New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Spring 2024

ME 315-002: Stress Analysis

Anthony Rosato

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Rosato, Anthony, "ME 315-002: Stress Analysis" (2024). *Mechanical and Industrial Engineering Syllabi*. 518.

https://digitalcommons.njit.edu/mie-syllabi/518

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

_

SYLLABUS – Spring 2024: ME315

Textbook: *Advanced Strength and Applied Elasticity* 4th ed., A. Ugural & S. Fenster (Prentice-Hall) **Prerequisites**: Math 222, Mech 237, ME 215

Week	Торіс	Reading	Problems
1	Introduction: Free body diagrams, axial stress, torsion, bending stress, shear & moment diagrams	Lecture 1 (Canvas)	Canvas
2	Equilibrium, transformation of stresses, principal stresses	1.1 to 1.7 1.8 to 1.10	1, 2 8, 9
3	Mohr's circle for stress Three-dimensional stresses	1.11 1.12 to 1.14	10, 11, 23 36, 47
4	Normal and shearing strains, strain tensor, compatibility, Transformation of strains	2.1 to 2.4 2.5 to 2.7	1, 3, 5 6, 12, 14
5	Stress-strain relations, Strain gages	2.8 to 2.10	25, 28, 29
	Exam No. 1		
6	Strain energy, St. Venant's principle	2.11 to 2.14	39, 41, 46
	Plane stress, Plane Strain Airy Stress Function	3.1 to 3.4 3.5 to 3.7	1a, 3, 4 5, 10, 16
7	Stress and strain in polar coordinates Stress concentration	3.8 to 3.9 3.10 to 3.11	24 36
8	Yielding /Failure Theories Comparison of Theories	4.1 to 4.8 4.9 to 4.12	3, 4, 6a 20
	Exam No. 2		
9	Axisymmetrically loaded members Shrink fit, Composite cylinders	8.1 to 8.4 8.5	1, 4, 11, 13 21, 24
10	Rotating disks	8.6 to 8.8	26, 28
11	Energy methods, Castigliano's Theorem Virtual Work, Ritz method	10.1 to 10.4 10.7, 10.8 to 10.11	3, 4, 5 30, 32
12	Castigliano's Theorem applications Indeterminate Structures	Lecture 14 (Canvas)	Assigned in
12			class
13	Exam No. 3		
14	Elastic stability of columns	11.1 to 11.6 11.7 to 11.9	2, 3, 5 21
15	Final Exam		