

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

21

Figure 2.7 Impact of rebuild unit size on rebuild and user response times.

While the performance of Clustered RAIDS systems can be fine-tuned by varying

the parameters discussed in this section, a significant improvement in rebuild and

response times can be achieved by incorporating an on-board cache on the individual

hard disks that constitute the disk array. This is the topic of discussion in the next

chapter.

CHAPTER 3

ONBOARD CACHING IN CLUSTERED RAIDS DISKS

3.1 Advantages of Onboard Caching

A Cache, by definition is a memory that acts as a bridge between a small fast memory

and a larger slower memory. It stores the data most frequently accessed by the larger

memory from the smaller one. The cache is usually smaller in size than the smaller

memory, but is much faster. This way, the frequently used data can be accessed much

faster.

The onboard cache discussed here, as the name says, is one that is integrated into

the hard disk. This cache is used to buffer a track during the rebuild operation. It can be

enabled or disabled by the array controller at the user's discretion. This cache, as the

later sections reveal, improves the rebuild performance and user response times

significantly at an additional cost which is a small fraction of that of the entire hard-disk.

It would be transparent to the array controller. Therefore, no major changes in the

controller hardware are necessary to use the cache. The controller, however, should be

capable of enabling or disabling the cache.

The next section discusses the features and design considerations of the onboard

cache in detail. Also discussed in detail is the operation of the cache in rebuild mode.

22

23

3.2 Cache Architecture

The hard disk drive being considered is the IBM 18 ES that has a capacity of 9.17 GB

with 11 zones and 247 — 390 sectors per track. It has a rotational speed of 7200 RPM.

The major requirement for the cache is that it should be able to buffer the largest track

(i.e. 390 sectors). Each sector is considered to be 512 Bytes long. So the size of the

cache would be 512 x 390 Bytes. The smallest unit of data transferred into or out of the

cache is a sector. The access times are neglected as they are very small compared to the

disk access times. The data transfer times from the cache are also neglected as they are

of the order of nanoseconds and those of the disk are in milliseconds.

The cache is used only in rebuild mode. When a user request arrives while the

rebuild operation is going on, the track being read is cached. After the current rebuild

unit is read, the user request is served by transferring the sectors directly from the cache,

if there is a hit to the cache. Otherwise, a normal read operation is performed, without

involving the cache.

When the user request arrives while the rebuild operation is reading a track, the

unread part of the track is cached first. Then another read is issued to read the remaining

sectors of the track. Following this, the rest of the rebuild unit is read. This fills the

cache with one full track. Then after the rebuild unit is read, the user request is served

directly from the cache if there is a hit. The cache is not used otherwise.

Figures 3.1 to 3.3 show the operation of the onboard cache when the user request

arrives while rebuild is underway. Here So, 51...5n represent sectors 0 through n in the

track being considered.

24

Figure 3.1 Arrival of user request while sector S2 is being rebuilt in the above track.

At this point of time the buffering of the track starts. Since it is a zero-latency

read operation, the entire track, starting from S3 to S n is read into the cache while the

rebuild operation is underway. S2 cannot be buffered since it would already have been in

the midst of being read when the user request arrived. Buffering starts from the next

sector in the track. This buffering is done simultaneously with the rebuild read operation.

Figure 3.2 shows the contents of the onboard cache after these sectors have been read.

Figure 3.2 Cache contents after the track has been read once.

If the user request is for the entire track, sectors So, Si and S2 are read now. This

is shown in Figure 3.3.

Figure 3.3 Cache contents after the track has been accessed twice.

The improvement in rebuild and response times depends heavily on the

percentage of hits to the cache, which itself is dependent on the probability of having a

user request for sectors in the current track being rebuilt. This probability in turn depends

on the size of the rebuild unit being used, as can be seen in the simulation results in later

25

sections. In the discussion that follows, the cache is assumed to have zero latency for

reads and writes. This is acceptable since cache delays are negligible when compared to

disk access times. The following section discusses the data structures and algorithms

supporting the operation of this onboard-cache.

3.3 Data Structures for CRAID5 Performance Analysis

The Clustered RAIDS (CRAID5) architecture involves the use of many data structures.

Some of them are built upon the data structures pertaining to single disk operation. The

following characterize the single disk.

• Single_disk_info: This structure, as the name says, has the information about the

disk: The total number of blocks, block size, total number of tracks, the type

(physical disk or virtual disk) and the queuing policy used. It is used by the single

disk simulator in DASim, which in turn is used by the CRAID5 simulator as

described later.

• SDSim_framework: Here, the functionality of the single disk controller is defined. It

handles requests for read and write. It also stores disk state and performance

monitoring information. It serves requests from a queue of disk access requests.

There is a single queue for each disk. Also in our discussion, the queue is FCFS.

Following are the three most important data structures relevant to the operation of

CRAMS.

• CRAID5_info: This characterizes the disk array with the number of disks, stripe unit

size, group size and mode which is discussed later.

26

• CRAID5 layoutmanager: As the name implies, this structure manages the layout of

the array. It is responsible for mapping of logical disks to physical disks (and also

logical block address to a block address in a specific disk).

• Rebuild_manager: All issuing of rebuild requests is done here. Also, the rebuild

read and write operations are handled here. In the following section, the performance

of the CRAMS architecture is analyzed with and without the cache, using various

configurations that are commonly used.

3.4 CRAID5 Configurations and Simulation

The following configuration has been used in all the simulations. Two identical sets of

simulations are performed, one with the cache and the other without it. In all cases the

following parameters are constant.

Buffer Size =128 MB

Read Redirection = Enabled

Model = VSM

Dynamic Control = Disabled

Disk Used = IBM 18ES (9.17 GB, 7200 RPM, 11 zones, 247-390 sectors per track)

Scheduling Policy = FCFS

Number of Disks(N) = 21

Parity Group Size (G) = 16, giving a declustering ratio a = (G — 1) / (N —1) = 0.75.

Stripe Unit Size = 128 Blocks = 512 KB, since each block is 4 KB

27

All disk accesses will be reads. The number of user requests to be processed

before and after the rebuild are 10000. The system is simulated for post-failure disk

utilizations from 0 to 96.25% (i.e. 0 to 55% before failure) with and without the onboard

cache. Post-failure disk utilization (p) is calculated using expression 3.1.

Where p is the pre-failure disk utilization. The entire procedure is performed for

rebuild unit (RU) size of 64, 128 and 256 KB. The graph in Figure 3.4 shows the

difference in rebuild performance seen while using the cache. The rebuild unit size here

is 16 blocks (i.e. 64 KB).

Figure 3.4 Effect of onboard-cache on rebuild time for rebuild unit size of 64 KB.

28

As seen in the previous figure, there is not much difference in the rebuild times

with and without the cache. Figure 3.5 shows the effect on user response times.

Figure 3.5 Effect of onboard cache on user response time for rebuild unit size of 64 KB.

The average number of times a track and sector is accessed with and without the

cache justifies the difference in the rebuild and response times. If the cache is enabled, a

track and sector will be accessed fewer times. Also, when the disk utilization is zero, the

arrival rate of user requests is not absolutely zero. Also, a stripe oriented rebuild is used

in this and the rest of the simulations since this utilizes the rebuild buffer in a more

efficient way. Disk oriented rebuild does not fully utilize the rebuild buffer. The reason

for a very small difference in the rebuild times becomes clear after analyzing the

following graphs. Table 3.1 shows the differences in the rebuild and response times,

average number of times a track and sector are accessed with and without the cache.

Table 3.1 Simulation Results with Rebuild Unit Size of 64 KB

U	 trb 	 fit 	 ns 	 trs 	 Trb 	 Nt 	 Ns 	 Trs

29

	1.15	 11.89

	

56.44 	 15.56

	

57.28 	 ! 	 16.06

	

57.94 	 ; 	 16.58

	

58.47 	 17.07

	

59.68 	 17.61

	

60.84 	 18.14 	 1

	

61.23 	 18.67

	

63.45 	 19.22

	

65.02 	 19.87

	

66.79 	 20.52

	

69.3 	 21.23

	

71.63 	 22.01

	

75.91 	 22.94
_.„

	

79.28 	 24.00

	

84.65 	 25.28

90.76 " 26.77

	

99.11 	 28.68

	

108.43 	 ; 	 31.21

	

121.98 	 34.72

	

140.72 	 40.10

	

171.62 	 50.18

	

• 232.71 	 80.11

0.000
,

0.025

1097

1123

1.30

57.29

0.050
. 	 _.

1150 58.83

0.075 1181 60.19

0.100 1217 61.42

0.125 1264 63.33

0.150 1318 65.19

0.175 1384 66.28

0.200 1462 69.20

0.225 1542 71.47

0.250 1640 73.94

0.275 1756 77.15

0.300 1886 80.18

0.325
.

2032 85.16
_

0.350 2197
_

89.23
..

0.375 2396 95.30

0.400 2636 102.11

0.425 2925 111.16

0.450 3274 121.18

0.475 3746 135.43

0.500 4398 154.87

0.525 5416 186.47

0.550 7471 248.26

1096

1119

1.30

56.24

1.15

56.13

11.86

15.37

1142 m 57.74 56.75 15.72

1170 59.06 57.19 16.09

1203 60.25 57.5 16.42

1246 62.12 58.49 16.81

1297 63.94 59.43 17.19

1360 65.00 59.60 17.56

1434 67.88 61.61 17.96

1511
.

70.11
_

62.96 18.46

1606 72.54 64.51 18.95

1718 75.71 66.80 19.51

1845 78.70 68.91 , 	 20.14

1987 83.64 72.97 20.91

2149 87.67 76.12 21.82

2345 t 	 93.70 81.27 22.95

2581 t 	100.47 87.17 24.29

2867 109.48 95.30 26.04

3213 119.46 104.4 28.42

3681 133.67 117.73 31.78

4330 153.07 136.25 37.00

5344 184.63 166.93 46.93

7396 246.38 227.80 76.71

Here, U is the disk utilization before failure occurs, Trb and trb are the rebuild

times in seconds, T rs and trs are the response times in milliseconds, N t and n t are the

average number of times a track is accessed, and N s and n s are the average number of

times a sector is accessed with and without the onboard cache respectively. Figures 3.6

