desired properties of being a

planar bounded-degree spanner, several hierarchical constructions have been proposed.

The main idea in such algorithms revolves around the construction of a planar, spanner

back-bone over which routing occurs. The back-bone consists of a subset of the entire

vertex-set, with each node either being called a cluster-head or a gateway. Initially, a set

of nodes called cluster-heads are selected on the basis of some property and thereafter

gateways are appointed by these cluster-heads to form a connected back-bone.

As mentioned above, the idea behind hierarchical structures is that the back-bone

becomes the routing graph. For communication to occur between any pair of nodes u and

v, u first forwards the packet to its cluster-head and from there, the packet then makes its

way among cluster-heads and gateways till it reaches the cluster-head of the destination

node v. The cluster-head of the cluster to which v belongs finally delivers the packet to

node v. Hence, the algorithms proposing the construction of such structures strive to
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ensure that the constructed back-bone as opposed to the entire constructed graph

possesses as many of above described properties as possible.

In [4], Cuibas et al. proposed the construction of a routing back-bone which is a

connected, planar spanner. They call it the RDC (Restricted Delaunay Craph). The

algorithm initially involves selection of a sub-set of nodes as cluster-heads and gateways

which constitute the routing graph. Each cluster consists of a cluster-head and all the

nodes that elected it. The clusters are allowed to overlap. Cateways are chosen according

to the clustering algorithm in [9]. Secondly, a planar RDC is formed over the selected

cluster-heads and gateways as the node set. They prove that the RDC is a Euclidean and a

Topological spanner with the spanning ratio being approximately 5.08. They claim that

the RDC outperforms the CC and the RNC in terms of routing performance using the

CPSR algorithm as proposed in [12], since the RDC, though denser than the CC and

RNC, is still sparse i.e. has 0 (n) edges and is also a planar spanner.

In [5], X.Y Li et al. claimed that the approximation constant achieved by Cao et al.

was too big to have any practical meaning and that the construction of the RDC was not

at all computation or communication efficient, that the communication cost can be as

high as 0 (n 2). They proposed the construction of another hierarchical structure which

was guaranteed to be a planar, bounded-degree spanner. Initially, a Connected

Dominating Set (CDS) is calculated over the node set. This is followed by the selection

of gateways. Thereafter to ensure the planar spanner property, the Localized Delaunay

Triangulation (LDel) is constructed over the set of cluster-heads and gateways. They

claim that the construction of the back-bone requires a total of 0 (n) messages i.e. the

communication cost is linear. However, the LDel is not guaranteed to be planar and



14

hence, extra code is required to be run at each node to ensure planarity. This makes the

construction complex and time consuming.

Most of the hierarchical topology control algorithms aimed at constructing a

planar, spanner back-bone, thus rely on the use of the Delaunay Triangulation due to its

proven planar and spanner properties. Researchers have tried different ways of

constructing the DT in a distributed manner in order to achieve this goal.

Another topic which has been widely researched in ad-hoc networks is that of

Power Control. It deals with the optimum assignment of power levels to all the nodes in

the ad-hoc network, just enough to keep the network connected and enable

communication between each pair of nodes in the network. In formal words the problem

can be described as: Assignment of transmission power levels to each node such that the

wireless network is connected with the optimization criteria being minimizing the

maximum or total transmission power assigned.

A transmission power assignment on the vertices in V is a function f from V to

the set of real numbers. The communication graph Cf , associated with a transmission

power assignment f, is a directed graph with V as its vertices and has a directed edge

viva if and only if Ilvi vs II + c < f (vi). A transmission power assignment f is said to be

complete if the communication graph Cf is strongly connected. Here c is the fixed

overhead incurred at each node in receiving and processing a signal. The maximum-cost

of a transmission power assignment f is defined as maxvicv f (v1), while the total cost is

defined as Zvicv f (vi). The mm-max assignment problem is then to find a complete

transmission power assignment whose maximum cost is the least among all complete

assignments. The mm-total assignment problem is to find a complete transmission power
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assignment f whose total cost is the least among all complete assignments. [13], [15],

[17] and [18] study the power assignment problem.

This work is closely related to [4] and [5] with respect to the idea of constructing

a virtual back-bone graph consisting of cluster-heads and gateways, which is a connected,

planar spanner. It aims to achieve the same in a more simplistic and less computation and

communication-intensive manner. Since the nodes in an ad-hoc network are mobile, it is

important for any topology control algorithm to be simple and time-efficient so that it can

easily adapt to the changes in node positions and reconstruct the topology faster. While

[4] and [5] rely on the Delaunay Triangulation, which is constructed in a localized

manner, it is true that the construction of a DT is complex and time consuming [7]. This

paper investigates the issue of retaining the desired planar spanner properties in the back-

bone without requiring the complex and communication-intensive construction of the

Delaunay Triangulation. The rest of the paper is organized as follows: The next chapter

begins with a description of the model used by the algorithm followed by a detailed

description of the algorithm itself. Finally, Chapter 4 will discuss and prove some

important properties of the construction.



CHAPTER 3

CONSTRUCTION OF THE BACK-BONE

3.1 The Network Model

This paper models the ad-hoc network as a Unit Disk Craph UDC = (V, E) where V is

the set of vertices with each vertex representing a wireless node and E is the set of edges

where an edge uv e E if and only if Mull < 1 i.e. u is visible to v and vice versa. Thus, the

transmission range of each wireless node is assumed to be limited to a circle of radius 1

centered at that node. Also, assume that each node is characterized by a unique ID.

Let N (u) denote the set of nodes visible to u, including u itself, which effectively

includes all the nodes lying within the circle of radius 1 unit, centered at the node u. If

IVI=n, then it is possible that there might be 0 (n 2) edges in the UDC. For any two nodes

u and v, let IIuDG (u, v) denote the shortest path from u to v in the UDC. Similarly, for

any sub-graph C of the UDC, let 11G (u,v) denote the shortest path from u to v in C. Then

graph C is called a t-spanner of the UDC if 11rIG (u,v)II 5_ t IlliuDG (u,v)lI i.e. if the length

of the shortest path in C is only a constant (t) times the length of the shortest path in the

UDC.

The stretch factor measures the quality of the routing paths produced by the graph.

One of the major goals of this paper is to construct a routing graph of the UDC with a

constant stretch factor. Moreover, the algorithm ensures that the routing graph is also

planar, so that it can be effectively used by routing algorithms such as the CPSR (Creedy

Perimeter Stateless Routing), which guarantee high packet delivery success rates. The

algorithm presented in the next section consists of two phases. The aim of the first phase

is to partition the network into virtually-disjoint clusters. It begins by selecting a

16



17

subset of the set of vertices V as the cluster-heads of the network. The algorithm

guarantees that no two cluster-heads lie within range of each other ensuring that each

node is covered by exactly one cluster-head to form disjoint clusters.

In the second phase, the virtually-disjoint clusters are connected by the selection

of gateway nodes, at the same time maintaining the planarity of the topology. The goal

here is to avoid the necessity of a separate step for computing the gateways and then

having another step that takes care of planarizing the network. This would help reduce

the message complexity of the algorithm and reconfigure the topology efficiently in case

of node motion. The routing graph obtained at the end of the second has the following

properties :

• It is planar
• It has a constant topological stretch factor and is therefore, a topological spanner
• It can be efficiently computed in a distributed setting

Even though this paper constructs the topology assuming the nodes to be static, the issue

of maintaining the topology in case of node mobility can be taken up as a part of future

work.
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3.2 The Algorithm

3.2.1 Phase 1: Selection of cluster-heads and formation of clusters

Step 1: Each node compares its ID with that of its neighbors and if it is greater than the

IDs of all its neighbors, marks itself as a cluster-head. If its ID is not greater than all the

nodes in its neighborhood, it nominates the node with the highest ID in its neighborhood

as the cluster-head, by sending an 'I nominate you' message to the node.

The other node, on receiving the 'I nominate you' message checks whether it has

previously marked itself as a "cluster-head". If not, it marks itself as "cluster-head-elect".

Thus, at the end of this step we have a set of nodes, called the "potential-cluster-head" set,

with every node in the set marked either as a cluster-head or cluster-head-elect. For any

two arbitrarily chosen nodes in this set, it is possible that they lie within range of each

other. However, since the aim of this phase is to come up with clusters with a single

cluster-head in each cluster, a way has to be found to eliminate such a situation.

Consider u and v to be a pair of nodes belonging to the potential-cluster-head set such

that they are within range of each other. Then, there are three possibilities:

1) Both u and v are cluster-heads
2) u is a cluster-head and v is a cluster-head-elect or vice versa
3) Both u and v are cluster-head-elects

But the following lemma proves that the first condition can never occur:

Lemma 1: Two nodes selected as "cluster-heads" cannot be within range of one another.

Proof: Assume for the sake of contradiction that both u and v lie within range of each

other and that both have selected themselves as "cluster-heads" in Step 1 above.
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Consider node u first. u is a cluster-head and v is one of its neighbors. Hence, according

to Step 1 of the algorithm above, u would have marked itself as a cluster-head only if ID

(u) > ID (v)  (1)

The same argument holds true for v too, which implies that ID (v) > ID (u)..... (2)

But (1) and (2) cannot both be true. Hence, the lemma follows.

Thus, the remaining steps of the algorithm should come up with a way to deal with

situations 2) and 3) described in Step 1 above. This is explained in Step 2, which

comprises of Step 2(a) and Step 2(b):

Step 2: Cluster-head-elect Elimination

Step 2(a): Each node selected as cluster-head-elect in Step 1 determines if it is within

range of a node selected as a cluster-head in Step 1. If so, it deselects itself and also

informs its neighbors about it no longer being cluster-head-elect. Thus, at the end of this

step the potential-cluster-head set gets updated with some cluster-head-elect nodes

deselecting themselves and hence, being eliminated from the set.

Note: At the end of Step 2(a), each node has updated information about whether its

neighbors are cluster-heads or cluster-head-elects.

Step 2(b): Each node marked as a cluster-head-elect in the updated potential-cluster-head

set (it was updated at the end of Step 2(a)), now determines if it is within range of another

node, also marked as a cluster-head-elect. If it does, it compares its ID with the ID of that

node and if its ID is less than the ID of the other node, it deselects itself and also informs

all its neighbors about it no longer being cluster-head-elect. Thus, at the end of this step

the potential-cluster-head set again gets updated with some more cluster-head-elect nodes

deselecting themselves.
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Lemma 2: At the end of Step 2 of the Phase 1, no two nodes marked as cluster-heads or

cluster-head-elects lie within range of one another.

Proof: We already proved in Lemma 1 that two nodes marked as cluster-heads cannot be

within range of one another.

However, for any two arbitrary nodes u and v belonging to the potential cluster-head set

and within range of each other, two possibilities still existed at the end of Step 1, which

were not dealt with there:

1) u is a cluster-head and v is a cluster-head-elect or vice versa
2) Both u and v are cluster-head-elects

The Step 2(a) guarantees that each cluster-head-elect would deselect itself, if it is within

range of a cluster-head. Hence, condition 1) will not occur after Step 2.

Similarly, Step 2(b) guarantees that each cluster-head-elect would deselect itself if it is

within range of another cluster-head-elect with a larger ID and for any two cluster-head-

elects u and v within range of one another, either ID(u) > ID(v) or ID(v) > ID(u) since

each node has a unique ID.

Hence, in Step 2(b) either u or v must deselect itself. Thus, condition 2) won't occur at

the end of Step 2 too, and hence, the lemma follows.

As described above, at the end of Step 1, every node either nominates a node

which would be its cluster-head-elect or selects itself as a cluster-head. Hence, we can

guarantee that at the end of Step 1 each node was covered by at least one cluster-head or

a cluster-head elect. However, since in Steps 2(a) and 2(b) certain cluster-head-elect

nodes deselected themselves and hence, that guarantee no longer holds. To take care of

this situation, the Step 3 is performed as shown below:
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Step 3: Each remaining node in the potential cluster-head set at the end of steps 2(a) and

2(b) sends a message "I am a cluster-head" to all its neighbors, lying within the unit

circle centered at itself. As a result, each node that receives this message knows that it is

covered by at least one cluster-head. The nodes that do not receive this message realize

that they are not covered by any cluster-head or remaining cluster-head-elects and hence,

mark themselves as forced-cluster-heads. Thus, at the end of Step 3 the guarantee that

each node is either covered by at least one cluster-head and if not, is marked as a forced

cluster-head holds. In order to reduce the number of forced cluster-heads, Step 4 is

performed:

Step 4: Each node that selected itself as a forced cluster-head, determines if its ID is

greater than the IDs of all other forced cluster-heads in its neighborhood and in that case

sends a message "I am the forced cluster-head" to all the nodes in its neighborhood. All

the nodes on receiving this message, deselect themselves in case they had marked

themselves as forced-cluster-heads in Step 3 and form a cluster with the sending node

becoming the cluster-head of the cluster. Note that the other nodes that might receive the

"I am the forced cluster-head message" and which have not been marked as forced-

cluster-heads in Step 3 are already covered by some cluster-head or cluster-head-elect

and hence, wont form a cluster with the forced-cluster-heads. A cluster formed by a

forced- cluster-head thus, can only contain other forced-cluster-heads with lower IDs.

The remaining forced-cluster-heads form a cluster by themselves. Note that the

cluster-head-elects do not participate in cluster-formation in Step 5.
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The nodes marked as cluster-head-elects also mark themselves as cluster-heads now and

participate in cluster-formation along with the other cluster-heads which were selected in

Step 1, as shown by Step 5 below:

Step 5: Formation of Virtually-Disjoint Clusters

The aim of this step is to partition the network into virtually-disjoint clusters. At the end

of Step 4, the network is composed of the clusters formed by forced-cluster-heads, the

nodes marked as cluster-heads (which now include cluster-heads and cluster-head-elects

as mentioned in Step 4) and the other non-cluster-head nodes, each of which is covered

by at least one cluster-head. Each node decides in this step which cluster-head to be with

(including the forced-cluster-heads) while forming a cluster. Having selected one cluster-

head, the node ignores any communication from other cluster-heads it might be within

range of. This results in a virtual-partitioning of the network. Again, note that forced-

cluster-heads do not participate in this step and have been already grouped into clusters.

3.2.2 The Collinear Problem

While each node which is within range of two or more cluster-heads can easily select one

of them on the basis of some property, while ignoring communication from the others to

form virtually-disjoint clusters across the network, there is one situation which can hinder

the virtually-disjoint cluster formation:

Consider any two arbitrary nodes u and v which are within range of a cluster-head

CH1. Also assume that the nodes CH1, u, v are collinear, with u lying between v and

CH1. i.e. CH1-u-v as shown in the figure below:



Assume that the node u is also within range of another cluster-head CH2 not collinear

with CH1, u and v, as shown in the Figure 3.1 above. If the node u, due to some reason

chooses to go with the cluster-head CH2, while the node v chooses to remain with CH1,

it would be impossible to form disjoint clusters.

The aim of this step is to produce disjoint clusters which may not be symmetric in

shape, however, it must ensure that for a case like u and v shown in the figure above,

there should never occur a situation wherein v chooses to go with CH1 and u which is on

the line-segment vCH1 chooses to go with another cluster-head CH2.

Hence, in Step 5, each node that is covered by at least one cluster-head, decides to

go with the cluster-head which is closer to itself. Each node is assumed to have the

capability to calculate its distance from another node on the basis of the signal strength.

Also, in case of a tie, i.e when a node is equidistant from two cluster-heads it chooses to

go with the one having a larger ID. The following theorem and lemma prove that these

two decisions will not give rise to the collinear problem and hence, produce disjoint

clusters. Note that, it is not required to take into account the situation where CH2 is
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collinear with u, v and CH1 because in that case no matter where CH2 lies, the collinear

problem will not occur.

Theorem 1: The collinear problem cannot occur when a node decides to go with the

cluster-head closest to itself.

Proof: For the sake of contradiction, assume that the collinear problem can arise even if

each non-cluster-head node decides to go with the cluster-head which is closest to itself.

As shown in Figure 3.1 above, let CH1, u, v be collinear, with both u and v lying within

range of the cluster-head CH1 and u lying between CH1 and v i.e. CH1-u-v.

Also assume that there exists another cluster-head CH2 such that:

This contradicts the assumption 2) that vCH2>vCH1, and hence, v chooses vCH1. Thus,

it can be said that the assumption was incorrect and the collinear problem cannot occur if

each node chooses to go with the cluster-head closest to itself.
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Lemma 3: In case of a tie, which is when a node is equidistant from two cluster-heads

and within range of both, if the node chooses to go with a cluster-head with a higher ID,

the collinear problem cannot occur.

Proof: Consider the situation wherein as shown in the figure 3.1 above the node u is

equidistant from the cluster-heads CH1 and CH2 and as in the figure:

CH1, u and v are collinear with u being between CH1 and v.

Thus, vCH2<vCH1 which again contradicts the assumption (2) that vCH1 < vCH2 and

therefore, v chooses CH1.

Thus, according to Theorem 1 and Lemma 3, whenever there is a situation

wherein two nodes u and v within range of a cluster-head CH1 are collinear such that u is

between CH1 and v, and if u is within range of another cluster-head CH2, the collinear

problem will not occur if u chooses to go with the cluster-head that is closest to itself or if

it goes with the cluster-head with a higher ID, in case it is equidistant from both CH1 and

CH2.



Therefore, as shown in the Figure 3.2 above, it can be said that at the end of Phase 1, the

network is partitioned into clusters that are virtually-disjoint with each node being

covered by exactly one cluster-head. The next phase deals with joining the clusters by

means of gateways, giving rise to a connected, planar back-bone which is also a t-spanner

of the original UDC.
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3.2.3 Phase 2: Joining the Clusters to form the Back-bone

As mentioned before, the goal of this phase is to construct a back-bone by joining the

virtually-disjoint clusters formed during Phase 1 through the selection of gateways. It is

important for this back-bone formed by cluster-heads and gateways to be a planar graph,

since routing will be implemented over the back-bone and several routing algorithms

such as the CPSR which guarantee high packet-delivery rates require the underlying

topology to be planar. Moreover, it is also desirable for the back-bone to be a t-spanner of

the original Unit Disk Craph, which will guarantee power-efficient routing across the

network, thereby increasing the Network Lifetime.

In this phase of the algorithm, the objective of forming a planar spanner back-

bone for routing is realized through the use of the Cabriel Craph property. Two nodes u

and v are said to form a Cabriel edge if there is no other node w in the circle with the

Euclidean distance uv as the diameter. Hence, the goal of this phase is to select gateway

nodes for each of the clusters produced at the end of Phase 1 and connect them by means

of Cabriel edges which can guarantee the planarity of the back-bone. This phase

comprises of two steps which realize the objective of forming a planar spanner back-

bone:

Step 1: Gateway Selection

In this step each node, including the cluster-heads checks to see if any of its neighbors i.e.

nodes lying within the disc of radius 1 centered at it belong to clusters other than the one

it belongs to. If it has neighbors belonging to a different cluster, it marks itself as a

gateway and connects with each of those neighbors through an edge.
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At the end of this step, it is guaranteed that we have a connected graph if the original

UDC was connected. However, the resulting graph at the end of this step is not planar,

and the edges between gateways might cross each other. Therefore, an additional step is

necessary to guarantee the planar property.

Step 2: Planarizing the back-bone

Though the Step 1 guarantees the formation of a connected back-bone, it cannot

guarantee planarity and as discussed before, it is essential for the underlying graph to be

planar to be useful for routing by algorithms like the CPSR (Creedy Perimeter Stateless

Routing). This step takes care of planarizing the back-bone by eliminating the edges

joining the gateway nodes if they do not satisfy the Cabriel edge property.

In this step, each node that had marked itself as a gateway checks each of the

edges incident on it to see if it satisfies the Cabriel property. Assume that the nodes u, v

and w were selected as gateways in the Step 1 above and are connected to each other i.e.

each node connects to the other two. However, in this step, the nodes u and v discover

that the edge uv is not a Cabriel edge since w lies inside the disc with diameter uv. Hence,

the edge uv is removed. Note that the node w has to be a gateway node in order to

account for the removal of the edge uv.

While Step 1 guaranteed connectivity of the back-bone, Step 2 constructs a planar

back-bone. Moreover, the connectivity of the topology is also retained since the

formation of a Cabriel graph by the elimination of edges does not disconnect the

underlying graph if it was originally connected [12]. Thus, at the end of Step 2 a planar

connected back-bone is constructed.



Figure 3.3 The final back-bone

The Figure 3.3 above gives an idea of how the back-bone produced at the end of the

Phase 2 of the algorithm looks. As shown in the figure, the network gets partitioned into

virtually-disjoint clusters with each cluster having a cluster-head which could have been

marked as a cluster-head, cluster-head-elect or a forced-cluster-head during the Phase 1.

During the Phase 2, the clusters are joined by means of gateways to produce a

planar spanner back-bone over which power-efficient routing can be implemented.



CHAPTER 4

PROPERTIES OF THE BACK-BONE

Lemma 4: At the end of Phase 2, the number of cluster-heads and gateways in any unit

disk in the plane is 0 (1) in expectation.

Proof: This lemma is based on a corollary in [4]. Since the construction of the algorithm

described above is similar to the back-bone constructed in [4], the lemma holds true here

too. A detailed proof can be found in [19]. Also since the set of cluster-heads and

gateways obtained in the algorithm above is a subset of the set derived in [4], the lemma

holds.

In the algorithm proposed in [4], each node gets an opportunity to nominate a

node in its neighborhood as its cluster-head and the nodes thus marked as cluster-heads,

form the final set of cluster-heads. On the other hand, as shown in Phase 1 of the

algorithm above, the nodes undergo an elimination round in Step 2 which guarantees that

no two nodes marked as cluster-heads or cluster-head-elects are within range of each

other. Thus, the set of cluster-heads formed by this algorithm is a sub-set of the one

produced in [4].

Although the nodes marked as forced-cluster-heads may lie within range of other

chosen cluster-heads, they can be avoided from consideration here since they are already

grouped into clusters or constitute a cluster by themselves and do not participate in the

cluster-formation process in the Step 5 of Phase 1.

Similarly, the set of gateways produced by the Phase 2 in the algorithm above is a

subset of the set produced in [4]. This is because in [4], any two nodes within range of

one another become gateways and connect with each other, whereas in the algorithm

30
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above, as shown in the Step 2 of the second phase, gateway nodes are retained only if

they form CC edges with the gateways of other clusters. Hence, the lemma holds.

4.1 Planarity of the Back-bone

The routing back-bone constructed by the algorithm above is planar since the edges

joining any two gateways in the graph are CC edges and the Cabriel graph is a planar

graph. [4, 5, 12]

4.2 The t-spanner Property

Lemma 5: The back-bone constructed by the algorithm above is a topological spanner

graph with a constant stretch factor. That is, for any two nodes u and v (cluster-

heads/gateways) in the back-bone graph Cbb, öbb (u, v) < C1. 8UDG (u,v) for some constant

C1 > 0 where S (u,v) denotes the shortest distance between u and v.

Proof: Consider any two nodes u and v in the back-bone graph Cbb. Since the back-bone

graph is formed over the node set consisting of only cluster-heads and gateways, each of

the nodes u and v is either a cluster-head or a gateway. According to the Lemma 4 above,

the back-bone graph has constant density i.e. in any unit circle of the back-bone graph,

there are 0(1) cluster-heads and gateways in expectation.

Hence, for any two nodes u and v of the back-bone that were connected in the

UDC and were selected as gateways/cluster-heads but could not connect in the back-bone

due to a node w that prevented the formation of a CC edge uv, Lemma 4 implies that

there are always a constant number of such nodes w.
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As a result, the topological distance between the nodes u and v in the back-bone is always

a constant times the shortest distance between them in the UDG, which means that

4.3 The Routing Graph

While Cbb denotes the back-bone constructed by the algorithm described above and

consists of only the cluster-heads and gateways, the entire topology comprises of the

cluster-heads, gateways and the remaining nodes which were not selected as either

cluster-heads or gateways. This graph is called the routing graph R.

The transmission of a packet from a source u to the destination v occurs as

follows in the graph R: The node u first forwards the packet to its cluster-head, from here

on the packet makes its way over the back-bone i.e. over cluster-heads and gateways, till

it reaches the cluster-head of the cluster to which node v belongs. The cluster-head then

forwards the packet to v.

Lemma 6: Graph R is also a topological spanner graph with a constant stretch factor.

Figure 4.1 The routing graph
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Suppose that the shortest topological path in the UDG between nodes u and v is P: Hui= u,

U2, U3 Uk+1= v. Suppose that in the back-bone graph Cbb, the cluster-head of Hui is cif.

As proved in Lemma 5, Sbb (Ci,Ci+1) < C1 SUDG (Ci,C1+1) for some constant C 1 > 0. Then for

the path P' between u and v in R, which is the union of 6 bb (click ) and the edges uric and

Also, for nodes cif and ci+1, OuDG (ci,ci+1) < 3 since cif and c1 +1 if not neighbors, are

which implies that R

is a topological spanner graph.

4.4 Conclusion

Topology control is a very important aspect in ad-hoc networks and since nodes are

battery operated, power is a very important resource. Besides, topology control also has a

direct impact on the quality and power-efficiency of routes over which nodes transmit

information to other nodes in the network. Since the nodes in an ad-hoc network are

mobile, it is important for the underlying topology to be simple and easily reconfigurable

in case of node motion.

This paper proposed a novel technique for partitioning the ad-hoc network into

virtually-disjoint clusters such that each node is covered by exactly one cluster and there

are is no overlapping of clusters. This is probably the first technique that proposes the

formation of disjoint clusters. The paper also proposed a powerful heuristic for joining

the clusters through gateways in such a way that the routing back-bone obtained is a
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planar spanner of the original Unit Disk Graph. Several arguments were also provided to

support the claim.

While most of the algorithms recently proposed [4,5] for the construction of a

back-bone rely on the expensive and complex construction of the Delaunay Triangulation

for achieving the planar and spanner properties in the topology, this paper proposed a

unique distributed technique to construct a planar back-bone which is also a t-spanner of

the original UDG, without requiring the complex construction of the Delaunay

Triangulation, while retaining the important planar and spanner properties through a

simple and efficient construction. Moreover, it can be easily shown that the total number

of messages required by each node for the topology construction will be linear i.e.

0(n). This simplicity and ease of construction are important characteristics for

reconfiguring the topology in case of node motion. The constructed topology can be

efficiently used by routing algorithms like the GPSR which guarantee a high packet

delivery success rate.
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