New Jersey Institute of Technology

Digital Commons @ NJIT

Physics Syllabi

NJIT Syllabi

Spring 2022

MTSE 301-002: Materials Science

N. Ravindra

Follow this and additional works at: https://digitalcommons.njit.edu/phys-syllabi

Recommended Citation

Ravindra, N., "MTSE 301-002: Materials Science" (2022). *Physics Syllabi*. 461. https://digitalcommons.njit.edu/phys-syllabi/461

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Physics Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Principles of Material Science and Engineering - MTSE 301-002

Instructor:

Prof. N.M. Ravindra (Ravi) Lab: TIER 414 Tel: 973 596-3278/6453 E-mail: <u>nmravindra@gmail.com</u>

Course Facilitator:

Mr. Haizheng Zhuang PhD Candidate, Materials Science & Engineering Email Address: hz444@njit.edu

Class meeting schedule:

 Book
 002
 14468
 M
 02:30 PM - 03:50 PM

 Book
 002
 14468
 M
 02:30 PM - 03:50 PM

Office Hours:

Ravi: Fridays 2 to 3 PM; Tiernan Building - 414

Haizheng: Thursdays – 1 to 3 PM; Tiernan Building – 323 D

Online Meetings

Webex platform will be used for online meetings. Conference invitation messages for the class meetings will be sent to your NJIT email addresses. WebEx meetings will take place at:

https://njit.webex.com/meet/ravindra

PREREQUISITE: Phys 111 and Phys 121, Chem 125 and Chem 126, Math 111 and Math 112 or equivalent.

TEXTBOOK: "FOUNDATIONS OF MATERIAL SCIENCE AND ENGINEERING" William F. Smith, Javad Hashemi, Sixth Edition (or Fifth Edition), McGraw-Hill, Inc.

YOUR FINAL LETTER GRADE in MTSE 301 will be based on a composite score for term's work that includes one midterm exams, final exam, lecture quizzes and homework. Here are the approximate weights to be used for calculating the composite score:

Exam 1 = 25% Exam 2 = 25% Final Exam = 30% Homework = 10% Lecture Quizzes = 10% The conversion of numerical to letter grades is as follows:

> 80% A; >75% to 80% B+; >66 %to 75% B; >58%-66% C+; >50%-58% C; <50% D and <40% F.

COURSE POLICIES

In order to insure consistency and fairness in application of the NJIT policy on withdrawals, student requests for withdrawals after the deadline *(end of the 10th week of classes)* will not be permitted unless extenuating circumstances are documented **through the Office of the Dean of Students**. The course instructor and the Dean of Students are the principal points of contact for students considering withdrawing from a course. When a student invokes extenuating circumstances for any reason (late withdrawal from a course, request for a make-up exam, request for an Incomplete grade) the student should contact the Dean of Students Office.

Missed lecture quizzes: There are no make-ups for in-class activities. If you miss a lecture quiz, you will receive a grade of zero.

HONOR CODE

"Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: <u>http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf</u>.

Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at <u>dos@njit.edu</u>"

LEARNING OUTCOMES

For this course, you can expect to be assessed on the following learning outcomes:

- 1. Comprehend the interrelations among structure, properties and performance of engineering materials.
- 2. Apply the principles of crystallography to understand the structure of materials.
- 3. Understand the effect of solid-state imperfections on diffusion and mechanical properties of materials.
- 4. Analyze phase diagrams of binary alloy systems.
- 5. Understand the mechanical, electrical and optical properties of metals, semiconductors, ceramics and polymers
- 6. Apply the equations governing different processes in solid materials. Calculate unknown quantities based on physical relationships, boundary conditions, and known quantities.

COUNSELING AND ACADEMIC SUPPORT: The Center for Counseling and Psychological Services **is committed to assisting students experiencing high levels of personal challenge and stress.** If you need accommodations due to a disability, please contact Ms. Chantonette Lyles, Associate Director of Disability Support Services, Fenster Hall Room 260 to discuss your specific needs.

Course Outline

Week 1,2- Introduction to Nature, Matter & Materials

Week 2- Atomic Structure and Bonds				
Chapt. 2 Sect. 2.1 – 2.4		(5 th)		
Chapt. 2 Sect. 2.5 – 2.6		(6 th)		
Week 3 - Crystal and Amorphous Str	ucture i	n Materials		
Chapt. 3 Sect. 3.1 – 3.6		(5 th)		
Chapt. 3 Sect. 3.9 – 3.12	(6 th)			
Week 4 - Solidification, Crystalline Imperfections, Diffusion in Solids				
Chapt. 4 Sect. 4.1 – 4.5	(6 th)	(5 th)		
Chapt. 5 Sect. 5.1 – 5.4	(5 th)			
	(6 th)			
Week 5 - Mechanical Properties of N	/letals I			
Chapt. 6 Sect.6.1 – 6.5		(5 th)		
Chapt. 6 Sect. 6.6 – 6.10		(6 th)		
EXAM 1				
Week 6 - Mechanical Properties of N	/letals II			
Chapt. 7 Sect. 7.1 – 7.7		(5 th) (6 th)		
Week 7 - Phase Diagrams, Engineering Alloys				
Chapt. 8 Sect. 8.1 – 8.10	(5 th)			
	(6 th)			
Week 8 - Engineering Alloys				
Chapt. 9 Sect. 9.2 – 9.4, 8	(5 th)			
Chapt. 9 Sect. 9.5 – 9.7, 9	(6 th)			
Week 9 - Polymeric Materials				
Chapt. 10 Sect. 10.1 – 10.4		(5 th)		
Chapt. 10 Sect. 10.6, 10.10-1	0.12	(6 th)		
Week 10 - Ceramics				
Chapt. 11 Sect. 11.1 – 11.5	(5 th)			
Chapt. 11 Sect. 11.6 – 11.11	(6 th)			

EXAM 2

Week 11 - Composite Materials					
Chapt. 12 Sect. 12.1 – 12.3	(5 th)				
Chapt. 12 Sect. 12.10 – 12.1	11 (6 th)				
Week 12 - Corrosion					
Chapt. 13 Sect. 13.1 – 13. 4	(5 th)				
Chapt. 13 Sect. 13.4 – 13.7	(6 th)				
Week 13 - Electrical Properties of Materials					
Chapt. 14 Sect. 14.1 – 14.3	(5 th)				
Chapt. 14 Sect. 14.4 - 14. 6					
Chapt. 14. Sect. 14.7 – 14.8	(6 th)				
Week 14 - Optical Properties of Mat	aterials				
Chapt. 15 Sect 15.1 – 15.4	(5 th)				
Chapt. 15 Sect 15.5 – 15.7	(6 th)				
Week 14 - Biological Materials and	Biomaterials				
Chapt. 17 Sect.17.1- 17.8	Reading only				
	Review – Q&A Session				

Final Exams

https://www5.njit.edu/registrar/spring-2022-academic-calendar/

January	17	Monday	Martin Luther King, Jr. Day	
January	18	Tuesday	First Day of Classes	
January	22	Saturday	Saturday Classes Begin	
January	24	Monday	Last Day to Add/Drop a Class	
January	24	Monday	Last Day for 100% Refund, Full or Partial Withdrawal	
January	25	Tuesday	W Grades Posted for Course Withdrawals	
January	31	Monday	Last Day for 90% Refund, Full or Partial Withdrawal, No Refund for Partial Withdrawal after this date	
February	14	Monday	Last Day for 50% Refund, Full Withdrawal	
March	7	Monday	Last Day for 25% Refund, Full Withdrawal	
March	14	Monday	Spring Recess Begins - No Classes Scheduled - University Open	
March	19	Saturday	Spring Recess Ends	
April	4	Monday	Last Day to Withdraw	
April	15	Friday	Good Friday - No Classes Scheduled - University Closed	
April	17	Sunday	Easter Sunday - No Classes Scheduled - University Closed	
May	3	Tuesday	Friday Classes Meet	
May	3	Tuesday	Last Day of Classes	
May	4	Wednesday	Reading Day 1	
May	5	Thursday	Reading Day 2	
May	6	Friday	Final Exams Begin	
May	12	Thursday	Final Exams End	
May	14	Saturday	Final Grades Due	
May		TBA	Commencement	

Spring 2022 Academic Calendar