New Jersey Institute of Technology Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2023

ME 625-101: Introduction to Robotics

Petras Swissler

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Swissler, Petras, "ME 625-101: Introduction to Robotics" (2023). *Mechanical and Industrial Engineering Syllabi*. 463.

https://digitalcommons.njit.edu/mie-syllabi/463

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME 625 Syllabus - Fall 2023

Introduction to Robotics

Instructor	Dr. Petras Swissler Office: ME326 Email: <u>Petras.swissler@njit.edu</u> Lecture: Thursday 6PM – 8:50 PM, FMH 321 Office Hours: Thursday 10:00 – 12:00, ME326 (notice will be given for any deviations from these office hours)				
Website	Canvas, Slack				
Course Text	Lecture slides will generally be uploaded to Canvas before the lecture				
Recommended Reading	 No textbooks are required for this course, however there are several books that you may find useful to have access to: <u>Modern Robotics</u> by Lynch and Park, 1st Edition. ISBN: 1107156300 <u>Probabilistic Robotics</u> by Thrun, Burgard, and Fox, 1st Edition. ISBN: 0262201623 <u>Artificial Intelligence</u> by Russel and Norvig, 4th Edition. ISBN: 9356063575 				
Electronics Kit	For project 3, students will be required to purchase several electronic components. The estimated cost is approximately \$100.				
Prerequisites	Matrix analysis, Dynamics, Matlab programming				
Learning Objectives	 By the end of this course, students should be able to: Demonstrate the principles and concepts in robotics, encompassing robot manipulation, swarm behaviors, robot navigation, and robot control through applied projects Communicate effectively about the principles, challenges, and applications of robotics. Analyze and evaluate the performance of robotic systems using appropriate metrics and assessment methods. Assess and select appropriate robotic platforms, sensors, and actuators for specific robotic applications or tasks. Evaluate ethical, societal, and legal implications associated with the development and deployment of robotics technologies. 				
Grading	Weekly in-class quizzes:5%Weekly Canvas quizzes:5%Individual projects:60% (4 × 15%)Final collaborative project:30%				

	Final grades will be based on a weighted average of the above. See https://www5.njit.edu/registrar/policies/grading.php • [90, 100] A • [70, 75) C • [85, 90) B+ • [60, 70) D • [80, 85) B • [0, 60) F • [75, 80) C+ • [75, 80] C			
Late Assignment Policy	Late assignments will be graded as normal, but a penalty will be assessed to the <u>maximum possible grade</u> . Penalties will be applied per day and will increment by one per day. For example, if an assignment is turned in two days late, a $1 + 2 = 3$ point penalty will be assessed. If an assignment is 7 days late, a $1+2+3+4+5+6+7 = 28$ point penalty will be assessed. Any assignment turned in more than a week late will receive a grade of 0. No late assignments will be accepted for the final project or for quizzes.			
Projects	The projects in this course are meant to provide students an opportunity to apply classroom learnings in scenarios like those that might be encountered in their research or future work. These projects will be fairly open-ended in how students can approach them, and students will generally be given several weeks to complete these projects. Project assignments will outline the requisite deliverables.			
Final Project	The final project will be a group-based project where students will propose some extension of the material covered in class or other robot-related subject, and deliver a presentation and final report detailing their work.			
Academic Integrity				
Active Learning	This course has been revised to incorporate significant active learning activities throughout the semester. These activities have been designed to promote holistic thinking about the material. At the end of the semester you will receive a survey. Below, items marked <i>AL:</i> correspond to planned active learning activities. Further activities will be incorporated into lessons as practical. TPS = Think-Pair-Share, PBL = Problem-based learning, SIM = In-class simulation activities.			

Tentative Course Outline:

WEEK	DATE	DUE	TOPICS
1	Sep 7		Introduction, Degrees of freedom, Rotation Matrices
•	0 14	D 1 1	AL: TPS: Degrees of freedom, how to represent rotations
2	Sep 14	Project 1.a	Transformation matrices, Forward kinematics pt 1
			AL: TPS: Using matrices to represent robots
2	C 01	D (11	PBL: Kinematics
3	Sep 21	Project 1.b	Forward kinematics pt 2, Joint torques
4	Son 29		AL: TPS: Forward Kinematics formulation Inverse kinematics
4	Sep 28		
			AL: TPS: Inverse Kinematics formulation SIM: Kinematics simulator
5	Oct 5	Project 1.c	Swarm robotics overview, Swarm localization
5	0015	110jeet 1.e	AL: TPS: How to localize?
6	Oct 12		Swarm robot algorithms and hardware
U	00012		AL: TPS: Conceptualizing a swarm algorithm
			SIM: Demonstrating Swarm Behaviors
7	Oct 19	Project 2	Path planning algorithms
	00019	110,000 -	AL: TPS: How to find the shortest path?
			PBL: GPS routing
8	Oct 26		Sensor measurement and information filtering
			AL: TPS: How to account for noisy data?
			SIM: Processing sensor data
9	Nov 2	Project 3	Introduction to hardware and distribution of material
			AL: Hands-on with Arduino
10	Nov 9		Motor control and robot sensors
			AL: Hands-on with Arduino
11	Nov 16		PID control on robot hardware
			AL: Hands-on with Arduino
12	Nov 21	Project 4,	Special topics 1: Machine learning algorithms
		Final	AL: Guest Speakers and Q&A
10	N 20	proposal	TPS: Based on scheduled speakers
13	Nov 30		Special topics 2: ROS
			AL: Guest Speakers and Q&A
14	Dec 7		TPS: Based on scheduled speakers
14	Dec 7		Final project presentations
15	Dec 14	Final	AL: Q&A Reading day: no class
15	Dec 14	report	Reading day. no class
		report	

In addition to the above active learning activities, there will also be video supplements to these lectures posted online. Paired with these videos will be Canvas quizzes meant to make you think critically and apply the subject material in ways not possible in a traditional lecture setting.