New Jersey Institute of Technology Digital Commons @ NJIT

Physics Syllabi

NJIT Syllabi

Spring 2023

PHYS 114 - 002: Introduction to Data Reduction with Applications

Andrew Gerrard

Follow this and additional works at: https://digitalcommons.njit.edu/phys-syllabi

Recommended Citation

Gerrard, Andrew, "PHYS 114 - 002: Introduction to Data Reduction with Applications" (2023). *Physics Syllabi*. 523.

https://digitalcommons.njit.edu/phys-syllabi/523

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Physics Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

New Jersey Institute of Technology- Spring 2023 PHYS 114 – INTRODUCTION TO DATA REDUCTION WITH APPLICATIONS (3-0-3)

Topics:	An introduction to both the theory and application of data processing, error analysis, an reduction methodologies, for use in scientific research. Topics include probability distribution	
	functions, specifically the binomial distribution and its simplification to Gaussian and Poisson probability distribution functions, estimation of moments, and propagation of uncertainty.	
	Forward modeling, including least-squares fitting of linear and polynomial functions are discussed. Topics in digital signal processing, including Fourier transforms, windowing,	
	filtering, and power spectral density estimation is reviewed. The course enables students to	
	apply the concepts of the data reduction and error analysis using a commonly available data analysis software suite to real data sets often found in the physical sciences.	
Objectives:	By the end of the course, students should	
	a) Be able to address the pros and cons of various methods of measurementb) Be conversant with the data reduction and error analysis concepts mentioned above,	
	c) Be able to analyze 1D and 2D data sets to find computational estimates of PDFs, moments, and to address the appropriateness of various forward models,	
	d) Be familiar with various measurement techniques so as to best experimentally determine	
	PDFs, moments, and the appropriateness of various forward models, e) Be able to create figures that are journal-quality,	
	f) Be extremely familiar with the agreed upon software package so as to utilize it in subsequent	
	classes and research endeavors.	
Instructor:	Andrew J. Gerrard, Ph.D., Professor	
	Email: gerrard@njit.edu, Office: 101 TIER, Phone: 3360 Web: http://web.njit.edu/~gerrard	
	Office Hours: TBD	
Co-requisite:	MATH 111	
Course Materi	als: Bevington, P.R. and D. K. Robinson, <i>Data reduction and error analysis for the physical sciences, 3rd ed.</i> , McGraw-Hill, Boston, 2003.	
	Python, using the Anaconda package (<u>https://www.anaconda.com</u>)	
-	ements and Grading Policy:	
Homework	30%	

Homework is given every other week and is considered an important part of the class. The homework usually consists of reading the text, short answer questions, and mathematical calculations; often requiring Python. An assignment is given on the first lecture of the week [when theoretical material is covered] and may require measurements to be performed during that week either at the second lecture or outside of class. Students *are encouraged to work together* on the homework problems, though each student is responsible for handing in an *individual* homework set.

3 Exams (2 during the semester worth 15% each, and 1 final worth 25%): The purpose of the exams is to test the *individual* student's progress in the class. Exams are closed book/notes, but the student is allowed to bring in one 8.5x11 inch sheet of notes for each exam. Later exams can make use of previous note sheets (i.e., the note sheets are cumulative). Exams will be announced ahead of time. 55%

15%

Class participation

Attendance at lecture is expected.

THE NJIT HONOR CODE WILL BE STRICTLY ENFORCED AND ANY VIOLATIONS WILL BE BROUGHT TO THE IMMEDIATE ATTENTION OF THE DEAN OF STUDENTS.

Week	Date	Торіс
1	Jan 15	INTRODUCTION TO CLASS
-		Data files, types, conversion, importance (e.g., <i>header, metadata, EOF</i>)
		Review of <u>Python</u> : reasons for use, range of capabilities, and alternatives
		APPLICATION: Writing a basic Python program
2	Jan 22	Undergraduate Research 101
		Funding agencies and mission, proposals (purpose, submission, review), budgets, tasks
		Things To Do and Things To Not Do: Strongly Encouraged Suggestions
		Basic Python operations for reading in data, analysis, and professional graphical output
2	1 20	APPLICATION: Write a basic Python program to read in real data and make a plot
3	Jan 29	Uncertainties in Measurement: Chap 1 Probability Distribution Functions (PDFs)
		Sample mean + sample standard deviation
		Percent error, SNR, dB/dBi
		APPLICATION: Given a counting experiment [e.g., PMT] find various quantities
4	Feb 5	Explicitly defined <u>PDFs</u> : Chap 2
		Binomial
		Gaussian, Poisson, Others [Lorentzian, Cauchy, etc.]
		PDF Moments and Moment Generating Function, focus on the first and second moments
		APPLICATION: Determine the PDF for 3-4 different random variables [temperature,
		PMT photon count from previous week]
5	Feb 12	CATCH UP + REVIEW + EXAM 1
6	Feb 19	An Aside: Uncertainty Analysis: Chap 3
		<u>Statistical Uncertainty</u> and <u>Bias</u> Propagation of Uncertainty
		APPLICATION: Propagation of uncertainty in a "complex" measurement:
		Measurements from a CCD
7	Feb 26	Estimators and Estimation Theory: Chap 4
	_	Best estimates of the moments:
		Mean, standard deviation of the mean, standard deviation of the standard deviation of
		the mean, etc.
		Variance, standard deviation of the variance, standard deviation of the standard
		The <u>Forward Model</u> Concept
0	M	APPLICATION: Expected photon counts from " <i>The Lidar Equation</i> "
8	Mar 5	<u>Curve Fitting</u> : Chap 6-8 Linear fits to data
		Least-squares fitting to a linear data set
		Polynomial forward model
		Least-squares fitting to a polynomial data set
		Generalized Least-Squares Fitting
9	Mar 12	SPRING BREAK
10	Mar 19	Testing the Fit: Chap 11 [and some Chap 5]
		Correlation Analysis
		<u>Chi-square</u>
11	Mar 26	<u>Monte-Carlo Techniques/Methods</u>
<u> </u>	Mar 26 Apr 2	CATCH UP + REVIEW + EXAM 2 Generalized Random Variables and Stochastic Processes
12	Api 2	<u>Generalized Random Variables and Stochastic Processes</u> Continuous realm to discrete realm
		Introduction to <u>Digital Signal Processing (DSP)</u>
		Common DSP functions: delta, step, step down, top-hat (square), sinc, Gaussian
13	Apr 9	Into the <u>Spectral Domain</u>
		Limitations and assumptions, <u>data windows</u>
		FT vs. DFTs vs. FFTs
		FTs of common functions
14	Apr 16	Power Spectral Density (PSD) estimation, from periodograms
		DSP Filtering concepts, low-pass, high-pass, bandpass, and stopband filters
1.5	A	When all heck breaks loose: <u>Lomb-Scargle, parametric vs. non-parametric</u> , etc.
15	Apr 23	LAST WEEK OF CLASSES + CATCH UP-REVIEW