
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2004

Configurable computer systems can support dataflow computing Configurable computer systems can support dataflow computing

Anish Arvind Sathe
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Sathe, Anish Arvind, "Configurable computer systems can support dataflow computing" (2004). Theses.
530.
https://digitalcommons.njit.edu/theses/530

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Ftheses%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/530?utm_source=digitalcommons.njit.edu%2Ftheses%2F530&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

CONFIGURABLE COMPUTER SYSTEMS CAN SUPPORT
DATAFLOW COMPUTING

by
Anish Arvind Sathe

This work presents a practical implementation of a uni-processor system design. This

design, named D2-CPU, satisfies the pure data-driven paradigm, which is a radical

alternative to the conventional von Neumann paradigm and exploits the instruction-level

parallelism to its full extent. The D2-CPU uses the natural flow of the program, dataflow,

by minimizing redundant instructions like fetch, store, and write back. This leads to a

design with the better performance, lower power consumption and efficient use of the on-

chip resources. This extraordinary performance is the result of a simple, pipelined and

superscalar architecture with a very wide data bus and a completely out of order

execution of instructions. This creates a program counter less, distributed controlled

system design with the realization of intelligent memories. Upon the availability of data,

the instructions advance further in the memory hierarchy and ultimately to the execution

units by themselves, instead of having the CPU fetch the required instructions from the

memory as in controlled flow processors. This application (data) oriented execution

process is in contrast to application ignorant CPUs in conventional machines. The D 2-

CPU solves current architectural challenges and puts into practice a pure data-driven

microprocessor. This work employs an FPGA implementation of the D 2-CPU to prove the

practicability of the data-driven computer paradigm using configurable logic. A relative

analysis at the end confirms its superiority in performance, resource utilization and ease of

programming over conventional CPUs.

CONFIGURABLE COMPUTER SYSTEMS CAN SUPPORT
DATAFLOW COMPUTING

by
Anish Arvind Sathe

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Electrical Engineering

Department of Electrical and Computer Engineering

January 2004

APPROVAL PAGE

CONFIGURABLE COMPUTER SYSTEMS CAN SUPPORT
DATAFLOW COMPUTING

Anish Arvind Sathe

Dr. Sotirios Ziavras, Thesis Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT.

Dr. Al Gerbessiotis, Committee Member
Assis ant Professor of Department of Computer Science, NJIT.

Date

BIOGRAPHICAL SKETCH

Author:	 Anish Arvind Sathe

Degree:	 Master of Science

Date:	 January 2004

Undergraduate and Graduate Education:

Master of Science in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2004

Bachelor of Engineering in Electrical Engineering,
Government College of Engineering, Pune, India, 2001

Major:	 Electrical Engineering

Dedicated to my parents

v

ACKNOWLEDGEMENT

First of all, I would like to thank Dr. Ziavras for his guidance and support during the

whole tenure of my study for this thesis. I think only with his timely advice and great

encouragement, I am able to complete this thesis work.

At the same time, I am also thankful to Dr. Hou and Dr. Gerbessiotis for

participating in the thesis committee and providing valuable suggestions for

improvement. Also many thanks to the entire staff of the Electrical and Computer

Engineering department at NJIT.

Also I would like to thank senior colleagues, Tirupati, Satchit, Zafrul, Sunil and

Xizhen for their immense help during practical difficulties. And finally, although not in

the least, I want to thank all my friends here in NJIT who are behind me in hard time.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Conventional von Neumann Architecture 	 1

1.2 Dataflow Architectures 	 2

1.3 Related Work with the Dataflow Paradigm 	 3

1.4 Motivation 	 5

1.5 Objective 	 7

1.5.1 Design Objective 	 7

1.5.2 Reconfigurable Computing Systems 	 8

2 THE D2-CPU 	 12

2.1 Introduction 	 12

2.1.1 Some commonly used terms in the data-driven paradigm 	 12

2.1.2 Design Requirements 	 12

2.2 D2-CPU Design 	 13

2.2.1 General Instruction Format 	 14

2.2.2 Execution Ready Unit (ERU) 	 14

2.2.3 Hardware Manager (HM) 	 17

2.2.4 External Cache (EXT-CACHE) 	 18

2.2.5 Processor Unit for the PIM (PU-PIM) 	 20

2.2.6 Support for Instruction Relocation 	 20

2.2.7 Support for Exceptions 	 21

2.2.8 Support for Loop Implementation 	 22

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 DESIGN OF A FPGA BASED D2-CPU 	 24

3.1 Introduction 	 24

3.2 Implementation of the D2-CPU 	 24

3.2.1 Instruction Set Format 	 24

3.2.2 ERU Design 	 27

3.2.3 Hardware Manager (HM) 	 32

3.2.4 Out-Buffer 	 33

3.2.5 EXT-CACHE (DSRAMi) 	 35

3.2.6 Main-Memory and PU-PIM i (DRAM) 	 39

3.2.7 Main-Controller and Xilinx Virtex-II Block RAM 	 41

3.3 Overview of the Wildstar-II Board 	 42

3.4 Design Flow and Implementation 	 45

4 DATA FLOW GRAPHS and PROGRAMMING WITH D 2-CPU 	 49

4.1 Dataflow Graphs 	 49

4.1.1 Introduction 	 49

4.1.2 Dataflow Programs 	 49

4.1.3 Types of Nodes 	 51

4.1.4 Reentrancy 	 52

4.2 Programming with D2-CPU 	 54

4.2.1 Instruction Set 	 54

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.2.2 Sample Program 	 57

5 RESULTS AND ANALYSIS OF D 2-CPU 	 60

5.1 Results 	 60

5.2 Analysis 	 61

5.2.1 Storage Resources and Bus 	 61

5.2.2 Turnaround time 	 62

5.2.3 Software Support 	 63

6 CONCLUSION 	 65

APPENDIX: DESIGN REPORT FILES 	 67

REFERENCES 	 75

ix

LIST OF TABLES

Table Page

3.1 SRAM* Instruction Dependency 	 30

4.1 Instructions and OPCODEs 	 55

4.2 Sample Program in High Level and Assembly Language 	 57

4.3 Equivalent D2-CPU Code 	 58

5.1 Results: Contents of Read and Write Buffer 	 61

x

LIST OF FIGURES

Figure	 Page

2.1 D2- CPU Architecture 	 15

3.1 OPCODE Format 	 25

3.2 OPFL Format 	 25

3.3 CAN, CAD, and CR Format 	 26

3.4 The ERU Design 	 29

3.5 Hardware Manager 	 33

3.6 Out-Buffer 	 34

3.7 EXT-CACHE and DRAM Memory Modules 	 36

3.8 Multithreading Approach to EXT-CACHE 	 37

3.9 Pure Data-driven Approach to EXT-CACHE 	 39

3.10 Pure Data-driven Approach to Main-Memory 	 40

3.11 Main-Controller and Xilinx Virtex-II Block RAM 	 42

3.12 Wildstar-II/PCI Block Diagram 	 43

3.13 Wildstar-II Processing Module 	 44

3.14 Communicating with the Host System 	 46

3.15 FPGA design flow 	 47

4.1 Comparison: Control Flow vs. Dataflow 	 50

4.2 Nodes, Arcs and Firing of Nodes. 	 51

4.3 Switch and Merge Node. 	 51

xi

LIST OF FIGURES
(Continued)

.Figure	 Page

4.4 Lock Method for Reentrancy. 	 53

4.5 Lock Method Used in D 2-CPU. 	 56

4.6 Flow Diagram for Code Presented in Table 4.3 	 59

xii

CHAPTER 1

INTRODUCTION

1.1 Conventional von Neumann Architecture

Conventional computers are based on a control flow mechanism. The order of program

execution is decided by the user and is stated in the program. The program counter (PC) is

used at the hardware level to obey this order. This PC sequences the execution of instructions

in a program. Ultimately, the PC leads to the sequential execution of a program on a control-

driven architecture. These types of computers use shared memory to hold instructions and

data objects. Instructions and data objects are stored differently. Many instructions can

change shared memory. So, dependencies and control flow have to be followed carefully for

the correct execution of programs. The central processing unit (CPU) fetches each instruction

and its data and executes it. This makes the CPU the master of computer system, where as the

shared memory remains "dumb". This creates a large amount of redundant operations and, in

turn, low utilization of the resources directly related to the implementation of application

algorithms.

Each fetch instruction directly or indirectly relates to memory use. For programming

flexibility, these computer systems became very complex at the hardware level with large

complex instruction sets. This has created many processor families, though the emphasis

remains on the reducing the complexity, leading to RISC, or increasing operations per cycle

leading to pipelining and super-pipelining, or increasing the parallel operations per cycle

leading to superscalars and VLIW machines.

To increase the clock frequency and decrease the cycles per instruction (CPI)

functional units are divided into smaller sets of logic. Different stages are created for each

functional unit leading to pipelining. With more advanced technology the stages are further

1

2

divided to develop super-pipelined CPUs which ideally increase throughput in linear with the

number of stages.

Through many years of research, it was realized that only 25% of the instructions of

complex instruction sets are used often. This fact implies 75% of the hardware-supporting

other instructions are not used frequently. So, putting such instructions into software saved

valuable chip space leading to RISC processors; the latter space can now be used for large

register sets, local caches, and , sometimes, for floating point units. Instruction and data

caches can then be made separate. This modification gives higher clock rate, fewer cycles per

instruction (CPI). They are often called scalar-RISC processors.

With the advent of VLSI technology more on-chip area is available and that can be

used to increase in resources and, sometimes, for resource duplications. This leads to super-

scalar processors with more than one functional unit. Pipelining and super-scalar principles

are used to create super-scalar, super-pipelined processors, which result in less than one CPI.

Very large instructions (VLIW) were introduced to reduce memory latencies.

Unfortunately, the trend in CPU design has been to take advantage of increases in

transistor densities to include additional features. Today's processors are nothing else but

combinations of past research and that can implement wide instruction issue (VLIW), out-of-

order instruction execution (data-flow after instruction issue), aggressive speculation, and in-

order retirement of instructions.

1.2 Dataflow Architectures

In a dataflow computer, the execution of an instruction is driven by the data availability

instead of being guided by the program counter. Ideally, in the pure dataflow computation

model an instruction is executed as soon as its operands become available. The instructions in

dataflow programs are not ordered in any way and there is no need of a program counter.

3

Instructions under this model carry their own data, i.e. operands, with them. As soon as an

instruction produces a result, the result is broadcasted to all needy instructions. Again, as

soon as any instruction gets all its operands, it is ready to execute and it moves to the CPU in

the dataflow paradigm. Thus, the CPU doesn't fetch any instruction from memory. In short,

the CPU is deprived of its Master right in the dataflow model, becoming a PU and memories

become intelligent. This gives distributed control in the computer system.

The dataflow model has the potential to exploit all the parallelism available in a

program. Since the execution is driven only by the availability of operands at the inputs to the

functional units, its parallelism is limited only by the actual data dependencies in the

application program rather control dependencies that become problematic in the conventional

von Neumann model. The dataflow execution follows precisely dataflow graphs, which have

embedded inherent parallelism. Thus, dataflow architectures represent a radical alternative to

von Neumann architectures. There is a lot of work already done for the dataflow paradigm

and there are also other architectures available which use both dataflow and von Neumann

architectures to exploit, the inherent parallelism in dataflow and the ease of control flow in

von Neumann respectively.

1.3 Related Work with the Dataflow Paradigm

The dataflow computation paradigm till now has been primarily employed in the

implementation of parallel computers, where this paradigm is basically applied among

instructions running on different PC-driven processors. The majority of dataflow

multiprocessors and multi-computers used COTS (Commercial Off The Shelf) processors,

which gave them the advantage of fast designing however they still remain PC driven at

individual processor level. In contrast, a data-driven processor was introduced in [9] that

utilizes a self-timed pipeline scheme to achieve distributed control. This design is based on

4

the observation that the data-driven paradigm can accommodate very long pipelines that are

controlled independently, since packets flowing through them always contain enough

information and data on the operations to be applied. However, this processor design also

suffers from several constraints imposed by current design practices. Several data-driven

architectures have been introduced for the design of high performance ASIC devices [10, 11].

In addition, several techniques have been developed for the implementation of ASICs in

VLSI when the dataflow graphs of application algorithms are given. However, these

techniques employ straightforward, one-to-one mapping of nodes from the dataflow graph

onto distinct functional units in the chip. An exception is the recently proposed

implementation of dataflow computation on FPGAs [12].

Multithreading is another widely used principle in CPU design. For multithreaded

processors, each program is partitioned into a collection of instructions. Such a collection is

called a thread. Instructions in a thread are issued according to the conventional von-

Neumann model of computation, i.e. they are sequential. Similar to the dataflow model,

instructions are run based on data availability [5]. A large degree of thread-level parallelism

is derived through a combination of programmer, compiler, and hardware efforts. Similar to

the above case COTS processors can be used for this purpose. Data dependencies are taken

care of by the compilers and split-phase techniques guarantee no trouble without extra

memory-access delay. Multithreading supports the dataflow execution among threads. The

Tera Multi-threaded architecture (MTA) is an example of a distributed shared memory

parallel machine with multithreaded computational processors and interleaved memory

modules connected via a packet-switched interconnection network [7]. Similarly Efficient

Architecture for Running Threads (EARTH) is a multiprocessor that contains multithreaded

nodes [6]. Again each node contains a COTS RISC processor for executing threads

sequentially and an ASIC synchronization unit that supports dataflow like thread

5

synchronizations and scheduling. A thread is activated when all its input data become

available and then they can spawn or create many other threads. This principle directly

relates to the dataflow graphs.

As far as single processors are concerned, the hyper-threading technology, introduced

in the Intel Pentium-IV, provides thread-level-parallelism (TLP) on a single processor,

resulting in increased utilization of processor execution resources [19]. As a result, resource

utilization yields higher processing throughput. The hyper-threading technology is a form of

simultaneous multi-threading technology (SMT) where multiple threads of software

applications can run simultaneously on one processor. However, this is achieved by the

duplication of resources on each processor. To match the instruction level parallelism (ILP)

of applications, it is a usual practice to design microprocessors with resource duplication.

Several copies of commonly used functional units are implemented in the CPU, which is

called super-scaling. Multiple-issue processors [8], an alternative to vector processing units,

apply this super-scaling principal for dynamic execution whereas VLIW can be used for

static scheduling. In VLIW, the compiler combines many independent instructions together

to be sent simultaneously to the CPU. Each component instruction is to use its own execution

unit in the CPU. Resource widening [4] is another concept implemented in the Intel IA-64.

This Explicit Parallel Instruction Computing (EPIC) design approach used in the Intel IA-64

is similar to the VLIW paradigm but increases the hardware complexity.

1.4 Motivation

The high complexity of individual processors has a dramatic negative effect on the overall

complexity and performance of parallel computers. Current design families, like RISC,

CISC, and VLIW processors show several deficiencies. They are characterized by large

amounts of redundant operations and low utilization of resources directly related to the

6

implementation of application algorithms. In all these architectures, an instruction fetch

operation is still required only due to the von Neumann PC-driven basic model. The CPU

request to the memory is not part of any application algorithm but the result of centralized

control during program execution. To reduce this time penalty, all of today's

implementations use instruction pre-fetching with an instruction cache. This wasted recourses

which could be otherwise used in more direct application related tasks. Another problem with

current designs is the fact that the operands do not often follow their instructions to the CPU.

The only exception is the instructions that either use immediate data or their operands reside

in the CPU registers. Additional fetch cycles may then be needed to fetch these operands

from either the main memory or the attached cache. However, these fetch cycles also should

be avoided, if possible. These fetch cycles are even unavoidable with current dataflow

designs that use activation frames. Again, to mitigate this problem current designs choose

data cache memories; corresponding transistors could be otherwise be used in more

productive tasks. In contrast, in the pure dataflow paradigm computing, the instructions go to

the execution unit on their own (Intelligent Memory) if needed, along with their operands, as

soon as they are ready to execute.

Thus, advances in current CPU design lack the potential for dramatic performance

improvements because they don't match well with the natural execution of program flows.

To get rid of such critical problems or, sometimes, to lessen this effect, designers used many

expensive hardware techniques. However, this hardware is not used to run the relevant

program directly but just aid in increasing the efficiency or through put. This results in small

productive utilization of the overall hardware system. The time penalty of fetching

instructions and operands in conventional von Neumann architectures is reduced by

extensively using instruction and data pre-fetching, software preprocessing, internal data

7

forwarding and cache techniques. Resulting new architectures result in the following

penalties:

1. In an effort to hide the mismatch between the application's needs and the PC-driven
execution model, we waste numerous on chip resources. Many hundreds of thousands
or millions of transistors are needed to implement some of the above techniques
within a single CPU, whereas the productive utilization of these resources is rather
small.

2. Power consumption increases for two reasons. Firstly, the overheads of the
instruction fetch cycle, which is not an application requirement, appears for each
individual instruction in the program. This is too much an overhead to pay for
centralized control during program execution. Since these are inter-chip data transfers
that are quite expensive and time consuming, this cost is very substantial. Secondly,
unnecessary power consumption results from pre-fetching unneeded instructions and
data into caches. Mobile computing, recently popular and dominating the computer
field needs very high power efficiency for longer battery usage.

3. Numerous cycles are wasted when a hardware exception or interrupt occurs. This is
because after the CPU gets informed about the external event, it has to store the
current state of the machine and then fetch code to run the corresponding interrupt
service routine. If the appropriate context switching is selected outside of the CPU,
then the appropriate instructions can arrive promptly.

1.5 Objective

1.5.1 Design Objective

It is now widely accepted that the procedure applied within many advanced microprocessors

for the execution of CPU resident instructions resembles closely the data-driven computation

paradigm. This is due to the fact that these advanced microprocessors apply Tomasulo's

algorithm with super-pipelining techniques with using resource reservation stations that keep

track of data dependencies between instructions in the CPU.

The data-driven CPU (D2-CPU), proposed in [1], is a design technique based on the

pure dataflow computation paradigm. For ease and efficiency of instruction decoding and

implementation, it also uses principles like large register files and active instructions with

their operands within the processing unit, simple instructions, and multiple issues of

8

instructions. In this design, the dataflow model of execution is applied simultaneously to all

instructions in the program. This proposed D 2-CPU design has the following architectural

objectives:

1. This innovative design has a radical single processor design that implements the data-
driven computation paradigm in its pure form. It also employs active memory
techniques.

2. A processor design with distributed control that minimizes the amount of redundant
operations and maximizes performance.

3. High utilization of resources in productive work, i.e. work not associated with
redundant operations but supports direct application flow.

4. Low hardware complexity for high performance.

5. Low cost and power consumption.

Our main objective here is to implement the D 2-CPU design on the FPGAs.

1.5.2 Reconfigurable Computing Systems

Field-Programmable Gate-Arrays (FPGAs) have been used in systems spanning a broad

range of applications ever since their introduction in 1985 [14]. Most of the systems use

FPGAs as a glue logic providing the advantages of high integration levels without the

expense and risk of custom ASIC devices. However, as FPGAs have increased in capacity,

their use as in-system configurable computing elements has received considerable attention.

The use of FPGAs as reconfigurable computing elements is poised to expand rapidly in the

commercial market, where FPGA—based parallel processors will compete with parallel

computers and even some supercomputers in computationally intensive applications. Many

research projects were done over the past few years in developing these FPGA-based high-

performance machines. Reconfigurable FPGA technology holds the potential of reshaping

the future of computing by providing the capability to dynamically alter hardware resources

to optimally serve immediate computational needs [13].

9

The FPGA-based reconfigurable systems can be used as specialized co-processors,

processor-attached functional units, attached message routers in parallel machines, and

specialized systems for parallel processing. This was made possible with the advent of multi-

million gate FPGAs. In the past decade, FPGA-based configurable computing machines have

acquired significant attention for improving the performance of algorithms in several fields,

such as DSP, data communications, genetics, image processing, pattern recognition, etc.

FPGA-based co-processors are implemented as attached co-processors dedicated to off-

loading computationally intensive tasks from host processors in PCs and workstations.

Reconfigurable co-processors are viable platforms for a wide-range of computationally-

intensive applications. The FPGA-based configurable computing systems have garnered

support from the scientific and academic communities. Many research projects have

demonstrated the viability of configurable computing systems that can deliver the

performance of supercomputers for specific applications. Most of the FPGA—based parallel

machines currently reside in multi-FPGA systems interconnected via a specific network [15].

Some of the configurable computing systems are:

1. The Ganglion Project at the IBM Almaden Research Centre used XC3090 and
XC3042 FPGA devices to implement a feed-forward, fully interconnected neural
network on a single VME board.

2. DEC's Paris Research Lab has designed and implemented four generations of
FPGA-based configurable co-processors called Programmable Active Memories
(PAMs).

3. SPLASH-1 includes a 32-stage linear-logic array with a VME-interface to a SUN
workstation. Each stage consists of an XC3090 FPGA and a 128Kbyte static
memory buffer. SPLASH-1 outperformed Cray-2 by a factor of 325 in specific
applications and a custom built NMOS device by a factor of 45. SPLASH-2 uses 17
XC4010 FPGA devices arranged in a linear array and also interconnected via a
16x16 crossbar.

4. PRISM-1 from Brown University coupled XC3090 with the Motorola M68010
microprocessor and PRISM-11 coupled XC4010 FPGA devices as co-processors to
an AMD29050 RISC processor.

10

Advances in VLSI technology not only brought about multi-million gate FPGAs, but

also facilitated the integration of numerous functions onto a single FPGA chip. Peripherals

formerly attached to the FPGA at the board level now can be embedded into the same chip

with the configurable logic. According to Xilinx predictions, the count of FPGA system gates

will exceed 50 million and FPGA chips will operate at more than 500 MHz [16].Thus, the

availability of multi-million system gates in FPGAs introduced a new design paradigm,

System-On-a-Chip (SOC), with which entire systems can be implemented on a single FPGA

chip without the need for expensive non-recurring engineering charges or costly software

tools.

The FPGAs have provided an alternative method to computing by supporting the

fine-tuning of hardware to match software requirements. The fact that the number of system

gates in FPGAs has been increasing rapidly in recent years encourages the development of

large—scale application-specific custom computing machines on FPGAs for better hardware

performance. While these FPGA-based Custom Computing Machines (CCMs) may not

challenge the performance of microprocessors for all applications, for specific applications an

FPGA-based system can offer extremely high performance. This led us to develop an FPGA-

based D2-CPU proposed in [1].

The main objective of this thesis is to design a general purpose D2-CPU architecture

and implement it on an FPGA. The data-driven computation model is applied simultaneously

to all the instructions in the program. Not only the CPU but the L 1 cache, L2 cache, and main

memory are also implemented with this principle. This thesis mainly aims at implementing

this architecture to prove the viability of the data-driven computational paradigm with current

FPGA technologies.

The proposed design concept is discussed in Chapter 2. The detailed implementation

is reported in Chapter 3. The theory of dataflow graphs and programming with the D2-CPU

11

are introduced in Chapter 4. Chapter 5 summarizes design results and comparative analysis

with conventional designs and Chapter 6 concludes and proposes future design objectives and

challenges related to the data-driven paradigm and especially to the D 2-CPU. The target

system is the Annapolis Micro systems (AMS) Wildstar-II development board that has two

Xilinx Virtex-II FPGAs.

CHAPTER 2

THE D 2-CPU

2.1 Introduction

2.1.1 Some Commonly Used Terms in the Data-driven Paradigm

This Chapter begins by introducing briefly the semantics of the data-driven computer

paradigm. The terms here basically describe the sequence of steps for the implementation of

an instruction under the data-driven computation paradigm.

1. Instruction Issuance or Firing: It is the departure of the instruction for the execution
unit. An instruction is fired just after all of its operands become available to it.

2. Token Propagation: It is the propagation of an instruction's result to other
instructions that need it. As soon as an instruction completes execution, it makes
copies of its result for all other instructions that need it. Different tokens that contain
the same result are then forwarded to different needy instructions.

3. Instruction Dissolvement: It is the destruction of the instruction just after it produces
its entire token for other receiving instructions. It depends upon the instruction. Loop
instructions have to be treated differently because they may be reused in the
programs.

2.1.2 Design Requirements

Following are the major requirements clearly mentioned in [1] for the D2-CPU design that

satisfied our objective and are in line with the data-driven computation paradigm.

1. Programs are developed using fine-grain graphical, or equivalent, languages that
show explicitly all data dependencies among the instructions. Libraries of existing
routines can further aid programming, as long as they are developed in this manner.
Also, usage of a graphical language simplifies code development and facilitates better
assignment of tasks to parallel computers containing many D 2-CPU.

2. Instructions contain all their operand fields, as in the pure data-driven model.

3. A software preprocessor finds all the instructions in the program that can run in the
very beginning because of non-existent data dependencies. These head instructions
are to be sent first to the execution unit.

12

13

4. Following the head instructions to the execution unit are instructions that are to
receive all their input operands from one or more head instructions. These
instructions can proceed for execution just after they receive their operands.

5. Instructions that are to receive one or more operands from instructions that are ready
to execute but are still missing one or more operands leave for an external cache,
called EXT-CACHE, where they wait to receive their tokens. To reduce the traffic,
instructions that will receive the same result are grouped together in the cache in an
effort to collectively receive a single token that can be used to write all relevant
operand fields. If not all of the token receiving instructions can fit in the EXT-
CACHE, then a linked list is created in the memory for instructions that do not fit.

6. Only one copy of each instruction, including its operands, resides at any given time
within the entire machine, i.e. in the memory, cache, and CPU. This is in contrast to
the wide redundancy of instructions and data present in the cache, memory and CPU
of the conventional control driven model.

7. Instructions do not keep pointers to their parent instructions. Therefore, they are
dormant till they are forced into the EXT-CACHE or the execution unit in order to
receive their tokens.

8. After an instruction is executed, it is dissolved. However, special care is needed for
instructions that have to be reused in software loops. A relevant technique that
permits instruction reuse is presented in the next Chapter.

9. Instructions have unique IDs for token passing only while they reside outside of the
execution unit. These IDs are used to find instructions and force them into the EXT-
CACHE or execution unit. In the latter case, an interface actually keeps track of these
IDs so that minimal information is manipulated or stored in precious execution unit
resources.

2.2 D2-CPU Design

This Section will present the innovative D 2-CPU design proposed in [1]. Primarily this design

takes advantage of advances in Processor In Memory (PIM), cache memory, and IC

technologies to implement efficiently the data-driven paradigm. Figure 2.1 shows the system

architecture. We will start with the core of this design, i.e. the Execution Ready Unit (ERU)

and will advance to the main-memory. The instruction format at each level is different.

14

2.2.1 General Instruction Format

Each instruction comprises an opcode field (OPCODE) and, without loss of generality, up to

two operand fields (OPD1 and OPD2). The number of operand fields depends upon the type

of operation, i.e. unary or binary respectively. Depending upon its location in the system,

each instruction also consists of its own instruction ID defined by its location in the main

memory (IAD), instruction IDs upon which OPD1 and/or OPD2 are depended- IID1 and IID2,

respectively. It also comprises the FLAG field that points to instruction location for

dependence. This FLAG field makes each instruction intelligent and decides its further

action. The instruction format at each location will be discussed in detail below. For token

propagation, each token consists of an IAD i.e. the instruction ID that generates this token

and its RESULT.

2.2.2 Execution Ready Unit (ERU)

The ERU is the core of this system and replaces conventional CPUs. It consists of functional

units and big register files in terms of on-chip caches. The ERU comprises the following

components:

• Processing Unit (PU): In the PU, the operations specified by the instructions are

executed. It contains several functional units that can be used by a single, or

simultaneously, by multiple instructions. Its design follows the basic RISC model.

The PU contains at least one copy of an adder, a multiplier and a logic unit. For

multimedia and engineering applications a vector unit also can be added to the PU.

Each instruction at the input to the PU level only comprises of the OPCODE, OPD1,

OPD2 and IAD fields, whereas at the output it forms tokens with the IAD and

RESULT fields.

15

Figure 2.1 D2- CPU Architecture [1].

16

• Static RAM in the ERU (ERU-SRAM): It contains instructions ready to execute, i.e.

instructions with all of their required operand fields filled. However these instructions

cannot proceed to the PU, because the functional units that they require are currently

used by some other instructions. This cache storage of ready to execute instructions

guarantees very high performance. An instruction at this point consists of the

OPCODE, OPD1, OPD2 and IAD fields.

• SRAM* (static RAM): It contains instructions with one or more unfilled operand

fields that are all to be written by one or more instructions currently residing in the

PU and/or ERU-SRAM. Therefore, these instructions are going to execute in the very

near future. Whenever the PU unit becomes available, an instruction from the ERU-

SRAM, which has a large number of recipient instructions in the SRAM*, will go for

execution. An instruction at this point consists of the OPCODE, OPD1, OPD2, IAD

and IID1 and/or IID 2 fields.

• ER U-Control Unit (ERU-CU): It is the control unit of the ERU. It keeps track each

time of the total number of result recipient instructions in the SRAM* for each

instruction currently in the ERU-SRAM. It also facilitates data forwarding within the

ERU, for recipient instructions in the SRAM*.

• PU-RAM interface: It receives all instructions entering to the ERU from the hardware

manager. It distributes the instructions accordingly to the PU, ERU-SRAM and

SRAM*. When an instruction produces a result, then the PU-RAM interface

propagates this token to the EXT-CAHCE and DRAM.

17

2.2.3 Hardware Manager (HM)

The hardware manager is placed between the ERU and EXT-CACHE. It performs the

following tasks:

• It initially sends the head instructions from the EXT-CACHE of the program to the

ERU for execution.

• Whenever one of the remaining instructions proceeds to the ERU, it first makes a

request to the HM for a virtual ID. This virtual ID will uniquely identify the

instruction during its residency in the ERU. The ID is a small number in the range 0

to n-1, where n is the maximum number of instructions that can reside simultaneously

in the ERU. Obviously these IDs are recycled. Virtual IDs are assigned to instructions

by the HM, in place of their physical ID/address due to the following reasons:

1. To minimize the required bandwidth between the ERU and external
components. This is due to the fact that each instruction carries with it IAD,
IID 1 and/or IID2.

2. To minimize the size of the ERU internal resources storing the instructions'
IDs, especially SRAM* resources.

3. To minimize the required resources, that processes the ERU resident

information.

• It maintains a table that can be accessed to quickly translate on the fly virtual IDs into

physical IDs and also vice-versa.

The instruction at this point consists of the OPCODE, OPD1, OPD2, IAD and IID1 and/or IID2

fields. The IAD, and IID1 and/or I1D 2 fields contain the virtual ID at the ERU side whereas

the physical IDs at the EXT-CACHE side.

18

2.2.4 External Cache (EXT-CACHE)

The external to the execution unit cache (EXT-CACHE) is distributed. It is formed as a

collection of Distributed SRAMs (DSRAM). The main-memory is also correspondingly in

distributed in nature and formed as a collection of Distributed RAMs (DRAM). For each

DRAM module there is one DSRAM module. The EXT-CACHE contains at any time

instructions that are to receive a token from instructions residing at that time in the ERU. In

fact, three classes of instructions may reside in the EXT-CACHE at any time during the

program execution. Those are:

1. Instructions with two unfilled operand fields. One of these fields is to be filled with
data that will arrive from an instruction currently in the ERU.

2. Instructions with one unfilled operand field for which the token is to arrive from an
instruction currently residing in the ERU. These instructions can not fit in the ERU
because the SRAM* is fully occupied.

3. Instructions that are not missing any operands but they can not fit in the ERU-SRAM
because it is fully occupied. But such instructions ideally have to be in the ERU.

As already mentioned in our objective, only one copy of each yet to execute

instruction is present in the system at any time during the program execution. The part of the

program that still needs to be executed is distributed among the off-chip DRAM and EXT-

CACHE, and the on-chip ERU-SRAM, SRAM*, and PU. The currently achievable transistor

density for chips allows the implementation of large memories to realize the ERU-SRAM,

SRAM*, and DSRAM components so that they very rarely overflow. Without hardware

faults, there is no possibility for the appearance of deadlocks in this design. Even if the ERU-

SRAM is fully occupied at some time, the instructions in it will definitely execute in the near

future because the PU will be released soon by the currently executing instructions. If one or

more instructions outside of the ERU are ready to execute but can not enter the ERU because

the ERU-SRAM is fully occupied, then they wait in the external queue until space is released

in the ERU-SRAM. A similar technique is applied if the SRAM* is fully occupied. In fact,

19

the ERU-SRAM and SRAM* can be combined to single component. For the sake of

simplicity, it was proposed to be separate.

For each program memory (main memory) module DRAMi, there is a distinct EXT-

CACHE module DSRAMi, for each i = 0, 1, 2, 3 ..., 2 d — 1. An instruction in the EXT-

CACHE consists of the OPCODE, OPD 1 , OPD2, IAD, IID i , IID2 and FLAG fields. The

operand field locator (OPFL) in each FLAG field indicates instruction dependency or status,

i.e. how many operands (nil, one or two) the instruction still needs to go for execution.

As already discussed above each token leaving the ERU also contains the virtual ID

of that instruction. The hardware manager changes this virtual ID to the physical ID and then

broadcasts this token to all DSRAMs in the EXT-CACHE. The important point is that the

DSRAM entries are created dynamically by the hardware manager, have a very short life

span, and exists only inside the DSRAM. They are created only when instructions leave for

the ERU. That is, it doesn't load into the computer system pointers to parent instructions,

which is in line with objectives specified in Chapter 1.

The ERU receives instructions from the hardware manager for execution. Truly the

hardware manager forces instructions into the ERU by first storing them into the FIFO

buffers and then prompting the ERU to read from these buffers using a very wide bus.

Asynchronous communications with appropriate acknowledgments between these two units

achieve this task. Therefore, it is not the ERU that fetches instructions for execution, but it is

fed with instructions directly by the EXT-CACHE which is a fundamental principle of data-

driven paradigm. Here, the program counter is replaced by short IDs i.e. IADs. Fetching

shorter IDs is not a heavy penalty to pay for the elimination of the program counter and still

the PC- driven CPU requires the implementation of a wide address bus and appropriate

control lines. The ERU needs fewer pins to fetch this ID, whereas PC-driven CPUs need

more pins to access instructions.

20

2.2.5 Processor Unit for the PIM (PU-PIM)

Each DRAM has a unique PU-PIM attached to it. This unit carries out the following tasks:

1. It loads the corresponding DSRAMi with all those instructions from the DRAMi that
are to receive tokens from the instructions leaving for the ERU and also missing data
for two operand fields. Also, it always updates appropriately the DSRAMi directory.

2. It removes instructions from the DRAMi that are not to be executed further because of
loop exiting. The reuse of instructions for the implementation of program loops is
addressed later in this Chapter.

3. It maintains three distinct lists of addresses for instructions in the DRAMi, if any, that
do not fit in the EXT-CACHE, ERU-SRAM and SRAM*, respectively. These lists
are kept in the local DRAM i for instructions that do not fit in one of these units
because of respective overflow.

4. It copies data from tokens broadcast by the ERU via HM into the appropriate fields of
instructions appearing in the EXT-CACHE and SRAM* units.

5. It caries out garbage collection in the DRAM i since the data-driven model of
computation necessitates deallocation of the memory space dynamically through
instruction dissolvement.

6. It finds the instructions in the DRAMi and DSRAM i that are to receive their last
operand from instructions leaving for the ERU and forwards them to the HM that
finally stores them into the SRAM*.

7. It services requests by the program loader and the operating system for instruction
loading and relocation in the DRAMi.

Incorporation of the DRAM i.e. program memory in the D 2-CPU is necessary [1], as

accessing data with distinct addresses is quite natural. In fact, there exist many devices that

work extreme efficiently using strict memory addressing schemes.

2.2.6 Support for Instruction Relocation

Multiprogramming and virtual memory are now common practices, and very convenient

features for the PC-driven paradigm. But both of them require support of instruction

relocation. Instruction relocation in the data-driven computation seems to be a very difficult

problem to solve because of the need for token passing with ever changing instruction

21

addresses. [1] Proposes the following solution for the implementation of instruction

relocation in a way that token passing using original instruction IDs is still possible.

• The compiler-loader combination assigns the original instruction IDs to correspond to

absolute memory addresses. If a memory location is free at that time, then the

corresponding instruction, if any, is loaded there. The instruction's context ID, in

other words program number, is also stored in the memory along with that

instruction. If the memory location is occupied by another instruction, then the

former instruction is relocated early according to the method described below.

• A distinct ID memory module ID_MEM i is associated with each DRAW The two

memory modules have the same location. The j th entry in ID_MEM contains the

starting address of a hash table containing pointers to all instructions with original ID

equal to j, but with different context IDs, for j = 0, 1, 2...2m- 1. When an instruction

with original ID 'le relocates in the DRAM, then the respective PU-PIM unit stores

in the hash table pointed at by the value in address `le of the ID_MEM the context ID

and the new address of this instruction.

• The PU-PIM unit keeps track of the location of all instructions in the DRAM. It

updates the hash table whenever an instruction is relocated. This scheme implements

memory indirect addressing for token propagation with maximum flexibility.

2.2.7 Support for Exceptions

Exception are of two types, either software or hardware. The D 2-CPU [1] handles both in

different way. If it is a software exception and code determines that an erroneous result will

show up with the execution of such an instruction, then a thread of instructions are activated

to deal with this problem. This thread basically removes faulty instructions from the system.

This leads to run time availability of some exception routines. It is not necessary to halt the

22

execution of instructions that do not belong to the exception routine. If required, however,

because of high priority, then the HM can temporarily ignore all instructions in the EXT-

CACHE with context ID different from that of the exception determining instruction.

For hardware exceptions, exception routines are initially stored in the DRAM

memory. The HM receives the exception request along with an exception ID. This ID

uniquely determines the address of the first instruction in the exception routine. The hardware

manager forces the PU-PIM to make a copy of the exception routine code, sends the

activation token to the first instruction and disables all transfers to the ERU of instructions

that have different context ID than this exception ID. It also sends this exception ID to the

ERU to disable the execution of instructions with different context IDs. Every exception

routine contains a last instruction that upon execution forces the hardware manager to enable

all context IDs for the resumption of program execution.

2.2.8 Support for Loop Implementation

A bit in each instruction can indicate its inclusion in a loop, so that the instruction can be

preserved at the end of its execution for future executions. Only its operand fields are

emptied, if necessary, after each execution. Upon exiting a loop, the last instruction sends a

special dissolve token to the first instruction in a special routine that removes all loop

instructions from the memory; only the PU-PIMs are involved in this process. As far as

conditional branching, instructions that are not executed are dissolved similarly by special

routines.

Though the methods described in [1] are adequate, a lot of work may be needed in

instruction relocation, exceptions and in loop implementations.

The D2-CPU design has some similarities with the VLIW architecture. Similar to

VLIW, D2-CPU has a wide instruction bus, long instructions and many instructions can travel

23

at a time from the HM to the ERU. Since VLIW is a PC-driven architecture, there are lots of

redundant instructions. Secondly, any code is portable with D 2-CPU, as there is no need for

the compiler to group together simple instructions into large ones as needed in VLIW. So

there is no need of expensive compilers for the D 2-CPU model.

The next Chapter discussed in depth a practical approach to D2-CPU design. The D2 -

CPU design is implemented on a FPGA, which alters some of the architectural part proposed

above. Also, some trivial architectural part is modified as first priority of this thesis work is

to prove the feasibility of the pure data-driven model on FPGAs. Instruction relocation and

exception handling are not implemented in this work, whereas loop support is implemented.

24

CHAPTER 3

DESIGN OF A FPGA BASED D2-CPU

3.1 Introduction

This Chapter deals with a practical implementation of the D 2-CPU design. The first part

explains architectural details. This part demonstrates how the D2-CPU design proposed in

Chapter 2 will take shape into reality and also discuses difficulties and solutions to them. It

also shows how some difficulties lead to few minor changes in the proposed architecture,

keeping its purity, as a data-driven machine, intact. The second part mainly deals with its

implementation on an FPGA board. Required software and hardware issues are dealt with

detail in this part.

3.2 Implementation of the D 2-CPU

3.2.1 Instruction Set Format

As already discussed, the instruction format changes at each level of the D 2-CPU design. All

fields used by the instructions at different levels are explained below. The instruction format

at each level is dealt with detail at the respective design description in this Chapter.

There are in all 12 fields:

• Operand1 (OPD 1): It holds the first operand. As specified in [1], there are two

operand fields either for unary or binary operations. Each is 16 bits wide. Either this

field is already filled at compile time or required data from some other instruction,

whose address is specified in IID I . The length of IID 1 depends upon instruction

locality, as either it presents a virtual ID or physical ID. In the first case it is six bits

wide and in the second it is seven. Each time, when a token is broadcasted from the

25

ERU, its address field (namely IAD) is compared with IID 1 , and if matched the OPD1

is filled with data associated with the token. As a general rule, for unary operations

like shift, only this operand is used.

• Operand2 (OPD2): It holds the second operand. This is 16 bits wide. If required, it is

either supposed to be filled at compile time or depends on another instruction whose

address is specified by IID2. IID2 is seven bits wide.

• Operation Code (OPCODE): It is the opcode of the instruction to be executed. There

are six bits in this field, out of which the last two bits are reserved to indicate which

pipeline it belongs to, i.e. adder, multiplier or shift/logical/comparator. The remaining

four bits are used for different shift/logical/comparator instructions. The details of the

opcodes and their use in dataflow graphs are discussed in the next Chapter.

0000: AND 0001: OR	 0010: NAND 00: Invaild
0011: NOR 0100: XOR 0101: NOT 01: ADD
0110: EQT 0111: NEQT 1000: GT	 10: MUL
1001: LT	 1010: GET 1011: LET 11: S/L/C
1100: SHL 1101: SHR 1110: RAL
1111: RAR

Figure 3.1 OPCODE Format.

• Instruction Address (IAD): Except DRAM, this field is identity for instructions at the

remaining levels. Even a token contains this field, where it signifies the address of the

result producing instruction. The number of bits in IAD is either six or seven

depending upon virtual ID or physical ID, respectively.

00: Independent Instruction
01: OPD 1 Needed, IID1 Valid
10: OPD2 Needed, IID2 Valid
11: Both OPDs Needed, IID1 & IID2 Valid

Figure 3.2 OPFL Format.

26

• Operand Field Locator (OPFL): This is a two-bit field and decides the dependency of

instructions. IID1 and/or IID2 provide instruction addresses on which OPD 1 and/or

OPD2 are dependant.

• Clause Answer (CAN): A bit flag which holds the boolean answer for a clause on

which the particular instruction depends upon. If the instruction does not depend

upon any clause, then CAN is set to '1' and the clause required (CR) bit is set to '0'

at compile time. Otherwise CAN is set to '0' and CR to . Clause address (CAD)

provides the instruction address on which CAN depends. Whenever a token is

propagated its address is compared to CAD, and if matched, the result's last bit is

stored in CAN. The instruction will go for execution only if the CAN bit is set to '1'.

Obviously CAD is the address of such an instruction which provides a boolean

answer, like EQT, NEQT, LT, GT etc.

CR CAN CAD Status
0	 1	 Invalid Ready
1	 0	 Valid Not-ready
1	 1	 Valid	 Ready
0	 0	 Invalid Invalid

Figure 3.3 CAN, CAD, and CR Format.

• Valid Bit (VB): This is a one-bit flag. '1' in this field indicates the instruction is valid

and '0' indicates the instruction is invalid. This is a peculiar flag, as this is present at

every level in the D2-CPU design, including DRAM. As all types of memories are

implemented in the conventional style of cache design, this bit indicates the validity

of the instruction.

• Loop (LP): This is a two-bit field. This field is used in particular for implementing

loop structures in the D2-CPU design. "00" indicates the instruction is not involved in

any loop structure. "01" in those fields indicates a "merge" node, "11" indicates a

27

"lock" node, and "10" is assigned to a "switch" node in a loop i.e. a conditional

instruction that immediately follows lock node. Details about loop implementation,

switch node and merge node are explained in the next Chapter for dataflow graphs

and programming with D 2-CPU design.

• Operand Reuse (ORE): This is also a two-bit field. This field is for instructions,

which are involved in loop execution. This field affects the OPFL field. After an

instruction inside the loop is sent for execution, its OPFL changes depending upon

ORE. ' 1 ' in any field of ORE indicates the respective OPD has to be reused, so the

respective OPFL field is set to '0'. Thus, in the next iteration it will keep the

respective OPDs intact. Details are discussed in the next Chapter.

3.2.2 ERU Design

The ERU is basically divided into three parts; the SRAM* and ERU-SRAM memories and

the functional units. As dataflow machines are inherent parallel machines, it doesn't make

any sense to use single functional unit. As also proposed in [1], one adder, one multiplier and

one logic unit are implemented. As the multiplier and adder will take more time to execute

than any shift, compare or logical operation, the latter three functionalities are grouped

together in one logic unit. By sticking to the basic, "simple is fast" of superscalar RISC

principle, three pipelines are implemented, one for each functional unit. So, the SRAM* and

ERU-SRAM are also divided into three parts. A First-In-First-Out (FIFO) buffer is used, for

tokens propagated from the ERU to the off-chip memory systems. Figure-3.4 shows an

architectural overview of the ERU. The design details of each part in the ERU are discussed

below:

• Functional Unit (FU): As already mentioned, three functional units are implemented.

16-bit functional units are generally implemented. For the sake of simplicity, a non-

28

pipelined 8-bit multiplier available by Xilinx as a standard component is used.

Though it is an 18 * 18 multiplier, only the last 8 bits are used, tying the remaining

bits to '0'. It produces a 16-bit result. The adder also is a non-pipelined unit. The

adder is a 16-bit unit that produces 16-bit results. The logical unit performs shift,

rotate, logical functions (and, or, not, etc.), and compare functions (equal to, less

than, greater than, etc.). For unary shift and rotate functions only OPD1 is considered.

As all compare instructions are boolean in nature, they produce results as '0' or ' 1 '

and this is assigned to the 0 th bit of the result. This result is used for clause answers;

programming is discussed in detail in the next Chapter.

The input to the functional units is a 44-bit wide instruction, consisting of an

OPCODE (6-bit), OPD 1 (16-bit), OPD 2 (16-bit), and IAD (6-bit) whereas the output

is 22-bit wide token, comprising of IAD and RESULT (16-bit). Each unit puts its

result on a 66-bit wide data bus and let FIFO know about it.

• ERU-SRAM: The ERU-SRAM contains ready to execute instructions. The

instructions with all required operands filled, that can not execute due to the

unavailability of a functional unit are located inside ERU-SRAM. So, the ERU-

SRAM can be of any size, but for the sake of simplicity and FPGA realization,

minimum of two instructions are assumed in the ERU-SRAM. As mentioned already,

the valid bit indicates the resident instruction's validity; the reaming fields constitute

the OPCODE (6-bit), OPD 1 (16-bit), OPD2 (16-bit), and IAD (6-bit).

A count filed, associated with each instruction in the ERU-SRAM, where 2-

bit count indicates the number of instructions in the SRAM* depending upon the

particular instruction, is also implemented. Since relatively large logic is required to

29

implement it, it is not included in this version of the D2-CPU design due to our FPGA

realization.

Figure 3.4 The ERU Design.

30

• SRAM*: The SRAM* consists of instructions with either an unfilled operand field or

filled with both/required operands. Each SRAM* has 12 blocks (instructions) in it.

The instruction format is as shown in Figure 3.4. A single bit field D determines a

dependency whereas OPFL determines which operand field needs to be filled with a

token from the instruction IID. Table 3.1 below clears this functionality. The valid bit

as usual indicates validity of the instruction.

Table 3.1 SRAM* Instruction Dependency

D IID OPFL STATUS

0 Invalid Invalid Independent

1 Valid 0 OPD 1 Needed

1 Valid 1 OPD2 Needed

In general, the SRAM* closely resembles in functionality with a large

number of reservation stations in Tomasulo's algorithm and it truly makes the whole

system work "totally out of order". This is not restricted to only the CPU in the D 2-

CPU design, as it is generally implemented in new microprocessors (e.g. Intel

Pentium-IV), where execution becomes out of order for only the instructions residing

in the CPU. The EXT-CACHE and DRAM look like as a large extension of

reservation stations. This idea makes the D2-CPU design a pure data-driven

processor, but complicates it.

Each SRAM* receives two instructions from HM on a very wide (104-bit)

bus. Both instructions strictly do not belong to the same functional unit. Each

SRAM* unit scans just the last two bits of each instruction to find out its place. Each

SRAM* indicates its empty status to the memory system through overflow (OVF)

signal.

31

• FIFO Buffer: FIFO plays two important roles in the overall working of the system;

first, the FIFO buffer plays a cushion between totally unreliable (in number) ERU

outputs and consistent inputs to the memory system by means of tokens. Dataflow

machines are runaway machines; and firing one instruction subsequently fires many

instructions in different parts of the code. This causes any number from 0 to 3 outputs

from functional units at any clock cycle. Whereas the in-out data bus to ERU is a

bidirectional data bus, it needs some kind of consistency in its operation. FIFO

provides this consistency in the input and output of the ERU. The FIFO has

bufferhalf and bufferfull signals which play an important role in the overall working

of the system as follows:

Bufferhalf: This signal indicates its half filled status to the memory system, which in

turn stops sending instructions to ERU and receives tokens from ERU.

Bufferfull: This signal indicates its full status to the all functional units, ERU-

SRAMs, and SRAM*s, so that they will temporarily stop giving outputs and just

insert "bubbles" in the pipeline. Still SRAM* keeps on the receiving instructions, till

it gets filled.

Secondly, the FIFO buffer provides the necessary scanner for each SRAM*

unit. At each clock pulse, an unfilled instruction operand in the SRAM* gets its

operand if its IID field matches with any IAD field in the FIFO. This is an important

mechanism to keep consistency in data in and around ERU.

The FIFO sends two tokens out to the hardware manager, whenever there is

no data in to the ERU. This is achieved with the help of the bufferhalf signal as

explained already.

32

All the activities inside the ERU are synchronized with the clock, even keeping the

necessary handshaking signals. Synchronization is implemented for the sake of simplicity,

whereas handshaking signals provide more flexibility. This synchronization makes each

SRAM*, ERU-SRAM, functional unit, and FIFO buffer very similar to a conventional four-

stage pipeline; a very important difference is that it is "totally out of order". Another

important feature of the ERU is that it doesn't have any central control unit, and all the

controls are distributed in each unit. Each unit (e.g. SRAM*) has an autonomous behavior for

processing of data and just depends for data upon another unit. This feature achieves our

objective of distributed control in the D 2-CPU design.

In short, the ERU of the D 2-CPU processor is a superscalar, pipelined, and executed

totally out of order assuming distributed control.

3.2.3 Hardware Manager (HM)

Figure 3.5 shows the hardware manager. The basic function of the HM is to convert on the

fly a physical address to a virtual one and vice-versa. The HM accepts two instructions at a

time from the memory system on a bidirectional data bus (108 bits wide) and converts its

required IAD and IID fields from the physical to a virtual address using a table. Then, it puts

the same instructions to the input bus of the ERU. Similarly, it accepts two tokens from the

ERU, converts the IAD fields to a physical address, makes two copies of it and puts it on the

same bidirectional data bus. The reason for two copies is explained in the memory system

Section for better understanding.

Let us justify the bidirectional data bus. In fact unidirectional data buses can be used

in place of one bidirectional data bus, which would have increased the overall through put of

the system. As the data consistency is the main issue in the data-driven design. A mismatch

between an instruction and its required token can lead to non-execution of such an instruction

33

and some serious flaws. Even this flaw can be corrected using buffers at each communication

level with two unidirectional buses, in place of a bidirectional bus, where these buffers

provide a guarantee for data consistency. Again, it is a tradeoff between logic required to

implement and the design throughput. For FPGA realization, a bidirectional data bus is used,

to reduce logic required to implement the buffers.

EXECUTION READY UNIT
(ERU)

Figure 3.5 Hardware Manager.

From here onwards memory system part is assumed to contain an out-buffer, two

cache memories, and the corresponding two main memories.

3.2.4 Out-Buffer

The Out-buffer is just an extension to the SRAM* in the memory system. It can contain 12

instructions with the same format as that for the SRAM*; the only difference is that IAD and

IID represent physical addresses in palace of virtual. The format is shown in Figure 3.5. The

Out-buffer receives one instruction from each DSRAMi and DRAMi pair of memory. It's an

FIFO buffer which decides, depending upon the status of the overflow (OVF) signal from the

SRAM* which instructions should be put on the data bus to the ERU. It makes sure that no

34

two instructions requiring the same fictional units will be available on the data bus. If no such

two instructions are available then it will just assign one instruction to the data bus; such

cases should be avoided by properly loading the program memory modules.

Figure 3.6 Out-Buffer.

From here onwards there will only be unidirectional buses (54-bits wide) from each

lower level of the memory to a higher level as no data flows from the opposite way. Thus,

there will be a unidirectional bus from the DRAM i to the DSRAM i and from the DSRAMi to

the Out-buffer. All such buses end at a single Out-buffer. Tokens flow directly from the ERU

to each memory module (e.g. DRAM i , DSRAM i etc.) via a unidirectional bus (108-bit),

which is just a continuation of the data bus between the ERU and Out-buffer. The respective

tokenout and bufferhalf signals accompany this bus. Data consistency is maintained by

stopping all the transactions between any memory modules, whenever a token is out from the

35

ERU. This part is very important for correct functionality of the D 2-CPU and tokenout and

bufferhalf signals achieve this objective.

This 108-bit unidirectional data bus is further divided into two 54-bit unidirectional

data buses which carry two identical tokens to two different pairs of the memory module.

That's the reason why the HM manager makes two copies of the same token and put them on

the 108-bits wide data bus. The functionality of the pair of memory modules and instruction

format in each is discussed further. This special instruction format takes advantage of

intelligent memories and each memory controller (PU-PIM i) uses this format to feed

instructions further in the system hierarchy and to the ERU ultimately.

3.2.5 EXT-CACHE (DSRAM;)

Figure 3.7 shows two pairs of the DRAM i and DSRAM i and also includes their instruction

formats at the bottom. As proposed in [1], there can be multiple pairs of such memory

modules, but two are used in our FPGA implementation. Each block consists of one

instruction with the OPCODE (6-bit), OPD1 (16-bit), OPD2 (16-bit), IAD (7-bit), IID 1 (7-bit),

IID2 (7-bit), OPFL (2-bit), and VB (1-bit) fields. There are two approaches to implement

such caches, as both needs extensive support from the main memory. The main memory

construction will be discussed below whereas these two approaches are immediately

discussed here. The first approach is multithreading, while the second one is the pure data-

driven approach.

• Multithreading approach: In this case, each cache consists of different threads or

blocks, where each thread consists of four (in fact, any small number) instructions.

Out of these four, the first instruction will be always an independent instruction, i.e.

an instruction with required operands already available at compile time and the

remaining three instructions either can depend upon the first or may be

36

interdependent. But none of them depends upon any other instruction out of that

thread. So, each thread is totally independent of each other for data but can be

depended for a clause on one another.

V	 IAD OPCODE

OPFL IID2 IID1
OPD2

OPD1

ORE	 LP

V CR CAN CAD CAD OPCODE

OPFL IID2 IID1
OPD2

OPD1

Figure 3.7 EXT-CACHE and DRAM Memory Modules.

TAG1

TAG2

TAGn

37

This clause is totally taken care in main memory and when any thread

complies with this condition in main memory, can be moved further to EXT-

CACHE. So each EXT-CACHE consists of set of totally independent threads.

Advantages: By doing this, the design complexity considerably decreases. A

conventional cache design can be directly implemented in which each thread is

considered as a block with one tag. An example of a fully associative cache is shown

in Figure 3.8. It also shows the IAD/IID format once the instruction leaves the EXT-

CACHE.

OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V

OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V

OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V
OPFL OPD2 OPD1 OPCODE V

If the main-memory has 'm' threads and the cache has 'n'
threads, then the # of bits in the TAG field is m/n.
Fully Associative Cache

The IAD/IID fields, of an instruction after it leaves the
cache for the Out-buffer consists of:

Figure 3.8 Multithreading Approach to EXT-CACHE.

38

So by keeping the ERU and Out-buffer design the same we can still enjoy the

use of conventional proven cache designs. Each OPFL locator indicates dependency;

if any bit in OPFL is '1', the last 2-bit of the corresponding OPD will give the

address of the instruction, out of the remaining three instructions in that particular

thread, which needs to execute before these instructions. In fact a lot of memory is

saved in two IID and one IAD fields. Also, whenever any token is out, it just need to

match tag address of only one thread, and if that matches then the particular result

will be dropped in any required operand field of the remaining unexecuted

instructions in that thread. So a lot of saving in the logic is achieved.

• Pure Data-driven Approach: In the multithreading approach flexibility is lost as

dependency remains only inside a thread. But our approach develops a pure dataflow

structure without any relevant compromise. So as shown in Figure 3.9, a block

consists of only one instruction in our implementation. Each instruction belongs to

one of the three classes already defined in Chapter 2.

A total of 16 such blocks are implemented, which can operate totally in

parallel. Depending upon its internal states, defined by its flags, each block will

"inform" the cache-controller about its readiness. Then, the cache-controller will

choose on a first-come-first-serves basis an instruction to forward to the Out-buffer.

Similarly, tokens propagated by ERU also broadcasted on a same data bus. Each

block, if required, compares the IAD of the token with its IIDs and if a match occurs,

fills the respective OPD, indicated by OPFL. This gives maximum flexibility, which

is used dynamically to exploit the full level of parallelism in the application program.

39

Figure 3.9 Pure Data-driven Approach for the EXT-CACHE.

3.2.6 Main-Memory and PU-PIMi (DRAW

The main memory has same structure with the EXT-CACHE. As already mentioned, to

implement any of the above two approaches respective main-memory support is needed in

the same style as that for EXT-CACHE. As the pure data-driven approach is used, here we

mainly discuss its efficient implementation in the main-memory.

40

Figure 3.10 Pure Data-driven Approach to Main-Memory.

Figure 3.10 shows the actual implementation of DRAMi. The structure is the same to

that of the EXT-CACHE. The only difference is instruction format, which supports clauses

and static loop implantation with the help of the Lock method. Both these uses are discussed

in the next Chapter. Whenever a block is ready, it will indicate this to the PU-PIM (main-

memory controller) with control signals and then PU-PIM will decide, on a first-come-first-

41

served basis, which instruction should go to EXT-CACHE and should modify the flags

accordingly.

As shown in Figure 3.10, additional data and control signal communications are

needed with the Xilinx Virtex-II Block RAM for reading and writing data to the DRAMs of

the D2-CPU design from the host CPU to test our architecture. These additional architectural

features are discussed below.

3.2.7 Main-Controller and the Xilinx Virtex-II Block RAM

Figure 3.11 shows the implementation of the main-controller and the Xilinx Virtex-II Block

RAM. This figure is a continuation of Figure 3.7, in the complete system architecture.

The block RAM is a standard Virtex-II component available on the FPGA. There are

a total of 144 block RAMs available on the Virtex-II FPGA. We used just one 36 * 512

RAM, which has 512 registers each of 36-bit wide. Out of these 36, 32-bits are used for

storing data and the remaining four bits are used for parity. The main-controller can read

from and write data to this RAM, using the signal shown in Figure 3.11.

Reset, clock and Lad Bus interface signals are standard components available by

Annapolis Microsystems. Details of the Annapolis board are in follow in this Chapter.

Whenever this whole architecture is configured in the FPGA, we can read from and write to

the block RAM from the host computer system. In turn, when the global-reset is used, the

main-controller will start reading from the block RAM and fill the DRAMi. Then it will issue

a local reset to the D2-CPU design implemented in the FPGA. The D 2-CPU then will start its

execution. After completion of the program stored in the DRAM, it will let main-controller

know about it. The main-controller now will read the results from the DRAM and write them

into the same block RAM. We can then read these results from the block RAM through the

host-CPU using the LAD bus interface of the Annapolis board.

42

This is the overall architecture of the D 2-CPU. We will now discuss the details of the

Annapolis board and the actual design cycle for FPGA implementation.

Figure 3.11 The main-controller and the Xilinx Virtex-II Block RAM.

3.3 Overview of the Wildstar-II Board

The Annapolis Microsystems high-performance Wildstar-II board combines the high density

of reconfigurable system gates from Xilinxs Virtex-II FPGAs with very large memory and

high I/O bandwidth. We chose the PCI-based Wildstar-II board as its two XC2V6000 Virtex-

II FPGAs can deliver great levels of processing power, and its substantial on-board DDR or

43

DDR-II SRAM and DDR DRAM memories make it an ideal choice for building custom

computing machines.

Figure 3.12 shows the block diagram of the Annapolis Microsystems's Wildstar-II

/PCI board. It uses two Xilinx XC2V6000 FPGAs, with up to 16 million system gates each.

A host computer can communicate with the board via the PCI interface. The PCI bus

interface communicates with the Wildstar-II board's PCI controller. The PCI controller has

access to the FPGAs and Euro I/O cards using the Local Address Data (LAD) bus. The host

has direct register access and communicates with the FPGAs and the I/O cards over the LAD

bus. It has 12Mbytes of DDR II SRAM and 128MB of DDR SDRAM on the board. It has a

programmable Flash bank per FPGA for image storage.

Figure 3.12 Wildstar-II/PCI Block Diagram [17].

Each processing module, as shown in Figure 3.13 consists of a Xilinx Virtex-II

FPGA, six independent DDR2 SRAM ports, one bulk DDR DRAM port, three input/output

44

Transmit (Tx) and Receive (Rx) clocks, and a 32-bit LAD bus. It also consists of flash storage

for multiple FPGA images, three global clocks, three user clocks and three user LEDs.

The Wildstar-II board has two types of clocks: the global board clocks MCLK,

PCLK, ICLK, and the local clocks for each FPGA consisting of ACLK, BCLK and CCLK.

MCLK is differential and asynchronous to PCLK. It is configurable through the Wildstar-II

host software. PCLK is differential and asynchronous to MCLK, and is configurable through

the Wildstar-II host software. ICLK is the Local Address Data Bus clock. It is fixed at

132MHz and the FPGA uses this clock to interface to the PCI controller for host access via

the LAD bus.

Figure 3.13 Wildstar-II Processing Module [17].

45

The host communicates with the board using Wildstar-II Application Programming

Interfaces (APIs). The host software includes Wildstar-II APIs, device drivers, a run time

library and utilities, which enable efficient communication between the host and the board

through the PCI bus. The APIs are a set of functions coded in the C language allowing

communication between an application and the Wildstar-II run-time library. Many APIs are

provided to open the board, close the board, program the FPGAs, deprogram the FPGAs,

write onto them and read from them.

3.4 Design Flow and Implementation

The D2-CPU machine is designed using the VHDL hardware description language. Also, the

design of the main-controller and glue logic to interface the LAD bus is done in VHDL.

During this design, different tools at various levels of integration are used. We have followed

the standard Xilinx design flow in generating the complete system as shown in Figure 3.14.

We discuss below the details of design flow. Figure 3.15 shows the basic steps in the Xilinx

standard design flow.

The following are the steps followed in the FPGA design flow:

1. The design of all modules required by the D 2-CPU design is done using a
synthesizable subset of the VHDL language. The coding and compilation are done
using the Mentor Graphics Modelsim simulator.

2. The functional simulation is performed using the Modelsim simulator. Many test
benches are developed to test the D 2-CPU design using simulation. All the
instructions for the D2-CPU are tested using test benches.

3. Annapolis standard interfaces, like reset, clock and LAD bus interfaces, available in
VHDL are included at this stage. Steps one and two are performed again for design
verification.

4. These VHDL files are given as input to the Synplify Pro synthesis tool. During
synthesis the behavioral description in the HDL file is translated into a structural
netlist and the design is optimized for the Xilinx device XC2V6000. This generates a
netlist in the EDIF (Electronic Design Interchange Format) and VHDL formats.

46

Figure 3.14 Communicating with the Host System.

5. The output VHDL file from the synthesis tool is used to verify the functionality by
doing post synthesis simulation using the Modelsim simulator.

6. The netlist EDIF file is given to the implementation tools of the Xilinx ISE (5.1-I).
This step consists of translation, mapping, placing and routing, and bit stream
generation. The design implementation begins with the mapping or fitting of the
logical design file to a specific device, and is complete when the physical design is
completely routed and a bitstream is generated. Timing and static simulations are
done to verify the functionality. This tool generates an X86 file which is used to
program the FPGA.

7. Then a program in the C language is used. In this program different standard API
functions available by Annapolis Microsystems are used for communication between
the host system and the board. During execution of this program the host CPU
programs the FPGA using available X86 format file, write the program data on the
block RAM, reset the whole board and after finite given delay the results are read

47

back from block RAM. These results are compared with the required for correct
functionality of the whole system.

Figure 3.15 FPGA design flow [18].

All these steps are followed in a general design methodology to program the FPGA.

A small change in VHDL for correct execution leads to again start the design cycle from

scratch. This is done till we get the correct results.

Appendix consists of timing report, device utilization summary, design summary,

mapping report, and final place and route report. The timing report was generated by

Synplify the synthesis tool and gives the maximum frequency at which this particular design

48

can run. For this design, Synplify estimates 31.4 MHz. Therefore, 24 MHz is set to start. The

device utilization summary gives the amount of logic used by this design, which includes the

number of Block RAMs, slices, LUTs, and CLBs used. The place and route report indicates

the design complexity by means of time required to place and route the particular design. It

generates the total time required to place and route and also the detailed floor plan within

FPGA. Mapping and place and route can be done manually for optimized use of logic, but it

takes a lot of time. Automatic mapping and place and route are used.

In the next Chapter dataflow graphs and programming with the D2-CPU is discussed.

The results and comparative analysis are discussed in Chapter 5.

49

CHAPTER 4

DATA FLOW GRAPHS AND PROGRAMMING WITH THE D 2-CPU

4.1 Dataflow Graphs

4.1.1 Introduction

In dataflow machines, programs are stored in totally unconventional style. There are a lot of

different dataflow machines available at the research level. Although every machine has a

different programming language, their basics are the same. They share many common

principles. A short summary of dataflow programs and common terminology used is

discussed below which follows the programming with the D 2-CPU.

4.1.2 Dataflow Programs

Figure 4.1 shows a comparison between conventional control flow programming and

dataflow programming. There are two types of pointers for control flow, control flow

pointers and data flow pointers. Both have to be specified explicitly in the program. The

program counter (PC) takes care of control flow and thus the correct execution of the

program. This type of execution fits perfectly with sequential programming, but for parallel

programming the shared data memory has to be managed cautiously for correct execution of

the program. Truly, if data dependencies are preserved then there is no need of control flow

pointers, and then we can combine the instruction and data memories to form a single global

memory. As there are only dataflow pointers, these can be implicitly stated inside each

instruction. These pointers along with control flags can take care of data dependencies,

whereas control flags alone can be used to enable each instruction for execution.

50

Figure 4.1 Comparison: Control Flow vs. Dataflow [2].

Basically, in dataflow machines, each instruction is considered as a process, either

independent or dependent via either data or a clause to another instruction (process). Data can

be passed from a parent instruction to a child instruction, either by having the parent

instruction keep pointers to all child instructions or by having each child instruction keep

pointers to the parent instruction. Each instruction is considered as a node and communicates

with another node by a token, which is nothing but data transferred to another node with

some ID field. Arcs connect these nodes to each other. Each simple node consists of input

and output ports. Whenever a node has received all its operands it is fired to the execution

node .A node is fired only when it is enabled. Enabling rules are different for different types

of nodes. Strict enabling rules are followed for correct execution of programs. Figure 4.2

depicts the general flow for the dataflow graphs.

51

Node & Arcs Before Firing `+' Node 	 Node & Arcs After Firing `+' Node

Figure 4.2 Nodes, Arcs and Firing of Nodes.

4.1.3 Types of Nodes

There are three basic types of nodes. These nodes support a regular instruction, conditional

instruction or any loop instruction in the program. They are as follows:

1. Common nodes: The common nodes are shown in Figure 4.2. They represent
common instructions in a program. They will fire if and only if both of their input
values are available.

2. Switch Node: The switch nodes are shown in Figure 4.3. The value arriving at the
input is placed either on true or false output arc depending upon the value of the
control token. These are very useful in implementing conditional constructs.

Figure 4.3 Switch and Merge Node.

52

3. Merge Node: The merge nodes are shown in Figure 4.3. When one of their input
ports carries data, it fires and just copies input data to the output port.

Switch and Merge nodes are used to implement conditional and loop constructs.

Unwise use of these two nodes in either of any constructs can lead to an erroneous result.

That's why we change these two nodes to follow some strict enabling rules in the D2-CPU

design. The implementations of reentrancy and iterative constructs are discussed further.

4.1.3 Reentrancy

As described already, dataflow graphs are run away in nature. Simultaneous firing of many

nodes can increase throughput but leads to instability if not handled properly. Reentrancy

needs cyclic graphs, which in turn, may produce either a deadlock or a never finishing graph,

if not implemented correctly. There are in general four ways [2] to handle iterative constructs

in parallel machines, which are in fact classified under two styles of execution, dynamic and

static.

• Lock Method: For any loop, the first time we need a value from outside the loop and

for the remaining iterations, it derives it from the inside of it. If proper control is not

kept, then the simultaneous execution of two iterations can lead to totally disastrous

results. So, there has to be a mechanism to lock execution of iterations, so that the

next iteration will start when the first one finished. The lock method is used to do

that. Figure 4.4 shows the implementation of the lock method with use of merge and

switch nodes. For the first time the values X is obtained from outside and the merge

operator puts the value to its output when it becomes available; this value is checked

for necessary condition by f(X). This enables the switch node, if the value is true it

enters in the loop function "g", otherwise it comes out of the loop. This style

preserves the correct execution, as the second iteration will only start, if the first one

53

is over. It is a safe and simple method but not at all attractive for any type of parallel

machine, as the level of concurrency reduces with only one iteration executing at any

given time. This is a the static style of implementation.

Figure 4.4 Lock Method for Reentrancy.

• Acknowledge Method: This method is implemented by introducing extra

acknowledge arcs between two nodes. These acknowledge arcs work in a same

fashion of merge and switch node, and take care of proper execution of loops, though

this method is more complicated than the lock method. This is also a static loop

implementation.

• Code copying: To derive a high level of concurrency from a reentrant graph, the best

method is to allow iterations to execute as a separate instance of the graph. This can

be done by using a code copying technique. This needs an intelligent compiler, as

loop unfolding is done at the compiler level, where as a token is passed between two

copies is preserved by the hardware. It is a real good method if a lot of concurrency

occurs between iterations. This is a dynamic method.

• Tagged-Token [3]: First implemented in MIT's Tagged-Token-Dataflow-

Architecture (TTDA), it is a really impressive method to exploit loop level

parallelism. A tag, sometimes referred to as color or label, is attached to each node. A

54

tag represents a different iteration in a reentrant graph. So the firing rule is changed as

a node is fired if and only if its input arcs contain data with the same tag. This is the

most impressive dynamic method to implement loops. But this needs a lot of

hardware support, with plenty of new logic blocks. It is the most complicated

method.

Implementing reentrant graphs is again a tradeoff between performance and cost (required

logic). In the next Chapter we will show how we can use the lock method and code-copying

methods in the D 2-CPU design.

4.2 Programming with the D 2-CPU

4.2.1 Instruction Set

We already discussed the instruction set format in Chapter 4. Following are the instructions

in the design implemented with their OPCODEs.

Each instruction below is modified by attaching a CAD (Clause Address), CAN

(Clause Answer) and a CR (Clause Required), where if the CR of any instruction is set to ' 1 '

then that particular instruction will not be executed till its CAN becomes '1'; it is set to '0' at

compile time. The CAN is provided by an instruction with ID CAD and has to be a Boolean

compare (SWITCH) instruction.

Instructions like MERGE, LOCK and STOP don't go to the ERU for execution. As

we have implemented clause and loop support only in the DRAM, they even don't need to

travel out of the particular DRAM. Each DRAM (main memory) controller takes care of such

instructions.

55

Table 4.1 Instructions and OPCODEs

Sr. No. Instruction OPCODE Description

1 ADD 000001 16 bit ADD instruction

2 SUB 000101 16 bit SUB instruction

3 MUL 000010 8 bit MUL instruction

4 AND 000011 16 bit AND instruction

5 OR 000111 16 bit OR instruction

6 NAND 001011 16 bit NAND instruction

7 NOR 001111 16 bit NOR instruction

8 XOR 010011 16 bit XOR instruction

9 NOT 010111 16 bit NOT instruction

10 EQT 011011 Equal To - Boolean Result

11 NEQT 011111 Not Equal To - Boolean Result

12 GT 100011 Greater Than - Boolean Result

13 LT 100111 Less Than - Boolean Result

14 GET 101011 Greater Than/Equal To - Boolean Result

15 LET 101111 Less Than/ Equal To - Boolean Result

16 SHL 110011 16 bit Shift Left

17 SHR 110111 16 bit Shift Right

18 RAL 111011 16 bit Rotate Left

19 RAR 111111 16 bit Rotate Right

20 MERGE 000000 Merge Node with LP 01
21 SWITCH xxxxll Any Compare Instruction with LP 10

If Included in Loop Else LP 00

22 LOCK 000000 Lock Node with LP 11

23 STOP 100000 Stop Instruction LP 11

As described earlier in this Chapter, MERGE (with LP 01) fires whenever its CAN is

`1'; it receives any of its input tokens and just copies the required the input token to the

output. It receives its CAN only once from outside the loop. A SWITCH instruction (with LP

10) fires when its CAN is ' 1 ' and it receives its operand from MERGE immediately above it.

The answer to this SWITCH instruction is the CAN for the reaming normal instructions in a

56

loop, which set its CAN again to '0' when that instruction fires for each iteration. This same

clause is for the LOCK instruction, a special instruction, which is a modified version of

MERGE. This instruction fires if and only if its CAN is set to '1' and both of its operands are

available. Its first operand is the output of a MERGE instruction whereas its second input is

out put of the last instruction in the loop. So, this instruction preserves the correct execution

by the lock method. This instruction just copies its second input to the output, which is the

input to MERGE instruction for the next iteration, which fires when it receives this token.

Figure 4.5 below shows modification of Figure 4.4 to adapt to the D 2-CPU design.

Figure 4.5 Lock Method Used in the D 2-CPU.

The code copying technique is very easy to implement in the D 2-CPU design but

needs intelligent compiler support. There is no need to use MERGE and LOCK nodes, but

we can directly use only SWITCH before each reentrant sub-graph `g', which is alway

57

checked for a defined condition in each iterations. CAN, CAD, and CR suffice for this

purpose.

The ORE (Operand Reuse) field in each common loop instruction is used as already

described in Chapter 3; it takes care of data consistency for loops.

4.2.2 Sample Program

Table 4.2 below shows a sample program implemented in a high level language and also its

corresponding assembly language conversion for conventional microprocessors. Table 4.3

gives the equivalent D 2-CPU code. Figure 4.6 shows a flow diagram for D 2-CPU code.

Table 4.2 Sample Program in High Level and Assembly Languages

High Level Language Assembly Language

Get (x) Get (x)
y = (2 * x) — 10 MOV R1, x
If y > 0 then Conditional MUL R1, 2

b = 7 SUB R1, 10
for I = 1 to 10 Loop MOV R2, 7

a = b * y CMP R1, 0
y = a JIL B1

end for MOV R3, 1

else LP1 	 CMP R3, 10
y = 7 * b JIG EXIT

end if MUL R1, R2
ADD R3, 1
JUMP LP1

B1 	 MUL R1, R2
,EXIT

58

Table 4.3 Equivalent D2-CPU Code

Address ORE LP VB CR CAN CAD OPFL IID2 I1D1 OPD2 OPD1 OPCODE

A Get (x)

B 00 00 1 0 1 0 01 0 A 2 0 000010 MUL

C 00 00 1 0 1 0 01 0 B 10 0 000101 SUB

D 00 00 1 0 1 0 01 0 C 0 0 100011 GT

E 00 00 1 0 1 0 01 0 C 0 0 101111 LET

F 00 01 1 1 0 D 10 0 0 1 000000 MERGE

G 00 10 1 1 0 D 01 0 F 10 0 101111 LET

H 00 01 1 1 0 D 11 C I 0 0 000000 MERGE

I 10 00 1 1 0 G 01 0 H 7 0 000010 MUL

J 11 11 1 1 0 G 11 I F 0 0 000000 LOCK

K 10 00 1 1 0 G 01 0 J 1 0 000001 ADD

L 00 00 1 1 0 E 00 0 0 7 7 000010 MUL

Figure 4.6 and Table 4.3 show the exact similarity between the flow diagram and the

assembly language for the D2-CPU, which proves that the D2-CPU follows pure data flow. In

fact, a compiler can very easily support direct conversion from a flow diagram to assembly

code. So the flow diagram can also be used by a graphical language for the D 2-CPU, which is

one of the objectives specified in Chapter 2. As shown above, redundant instructions such as

move are totally eliminated in the D 2-CPU design, which is a major achievement.

If we use the code copying technique for loop implementation, we can totally remove

MERGE and LOCK instructions. We just need to copy the loop code and check the LET 10

condition periodically. This is the best method but need an intelligent compiler.

The next Chapter shows results of the D2-CPU design implemented on an FPGA and

also analysis of the design.

Figure 4.6 Flow Diagram for Code Presented in Table 4.3.

59

60

CHAPTER 5

RESULTS AND ANALYSIS OF THE D 2-CPU

5.1 Results

The host CPU communicates with the Annapolis board through APIs written in high level

language C. Annapolis Microsystems provides standard functions in C, which we can use to

communicate with the board. There are two standard functions WSII_WriteRegs_32 and

WSII_ReadRegs_32, through which we can write to and read from the block RAM,

respectively. For this purpose, two buffers are created pReadBuffer and pWriteBuffer. The

pWriteBuffer can be assigned values, which in turn is used by the WSII_WriteRegs_32

function, whereas WSII_ReadRegs_32 writes its result to the pReadBuffer, which can be

displayed. Table 5.1 shows pWriteBuffer and pReadBuffer for a very small program run on

the D2-CPU.

Each buffer is 32 bits wide, so numbers are specified in the hexadecimal format. As

each block in the program memory consists of five 16-bit registers, three buffers represent a

single block in the program memory. Two LOCK instructions are used to just a store the

results of the first three instructions so that they can be verified.

Each Valid Bit (VB) is set to '0' when the instruction leaves for execution. This

modifies each program memory, and in turn the block RAM. Also, the out put of the first

LOCK instruction is just the output of the second instruction, as the LOCK instruction is a

MERGE node just copying OPD2 to the output.

Bold numbers below show the changes occurring due to program execution and the

OPD fields of LOCK instructions show the output results of the first, second, third, and

fourth instructions, respectively.

61

Table 5.1 Results: Contents of Read and Write Buffer

Buffer pWriteBuffer Contents Description pReadBuffer Contents Description

Number (Hexadecimal Format) (Hexadecimal Format)

1 00000000

ADD 1, 1

00000000 For all three

2 A0010000 00010000 instructions

3 00010001 00010001 Valid Bit is set to

4 00000000

MUL 2,2

00000000 0' after execution

5 A0020000 00020000 of instruction

6 00020002 00020002

7 00000000

SHL 2

00000000

8 A0330000 00330000

9 00000002 00000002

10 00000003

LOCK *1, *2

00000003 LOCK Instruction

11 A000C101 00000101 Stores Results of

12 00000000 00040002 1st & 2nd Instruction

13 00000003

LOCK *3, *4

00000003 LOCK Instruction

14 A000C203 00000203 Stores Results of

15 00000000 00040004 3rd & 4th Instruction

5.2 Analysis

Finally a comparative analysis between the D 2-CPU and a conventional processor is

necessary to prove the viability of this project. A comparison is made below on two bases,

first the hardware required and second the turnaround time. Non-pipelined units are assumed.

5.2.1 Storage Resources and Bus

If there are no software loops, then the D 2-CPU system stores only one copy of an instruction

at any moment, whereas duplicate copies of instructions are stored in the cache and main

62

memory for conventional architecture. In the D 2-CPU, each instruction carries with it, the

address fields for each operand. Except for the immediate addressing mode in a conventional

CPU each instruction carries with it the respective register or memory addresses. Data is

stored separately, which is the most common technique. So, both redundancies cancel each

other. Each instruction carries its own physical address in the D 2-CPU. This increases the

required width of the data bus but conventional CPU also has its address bus.

In the main memory, the D 2-CPU needs the CAD, CAN, and CR. These extra

hardware recourses are needed in the D 2-CPU to support clauses. This extra hardware

reduces the time penalty required to pay in conventional processors when any JUMP

instruction occurs. In fact, such JUMP instructions are common features in conventional

assembly languages, as they effectively implement very common conditional constructs in

higher-level language programming (like If... else). With pipelining, such a penalty causes a

huge difference, as the whole pipeline with all pre-fetched data has to be cleared till the

JUMP instruction gets executed and then again starts from scratch to fill the pre-fetch data

buffer. In the D2-CPU, such a JUMP instruction doesn't exist, and even till the time the

clause (in form of a token) reaches the required instructions to awake them, the remaining

independent instructions still execute and no flushing of the pipeline or data buffer (EXT-

CACHE or SRAM*) is needed.

The D2-CPU requires PU-PIM units for each memory, but these units are external to

the CPU and don't count towards chip area. These PU-PIM units make the memory part

intelligent in the D2-CPU.

5.2.2 Turnaround Time

A conventional CPU pays a lot of time penalty when either a page fault occurs or writing

back results from cache to memory for data consistency. For the D 2-CPU, there is zero

63

probability of page fault as when an instruction leaves for the ERU, some other instruction in

the main memory takes its place in the cache. Secondly, there are no writing back results

from the cache to the main memory, as results or tokens are only propagated by the ERU and

received by other units.

A single clock cycle is required to transfer the data from the cache memory to the

CPU. For all memory addressing modes, a conventional CPU needs two or more cycles to

fetch all of its required operands. Even for the regular fetching the CPU first has to put

address on the address bus and then in the second clock cycle it gets data from the cache so

two cycles are needed to fetch an instruction. For writing back results to memory again two

clock cycles are needed, whereas writing back results from the cache to the main memory are

considered in the above paragraph.

For the D2-CPU, instructions are supplied from the outside so there are no addressing

modes to count towards any time increase. As each instruction requires one clock cycle to

move from the cache to the ERU, the D 2-CPU saves a clock cycle behind every cache to

ERU transfer. Tokens released irrespective of ERU execution cycles need only one clock

cycle to transfer from the ERU to cache, and again the D 2-CPU saves one clock cycle.

This saving in time is compensated by the logic required to implement intelligent

memories. Each block in the memory is associated with logic units, which basically

constitutes comparators. It is not a big penalty in terms of hardware resources out side of the

ERU chip. With the advent of the PIM concept, this is a practically possible design.

5.2.3 Software Support

As shown in Chapter 4, the D 2-CPU uses a graphical language which differs very slightly

from actual assembly language. Because of this, the D2-CPU needs very little help from the

compiler. The compilers needed for this design are not required to be very complicated,

64

which in turn saves time in compilation and also the cost for making them. So, this is another

benefit of the D2-CPU design. These graphical languages are very easy to use compared to

current high level languages. This creates more user friendly language constructs than present

languages.

This concludes the result and analysis part of the D 2-CPU design, though a lot of

work is still needed in terms of testing programs on this D2-CPU design. As each design

change needs 15 to 16 hours for the present logic complexity to complete a whole design

cycle, a lot of time is needed to do such an analysis. Although this time is nothing, compared

to ASIC designs, as the latter need similar times to just prove the design at the post-layout

simulation level, whereas the actual manufacturing of the chip requires several months and

lots of money.

CHAPTER 6

CONCLUSIONS

This thesis work was able to implement the D 2-CPU design [1]. Successful implementation

of the D2-CPU design on a Xilinx Virtex-II FPGA mounted on the Annapolis Microsystems

Wildstar-II board proves the viability of the data-driven paradigm with the FPGAs at the

single processor level. This work is able to fulfill the required objectives like:

• A radical single processor design supporting the pure data-driven paradigm.

• A design with distributed control and minimized redundant operations.

• High utilization of resources in directly application related work, i.e. towards more
productivity.

• Low hardware complexity, which leads to low cost and low power consumption.

Though it is a quite successful design implementation the following improvements are

needed:

• Instruction relocation proposed in [1] needs to be implemented for multiprogramming
and virtual memory support.

• Exception handling is needed for a fault tolerant architecture.

• Functional units need to be pipelined for increase of the system frequency.

• ERU-SRAM units need to be smarter, by adding a count field, which increases more
dynamic parallelism in the ERU.

• The size of the EXT-CACHE and DRAM has to be increased for more instruction
support.

• Implementation of full-duplex bidirectional buses throughout will increase the
throughput of the D2-CPU design.

• Extensive testing is needed for a fault tolerant architecture and also to show the exact
speedup over the convectional CPU in different styles of programming.

65

66

APPENDIX

DESIGN REPORT FILES

Report files, generated by different design tools are listed below. These files give sight of

actual design on hardware level.

Synthesis Report File: Below is the content of log file generated by Synplify-Pro synthesis

tool, which gives detail timing report and resource utilization.

$ Start of Compile

#Tue Nov 11 18:52:55 2003
Synplicity VHDL Compiler, version 7.1, Build 158R, built Apr 18 2002
Copyright (C) 1994-2002, Synplicity Inc. All Rights Reserved
VHDL syntax check successful!
Synthesizing wsii_pe_lib.systeml.struc
@N:"C: \anish\Dataflow\new\ system.vhd" :64:0:64 :1IInstance cl is bound to entity
memory_system, architecture struc.
@N:"C:\anish\Dataflow\new\system.vhd ":65:0:65:1IInstance c2 is bound to entity ERU,
architecture eru.
Synthesizing wsii_pe_lib.eru.eru
@N:"C:\anish\Dataflow\new\eru.vhd ":53:0:53:1IInstance cl is bound to entity cpu,
architecture rtl.
@N:"C:\anish\Dataflow\new\eru.vhd ":54:0:54:11Instance c2 is bound to entity hm,
architecture hm.
Synthesizing wsii_pe_lib.hm.hm
Post processing for wsii_pe_lib.hm.hm

START TIMING REPORT
Timing Report written on Tue Nov 11 21:42:33 2003
#Top view:	 system 1
Slew propagation mode: worst
Paths requested:	 5
Constraint File(s):
@NI This timing report estimates place and route data. Please look at the place and route
timing report for final timing.
@NI Clock constraints cover all FF-to-FF, FF-to-output, input-to-FF and input-to-output
paths associated with a particular clock.

67

68

Performance Summary

Worst slack in design: -16.730

	

Requested Estimated Requested Estimated	 Clock
Starting Clock	 Frequency Frequency Period 	 Period	 Slack	 Type

I CLK	 66.0 MHz	 200.7 MHz	 15.152	 4.982	 10.169
inferred
cl.c3.token l_inferred_clock[5] 66.0 MHz 	 76.0 MHz	 15.152	 13.152	 2.000
inferred
clk	 66.0 MHz 31.4 MHz	 15.152	 31.881	 -16.730 inferred
System	 66.0 MHz	 34.7 MHz	 15.152	 28.782	 -13.630
system

END TIMING REPORT

Resource Usage Report for systeml

Mapping to part: xc2v6000ffl 517-4
Cell usage:
VCC	 9 uses
MUXF5	 2627 uses
FDC	 2823 uses
FDCE	 2713 uses
GND	 9 uses
MUXCY_L	 297 uses
XORCY	 249 uses
MUXF6	 240 uses
FDPE	 7 uses
MUXCY	 7 uses
FDE	 247 uses
MULT18X18	 1 use
RAMB16 S36 S36 1 use
FDP	 5 uses
LDC_1	 1952 uses
LDC	 1632 uses
LDCE 1	 448 uses
LDCP 1	 32 uses
LD	 8320 uses
LD_1	 7808 uses
LDP_1	 128 uses

I/O primitives:
OBUF_ F_ 24 34 uses
IBUF	 45 uses

BUFG	 7 uses

69

BUFGP 	 1 use
I/O Register bits: 	 2
Register bits not including I/Os: 5793 (8%)

Internal tri-state buffer usage summary
BUFTs + BUFEs: 10068 of 16896 (59%)

RAM/ROM usage summary
Block Rams : 1 of 144 (0%)

Global Clock Buffers: 8 of 8 (100%)

Mapping Summary:
Total LUTs: 59155 (87%)

Mapper successful!
Process took 9854.3 seconds realtime, 9854.31 seconds cputime

70

Mapping Report File: This file gives design summary after mapping the design to the

required technology, here Xilinx Virtex-II.

Release 5.2.03i - Map F.31
Xilinx Mapping Report File for Design 'system 1'

Design Information

Command Line : CiXilinx/binint/map.exe -quiet -p xc2v6000-ffl 517-4 -cm area
-detail -pr b -u -k 4 -c 100 -tx off -o system l_map.ncd systeml.ngd systeml.pcf
Target Device : x2v6000
Target Package : ffl 517
Target Speed : -4
Mapper Version : virtex2 $Revision: 1.4 $
Mapped Date : Tue Nov 11 21:57:47 2003

Design Summary

Number of errors: 0
Number of warnings: 1723
Logic Utilization:
Total Number Slice Registers: 26,113 out of 67,584 38%
Number used as Flip Flops: 	 5,793
Number used as Latches:	 20,320

Number of 4 input LUTs: 	 58,823 out of 67,584 87%
Logic Distribution:

Number of occupied Slices: 	 33,790 out of 33,792 99%
Number of Slices containing only related logic: 32,792 out of 33,790 97%
Number of Slices containing unrelated logic: 	 998 out of 33,790 2%

*See NOTES below for an explanation of the effects of unrelated logic
Total Number 4 input LUTs: 	 58,946 out of 67,584 87%

Number used as logic:	 58,823
Number used as a route-thru:	 123

Number of bonded IOBs:	 80 out of 1,104 7%
IOB Flip Flops:	 2

Number of Tbufs:	 10,068 out of 16,896 59%
Number of Block RAMs:	 1 out of 144 1%
Number of MULT18X18s: 	 1 out of 144 1%
Number of GCLKs:	 8 out of 16 50%

Total equivalent gate count for design: 610,922
Additional JTAG gate count for IOBs: 3,840
Peak Memory Usage: 541 MB

NOTES:

Related logic is defined as being logic that shares connectivity -
e.g. two LUTs are "related" if they share common inputs.
When assembling slices, Map gives priority to combine logic that
is related. Doing so results in the best timing performance.

Unrelated logic shares no connectivity. Map will only begin
packing unrelated logic into a slice once 99% of the slices are
occupied through related logic packing.

Note that once logic distribution reaches the 99% level through
related logic packing, this does not mean the device is completely
utilized. Unrelated logic packing will then begin, continuing until
all usable LUTs and FFs are occupied. Depending on your timing
budget, increased levels of unrelated logic packing may adversely
affect the overall timing performance of your design.

71

72

Place and route report file: This file gives place and route details. As shown below

maximum pin delay is 28.9 ns , so in fact we can use 38.1 MHz clock frequency in place of

31.4 MHz indicated by synthesis tool.

Release 5.2.03i - Par F.31
Copyright (c) 1995-2002 Xilinx, Inc. All rights reserved.

XEON-2:: Tue Nov 11 22:00:11 2003

C:/Xilinx/bin/nt/par.exe -w -ol 3 -t 1 -ub -detail systeml_map.ncd systeml.ncd
systeml.pcf
Constraints file: systeml.pcf
Loading device database for application par from file "systeml_map.ncd".

"systeml" is an NCD, version 2.37, device xc2v6000, package ff1517, speed -4
Loading device for application par from file '2v6000.nph' in environment
C:/Xilinx.
The STEPPING level for this design is 0.
Device speed data version: PRODUCTION 1.114 2002-12-13.

Device utilization summary:

Number of External IOBs	 80 out of 1104 7%
Number of LOCed External IOBs 0 out of 80 0%

Number of MULT18X18s
Number of RAMB16s
Number of SLICEs

1 out of 144 1%
1 out of 144 1%

33790 out of 33792 99%

Number of BUFGMUXs	 8 out of 16 50%
Number of TBUFs	 10068 out of 16896 59%

Overall effort level (-ol): 3 (set by user)
Placer effort level (-pl): 3 (set by user)
Placer cost table entry (-t): 1
Router effort level (41): 3 (set by user)

Phase 1.1
Phase 1.1 (Checksum:a377af) REAL time: 18 mins 29 secs

Phase 3.23

Phase 3.23 (Checksum:9896bb) REAL time: 22 mins 31 secs

Phase 4.3
Phase 4.3 (Checksum:26259fc) REAL time: 24 mins 36 secs

Phase 6.5

Phase 6.5 (Checksum:39386fa) REAL time: 24 mins 58 secs

Phase 7.8

Phase 7.8 (Checksum:82cb3cb) REAL time: 2 hrs 33 mins 38 secs

Phase 8.5
Phase 8.5 (Checksum:4c4b3f8) REAL time: 2 hrs 34 mins 3 secs

Phase 9.18
Phase 9.18 (Checksum:55d4a77) REAL time: 2 hrs 44 mins 53 secs

Phase 10.19
Phase 10.19 (Checksum:5f5e0f6) REAL time: 2 hrs 48 mins 53 secs

Phase 11.24
Phase 11.24 (Checksum:68e7775) REAL time: 2 hrs 48 mins 53 secs

Writing design to file systeml.ncd.

Total REAL time to placer completion: 2 hrs 49 mins 2 secs
Total CPU time to placer completion: 2 hrs 42 mins 45 secs

Starting Router 	 REAL time: 2 hrs 49 mins 20 secs

Phase 1: 287639 unrouted; 	 REAL time: 2 hrs 49 mins 45 secs

Phase 2: 265447 unrouted; 	 REAL time: 2 hrs 57 mins 43 secs

Phase 3: 125529 unrouted; (1777) REAL time: 3 hrs 4 mins 41 secs

Phase 4: 125706 unrouted; (0) REAL time: 3 hrs 42 mins 11 secs

73

Intermediate status: 15397 unrouted;

Intermediate status: 3998 unrouted;

Intermediate status: 1224 unrouted;

Intermediate status: 385 unrouted;

Intermediate status: 94 unrouted;

Intermediate status: 17 unrouted;

Intermediate status: 8 unrouted;

REAL time: 4 hrs 13 mins 33 secs

REAL time: 4 hrs 51 mins 4 secs

REAL time: 5 hrs 27 mins 30 secs

REAL time: 6 hrs 3 mins 46 secs

REAL time: 6 hrs 37 mins 35 secs

REAL time: 7 hrs 8 mins 25 secs

REAL time: 7 hrs 40 mins 32 secs

Phase 5: 0 unrouted; (0) REAL time: 7 hrs 59 mins 39 secs

74

Finished Router	 REAL time: 7 hrs 59 mins 40 secs

Total REAL time to router completion: 8 hrs 34 secs
Total CPU time to router completion: 7 hrs 52 mins 20 secs

Generating "par" statistics.

Generating Clock Report

It's a huge report and not included here.
The Delay Summary Report

The Score for this design is: 689

The Number of signals not completely routed for this design is: 0

The Average Connection Delay for this design is: 	 2.844 ns
The Maximum Pin Delay is: 	 25.879 ns
The Average Connection Delay on the 10 Worst Nets is: 20.229 ns

Listing Pin Delays by value: (ns)

d < 5.00 < d < 10.00 < d < 15.00 < d < 20.00 < d < 26.00 d >= 26.00

221804	 41113	 13938	 1675	 41	 0

All signals are completely routed.

Total REAL time to par completion: 8 hrs 37 mins 21 secs
Total CPU time to par completion: 8 hrs 27 mins 55 secs

Placement: Completed - No errors found.
Routing: Completed - No errors found.

Writing design to file system 1.ncd.

PAR done.

75

REFERENCES

[1] S. Ziavras, "Processor Design Based on Dataflow Concurrency," Microprocessors and
Microsystems, Vol. 27, No. 4, May 2003, pp. 199-220.

[2] A. Veen, "Dataflow Machine Architecture", ACM Computing Surveys, Vol. 18, No. 4,
Dec. 1986.

[3] Arvind and R. Nikhil, "Executing a Program on the MIT
Tagged-Token-Dataflow-Architecture", IEEE Trans. Comput., Vol. 39, no. 3, Mar. 1990, pp.300-318.

[4] D. Lopez, J. Llosa, M. Valero, and E. Ayguade, "Widening Resources: A Cost-Effective
Technique for Aggressive ILP Architectures," MICRO '98, pp. 237-246.

[5] X. Tang and G. Gao, "Automatically Partitioning Threads for Multithreaded
Architectures," Journ. Paral. Distr. Comput., Vol. 58, 1999, pp. 159-189.

[6] H. Hum et al., "A Design Study of the Earth Multiprocessor," International Conf.
Paral. Arch. Compil. Techn., 1995, pp. 59-68.

[7] R. Korry, C. McCann, and B. Smith, "Memory Management in the Tera MTA System,"
Techn. Rep., Tera Comput., Seattle, WA, 1995.

[8] M. Flynn, Computer Architecture: Pipelined and Parallel Processor Design, Jones and
Bartlett Publ., 1995.

[9] H. Terada et al., "Design Philosophy of a Data-Driven Processor: Q-p," Joum. Inform.
Proc. Vol. 10, No. 4, Mar. 1988, pp. 245-251.

[10] M. Chatterjee, S. Banerjee, and D. Pradhan, "Buffer Assignment Algorithms on Data
Driven ASICs," IEEE Trans. Comput., Vol.49, No.1, Jan. 2000, pp. 16-32.

[11] H. Kung and M. Lam, "Wafer Scale Integration and Two Level Pipelined
Implementation of Systolic Arrays," Jurn. Paral. Distr. Comput., Vol. 1, No. 1, Sept.
1984, pp.32-63.

[12] S. Ingersoll and S. Ziavras, "Intelligent Memories for Dataflow Computation and
Emulation on Field Programmable Gate Arrays," Microprocessors and Microsystems,
Vol. 26, No. 6, Aug. 2002, pp. 263-280.

[13] B. Radanovich, "An Overview of Advances in Reconfigurable Computing
Systems," Proceedings, Conference on System Sciences, 1999.

[14] R. Hartenstein, "A Decade of Reconfigurable Computing: A Visionary Retrospective,"
IEEE Proc. Int. Conf. Exhib. Design Automation, Testing Europe, Munich, Germany,
2001, pp.135-143.

76

[15] S. Hauck, G. Borriello, C. Ebeling, "Mesh Routing Topologies for Multi- FPGA
Systems," International Conference on Computer Design, pp.170-177, 1994.

[16] X. Wang and S. Ziavras, "Parallel LU Factorization of Sparse Matrices on FPGA-Based
Configurable Computing Engines," Concurrency and Computation , 2003.

[17] Widlstar-II Hardware Reference manual, Annapolis Microsystems, revision 2.4, 2002.

[18] http://toolbox.xilinx.com/docsan/xilinx4/data/docs/lib/dsgnelpr32.html
(taken on 21st Nov. 2003)

[19] http://www.intel.com/cd/ids/developer/asmo-na/eng/technologies/threading/applying
(taken on 21st Nov. 2003)

	Configurable computer systems can support dataflow computing
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: The D2-CPU
	Chapter 3: Design Of A FPGA Based D2-CPU
	Chapter 4: Data Flow Graphs And Programming With The D2-CPU
	Chapter 5: Results And Analysis Of The D2-CPU
	Chapter 6: Conclusions
	Appendix: Design Report Files
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

