Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

CHAPTER 3

ONBOARD CACHING IN CLUSTERED RAIDS5 DISKS

3.1 Advantages of Onboard Caching
A Cache, by definition is a memory that acts as a bridge between a small fast memory
and a larger slower memory. It stores the data most frequently accessed by the larger
memory from the smaller one. The cache is usually smaller in size than the smaller
memory, but is much faster. This way, the frequently used data can be accessed much
faster.

The onboard cache discussed here, as the name says, is one that is integrated into
the hard disk. This cache is used to buffer a track during the rebuild operation. It can be
enabled or disabled by the array controller at the user’s discretion. This cache, as the
later sections reveal, improves the rebuild performance and user response times
significantly at an additional cost which is a small fraction of that of the entire hard-disk.
It would be transparent to the array controller. Therefore, no major changes in the
controller hardware are necessary to use the cache. The controller, however, should be
capablé of enabling or disabling the cache.

The next section discusses the features and design considerations of the onboard

cache in detail. Also discussed in detail is the operation of the cache in rebuild mode.

22

23

3.2 Cache Architecture

The hard disk drive being considered is the IBM 18 ES that has a capacity of 9.17 GB
with 11 zones and 247 — 390 sectors per track. It has a rotational speed of 7200 RPM.
The major requirement for the cache is that it should be able to buffer the largest track
(i.e. 390 sectors). Each sector is considered to be 512 Bytes long. So the size of the
cache would be 512 x 390 Bytes. The smallest unit of data transferred into or out of the
cache is a sector. The access times are neglected as they are very small compared to the
disk access times. The data transfer times from the cache are also neglected as they are
of the order of nanoseconds and those of the disk are in milliseconds.

The cache is used only in rebuild mode. When a user request arrives while the
rebuild operation is going on, the track being read is cached. After the current rebuild
unit is read, the user re(juest is served by transferring the sectors directly from the cache,
if there is a hit to the cache. Otherwise, a normal read operation is performed, without
involving the cache.

When the user request arrives while the rebuild operation is reading a track, the
unread part of the track is cached first. Then another read is issued to read the remaining
sectors of the track. Following this, the rest of the rebuild unit is read. This fills the
cache with one full track. Then after the rebuild unit is read, the user request is served
directly from the cache if there is a hit. The cache is not used otherwise.

Figures 3.1 to 3.3 show the operation of the onboard cache when the user request
arrives while rebuild is underway. Here Sy, S;...S, represent sectors 0 through n in the

track being considered.

(5o JC 30) 82)0 85 Jo (_saJ

Figure 3.1 Arrival of user request while sector S; is being rebuilt in the above track.

At this point of time the buffering of the track starts. Since it is a zero-latency
read operation, the entire track, starting from S; to S, is read into the cache while the
rebuild operation is underway. S, cannot be buffered since it would already have been in
the midst of being read when the user request arrived. Buffering starts from the next
sector in the track. This buffering is done simultaneously with the rebuild read operation.

Figure 3.2 shows the contents of the onboard cache after these sectors have been read.

Figure 3.2 Cache contents after the track has been read once.

If the user request is for the entire track, sectors So, S; and S; are read now. This

is shown in Figure 3.3.

L s) s) s) s)

Figure 3.3 Cache contents after the track has been accessed twice.

The improvement in rebuild and response times depends heavily on the
percentage of hits to the cache, which itself is dependent on the probability of having a
user request for sectors in the current track being rebuilt. This probability in turn depends

on the size of the rebuild unit being used, as can be seen in the simulation results in later

25

sections. In the discussion that follows, the cache is assumed to have zero latency for
reads and writes. This is acceptable since cache delays are negligible when compared to
disk access times. The following section discusses the data structures and algorithms

supporting the operation of this onboard-cache.

3.3 Data Structures for CRAIDS5 Performance Analysis

- The Clustered RAID5 (CRAIDS) architecture involves the use of many data structures.

Some of them are built upon the data structures pertaining to single disk operation. The

following characterize the single disk.

e Single disk_info: This structure, as the name says, has the information about the
disk: The total number of blocks, block size, total number of tracks, the type
(physical disk or virtual disk) and the queuing policy used. It is used by the single
disk simulator in DASim, which in tum is used by the CRAIDS5 simulator as
described later.

e SDSim_framework: Here, the functionality of the single disk controller is defined. It
handles requests for read and write. It also stores disk state and performance
monitoring information. It serves requests from a queue of disk access requests.

There is a single queue for each disk. Also in our discussion, the queue is FCFS.

Following are the three most important data structures relevant to the operation of
CRAIDS.
e CRAIDS info: This characterizes the disk array with the number of disks, stripe unit

size, group size and mode which is discussed later.

26

e CRAID5 layoutmanager: As the name implies, this structure manages the layout of
the array. It is responsible for mapping of logical disks to physical disks (and also
logical block address to a block address in a specific disk).

e Rebuild manager: All issuing of rebuild requests is done here. Also, the rebuild
read and write operations are handled here. In the following section, the performance
of the CRAIDS5 architecture is analyzed with and without the cache, using various

configurations that are commonly used.

3.4 CRAIDS Configurations and Simulation
The following configuration has been used in all the simulations. Two identical sets of
simulations are performed, one with the cache and the other without it. In all cases the
following parameters are constant.
Buffer Size =128 MB
Read Redirection = Enabled
Model = VSM
Dynamic Control = Disabled
Disk Used =IBM 18ES (9.17 GB, 7200 RPM, 11 zones, 247-390 sectors per track)
Scheduling Policy = FCFS
Number of Disks(N) = 21
Parity Group Size (G) = 16, giving a declustering ratio a =(G-1) /(N -1) = 0.75.

Stripe Unit Size = 128 Blocks = 512 KB, since each block is 4 KB

29

Table 3.1 Simulation Results with Rebuild Unit Size of 64 KB

U tp ng g trs Trb Nt Ns » Trs

|
0.000 1097 1.30 1.15 11.89 1096 1.30 1.15 11.86
0.025 1123 57.29 56.44 15.56 1119 56.24 56.13 15.37
0.050 1150 58.83 57.28 16.06 1142 57.74 56.75 15.72
0.075 1181 60.19 57.94 16.58 1170 59.06 57.19 16.09

0.100 1217 61.42 58.47 17.07 1203 60.25 57.5 16.42

0.125 1264 = 6333 | 5968 | 17.61 | 1246 | 6212 | 5849 | 16.81
0.150 = 1318 | 6510 | 60.84 | 1814 | 1297 | 6394 | 5943 | 17.19
0.175 | 1384 | 6628 | 6123 | 1867 | 1360 | 6500 & 59.60 | 17.56
0200 | 1462 | 6920 | 6345 | 1922 | 1434 | 6788 | 6161 | 17.96
0225 | 1542 | 7147 | 6502 | 1987 | 1511 | 7011 | 6296 | 18.46
0250 | 1640 | 7394 | 6679 | 2052 | 1606 | 72.54 | 6451 | 1895
0275 | 1756 | 7715 | 693 | 2123 | 1718 | 7571 | 6680 | 1951
0300 | 1886 | 80.18 | 71.63 | 2201 | 1845 | 7870 | 6891 | 20.14
0325 | 2032 | 8516 | 7591 | 2294 | 1987 | 83.64 | 7297 | 2091

0.350 2197 89.23 79.28 24.00 2149 87.67 76.12 21.82

0.375 2396 95.30 84.65 25.28 2345 93.70 81.27 | 2295

0.400 2636 102.11 90.76 26.77 2581 100.47 87.17 | 24.29

0.425 2925 111.16 99.11 N 28.68 2867 109.48 9530 |« 26.04

0.450 3274 121.18 108.43 31.21 3213 119.46 104.4 28.42
0.475 3746 135.43 121.98 34.72 3681 133.67 117.73 31.78

0.500 4398 154.87 140.72 40.10 4330 153.07 136.25 37.00

0.525 5416 186.47 171.62 50.18 5344 184.63 166.93 = 46.93

0.550 7471 248.26 232.71 80.11 7396 246.38 | 227.80 : 76.71

Here, U is the disk utilization before failure occurs, T, and t,, are the rebuild
times in seconds, T, and t,s are the response times in milliseconds, N, and n; are the
average number of times a track is accessed, and Ny and ng are the average number of

times a sector is accessed with and without the onboard cache respectively. Figures 3.6

