New Jersey Institute of Technology

Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Spring 2024

FED 101-026, 028: Fundamentals of Engineering Design

Balraj Mani

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Mani, Balraj, "FED 101-026, 028: Fundamentals of Engineering Design" (2024). *Mechanical and Industrial Engineering Syllabi*. 478.

https://digitalcommons.njit.edu/mie-syllabi/478

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME - FUNDAMENTALS OF ENGINEERING DESIGN

FED 101 - ME TRACK

January 16, 2024 Spring 2024

COURSE ADMINISTRATIVE INFORMATION

Course Name:	ME – FUNDAMENTALS OF ENGINEERING DESIGN
Course Numbers:	FED 101-026 (CRN 13038) / 028 (CRN 15858)
Class meeting Room:	MALL PC37
After Class office room:	MEC 330
Instructor's Name:	B. S. Mani
Instructor's Téléphone:	(973) 596-3339 (office)
	(630) 345-0558 (mobile)

Instructor's e-mail id: mani@njit.edu

Class meeting hours: 026: Tuesday, 08:30 AM -11:20 AM

028: Thursday, 10:00 AM -12:50 PM

After Class office hours: Tuesdays, 11:30 PM to 12:50 PM

Other times by reservation of open time slots

Complaints / Compliments: Dr. Joga Rao (973) 596-5601

i.j.Rao@njit.edu

COURSE DESCRIPTION

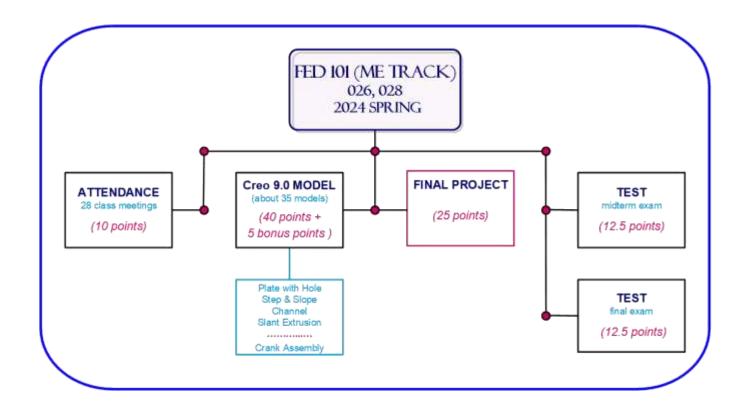
Study technical graphics and the computer as a technical drawing tool;
Introduction to projections and Multiview drawings and visualization;
Discuss geometry commonly used in engineering design graphics, orthographic projections;
Dimensioning techniques, tolerancing and introduction to auxiliary and sectional views;
Apply software program *Creo Parametric 9.0* (previously known as Pro/Engineer/Wildfire) to various problems.

GENERAL REQUIREMENTS

- Regular Attendance to all lecture classes is required
- Paying attention to lectures during class is expected
- ALL assignments shall be submitted on schedule
- Penalty for late submission: 33.3% of the grade
- Final (ONLY final) version of Creo 10.0 models shall be submitted in soft copy to 'CANVAS' student folder
- Reasonably equal Team Participation in Team Project is required for a grade
- Unequal Team Participation in Team Project will affect the grade of ALL the members of a team
- Team working for all general class / home work is highly encouraged
- Submission of the Final Team Project is mandatory to receive a final course grade
- Taking the Mid Term Test is mandatory to receive a final grade in the course

- . Web browsing during class with links NOT connected with classwork will NOT be allowed
- IPOD use inside class room, during class will NOT be allowed
- Cell Phone or i-Phone use or Texting from inside class room, during class is NOT allowed and not tolerated
- Students browsing on NONCLASS related links and/or e-mail and/or other forms of text messages for nonclass needs during class will be expelled from class and marked absent
- Eating and/or drinking inside the class room, will NOT be allowed
- Make-up examination, except for authentic MEDICAL reason(s), will NOT be allowed
- Students shall NOT schedule games, conferences and other activities in conflict with class schedule
- 'ZERO TOLERANCE' policy shall apply to any proven cheating with any submission

REQUIRED TEXT BOOKS


- 1. FUNDAMENTALS OF GRAPHICS COMMUNICATION by Gary R. Bertoline, Eric N. Wiebe et al. ISBN: 978-0-07-352263-0 (0-07-352263-5); 6th Edition, McGraw Hill 2010 (Alternatively, ISBN: 978-1259538360 7th. edition available as loose-leaf book)
- Creo Parametric 10.0 Tutorial by Roger Toogood ISBN: 978-1-63057-291-4, Schroff Development Corporation 20

RECOMMENDED DRAWING AND OTHER MATERIALS

- Mechanical pencil 0.5 mm with HB and H leads, good pencil eraser (one each)
- Dedicated Flash drive, capacity ~ 2GB (one)
- Install Creo Parametric 9.0 as soon as possible in your computer, (I assume that you have a computer)
- Digital Calipers priced about \$20
- Project report must be submitted spiral bound (one per team)
- 3D printing services available at the Makerspace at a small charge

GRADING SCHEME (SUBJECT TO CHANGE)

DESCRIPTION	POINTS
Attendance	10
Design – Creo 9.0 Models	35
Midterm Exam	10
Final Exam	10
Showcase attendance	5
Innovation-101 Project	30
Total	100

FINAL LETTER GRADE

LETTER GRADE	QUANTITATIVE REQUIREMENT	QUALITATIVE ACHIEVEMENT	
A 90% & above		Superior Achievement	
B plus 85% to 89.99%		Excellent Achievement	
В	80% to 84.99%	Very Good Achievement	
C plus	75% to 79.99%	Good Achievement	
С	70% to 74.99%	Acceptable Achievement	
D	60% to 69.99%	Minimum Achievement (Pass)	
F	59.99% and below	Inadequate Achievement (Fail)	

THEME FOR 2024

Whatever you do, do it with Passion

Teamwork will bring the success which an individual cannot working alone

PRIDE = Purpose, Responsibility, Individuality, Determination, & Excellence

ACADEMIC INTEGRITY

- No tolerance for *cheating* in any manner in any test.
- Any student found cheating during a test will be awarded a course grade of 'F.'
- SEVERE PENALTY for Compromising on Creo Parametric 9.0 Model and Homework assignment.
- Penalty for **EACH** Creo Parametric 9.0 Model and Homework assignment compromised:
 - · A grade of 'zero' will be awarded for the compromised assignment,
 - Overall course grade will be dropped by one full grade level for each incident, and
 - The student who compromised as well as the student who allowed will **BOTH** earn the **SAME** penalty:
 - For example, if a student happens to copy a Creo 6.0 model from another student and submit for his (or her) assignment, if discovered, he (or she) and the student who provided the model for copying, will BOTH receive the SAME penalty.
- Please refer to the University Policy on Academic Integrity at https://www.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf

TENTATIVE LIST OF MODELING ASSIGNMENTS

#	Description	Source	Page No	Figure No	Description	Assy Item	Score
1	Plate with Hole	Lecture			Model		1
2	Slope & Step	Handout	Pg 1		Model		1
3	Stop Base	Handout	Pg 2		Model		1
4	Wedge Block	Handout	Pg 1		Model		1
5	Channel	Toogood	3.28	40	Model		1
6	Shaft Support	Handout	Pg 2		Model		1
7	Plate Anchor	Toogood	3.34		Model	1	1
8	Guide Pin	Toogood	4.1	1	Model		1
9	Vice Handle	Toogood	4.28		Model	2	1
10	Slant Extrusion	Handout	Pg 3		Model		1
11	Slant Support	Handout	Pg 3		Model		1
12	Dial Bracket	Handout	Pg 4		Model		1
13	Pin	Toogood	5.23	1	Model	3	1
14	Acorn nut	Toogood	5.23	2	Model	4	1
15	Screw	Toogood	5.23	3	Model	5	1
16	Cutter	Toogood	6.17	27	Model		1
17	Disc	Toogood	6.23		Model	6	1
18	Pattern holes-Ring	Toogood	7.11	20 & 21	2 Models		1
19	Pattern-Group	Toogood	7.12	22	Model		1
20	Pattern-Blade	Toogood	7.17	29	Model		1
21	Pattern-Wheel	Toogood	7.18	30	Model		1
22	Copy-Ears	Toogood	7.24	43	Model		1
23	Copy-Cut	Toogood	7.27	49 & 50	Model		1
24	Hemisphere	Toogood	7.35 & 7.36	Left & Right	Model	7 & 8	1
25	Bracket	Toogood	8.12 & 8.22	10 & 22	Model & Drawing	1	1
26	Pulley	Toogood	8.28 & 8.39	26 & 40	Model & Drawing	2	1

TENTATIVE LIST OF MODELING ASSIGNMENTS (contd..)

#	Description	Source	Page No	Figure No	Description	Assy Item	Score
27	Flanged Cover	Toogood	8.44 & 8.45		Model	9	1
28	Pulley Assembly	Toogood	9. 1	1	Assembly		1
29	Pulley Assembly	Toogood	10.27	32	Assy Drg+BOM		1
30	Vice Anchor Assy	Toogood	9.31		Sub Assembly		1
31	Vice Assembly	Toogood	10.30 & 10.31		Assembly		1
32	Vice Assembly	Toogood			Assy Drg+BOM		1
33	Сар	Handout	Pg 4-5		Model		1
34	Wall Bracket	Handout	Pg 5-8		Model		1
35	Air Duct	Handout	Pg 9		Model+Drg		1
36	Compression Spring	Handout	Sample Model		Model		1
37	Hex headed bolt	Handout	Sample Model		Model		1
38	Wave Washer	Handout	Sample Model		Model		1
39	Rot Blend–(Mobius)	Handout	Sample Model		Model		1
40	Surf. Model-Mouse	Handout	Sample Model		Model		1

GRADING RUBRIC AND CONTENT OF EACH CREO MODEL SUBMISSION

#	DESCRIPTION	Possible Score
1	Soft Copy: Final version of MODEL uploaded to CANVAS OR	0.3
	Soft Copy: Final version of MODEL & DRAWING in one folder in case of drawings OR	
	Soft Copy: Final version of MODEL & ASSEMBLY in one folder in case of assemblies	
2	DIP Sheet (DIPS) for the model or assembly in PDF form uploaded to CANVAS	0.2
3	Correctness of part model or assembly model or drawing	0.5

LIST OF PLANNED LECTURES OTHER THAN CREO MODELS

#	LECTURE	DESCRIPTION
1	Module 01	Syllabus
2	Module 02	Engineering Ethics – Hand-out and Review
3	Module 03	3D models – CREO Parametric 10.0 – DIPS – Numbering system
4	Module 04	Lines – line drawing techniques – free hand sketching – constructions
5	Module 05	Engineering Geometry – introduction to projection –isometric view -Multiview
6	Module 06	Visualizing Multiview drawings - projections
7	Module 07	Fundamental views of edges, and planes for visualization
8	Module 08	Multiview representation for sketches – ANSI Standards for Multiview drawings
9	Module 09	Visualization for design – Multiview drawing visualization
10	Module 10	Detail dimensioning techniques
11	Module 11	Auxiliary views: projection theory, classifications, applications, & CAD
12	Module 12	Pictorial, axonometric and perspective projections, isometric assembly drawings
13	Module 13	Section views: Basics - Techniques and conventions
14	Module 14	Geometric dimensioning and tolerancing (GDT)
15	Module 15	Tolerance representation
16	Module 16	Materials, finishes and assembly
17	Module 17	DFM, DFI, DFA
18	Module 18	Working drawing and assemblies
19	Module 19	CAD, CAE, CAM, design automation, concurrent engineering, product design
20	Module 20	Reverse Engineering as a learning tool

Note: The intention to cover as many of these lectures as possible -