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ABSTRACT •

PLASMA INDUCED DAMAGE TO Si
AND SiGe DEVICES AND MATERIALS

by
Wei Zhong

This thesis studied the plasma-induced damage to Si and strained Sii_„Ge,,, and the

resulting change in device characteristics. The energetic particles (ions, electrons and

photons) in plasma reactor present a potentially hostile environment for processing VLSI

devices. An inductively coupled plasma (ICP) reactor was used to study its damage

effects to thin gate oxides. Electrical characterizations by C-V, ramped voltage

breakdown (RVB) and deep-level transient spectroscopy (DLTS) measurement, and x-ray

photoelectron spectroscopy (XPS) analysis were employed to investigate the damages to

thin gate oxides and Si/Si0 2 interface. The shift of flat band voltage, the reduction of

breakdown voltage and the creation of high interface trap density were found to be in

good agreement with the creation of suboxidation states at Si/Si02 interface. It is

observed that device damage is well associated with the reactor operating conditions. The

major mechanism responsible for damage appeared to be high-energy electron charging

which occurred when only the ICP power was activated, without any rf bias to the wafer-

carrying electrode. Energetic particle bombardment damage was dominant when the

wafer-carrying electrode' was biased and the damage was considerably higher for rf bias

power grater than 35W.

The effect of plasma processing to the strained Sii_„Ge x layer of p+- n diode has

been investigated. The effect of SFr plasma, used to etch an overlying Si film stopping at

the strained Sii_„Ge x film, on the electrical properties of an underlying Sii_ xGex/Si

heterojunction device was studied. The changes of C-V and I-V characteristics, such as



higher depletion capacitance and lower diffusion current were attributed to ion

bombardment and radiation-induced bonding change, such as creation of interface charges

and recombination centers. The TEM analysis revealed the dislocation loops in Si/Sii-xGex

/Si outside the aluminum contact region due to the ion bombardment stress. The 02

plasma asking has moderate effect to Sii_„Ge x device when the device was protected by

aluminum contact layer.

The C-V profiling techniques on SiGe MOS structures were used to investigate

the change of valence band discontinuity (dEv) at the Si/SiGe interface before and after

plasma exposure and high temperature annealing. Wet and plasma etched samples were

annealed at 500, 600, 700 and 800 °C for 60 seconds. It was observed that the accuracy of

extracting the changes of dEv using the C-V profiling was strongly influenced by the

release of electrons from the traps at Si02/Si interface, which were created during the

low-pressure CVD Si02 deposition. The device simulations have been used to confirm

this finding. By carefully analyzing the C-V profile at slight depletion region the band

gap modifications at back Si/SiGe interface due to process-induced damage could be

evaluated. The dry etched sample was partially relaxed after 700 °C annealing while wet

etched sample was partially relaxed after 800 °C annealing. Dry etched sample

demonstrated a faster relaxation mechanism as compared to its wet etched counterpart

due to the creation of dislocation loops by dry etching process. The C-V method is a

simple, fast and efficient approach to estimate any band-gap modification in SiGe due to

process-induced damage, but the measurements and simulations in slight depletion region

should be carried out with special care and high resolution.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This is a silicon world. Greater than 95% of today's $200 billion plus global

semiconductor market uses the semiconductor silicon (Si) to realize a host of integrated

circuits (IC) ranging from 1 GHz microprocessors to 64 Mb dynamic random-access

memory (DRAM) chips. Si has a number of practical advantages over the other numerous

semiconductors, including: 1) an extremely high-quality dielectric (Si02) can be easily

grown on Si and used for isolation, passivation, or as an active layer (e.g., gate oxide); 2)

Si can be grown in very large, virtually defect-free single crystal (200 mm in production

today, rapidly moving to 400 mm), yielding many (low-cost) IC's per wafer; 4) Si has

excellent thermal properties allowing for the efficient removal of dissipated heat; 4) Si

can be controllably doped with both n- and p=type impurities with extremely high

dynamic range (10 12=1022 cm3 ); 5) Si has excellent mechanical strength, facilitating ease

of handling and fabrication; 6) it is easy to make very low-resistance ohmic contacts to

Si, thus minimizing device parasitics; and 7) Si is extremely abundant and easily purified.

Thus, from IC manufacturing standpoint, Si is a dream come true.

Introducing Ge into Si has a number of consequences. First and most importantly,

because Ge has a larger lattice constant than Si, the energy bandgap of Ge is smaller than

that of Si (0.66 eV versus 1.12 eV), thus Si i _„Ge,, has a bandgap smaller than that of Si,

making it a suitable candidate for bandgap engineering in Si. In addition, the compressive

strain lifts the conduction and valence band degeneracies at the band extremes,

effectively reducing the density of states and improving the carrier mobility with respect

1



2

to pure Si (the latter due to a reduction in carrier scattering). The Sii,,Ge x heterojunction

combines heterojunction device performance with silicon manufacturability. It has been

the subject of many investigations in recent years.

A series of Si-compatible hetero-structure devices, based on epitaxial growth in

the Si/Sii_xGex system, has stirred a strong interest for high-speed devices. The narrow

band gap of strained Sii,Gex has been used to fabricate heterojunction bipolar transistors

(HBT's) [1, 2], modulation-doped field effect transistors (MODSET' s) [4], long

wavelength optoelectronics devices [4, 5], and tunneling and superlattice devices. Due to

the lattice mismatch between silicon and germanium, the Sii,Ge x film gown on silicon is

strained up to a critical thickness. It is very important to preserve the quality of these

heterojunctions throughout the fabrication process.

Dry etching techniques such as reactive ion etching (ERIE), magnetron reactive ion

etching (MRIE), plasma etching (PE), ion beam etching (IBE), electron cyclotron

resonance (ECR) etching, reactive ion beam etching (RIBE) and inductively coupled

plasma (ICP) etching can cause damage and contamination effects in exposed materials

[6-18]. In fact, damage is often inherent in these processes due to the presence of ion

bombardment, which can create bonding damage in semiconductors and insulators [6=14,

16, 18], as well as due to the presence of UV radiation, which can create bonding damage

in insulators [15]. Contamination is also often inherent in these processes due to the

presence of residue layers made up of reactant species and reaction products and due to

the presence of impurities which may permeate the etched material during the dry etching

exposure [8, 9, 16-22]. Inductively coupled plasma sources have emerged as the most

used in plasma etchers. They are capable of uniform etching of anisotropic features over
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large area wafers at etch rates comparable to conventional high-pressure capacitively

coupled reactive ion etching tools. The ion energies incident on the wafers can be

effectively decoupled from plasma generation by independently applying rf power to the

wafer chuck.

The reliability and electrical performance of these Si devices and strained Si/Sii_xGex

hetero-structure devices may be significantly affected by plasma processing during

device manufacturing. Creation of strain-relieving misfit dislocation and/or threading

dislocations [24] may be possible when strained Si i ,Gex films are processed using

reactive ion etching. Though reactive ion etching of Si has been studied the impact of

inductively coupled plasma on Si device are still unfolding. Besides not much is known

about the modifications to electrical characteristics of strained Si l _„Gex . It is very

important to show that how the plasma process affects the strained Sii,Ge x hetero-

structure material and devices.

1.2 Objectives of the Research

The overall goal of the research carried out for this thesis has been to obtain a basic

understanding of plasma induced electrical and physical damages to Si and SiGe devices

leading to the optimization of plasma etch process and development of next generation

plasma etch tools suitable for sub-micro heterojunction devices. The investigation has

been focused on studying the issues related to device physics with the objective of

gaining a fundamental understanding of the damage mechanisms of the associated plasma

etching.
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This broad objective of this program has been achieved by carrying out research

in two key areas. Sirstly, by using well known Si MOS device to evaluate the plasma

induced damage in advanced ICP reactor; and secondly by applying the similar testing

techniques and the device simulations to SiGe p +-n diode and SiGe MOS devices.

Electrical and physical characterizations, such as I-V, C-V, Deep Level Transient

Spectroscopy (DLTS), Transmission Electron Microscopy (TEM), X-Ray Photoelectron

Spectroscopy (XPS), were used to study the plasma induced damages in ICP reactor.

These studies were aimed at establishing the correlation between and electrical and

physical damage, and developing basic understanding of damage mechanisms.

C-V profiling on Sil_„Gex MOS capacitor is potentially powerful method to

estimate plasma process-induced band-gap modifications. The presence of interface trap

has significantly influenced the measurement result. In this thesis, the utility of device

simulator is demonstrated by the insights gained into the underlying mechanisms of space

charge and surface-state charge between heterojunction semiconductor and insulator. The

finding of the influence of interface traps has been simulated and it correlates with the

measurement result well.

The results of this work have significant technological consequences and

applications. Sor example, the fundamental understanding of etch induced damage to thin

gate oxide in ICP reactors will enable their widespread usage by integrated circuit

manufactures. In addition, the testing and simulation results of Sii_„Gre„ device in this

thesis will help to develop new methods of detection and approaches of damage control

of plasma induced damage in Sii_„Ge x materials and devices.



5

1.3 Thesis Organization

Chapter 2 reviews basic physic phenomena in RS glow discharges, plasma etching tools,

and the fundamental understanding of plasma induced damage to Si and SiGe devices.

The background of SiGe technology is also described in that chapter.

Chapter 3 describes electrical and physical measurement techniques that have

been used for this research. That includes I-V, C-V, DLTS developed as a part of this

thesis work, SIMS, XPS and TEM. The knowledge of these techniques will lead to

understand and interpret the research results in this thesis. In addition an overview of

device simulation relevant to this work is presented in that chapter.

The research results of etch induced damage to thin oxide in ICP reactor have

been described in Chapter 4. This work was done as part of project funded by

SEMATECH Center of Excellence in New Jersey. It is observed that device damages are

well associated with the operating conditions of the reactor.

Chapter 5 outlines the research results of process induced damage to strained Si t _

Gex material and devices. This work was done as part of project funded by the National

Science Foundation (grant No. ECS=9207665). It is found that SF6 plasma used to etch an

overlying Si film stopping at the SiGe strained film can cause electrical damage to

Si/SiGe heterojunction device. The 0 2 photo-resistor strip process has no strong effect on

the SiGe device due to the protection from its aluminum contact layer. The presence of

interface trap at Si02 deposited by low-pressure CVD process creates big kink at C=V

profile at accumulation region of SiGe MOS capacitor. The C=V curves were affected by

the reduction of trap densities as well as the reduction of dEV due to relaxation after
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annealing. Dry etched sample demonstrates a faster relaxation mechanism as compared to

its wet etched counterpart due to the creation of dislocation loops by dry etching process.

Chapter 6 is the conclusions of this research and the suggestions for future works.

An example of Atlas input file of an ideal SiGe MOS capacitor is presented in Appendix.

For the purpose of clarity, Chapters 5 and 6 have their own introduction and summary

sections.



CHAPTER 2

PLASMA ETCHING PROCESS AND PLASMA DAMAGE

A plasma is defined as a partially ionized gas composed of ions, electrons and a variety

of neutral species. It contains approximately equal concentrations of positively charged

particles (positive ions) and negatively charged particles (electrons and negative ions).

The plasma useful to ULSI processing is a weakly ionized plasma, called a "glow

discharge", containing a significant density of neutral particle - more than 90% in most

etchers.

2.1 Basic Physical Phenomena in RF Discharges

When an electric field of sufficient magnitude is applied to a gas, the dissociation of gas

occurs. The process begins with release of an electron by some means such as photo=

ionization or field emission. The released electron is accelerated by applied field and

gains kinetic energy, but in the course of its travel through the gas, it loses energy in

collision with gas molecules. There are two types of collisions, elastic and inelastic.

Elastic collisions deplete very little of electron's energy, because of the great mass

difference between electrons and molecules. Ultimately the electron energy becomes high

enough to excite or ionize a molecule by inelastic collisions. In ionizing collisions the

electrons loses essentially all of its energy. Ionization frees another electron, which is

accelerated by the field, and so the process continues. If the applied voltage exceeds the

breakdown potential, the gas rapidly becomes ionized through its volume.

Electrons released in ionizing collisions and by secondary processes are lost from

the plasma by drift and diffusion to the boundaries, by recombination with positive ions,

7
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