New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Spring 2024

ME 343-102: Mechanical Lab I

Pushpendra Singh

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Singh, Pushpendra, "ME 343-102: Mechanical Lab I" (2024). *Mechanical and Industrial Engineering Syllabi*. 524.

https://digitalcommons.njit.edu/mie-syllabi/524

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME 343 Mechanical Laboratory I

Instructor: Dr. P. Singh

Online Office Hours: by appointment Office: 316 MEC Phone: 973-596-3326 Email: <u>singhp@njit.edu</u>

Textbook: J. P. Holman, Experimental Methods for Engineers, 8th Edition, McGraw Hill, 2011

Topic	Reading Assignment	Key concepts			
Introduction;	15.4; 2.7, 3.3, 3.4, 3.6, 3.8,	Lab report writing; linear aggression; Uncertainty			
Data analysis	3.9, 3.11-3.14, Notes 1-3	analysis			
Speed Measurements and	4.12, 4.15	Filtration theory; Oscilloscope applications			
Signal Filtration	Notes 4-5				
Temperature measurements	8.5,8.6, 8.8, 8.9, 2.7	Thermocouple; thermo-resistance; pyrometers			
	Notes 6-7				
Force and Torque	10.3-10.8	Strain-stress relationship; strain gage; Wheatstone			
Measurements (Strain gage)	Notes 8-9	bridge			
Flow rate & Velocity	7.3, 7.4, 7.6, 7.13	Bernoulli equation; Venturi meter; Pitot tube; Laser			
Measurements	Note 10; supplements	Doppler Velocimetry; Flow visualization			
Control (PLC & PID)	Note 12; supplements	PLC, Ladder logic diagram; PID			
Acoustics	11.5; Note 11	Sound pressure level (dB); attenuation			

Course Content

Course Arrangement

Week						
	Торіс	Homework	Topic	Report Due		
1	Introduction: Chap 15, Chap 3	-	-	-		
2	Data analysis Chap 3, Chap 4	HW#1	Dotation speed &	-		
3	Sample analysis	-	 Rotation speed & signal filtration 	HW#1		
4	Thermometry: Chap 8, Chap 2	HW#2	Temperature	Rot. Sp. & Fil.		
5	Sample analysis of Temperature	-		HW#2		
6	Strain gage: Chap 10	-	Strain 1; Mid-term	Temperature		
7	Strain gage (continue)	HW#3	Strain 2	-		
8	Sample analysis of Strain Gage	-	Strain 2	HW#3		
9	Pressure and flow: Chap 7	HW#4	Flow	Strain gage		
10	Sample analysis of Flow	-		HW#4		
11	Acoustics: Chap 11	-	Acoustics	Flow		
12	Control Theory (PLC; PID)	HW#5	PLC Control	Acoustics (abstract)		
13	Sample analysis		PID Control	HW#5, PLC (Abstract)		
14	Review	-	-	PID (Abstract)		
	Final Exam					

ME 343 Mechanical Lab I

Course requirements and grading

(1) Grading:

50% Lab Report (5) and 5% Lab Abstract (1)
Lab attendance is required
5% Class Attendance (14)
10% Homework (5)
15% Midterm Examination
15% Final Examination

Final Grade: 90% and above "A" grade; and below 60% "F" grade.

(2) Lab Report Requirement

All reports should be completed individually and submitted on Canvas on time. Group discussions are encouraged, but you must write your own report.

(3) Homework and Lab Report Requirements

- (a) Five Assignments will be given, with 4-5 problems per assignment.
- (b) Assignments are due biweekly and must be submitted on canvas on time
- (c) Late submission will be accepted, but you will lose 50% points.
- (d) Homework grade will be based on the effort.
- (e) Homework will be returned in about one week.
- (4) Midterm/Final Exam Requirement
 - (a) Mid-term exam: It will cover the following topics: Uncertainty Analysis, Filtration Theory, and Theory for Temperature Measurement.
 - (b) Final exam: It will cover the following topics: Strain-gage Theory, Theory of Flow Measurement, PLC & PID Control Concept, and Theory of Acoustics Measurement.
 - (c) Examinations will be conducted online using canvas
 - (d) Both exams will be open book/notes