New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Spring 2024

MnE 602-002: Flex and Comp Integ Manufacturing

Evens Aristilde

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Aristilde, Evens, "MnE 602-002: Flex and Comp Integ Manufacturing" (2024). *Mechanical and Industrial Engineering Syllabi*. 548. https://digitalcommons.njit.edu/mie-syllabi/548

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

MNE602: Flexible & Computer Integrated Manufacturing

Spring 2024 Instructor: Evens Aristilde Email: ea4@njit.edu Office hours: Mondays 1pm-2:30pm or by appointment

COURSE DESCRIPTION

This course provides a comprehensive description of the concepts, principles, and the analysis of manufacturing systems, including single station manufacturing cells and manual assembly lines versus automated production and transfer lines as well as cellular manufacturing and flexible manufacturing systems (FMS). Moreover, during the class students will gain exposure to quantitative methodologies and algorithms to analyze the automated manufacturing systems. The lab experiments of the course focus on two fundamental objectives: 1) Programming and troubleshooting techniques necessary to run industrial robots, 2) PLCs programming and troubleshooting which train students to execute real world projects.

Canvas

The course will make extensive use of the Canvas system to optimize student-instructor communication. All course materials including lecture slides will be distributed through Canvas. All submission projects and assignments will also be through Canvas. To access the system please go to <u>http://Canvas.njit.edu</u>, you will need a valid UCID to login.

GRADING

Based in individual and team performance as follows:

30% Lab Experiments - 25% Mid Term - 30% Final Exam - 15% Project Presentation

LECTURE SLIDES AND SUGGESTED READINGS

MNE602, Flexible & Computer Integrated Manufacturing lectures slides will be distributed electronically through Canvas. *Textbook*: Automation, Production Systems and Computer-Integrated Manufacturing, 4th Edition, by Mikell P. Groover, Pearson.

LAB EXPERIMENTS

The lab experiments will be completed in teams of students. Each team is assigned <u>PLC</u> <u>projects as well as robotic projects.</u> At the end of each project, every team needs to have a short report of the project submitted through Canvas.

PROJECT PRESENTATION

Each student will be assigned a unique flexible manufacturing and automation project, in which student is required to review and discuss the assigned case and create a detailed PowerPoint report which focuses on given tasks. Each student will make a 15-20 minute presentation to the class. Presentations will be scheduled and announced and have to be submitted through Canvas.

WKS	CHAPTER	TOPIC	
Learning Module 1: Manufacturing Systems			
Week 1,2	13	Overview of Manufacturing System	
		Components and Types of Manufacturing Systems	
		Types of Manufacturing Systems	
Week 3,4	14	Single-Station Manufacturing Cells	
		Single-station Manned Cells	
		Single-station Automated Cells	
		Applications and Analysis of Single-station Cells	
Learning Mod	ule 2: Automated P	Production Lines	
Week 5,6	15	Manual Assembly Lines	
		Fundamental of Manual Assembly Line	
		Line Balancing Algorithm	
		Workstation Details	
		Batch-Model and Mix-Model Lines	
		Lab Experiments	
Week 7,8	16	Automated Production Lines	
		Fundamental of Automated Production Lines	
		Applications of Automated Production Lines	
		Lab Experiments	
Week 9	17	Automated Assembly Systems	
		Fundamental of Automated Assembly Systems	
		Applications of Automated Assembly Systems	

COURSE OUTLINE

		Lab Experiments
Learning Modu Cells	ıle 3: Group Tecl	nnology, Cellular Manufacturing and Flexible Manufacturing
Week 10	18	Group Technology and Cellular Manufacturing
		Part Families and Cellular Manufacturing
		When to Use GT and Cellular Manufacturing
		Composite Part Concept
		Analysis of Cellular Manufacturing
		Lab Experiments
Week 11,12	19	Flexible Manufacturing Cells and Systems
		Fundamentals, Components and Applications of FMS/FMC
		Analysis of FMS/FMC
		Alternative Approaches to FMS/FMC
		Lab Experiments
Week 13,14		Project Presentations
Week 15		Final Exam