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ABSTRACT 

EXPLOITATION OF INFRARED POLARIMETRIC 

IMAGERY FOR PASSIVE REMOTE SENSING APPLICATIONS 

by 

João Miguel Mendes Romano 

Polarimetric infrared imagery has emerged over the past few decades as a candidate 

technology to detect manmade objects by taking advantage of the fact that smooth 

materials emit strong polarized electromagnetic waves, which can be remotely sensed by 

a specialized camera using a rotating polarizer in front of the focal plate array in order to 

generate the so-called Stokes parameters: S0, S1, S2, and DoLP.  Current research in this 

area has shown the ability of using such variations of these parameters to detect smooth 

manmade structures in low contrast contrast scenarios.   

 This dissertation proposes and evaluates novel anomaly detection methods for 

long-wave infrared polarimetric imagery exploitation suited for surveillance applications 

requiring automatic target detection capability.  The targets considered are manmade 

structures in natural clutter backgrounds under unknown illumination and atmospheric 

effects.  A method based on mathematical morphology is proposed with the intent to 

enhance the polarimetric Stokes features of manmade structures found in the scene while 

minimizing its effects on natural clutter.  The method suggests that morphology-based 

algorithms are capable of enhancing the contrast between manmade objects and natural 

clutter backgrounds, thus, improving the probability of correct detection of manmade 

objects in the scene.  The second method departs from common practices in the 

polarimetric research community (i.e., using the Stokes vector parameters as input to 

algorithms) by using instead the raw polarization component imagery (e.g., 0°, 45°, 90°, 



ii 

 

and 135°) and employing multivariate mathematical statistics to distinguish the two 

classes of objects.  This dissertation unequivocally shows that algorithms based on this 

new direction significantly outperform the prior art (algorithms based on Stokes 

parameters and their variants).  To support this claim, this dissertation offers an 

exhaustive data analysis and quantitative comparative study, among the various 

competing algorithms, using long-wave infrared polarimetric imagery collected outdoor, 

over several days, under varying weather conditions, geometry of illumination, and 

diurnal cycles. 
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CHAPTER 1  

INTRODUCTION 

1.1 Objective 

Remote sensing often refers to the use of aerial platforms with passive and/or active 

sensing devices that capture the information about an object of interest without any 

physical contact with the same object.  This information is often captured by means of 

propagated electromagnetic signals through the atmosphere, which are then processed 

and analyzed by a man-in-the-loop or an autonomous system.  Remote sensing sensor 

systems can be usually categorized as active or passive systems. An active system relies 

on the transmission of a signal directed toward the scene of interest, which is then 

reflected and captured by the same sensor and analyzed through a processing system. The 

advantages of using an active system include the ability to obtain measurements that are 

independent of time, season, or weather and to better control how the target is 

illuminated.  On the other hand, the disadvantages of using active sensing platforms 

include the amount of energy necessary to adequately illuminate a scene under a variety 

of weather conditions and the fact that such systems can be easily detected by other 

sensors on the ground monitoring the skies. 

Conversely, passive sensing devices can detect electromagnetic energy that is 

either emitted or reflected off a scene of interest without the use of a controlled source.  

In situations where the sensor captures reflective electromagnetic energy, a source is 

often needed to illuminate the scene. As an example, a visible camera system relies on 

sunlight to illuminate a scene, where the energy reflected from the scene is captured by 

the camera’s RGB sensor. In contrast, emitted radiation is dependent on the emissivity 
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properties of the materials in the scene and their respective temperature.  Passive systems 

are often desired because unlike active systems, they are not as easily detected since no 

active signal is being transmitted.  The drawback is that their ability to detect and 

discriminate potential objects of interest is inherently dependent on weather and 

background effects on the target, the target state, and any available sources (e.g., sun) the 

sensor(s) can take advantage of.  

In remote sensing applications, one can find a slew of different passive imaging 

sensors that operate in many regions of the spectrum such as visible, short-wave infrared 

(SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR).  Out of all the 

different modalities, LWIR is often the most sought after for surveillance applications, 

especially military, because 1) most materials at ambient temperature (250-300°K) and 

running vehicles (up to 373°K) tend to emit strongly (peak wavelength) between 7 and 

11μm [1]; 2) all materials radiate thermal energy in the LWIR band day and night; and 3)  

the existence of a transmission window (greater than 65%) between 8 and 10μm allows 

the thermal energy to propagate through the atmosphere and be captured by a sensing 

device. 

Electromagnetic waves, or light, can be described in terms of intensity, frequency, 

spectral characteristics, and polarization [2, 3, and 22]. Normally, remote sensing 

applications rely on the use of intensity and spectral based imagery exploitation for target 

detection, recognition, and identification, change detection, material classification, and 

anomaly detection [4-8].   

Passive polarimetric imagery (PI), on the other hand, is attractive because it has 

shown the ability to enhance contrast over intensity imagery in situations where target 
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and background temperature contrast is often negligible [9], in addition it also can be 

used as a conventional and polarimetric infrared imagery depending on how the Stokes 

information is combined.  Because manmade materials polarize strongly with respect to 

natural clutter, infrared polarimetric sensors can be used as an additional modality that 

together with existing sensing devices can dramatically improve important aspects of 

remote sensing applications such as enhanced target detection, classification, and 

recognition.  As a result of the limited number of available databases and algorithm 

development activities that exploit target and background polarization feature diversity, 

polarimetric imagery has not been a technology of choice for remote sensing applications 

(compared to other technologies such as hyperspectral imaging).  Nonetheless, in recent 

years there has been a significant amount of work accomplished that has demonstrated 

the potential of polarimetric imagery for applications such as anomaly detection [10, 11], 

target classification [12], material classification and clustering [13, 14] and more 

recently, detection of disturbed earth for improvised explosive devices (IEDs) [15]. 

Unlike target and material classification algorithms, anomaly detection algorithms 

(the focus of this dissertation) are quite useful in situations where a priori knowledge on 

the target and clutter distributions and atmospheric and illumination effects (altitude, 

sensor angle, etc.) are usually not available to the system.  Such algorithms involve 

measuring the “distance” between an unknown sample and a known reference sample, 

where a cutoff threshold is applied as part of the test to determine whether the test sample 

is also controlled by the same PDF; if the latter is not true, the test sample is labeled as an 

anomaly relative to the reference sample.   
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The objective of this work is to develop novel anomaly detection algorithms for 

PI that can discriminate manmade objects from natural clutter for a variety of weather 

conditions, target state, and throughout the diurnal cycle while operating at very low false 

rates.  

  

1.2 Work Overview 

This dissertation specifically focuses on providing solutions to air-to-ground applications, 

where no a priori information on the target, background, weather, sensor angle (among 

other sources of variability) is available to the algorithm.  In these applications, a target is 

any manmade object in a natural cluttered background whose scale and polarization 

information in the imagery is unavailable or deemed unreliable and as a result will not be 

used by the algorithm.  The proposed algorithms consist of a series of techniques with the 

overall goal of autonomously detecting the presence of manmade objects in the scene, as 

polarization anomalies, while holding down the probability of false alarms.  A manmade 

object present in the scene is assumed to be represented by multiple pixels with a total 

area that can be slightly smaller or greater than the size of a moving window, which is 

much smaller than the size of the test image. 

 This dissertation proposes multiple solutions to the problem of autonomous 

anomaly detection problem, requiring daytime-nighttime capability, using passive remote 

sensory long-wave infrared polarimetric imagery, to include the use of morphological 

filters to enhance manmade object features found in conventional Stokes imagery, while 

at the same time mitigating natural clutter attributes.  This process increases the signal-to-

noise ratio between manmade objects and background clutter more significantly than 



5 

 

 

found in Stokes imagery.  An adaptive threshold based a priori on a chosen Gaussian 

probability density function is employed where the estimated mean and variance from the 

enhanced image are used to standardize the output surface.  A criteria based on the 

desired TYPE I error is applied to reject pixels (i.e., anomalies) that fall outside the 

imposed criteria.  In order to show a fair comparison between the proposed and currently 

employed methods, 72-hour polarimetric imagery (over 300 images), where the target 

satisfies the assumptions stated previously in this section, is used to evaluate and quantify 

the performances of the algorithms.  In conclusion, the dissertation establishes that the 

use of morphological operations plays an important role in PI exploitation.  

 The dissertation recommends exploiting a novel use of polarimetric imagery 

yielding features never before used capable of discriminating manmade objects from 

natural clutter backgrounds more effectively than Stokes parameters can.  The 

dissertation proposes to stack each of the raw polarimetric angle measurements imagery 

(0°, 45°, 90°, and 135°) captured by the camera to create a polarimetric data cube or PC.  

The work focuses on the bivariate space 0° and 90° where a significant effort of this 

dissertation is then devoted on the exploitation of the novel data in ways never done before in 

the scientific community, as validated by the Institute of Electrical and Electronic Engineers 

(IEEE) reviewers for the IEEE Transactions on Geoscience and Remote Sensing (TGRS) as 

they reviewed and accepted for publication the submitted manuscript reporting a portion of 

the new approach [75 and 76].  The analysis in the PC data space using multivariate higher 

order statistics demonstrate that covariance difference tests are effective in separating 

manmade objects from natural clutter backgrounds over a variety of weather patterns, target 

state, and diurnal cycle.  
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 The result is the proposal of an anomaly detection algorithm based on a 

covariance difference test known in the literature as the M-Box covariance test [69] that 

exploits this new feature space by taking advantage of the variability difference between 

the two classes (manmade objects and natural clutter).  

 Two variations of the proposed algorithm are also proposed in order to make the 

solution more robust to range and target size variations. The performance of the three 

proposed covariance test variations were evaluated against a 72-hour database comprised 

of more than 300 polarimetric images and compared against conventional Stokes 

parameters and between the different covariance tests proposed in the dissertation.  

Finally, the key differences between the covariance difference test anomaly detectors and 

the morphological filter based method proposed in this dissertation is twofold:  

1) The morphologic filter based method is directly applied to conventional Stokes 

imagery, while the covariance test uses the raw angle measurements (0°, 45°, 90°, 

and 135°) captured by the sensor as input. The motivation in here is to leverage 

the fact that most, if not all, of fielded polarimetric sensors in the market today 

yield Stokes vector as output data.  

 

2) The covariance difference test assumes that the data has a Wishart distribution 

and the resulting distribution from the test is defined by the    distribution with K 

degrees of freedom when the null hypothesis cannot be rejected; whereas for the 

case of the morphological filters, no assumption is made on the input data prior to 

the filters implementation.  

 

1.3 Contributions of Proposed Work 

To date a significant amount of research focused on manmade object detection using 

polarimetric imagery can be found in the literature [9-15], but little has been done to 

address some of the fundamental problems that affect anomaly detection algorithms using 

polarization features. For example, the input imagery common for much of the work in 

anomaly detection algorithms in literature is the Stokes vector parameters. As it will be 
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shown later on, the Stokes imagery features are unreliable due to their dependency on the 

angle between the sensor’s line of sight and objects’ surfaces, causing major degradation 

on algorithm performance. Although, it is beyond the scope of this dissertation to address 

all of the fundamental problems in anomaly detection algorithms for PI, the most 

important ones are addressed in this work.  

 In summary, this dissertation presents the following contributions:  

1) An extensive analysis of polarization theory, concepts, and limitations 

supported by field data collections using multiple targets over different 

weather conditions, target state, and diurnal cycle.  

 

2) Introduction of a novel algorithm suite based on morphological filters, which 

is tailored to enhance manmade objects found in Stokes imagery, while 

significantly suppressing the background clutter.  

 

3) Introduction of a new data space, a data cube consisting of spatial information 

and radiometrically calibrated measurements of polarization components, in 

order to exploit potential discriminant features between manmade and natural 

object classes.  

 

4) The first to study the proposed data space as input to multivariate algorithms 

for the purpose of manmade object detection, which allowed for the discovery 

of a key feature that distinguishes the two object classes in the scene. This 

feature – the second order statistics – seems reliable over the diurnal cycle and 

under variations due to changing atmospheric conditions and geometry of 

illumination. 

 

5) Introduction of three algorithms specifically designed to exploit the 

discovered discriminant feature in the new data space, where the trade-off 

between algorithmic speed and added robustness can be weighted by potential 

users. The algorithms have demonstrated exceptional performance testing an 

example database, consisting of daytime and nighttime imagery.  

 

6) The first to demonstrate an extensive performance comparison between all of 

the algorithms proposed in this dissertation for manmade object detection and 

the prior art using over 300 polarization images taken over the course of a 72-

hour period of different weather conditions, target states, and diurnal cycle.  
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1.4 Dissertation Outline 

The remainder of this dissertation is organized as follows: 

Chapter 2 presents a brief introduction to infrared radiation theory and concepts 

followed by a discussion on the challenges of conventional broadband LWIR imagery for 

surveillance applications. Descriptions of different sensing modalities in the LWIR 

region of the spectrum that take advantage of different attributes found in light are 

assessed on their advantages and disadvantages relative to conventional broadband LWIR 

on a variety of topics. 

Chapter 3 provides an extensive overview on the theory of polarimetry with the 

introduction of the Stokes parameters followed by a brief analysis on the reflection and 

transmission of electromagnetic waves through different mediums and experimental data 

collected using a polarimetric sensor is also presented to substantiate the theory. Finally, 

an extensive in-depth analysis, which to the best of our knowledge has never been shown 

before, presents the limitations on the use of Stokes parameters for manmade object 

detection in a natural clutter background for air-to-ground applications. 

Chapter 4 introduces the data collection effort and database used for the 

dissertation.  This chapter describes the facility used to collect the data, the LWIR 

polarimetric sensor, the surrogate targets, data acquisition and resulting products, and the 

meteorological data captured by the data collection facility that characterizes all of the 

different aspects of the weather conditions that occurred during the data collection effort. 

Chapter 5 presents the proposed contributions for anomaly detection using 

polarimetric imagery. Firstly, this chapter introduces a procedure that applies 

morphologic-based filters, as a sequential set of image processing operations, to Stokes 
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imagery to enhance manmade object features while mitigating natural clutter attributes. 

This procedure demonstrates the capability in enhancing the signal-to-noise ratio of the 

manmade objects relative to natural clutter, which when combined with an adaptive 

threshold technique yields an efficient anomaly detection algorithm. 

Subsequently, a novel concept is introduced that proposes the notion of a 

polarimetric datacube (PC) assembled from independent angle measurement imagery 

which then is used as input to multivariate detectors.  Using this PC, an extensive data 

analysis is performed for the different classes (manmade and natural clutter), determines 

the inherent features that separate them, and a multivariate detector based on covariance-

difference test is proposed for anomaly detection applications.  Two variations of the 

detector are also introduced that permit the covariance-difference test to be range 

invariant. 

Chapter 6 summarizes and concludes the work for the proposed procedures and 

presents some ideas for future work. 
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CHAPTER 2  

INTRODUCTION TO INFRARED 

2.1 Introduction 

All objects continuously emit and absorb electromagnetic radiation as a consequence of 

the constant motion of charged particles within the material. A fundamental law of 

classical electromagnetics states that accelerated charged particles radiate energy, and as 

the motion of electrons and protons within a sample increases with temperature, then the 

amount of continuous radiation from the sample must also increase with temperature. [1] 

From this process, electromagnetic waves are radiated at all wavelengths which can be 

detected by a variety of sensors tuned to specific regions of the spectrum.  

Historically, the spectrum has been divided into several regions, which are 

differentiated by the processes used to produce and detect the radiation. These regions 

can be divided into radio waves, microwaves, infrared, visible, ultraviolet, X rays, and 

gamma rays as seen in Figure 2.1.  
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Figure 2.1  The electromagnetic spectrum as it is divided into the several regions. 

 
Source: http://glossary.periodni.com/image/electromagnetic_radiation_spectrum_en.gif 

 

The infrared (IR) spectrum is considered to be between 0.72 μm to approximately 

1,000 μm and is divided into three distinct regions as defined by the international 

Commission on Illumination standard [17]: 1) IR-A (0.72 to 1.5 μm), 2) IE-B (1.5 to 3 

μm), and 3) IR-C (3 to 1,000 μm).  Other fields such as meteorology and climatology 

divide the infrared region into Near (0.7 to 4 μm), Mid (4 to 50 μm), and Far infrared (50 

to 1,000 μm).  No matter what standard one uses, several key points are important to 

underline with respect to the infrared band.  For example, about 99% of the sun’s output 

is accounted for by the ultraviolet (UV), visible, and near infrared bands.  The range 

between 4 and 50 μm is often referred as the thermal IR band, while in other fields (for 

different types of applications) can reference the thermal IR as low as 14 μm.  

Interestingly, thermal radiation exchanges in the atmosphere tend to occur up to about 50 

μm, conversely, for the band region from 50 to 1,000 μm the energy transfers in the 
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atmosphere is almost negligible when compared to the regions spanning from the visible 

to the thermal infrared. 

 
Figure 2.2  Transmittance (in percent) of EM energy per wavelength 
 

Source:http://theboresight.blogspot.com/2009/07/airborne-infrared-andsupersonic.html#!/2009/07/airborne-

infrared-and-supersonic.html 

 

Another approach widely used by the engineering community working in remote 

sensing applications, and the one that shall be used in this dissertation, divides the 

infrared spectrum based on the response of various detectors [16] and their applications 

as follows: 1) Near infrared (0.72 to 1 μm) for silicon based detectors, which are widely 

used for night vision goggles; 2) Short-wave infrared (1 to 3 μm) for InGaAs based 

detectors and used for laser designation systems operating at 1064nm and 1550nm as 

well as visual systems that need to see through obscurants such as fog and smoke; 3) 

Mid-wave infrared (3 to 5 μm) which is covered by InSb and HgCdTe based detectors 

have applicability to anti-aircraft missile systems; 4) Long-wave infrared (7 to 14 μm) 

covered by HgCdTe and microbolometers are widely used in forward looking infrared 

(FLIR) systems that can be found in remote sensing applications as well as targeting 



13 

 

 

 

systems; and 5) Very long-wave infrared (14 to 30 μm) which can be detected using 

doped silicon. 

2.2 Blackbody Radiation 

In 1860, Kirchhoff [18] introduced a famous law that became the keystone in radiation 

transfer theory which stated, a good absorber must also be a good radiator.  Kirchhoff 

then proposed the term blackbody to describe a body that would absorb all incident 

radiant energy, and as a result of his law, it would then have to be the most efficient 

radiator.  Kirchhoff concluded that since a blackbody is defined as a perfect thermal 

radiator, it could also be used as a standard by which any other source should be 

compared to. 

 In 1879 Stefan, and later in 1884 Boltzmann, both reached the same conclusion 

that the total amount of energy radiated per unit surface by a blackbody per unit time is 

proportional to the fourth power of its absolute temperature [19].  In 1894, Wien 

published the displacement law, which describes the spectral radiation distribution of a 

blackbody.  However, his equation only agreed with experimental data at short 

wavelengths and at low temperature. Nonetheless, Wien displacement law yields an 

important relationship between maximum amounts of radiated energy, temperature, and 

wavelength [20].  Six years later, Rayleigh would derive an expression that fitted 

experimental results at long wavelengths and at high temperatures but, this expression 

predicted that the energy increased without limits as a function of decreasing wavelength 

[21], see Figure 2.3. 
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Figure 2.3.  Comparison of the Wien and Rayleigh-Jeans theories to that of Planck 
 

Source: http://library.thinkquest.org/28383/grafika/1/aczarnecialo2.gif 

 

Plank observing that Rayleigh-Jeans law and Wien law were valid at the long and 

short wavelengths respectively, successfully formulated an expression that correctly 

interpolated the two laws at all wavelengths.  Planck introduced the idea that amplitudes 

of oscillating electric charges, hence energy, could only increase in discrete steps by a 

quantity described by   .  The constant  , known today as Planck’s constant is a physical 

constant                           which defines the sizes of energy quanta     of 

a photon and the frequency     of its associated wave. [22] 

 

        [      ]  (2.1) 

 

In 1900, Planck, using his law, formulated the derivation of the radiation law that 

describes the spectral exitance radiation distribution from a blackbody source as, [1, 22, 

and 23] 
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(2.2) 

 

where,    is the spectral exitance radiation in W/(m
2
μm), λ the wavelength,   the 

Planck’s constant,   the absolute temperature in °K,   the velocity of light, and   the 

Boltzmann’s constant (1.38054x10
-23

 [W sec °K
-1

].) 

 Figure 2.4 illustrates the blackbody exitance radiation at all wavelengths using the 

Planck’s equation for different absolute temperatures.  It is important to emphasize two 

key facts from Figure 2.4; first, Wien’s displacement law describes the relationship 

between temperature and the wavelength of maximum spectral exitance radiation as 

follows, [1 and 23] 

 

  
 

 
 [  ]  

(2.3) 

 

where A = 2897.8 μm°K.  This equation can be achieved by differentiating Planck’s law 

and solving for the maximum.  Wien’s law states the wavelength were the maximum 

spectral radiant exitance is found decreases as a function of increasing T.  As an example, 

Wien’s equation predicts that for the sun, which its temperature is about 6000°K, the 

peak radiance, as per Equation (2.3), occurs within the visible portion of the spectrum at 

about 0.5μm.  Furthermore, Figure 2.4 also illustrates Stefan-Boltzmann law, which 

states that the total amount of radiation emitted by a blackbody is proportional to the 

fourth power of its absolute temperature.  The Stefan-Boltzmann law can be derived by 

integrating Planck’s equation from zero to infinity yielding, [1 and 23] 
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where  , also known as Stefan-Boltzmann constant, is defined as 5.6697x10
-12

 

[     ⁄ ]. 

 

 
Figure 2.4  Blackbody spectral exitance radiation for different temperatures. 
 

Source: http://www.flickr.com/photos/mitopencourseware/3681748795/ 

 

2.3 Infrared Radiometry 

This section reviews the radiometric terms and definitions used to measure the amount of 

electromagnetic energy present in some location in space.  To accomplish this, one can 

use ray/particle simplification of optics by assuming that light travels in straight lines and 

energy is transferred in discrete energy elements or packets also knows as quanta.  The 

discussion that follows is based on material found in [1, 19, 22, and 23] 

http://upload.wikimedia.org/wikipedia/commons/a/a2/Wiens_law.svg
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Electromagnetic radiation can be theorized as a flow of photons or discrete 

packets of energy, see Equation (2.1), where the total radiant energy (Q) can be defined 

as the energy carried by these same photons over all frequencies of interest, 

 

  ∑   [      ]  
(2.5) 

 

where,    is defined as, 

 

          (2.6) 

 

and   is known as Plank’s constant with a constant value of 6.6256x10
-34

 [Joules sec] 

and    is an integer value describing the number of photons present at each of the 

frequencies. 

 A more commonly used metric is the flux    , also known as power, radiant flux, 

or radiant power, and is defined as the rate at which the electromagnetic energy is 

propagating per unit time in Watts, or  

 

  
  

  
 [ ]  

(2.7) 

 

 The rate at which electromagnetic energy is radiating onto a surface per unit area 

is defined as irradiance      or also known as radiant flux density, 

 

  
  

  
 [

 

  
]  

(2.8) 

 

 Radiant exitance     is defined as the flux per unit area radiated by a surface.  
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(2.9) 

 

Finally, radiance    , one of the most important terms in radiation theory, defines 

the total amount of power/flux being emitted or reflected from a surface within a solid 

angle at a given direction.  As an example, it indicates the amount of power emitted or 

reflected from a surface measured by an optical sensor system at an angle normal to the 

surface, or 
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]  

(2.10) 

 

Equations (2.7) through (2.10) have ignored the spectral response of the 

radiometric terms [22]. In fact, the amount of flux varies depending as a function of the 

wavelength of the radiating electromagnetic wave. If one is to describe flux in terms of 

wavelength response, Equations (2.7) through (2.10) are usually re-written as: 
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Where the subscript   indicates the flux spectral response was taken into 

consideration in the calculations. 

2.4 Emittance and Kirchhoff Law 

Section 2.2 used the term blackbody to describe a body that absorbed all energy and as a 

result, it must also be the perfect emitter.  The term blackbody followed from Kirchhoff’s 

law, in 1860, that stated all good absorbers are also good radiators and such bodies would 

be, theoretically, the standard by which all other sources should be compared to.  

Planck’s equation (Equation (2.2)) provides the limiting spectral distribution envelope of 

such body.  This subsection will review and define the terms emittance, transmittance, 

absorbance, and reflectance as they are related to blackbodies, followed by brief 

explanation on the difference between blackbodies, graybodies, and selective radiators.  

The information in this subsection can be found in [1, 19, 22, and 23]. 

 The term emittance, usually denoted by   in the literature, is a unitless value from 

0 to 1 that describes how well an object radiates with respect to a blackbody at the same 

temperature.  A     implies that the object is a nonradiating body while     indicates 

that the object is radiating just like a blackbody would for some temperature   in Kelvin.  

Absorbance     is also an unitless value that describes the ability of an object to absorb 

energy relative to a blackbody at the same temperature.  As mentioned in the first 

paragraph in this subsection, under Kirchhoff’s law, all good absorbers are also good 

radiators and under this assumption one can state that for a blackbody emittance equals to 

absorbance as it shall be soon demonstrated.  Transmittance     is described as the ability 

of a material to allow energy to propagate through and is defined as an unitless ratio 
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between radiant energy transmitted through a body to that incident upon it.  Finally, 

reflectance     is the ability of a material to reflect energy back to the source and is 

defined as the unitless ratio between radiant energy reflect by a body to that incident 

upon it. 

Before continuing, it is important to distinguish the use of the words emissivity 

verses (vs) emitttance,    , absorptivity vs absorptance,    , reflectivity vs 

reflectance,    , and transmissivity vs transmitance,    , since these dual terms are 

widely and interchangeably used throughout the engineering community, employing the 

same notations but lacking any note on distinction.  As per “The National Institute of 

Standards and Technology (NIST, formerly NBS) has recommended to reserve the 

ending “-ivity” for radiative properties of pure, perfectly smooth materials, and “-ance” 

for rough and contaminated surfaces” [24].  This dissertation follows the NIST 

convention and denotes        and   as absorptance, reflectance, transmittance, and 

emittance respectively, since most real surfaces tend to fall into the latter category.  

Kirchhoff law can be described as follows, 

 

  
    

      
  

(2.15) 

 

where   is the radiant emittance,      is the radiant exitance of the object in question 

and        the radiant exitance of the blackbody at a given temperature  .  Radiant 

emittance is an unitless value ranging from 0 to 1, where 0 implies a nonradiating source 

and 1 for a blackbody.  As mentioned earlier, emittance describes how well an object can 

radiate energy relative to a blackbody at the same temperature. From Kirchhoff’s law the 
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following is true: a good absorber is a good radiator, therefore, one can assume that under 

this assumption that 

 

     (2.16) 

 

where  , known as absorptance, is defined as how well an object can absorb energy with 

respect to a blackbody at the same temperature.   

When irradiance energy is incident upon a surface, the processes of absorption, 

reflection, and transmission must all add to 1, or 

 

         (2.17) 

 

For opaque materials where Kirchhoff’s law applies,    , therefore, 

 

                 (2.18) 

 

When describing a blackbody, reflectance and transmittance must equal to zero, 

     , in order to satisfy Kirchhoff’s law that states all good absorbers are also good 

radiators, or in other words, 

 

       (2.19) 

 

Transmittance     is often referred as the ability of a material to allow energy to 

propagate through and is defined as an unitless ratio between radiant energy transmitted 

(  ) through a body to that incident (  ) upon it, or 
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(2.20) 

 

Reflectance     is the ability of a material to reflect energy back to the source and 

is defined as the unitless ratio between radiant energy reflect (  ) by a body to that 

incident (  ) upon it, or 

 

  
  

  
  

(2.21) 

 

Absorbance     is a material’s ability to convert irradiated energy into another 

form of energy (usually heat), and is defined as the unitless ratio between energy 

converted into another form of energy,   , to that incident (  ) upon it, or  

 

  
  

  
  

(2.22) 

 

If the material’s emittance, reflectance, absorbance, and transmittance values 

fluctuate with respect to wavelength, the subscript   should be used.  Any source can be 

distinguished by the way the spectral emittance varies, for example, a blackbody 

emittance value is constant throughout all wavelengths         , while for a 

graybody                ; and finally for a selective radiator,   varies with 

wavelength as shown in Figure 2.5.   
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Figure 2.5  Comparison between Blackbody, Graybody, and Selective Radiator spectral 

response. 
 

Source: [25] 

 

Most materials types, independently whether they belong to natural or manmade 

objects, fall in the selective radiators category. 

2.5 Challenges Using Conventional Infrared 

Conventional LWIR sensors are widely used in commercial and military applications, 

and operate by integrating all the photons collected within the spectral response of the 

FPA.  A picture of a FLIR Tau uncooled LWIR microbolometer and its typical spectral 

response can be seen in Figures 2.6 and 2.7, respectively.   
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Figure 2.6  Conventional LWIR microbolometer sensor manufactured by FLIR
©

, 

designated as Tau 640 camera engine. 
 

Source: http://www.flir.com/ 

 

Figure 2.7  Typical spectral response curve for FLIR
©

 Tau microbolometer cores.   
 

Source:http://www.flir.com/uploadedFiles/CVS_Americas/Cores_and_Components_NEW/TauResponseC

urve.pdf 

 

http://www.flir.com/
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 In broadband imagery one can find two types of imagery, low contrast and high 

contrast.  Low contrast imagery is usually defined as an image where the object of 

interest exhibits the same or very similar radiance values to that of clutter.  In such 

situations, the object cannot be successfully detected without a high number of false 

alarms making the imagery unusable for detection applications.  High contrast imagery is 

defined as a scene where the target exhibits significantly higher or lower radiance values, 

most cases the former is true, than existing clutter, therefore, the detection of the target is 

easily accomplished with very few false alarms.  

 Low contrast scenes are, of course, not desirable because targets (manmade 

objects in this case) in the LWIR region of the spectrum in particular are not very distinct 

relative to natural objects composing the background scene, thus making it extremely 

difficult for an operator to find these targets in a natural clutter environment.  Ditto for an 

algorithm expected to perform this task automatically, without human intervention.  Such 

low contrast conditions can be found during certain times of the day depending on the 

object temperature and meteorological conditions one may encounter.   

 Figure 2.8 illustrates a target site where surrogate targets were placed at about 

550m from the sensor.  In this image one can observe three surrogate targets at three 

different aspect angles denoted as T0, T90, and T135 referencing their aspect angles.  An 

external blackbody covered by a black canvas and a concrete metal hut can also be 

observed on the left side of Figure 2.8, with the exception of the metal plates (shown in 

the middle of the figure) which were not present during the data collection. 
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Figure 2.8  Target site depicts three surrogate targets and other manmade objects in a 

natural clutter background (trees, trunks, soil, grass) setting. Manmade objects that were 

present in the scene during the actual data collection are circled, with the tank surrogates’ 

aspect angles labeled immediately above corresponding circles. 

 

 Figure 2.9 illustrates several hand-picked scenarios from 6 March (MAR) 2010 

SPICE database (Chapter 4 introduces the SPICE data collection), where low contrast 

between the target and clutter was present using conventional (broadband) LWIR 

imagery.  The targets used were self-propelled howitzers surrogates that had their heating 

elements turned off during this experiment, where the only possible source of heat would 

be the sun during daylight hours, as well as an outdoor blackbody system covered by a 

black canvas, see Figure 2.8,.  A detailed description of the targets can be found in 

Chapter 4 in addition to details on the SPICE data collection. 
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Figure 2.9  Example of low contrast scenarios using conventional broadband LWIR 

imagery at different times in the day for 6 MAR 2010.  Targets in the scene had the 

heating elements turned off, and as a result, the targets temperature was similar to the 

surrounding clutter. 

 

Each sub-figure in Figure 2.9 illustrates handpicked timestamps that represent low 

contrast imagery where dark tones represent low radiance values while bright tones 

represent high radiance values.  Circles were used to aid the reader in locating the four 

targets in each of the sub-figures.   

As shown in Figure 2.9 none of the manmade objects of interest can be 

successfully discerned from the background due their similar radiance values.  This 

similarity is a result of the lack of solar loading on the manmade objects since the sunrise 

and sunset for 6 MAR 2010 was around 0625h and 1754h, respectively.  Interestingly, 

one can observe that even at 0940h, more than three hours after sunrise, the target 
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radiance values are still very close to that of clutter.  This very slow rise of the target 

temperature even after sunrise is the result of two key factors: 1) the manmade objects are 

located within a valley, therefore, the solar loading effect only happens after 0800h-

0830h and 2) the surrogate targets used for this experiment are an empty shell, as one can 

see from Figure 2.8 for the target at 90° for example.  Therefore, because of the constant 

flow of air surrounding the surrogate’s shell, more time is needed, under the solar loading 

effect, for the target temperature to rise above clutter. 

The top images in Figure 2.10 demonstrates an example of a low contrast scene 

(left side) and a binary image (right) representing the low contrast image thresholded 

using     value.  Pixel values that fall in the closed interval [      ] are represented 

by black pixels in the binary image in Figure 2.10 (top right side), and those that fall 

outside the interval are represented by white pixels in the same image, i.e., anomalies. 

 The plot in Figure 2.10 illustrates the kernel probability density estimation of each 

of the surrogates and clutter for the test image where the x-axis represent the range of 

radiance values that can be found in the test image while the y-axis represent the 

estimated PDF result from radiance values of the different object classes in the scene 

(natural background, T0, T90, T135).  Kernel density estimation techniques are non-

parametric methods used to estimate the probability density function of observed data 

that cannot be readily apparent to the user.   
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Figure 2.10  Example of a low contrast scene, top left, and the threshold (binary) image 

located top right. Bottom image illustrates the estimated PDF of the targets and 

background using a kernel method for the estimation.  The PDF of the targets is clearly 

within the background distribution.  

 

 Where for a random variable   {          } drawn from an unknown density 

function  , the kernel density estimate of   is defined as, 
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where the      is the kernel ,   the number of samples in  ,   the smoothing parameter 

called the bandwith which is a free parameter that directly affects the estimation of  , see 

[26-28] for more information on the kernel density estimation  and smoothing parameter.  

Matlab® function ksdensity [29] was used to determine the shape of distribution of all the 

classes shown on the plot in Figures 2.10 and 2.12 by using the Gaussian Kernel function, 

with 100 (default) equally spaced bins, and the default bandwidth parameter which is 

considered optimal for estimating normal densities.  It is important to note that any 

changes in the Kernel function, bin spacing, or bandwidth parameter used has a direct 

influence on the resulting shape of the observed data and may result in a different shape 

than the ones presented in this dissertation. 

As mentioned earlier, the plot in Figure 2.10 illustrates the estimated density of 

each of the surrogates compared to background clutter.  One can observe that the 

distributions of the surrogate targets are within the clutter distribution and as a result the 

ability to discriminate each of the objects of interest (especially using features as the 

mean value from sampled radiance) from clutter is virtually impossible without allowing 

a tremendously high number of false alarms to pass through, which makes the resulting 

output surface impractical for any manned or unmanned system to use (see top right 

image of Figure 2.10 as an example).   

Low contrast scenarios can happen or be achieved by several means other than as 

having sources of heat turned off (e.g., engine) as demonstrated in this example. 

Unfavorable meteorological conditions (e.g., rain, fog, etc.) that limit the system 
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detection range and the deployment of effective countermeasures such as fitted 

camouflaged nets also create situations where the target may not be readily visible with 

respect to the surrounding clutter.  Consequently, one can conclude that low contrast 

conditions demonstrate a challenge for anomaly and target detection using conventional 

infrared imagery as both the target and clutter PDFs are not easily separable. 

In contrast to the conditions shown in Figures 2.9 and 2.10, high contrast scenes 

are found when the object of interest temperature is higher, or sometimes lower, than 

background clutter, for example a tank with the engine running or the effect of solar 

loading on the target.  Figure 2.11 demonstrates four timestamps of high contrast imagery 

where the temperature of the target is considerably higher than the surrounding clutter.  

One can also observe, as expected, that the difference between the target and clutter is 

more accentuated for timestamps 1320h and 1440h during which the sun is the strongest.  

Figure 2.12 illustrates a high contrast image (top left) and the resulting binary imagery 

(top right) when the top left image is thresholded using the same     threshold value as 

before.  As it can be observed, the three surrogate targets are clearly identified in the 

binary (threshold) imagery with very few false alarms.  The bottom image in Figure 2.12 

demonstrates, as expected for high contrast imagery, that a good portion of the 

probability density function of the surrogate targets is outside of the clutter density 

function.  One can, therefore, conclude that broadband LWIR systems, cooled or 

uncooled, are extremely useful in discriminating objects from clutter in situations where 

the target temperature is significantly higher or lower than the temperature of the objects 

composing the background clutter.  Regardless of the low contrast imagery problem, 
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broadband infrared is a very useful and widely used modality that can be found in many 

remote sensing applications.   

 
Figure 2.11  Example of high contrast scenarios using conventional LWIR imagery at 

different times in the day for 6 MAR 2010.  Targets in the scene had the heating elements 

turned off. Continuous solar loading allowed the target plates to reach temperatures 

higher than the surrounding clutter. 
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Figure 2.12  Example of a high contrast scene (top left) and binary image (top right). 

Bottom image illustrates the estimated PDF of the targets and background using a kernel 

density estimator.  In contrast to Figure 2.10, portions of the target are separable from the 

natural clutter due to their significantly higher temperature compared to the background 

clutter. 

 

 Broadband LWIR imagery is quite useful in detecting targets if their distributions 

lie outside of the background clutter PDF as it was shown in Figures 2.11 and 2.12.  

Although the targets in the scene, Figure 2.11, were hotter than the background, it is also 

important to understand that high contrast imagery can also be represented by the 

opposite, a scene where the background is hotter than the targets.   
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 In conclusion, broadband LWIR imagery performed very poorly in detecting the 

targets in low contrast imagery where the clutter and target PDFs aren’t easily separable 

as shown in Figure 2.10.  In this case many false alarms are detected prior to successfully 

detecting the intended targets, which make such imagery (see images in Figure 2.10) 

useless for an autonomous or aided system to successfully discriminate the intended 

target(s).  Therefore, it is the conclusions of this subsection that LWIR broadband 

imagery, although extremely useful, has serious limitations for real world applications 

when encountering low contrast imagery. 

2.6 Sensing Modalities in the LWIR Region 

The focus of Section 2.5 illustrated the advantages and disadvantages of broadand 

infrared relative to high and low contrast scenes.  Low contrast scenes, as demonstrated 

earlier, make it difficult to deploy conventional infrared system for the detection of 

potential manmade objects of interest.  As highlighted earlier, low contrast can be 

achieved by 1) deploying infrared countermeasures such as camouflage nets, thereby 

reducing the target’s infrared signature; 2) eliminating or turning off potential heat 

sources such as the engine; or 3) through adverse meteorological weather conditions.  

The third condition is often outside anyone’s ability to control, unlike the first two.  

Giving that conventional infrared can be easily countermeasured by the use of 

camouflaged nets and flares or by turning off target engines and let the target cool off to 

ambient temperature; other modalities within the LWIR infrared region of the spectrum 

began to emerge that take advantage of other attributes found in light which are useful in 

discriminating potential targets from the background.  These attributes, wavelength and 

polarization diversity, have been exploited using hyperspectral and polarimetric sensing 
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modalities, and more recently the spectral-polarimetric sensing modality.  These three 

sensing modalities will be briefly discussed in the following subsections with a summary 

on their advantages and disadvantages. 

2.6.1 Hyperspectral Imagery 

Hyperspectral (HS) imaging sensors collect the electromagnetic radiation that each 

material reflects, absorbs, and emits by sampling the spectrum into tens or hundreds of 

bands, which in turn allows for the generation of spectral signatures that in theory should 

be unique to each material in the scene.  Airborne platforms are often referenced as the 

platforms of choice for hyperspectral sensors for remote sensing applications due to their 

size, weight, and power capabilities, which is needed to operate such HS cameras.  

A remote sensing hyperspectral sensor records the reflected or emitted 

electrogmagnetic radiation by dividing the bandwidth into many adjacent bands, each 

with a different spectral value.  As the sensor flies over an area of interest, it records the 

radiation over an area in many different wavelengths (see Figure 2.13) with a ground 

sampling distance corresponding to less than one to many squared meters of the scene 

depending on the resolution of the FPA and its altitude to the ground. 
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Figure 2.13  Hyperspectral cubes and material spectral sample.  Hyperspectral cubes are 

representations of a scene at different wavelengths where the   and        represent 

the spatial information of the scene while the        represents the spatial area at 

different wavelengths.  A pixel in a HS data cube is, therefore, a vector of wavelength 

information of a physical material present at a specific       location in the scene. 
 

Source: http://www.hyvista.com/wp_11/wp-content/uploads/2008/08/hdc.png 

 

The spatial-spectral information is then compiled into what is known as HS data 

cube where the length and width represent the spatial dimension and the depth the 

spectral dimension.  Each pixel along the depth of the HS cube is defined by a spectral 

signature representative of the material(s) in that spatial area.  In theory, each spectral 

signature should be unique to the properties of the material it represents, however, in 

practice, atmospheric conditions, sensor noise, sensor artifacts, illumination effects, 
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attenuation, etc., play a significant role in distorting the materials “pure” spectral 

signature causing the materials to exhibit high spectral variability.   

Algorithm development for HS imagery can be divided into three categories: 1) 

anomaly detection, the identification of pixel locations anomalous to the scene; 2) target 

detection, the identification of objects by correlating known spectral signatures to pixels 

in the HS cube; and 3) atmospheric correction which corrects HS cubes for path losses 

by transforming the input cube into an observation of the materials in the scene as if no 

path losses were observed by the sensor. 

As mentioned earlier, anomaly detection refers to the identification of “rare” 

pixels that fall outside the overall distribution of the majority of the pixels in the image.  

Anomaly detection usually has no a priori knowledge about any targets in the scene and 

it generally utilizes all the pixels in the scene in order to predict its global statistical 

distribution to identify pixels in the image that may fall outside the global distribution. 

Target detection, on the other hand, is used to identify pixels of interest by 

matching the pixels in the scene to a look-up table (LUT) of spectra.  This LUT is 

composed of materials that the user or system is trying to detect in the scene, however as 

previously mentioned, spectral variability due to a variety of factors is a major concern in 

hyperspectral target detection as one needs to have a tremendous amount of spectral 

signatures for a given material that incorporates all the possible variability that may be 

seen by the platform.  A variety of target detection algorithms such as support vector 

machine, support vector data description, and sparsity [6, 8, 7, and 30] based target 

detectors are currently being used by the scientific community to identify materials of 

interest in HS imagery. 



38 

 

 

 

The third category on algorithm development is the use of atmospheric correction 

codes to revert, using atmospheric models, the spectral signatures in the HS data cube as 

if the sensor was collecting the data up close without any atmospheric path losses.  In this 

construct, reversing the signatures to their “pure” state (eliminating the path loss 

observed by the sensor), target detection LUTs would only need to have one signature per 

material of interest, thus simplifying the complexity of the algorithm as well as 

processing time.  

Software programs such as QUAC [31] and FLAASH-IR [32] by Spectral 

Sciences Inc. (SSI) attempt to correct each pixel in the HS cube for atmospheric 

effects/attenuations in order to retrieve the original spectral signature of each material in 

the scene, where QUAC is used for imagery collected in the VNIR region and FLAASH-

IR is used for imagery collected in the LWIR region.   

In the state of practice, HS systems often employ a system consisting of anomaly 

detection, atmospheric correction followed by target detection or identification, using 

retrieved reflectance (in the VNIR) or retrieved emissivity (in the LWIR region) for the 

test.  This composite capability is particularly important for applications such as chemical 

plume detection, disturbed earth detection (as a precursor to finding IEDs) which need to 

rely on highly effective algorithms. 

As advantageous as HS imagery may seem to be for detecting and identifying 

pixels of interest using spectral signatures, which cannot be accomplished in conventional 

infrared systems, it also comes with some noticeable drawbacks that need to be 

addressed.  For example, the amount of processing required to load and process each HS 

cube, often composed of hundreds of images, is a lot higher than processing a 2-
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dimension conventional infrared imagery.  Parallel processing methods or high power 

processors are needed in order to process HS imagery in a timely manner thus, restricting 

the use of HS sensors and its processing to large aerial platforms that have the necessary 

real estate for the sensors and computing power needed.   

Cost is another key disadvantage of HS sensors as they require the use of very 

sensitive detectors when compared to conventional infrared sensors.  The need for higher 

sensitivity FPAs is the result of slicing the number of available photons within the 

response of the FPA by a very large number of bands captured by the sensor, thus 

reducing the signal-to-noise ratio of each spectral image.  Finally, the size and weight of 

these systems make them too bulky to be hand carried by an operator and the power 

requirements needed for HS imagers limit how far these systems can be placed away 

from power generators (vehicle, airplane, or grid). 

2.6.2 Polarimetric Imagery 

Polarimetry imaging sensors, the modality in focus in this dissertation, capture the 

changes in the polarization state of incoming electromagnetic waves by, one method, 

rotating a polarizer in front of the optics.  Such imaging sensors record the reflected or 

emitted electromagnetic radiation (intensity) as it passes through a polarizer at 

deterministic angles to form an  -dimensional polarimetric cube, where   is determined 

by the number of angles measured for each data cube, which for most cases, these 

measurements are accomplished at four distinct angles such as 0°, 45°, 90°, and 135°.  By 

adding or subtracting specific images in the  -dimensional polarimetric cube, one can 

form a Stokes polarimetric image cube as shown in Figure 2.14. 
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Figure 2.14  Generation of the Stokes vector parameters using polarization 

measurements (0°, 45°, 90°, and 135°). 

 

Each image in the Stokes image cube is usually processed and analyzed 

independently from all others, as each image represents a measure on the state of the 

electromagnetic wave for a particular spatial location of the scene.  The first image, 

denoted as S0, is defined as the total intensity of the scene as if the polarizer was absent 

from the system.  The second image S1, represents the difference between the horizontal 

and vertical polarization measured by the camera, while S2 represents the difference 

between +45° and -45° polarization.  As a sensor flies over a scene, depending of the 

values of S1 and S2, smooth manmade object can be discriminated from the background 

as such materials tend to emit or reflect highly polarized electromagnetic radiation, while 

conversely, natural clutter often exhibits very low polarization content.  As a result of this 

polarization difference between clutter and smooth surfaces, Stokes images S1 and S2 are 

widely used for the detection of manmade objects, as anomalies, in the context of natural 

clutter.  In addition, it has been claimed by [14 and 33] that multi-view Stokes 

information could be used for material classification by estimating the complex index of 
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refraction of all the materials in the scene, however, such work has only been validated in 

laboratory environments at this time. 

During the past decade, polarimetry has seen tremendous advancements 

especially in the field of sensor development with sensors that are light with low power 

consumption, and the methods/techniques by which the Stokes vector measurements are 

captured satisfy a variety of different applications.  Polarization imagers can be divided 

into four very different techniques with each one of them having advantages and 

disadvantages and their applicability to certain applications. 

The most straight forward and simple to manufacture polarimetric camera is the 

Step Rotating Element Polarimetric Imager.  This method records polarization 

measurements by rotating a polarization element (polarizer) in front of the camera at 

specific angles from where the Stokes vector imagery are then calculated by adding or 

subtracting the collected imagery.  The disadvantage of such system is that both the scene 

and the camera must be stationary in order to avoid the introduction of artifacts due to 

motion.  Another technique called Division of Amplitude consists of a sensor that 

employs four separate FPAs combined with a common objective lens and polarizing 

beam splitters and retarders to produce a polarimetric image.  By employing such 

methodology, one is able to measure the complete Stokes information from the four 

images captured simultaneously, reducing or eliminating any artifacts due to 

scene/platform movement.  The obvious drawback of such system is the correct 

alignment of each of the FPAs that minimizes potential misregistration issues as well as 

the cost of the components, especially the FPAs and the electronics needed to support 

them.  Division of Aperture uses a single FPA that is divided into, usually, four areas 
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where each one of those areas represents a polarization angle (see Figure 2.15).  The 

principal advantage of this technique is the “instantaneous” collection of the four 

polarization images necessary to calculate the Stokes imagers.  Cost, is another 

advantage, which unlike Division of Amplitude, only utilizes one FPA to collect the 

information.  However, the disadvantages of using such system are: 1) the loss of FPA 

spatial resolution by a factor of two and 2) volume and weight of additional reimaging 

optics needed to co-bore sight all polarization channels.   

 

 

 
Figure 2.15  Schematic of a Mid-Wave infrared Division of Aperture imaging 

polarimeter. 
 

Source: [34] 

 

Finally, Division of Focal-Plane Array polarimeters use micro-optical 

polarization elements directly integrated onto the FPA such that each pixel sees a 

different polarization angle measurement and a group of     pixels may be used to 
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estimate the Stokes vector at each pixel by interpolating points in the FPA (see Figure 

2.16). 

 
Figure 2.16  DoFP FPA divided into micro-optical polarization elements. 

 

Division of Focal Plane Array sensors have the same advantages as Division of 

Aperture systems as they collect simultaneous measurements for every pixel in the scene 

while using only one FPA.  However the disadvantages result from pixel-to-pixel 

crosstalk, which is unwanted information captured by a given pixel due to interferences 

from other neighboring pixels, and a one pixel misregistration when computing the 

Stokes vector information as a result of the division of FPA.  For more information about 

each of the sensors please refer to [2]. 

Algorithm development for polarimetric imagery falls into three categories much 

like hyperspectral imagery: 1) anomaly detection, 2) object orientation, and 3) material 

classification.  Polarimetric anomaly detection algorithms often refer to the identification 

of “rare” pixels that exhibit a preferred polarization orientation of the radiation that is 
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common to manmade materials.  More often than not, this information can be easily 

extracted from either S1 or S2, however there have been cases where both S1 and S2 are 

fused in order to enhance the detection of manmade objects from a scene.  Regardless of 

the methods one uses to extract the locations of rare pixels, anomaly detection is still one 

of the most widely used approaches in detecting manmade objects in natural clutter 

background.  Surface orientation is another method where the use of polarimetric 

information allows in determining the orientation of optically smooth surfaces relative to 

the viewing perspective of the sensor.  Such information has not been widely exploited in 

practical scenarios since one must be sure the test pixels do in fact represent the intended 

object of interest and not false alarms that may be present in the image.  On the other 

hand, material classification using polarimetric imagery is accomplished by observing 

materials at different viewing camera angles and calculating the complex index of 

refraction for each material in the scene [35].  Although the work has shown promising 

results, some drawbacks of using such methodology include: 1) misregistration of 

collected imagery as the platform moves across the scene; and 2) lack of consideration 

for atmospheric effects on the propagation of the electromagnetic wave that may limit the 

ability in successfully classifying a material.   

Several advantages in using polarimetric imagery are: 1) the cost of the sensors 

which can go from tens of thousands to hundreds of thousands of dollars depending of 

the application and sensitivity required; for example $40k for a LWIR polarimetric sensor 

versus a $200k or greater hyperspectral sensor; 2) the hardware complexity of such 

devices compared to hyperspectral sensors; 3) and the small size of the sensors, again 

depending of the application.   
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One key disadvantage is the lack of interest by the engineering community due to 

the difficulty of using polarization information to discriminate manmade objects in a 

variety of backgrounds as it shall be demonstrated in Chapter 3.  The cost is another 

disadvantage of polarimetric sensing technology compared to broadband LWIR sensors.  

Moreover, using a polarimeter in front of the lens cuts the available light reaching the 

FPA by as much as 60%, which for certain applications, may require FPAs with higher 

sensitivity thus increasing the sensor’s overall cost. 

2.6.3 Spectro-Polarimetric Imagery 

Spectro Polarimetric (SP) imagery which started in late 90s and early 2000s as a research 

topic has developed into a field of its own.  The idea behind using such sensors is that it 

brings all of the features (shown in Subsections 2.6.1 and 2.6.2) into one single datacube.  

Each spectral slice of the datacube collected by a SP sensor is composed of three, 

sometimes four, different images: S0
λi
, S1

λi
, S2

 λi
, and Degree of Linear Polarization 

(DoLP
 λi

).  S0
 λi

 represents the broadband image and S1
 λi

, S2
 λi

, and DoLP
 λi

 represent the 

polarization information images for wavelength λi as shown in Figure 2.17. 



46 

 

 

 

 

Figure 2.17  A spectral-polarimetric data cube.  Each wavelength is represented by three 

measurements, the intensity (S0), and S1 and S2 polarization measurement. 

 

 As such, if one were to stack all S0
 λi

 images into a cube, it would represent a 

hyperspectral data cube captured by a HS sensor.  Conversely, if one would add up all of 

the individual S1
 λi

, S2
 λi

, or DoLP
 λi

 images together it would represent the broadband 

polarization information captured by a conventional polarimeter.  Finally, if one would 

integrate all S0
 λi

 images, then the output would be representative of a conventional 

broadband image.  As one can observe, a SP sensor provides a lot of information that can 

be processed together or separately to provide enhanced detection and classification 

capabilities to a user.  As advantageous as this technology may sound, its drawbacks are 

many, for example, if one of the drawbacks of hyperspectral was the SNR of each 

spectral image, now that a polarizer is introduced into the system, it would require a FPA 

with significantly higher sensitivity and, as a result, more expensive imagers need to be 

used with SP technology.  The time that it takes to collect an image with tens of 

wavelengths was already difficult to accomplish in a dynamic environment using 
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hyperspectral imagery, adding another modality to the system, ultimately forces such 

systems to be used in stationary or in very low dynamic scenes. 

 

2.7 Summary and Conclusions 

Chapter 2 provided a brief introduction to infrared radiometry focused on conventional 

LWIR infrared imagery and the challenges LWIR imagery faces in situations where low 

contrast scenarios are observed by the sensor.  During these situations, potential targets of 

interest are blended within the background making it very difficult for an autonomous 

algorithm to detect these targets from clutter.  Three LWIR sensing modalities were 

introduced: hyperspectral, polarimetric, and spectral-polarimetric that take advantage of 

spectral and/or polarization aspects of reflected or emitted light and can be used to detect 

manmade objects (formed by a variety of material types) in natural clutter backgrounds 

under certain low contrast scenarios where broadband imagery fails.  In particular, 

hyperspectral sensors divide the bandwidth into tens or hundreds of images each 

representing a different wavelength allowing for target and clutter spectral 

discrimination; and the polarization of reflected or emitted light, which can be collected 

using polarimetric sensors, is exploited for manmade object detection, since in principle 

optically smooth surfaces polarize differently from natural objects.  Finally, the spectral-

polarimetric sensor was briefly discussed in Subsection 2.6.3, which in essence combines 

the information captured by both hyperspectral and polarimetric sensors into one data 

cube, bringing along with it the advantages and disadvantages of both HS and 

polarimetric sensing modalities. 
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CHAPTER 3  

OVERVIEW OF POLARIMETRY 

3.1 Introduction 

Properties of light can be placed into four distinct categories, intensity, wavelength, 

coherence, and polarization.  Polarimetry is the science of measuring the nature of 

polarized light by specifying the orientation of the electric field.  Polarimetric imagery 

(PI) focuses on the measurement of the polarization state across a scene of interest 

captured by a polarimetric sensor yielding one or more 2-dimensional images where each 

pixel contains the polarization information for the materials present in the image. 

 This chapter describes the nature of polarization by first reviewing the nature of 

EM wave energy, followed by a brief description on the interaction of the EM energy 

with two different media and the changes that occur as it is reflected and propagated 

between the two materials.  The concept of polarization ellipse is introduced and 

determines the instantaneous polarization state of light followed by an introduction to the 

Stokes Vector, one of the cornerstones of PI remote sensing applications, which describes 

the polarization state of light in terms of intensity measurements.  Exploitation techniques 

widely used in the research community will also be revisited in this chapter for a specific 

application: autonomous detection of manmade objects in the presence of a natural 

background scene.  The information and equations presented in this chapter are based on 

material found in [1, 3, 22, and 36]. 
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3.2 The Nature of Electromagnetic Waves and the Polarization Ellipse 

This section introduces the electric field equations of a propagating electromagnetic 

wave, followed by the formulation of the polarization ellipse equation as a method to 

quantify the shifting of the   and   components of the electric field also known as 

polarization shift or rotation of the wave.   

 

3.2.1 Derivation of the Polarization Ellipse 

Polarization is a property of electromagnetic waves where the trajectory of the electric 

field vector is traced in the time domain at a fixed observation location.  The electric field 

of a sinusoidal electromagnetic wave can be decomposed in terms of two orthogonal 

components with their respective amplitudes and phases: 

 

                        (3.1) 

                          (3.2) 

              (        )  (3.3) 

 

where    and    are the instantaneous amplitudes of the   and   components for a 

specific moment in time, while     and     are the peak amplitudes of the electric field 

at a fixed frequency.  The angular frequency is denoted as   
   

 
, where   is the 

wavelength of the wave and   the speed of light in a vacuum. The variable   is time, 

followed by   
 

 
, which denotes the velocity of the wave in a particular medium,   the 

location along the propagation direction of the wave, and    and    are the relative phase 

shifts.  It is important to emphasize that the initial reference phase shift of the waves is 
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irrelevant, however, the phase shift difference between the two waves (δ) is critical as it 

will determine the trajectory of the wave with respect to the   and   axis as one shall see 

very shortly. 

 Figure 3.1 illustrates such concept by demonstrating the phase shift between    

and    as it propagates in the z-direction. 

 

 
Figure  3.1  An electromagnetic wave with a phase shift of δ between the    and    

components of the electric field. 

 

 

The resulting locus accomplished by tracing Equation (3.1) over time  , while 

propagating in the z-direction, see Figure 3.1, can be represented by Equation (3.4), 

 

  
 

   
  

  
 

   
   

    

      
            

(3.4) 
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where         is the phase difference between the   and   components.  Equation 

(3.4), also known as polarization ellipse equation, describes an ellipse rotated at an angle 

  and represents the pattern traced by an EM wave over time on the  -plane as shown in 

Figure 3.2. 

 
Figure 3.2  Polarization ellipse and the polarization angle ( ). 
 

Source: E. Collett. Field Guide to Polarization. Bellingham, WA: SPIE Press, 2005. 
 

One can represent the angle at which the EM wave is shifted as follows, 

 

      
           

   
     

               
(3.5) 

 

Another well-known angle in polarization is the ellipticity angle,  , and is defined 

by the ratio between the minor and major axis lengths, 

  

      
           

   
     

       
  

 
   

 

 
  

(3.6) 
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It is important to emphasize that polarized light often has a preferred orientation 

that can be distinguished from unpolarized EM waves.  Randomly polarized or 

unpolarized EM waves, see Figure 3.3,  are composed of many superimposed EM waves 

whose   field varies in orientation and, therefore, one cannot determine its orientation.  

 
Figure 3.3  Unpolarized light is defined by an unspecified E-field direction as a function 

of time. 
 

Source:  http://electron6.phys.utk.edu/light/images7-10/polari1.gif 

3.2.2 Degenerate Forms of the Polarization Ellispe 

There are special forms derived from Equation (3.4) that categorizes polarization as 

linear or circular depending of the E field values and their respective angle shifts.  Linear 

polarization can be further divided into four categories, horizontal, vertical, +45 and -45 

degree.  For the case of linear horizontal polarization,         is defined as, 

 

                          

               . 

(3.7) 

 

 Conversely, for linear vertical polarization, 
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              (        )  

                 

(3.8) 

 

 Substituting          , Equation (3.4) reduces to  

 

    
   

   
    

(3.9) 

 

 Equation (3.9) represents the equation of a straight line with a zero intercept and a 

slope of 
   

   
, where if     the slope is positive while for    , the slope is negative.  

For the case where        , the slope of Equation (3.9) is one which represents a EM 

wave polarized along the    ° for the respective phase shift difference, also known as 

   ° linear polarization.  

 Alternatively, when     
 

 
, Equation (3.4) reduces to  

 

  
 

   
  

  
 

   
     

(3.10) 

 

which is defined as the equation of an ellipse rotated at an angle     .  If         

  , then Equation (3.10) becomes, 

 

  
 

  
  

  
 

  
     

(3.11) 
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 Equation (3.11) represents the equation of a circle and is known as circular 

polarization.  The rotation of the polarization is defined by the angle shift between the 

two components as right circular when    
 

 
 and left circular for    

  

 
. 

 In this section, the polarization ellipse equation was presented, Equation (3.4), 

which is a very useful tool to describe the various polarization states of light in terms of a 

single equation. The polarization ellipse equation also demonstrated that for certain 

special cases, light can be described as linearly or circularly polarized light.   

 There are several limitations on the use of polarization ellipse equation for real 

world applications, for example, the polarization ellipse equation traces the EM wave 

ellipse or some special form of an ellipse in terms of amplitudes at a given moment in 

time.  Given that the period of light is of the order of 10
-15

 seconds, it is impossible to 

observe the polarization ellipse in real time.  Another limitation of the polarization ellipse 

is the fact that such an equation is only useful in describing light that is completely 

polarized, which in nature, light is often in an unpolarized or partially polarized state. 

 The following Subsection 3.3 presents the solution provided by Sir Georges 

Stokes to overcome the polarization ellipse equation limitations by introducing the Stokes 

parameters derived from measurable observables of the electric field. 

3.3 Stokes Parameters 

In 1852, Sir George Stokes (1819 – 1903) discovered that one could describe the 

behavior of polarized light in terms of four observable quantities, known today as the 

Stokes polarization parameters.  The first parameter of the Stokes parameters reveals the 

total intensity of the optical field, while the remaining three parameters describe the 
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polarization state.  Stokes demonstrated for the first time, that an observable such as 

intensity could describe light as unpolarized, partially polarized, or completely polarized. 

[37].   

3.3.1 Derivation of the Stokes Parameters 

Recall from Subsection 3.2.1 that for a completely polarized light beam, one can express 

the polarization ellipse, Equation (3.4), in terms of time as follows, 

 

  
    

   
    

 
  

    

   
    

  
          

            
                  

(3.12) 

 

where                 .  

 For monochromatic radiation, it is assumed that the amplitudes and phases are 

constant, which reduces Equation (3.12) to 

 

  
    

   
  

  
    

   
   

          

      
            

(3.13) 

 

 Given that    
 ,    

 , and   are constants while   
    and   

     vary with time as 

seen in Equations (3.2) and (3.3), in order to measure the intensity of the optical field one 

must take the time average over a single period of oscillation.  Time averaging Equation 

(3.13) yields 

 

〈  
    〉

   
  

〈  
    〉

   
   

〈          〉

      
            

(3.14) 
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where the time average symbol is denoted as 〈 〉.  Sir Stokes demonstrated that with 

some algebraic manipulation one can express Equation (3.14) in terms of intensities, or 

 

(   
     

 )
 
 (   

     
 )

 
 (           )

 
  (           )

 
  (3.15) 

 

 The term on the left side of the equal sign in Equation (3.15) is the sum of all the 

other terms, and as such it was termed as the total intensity of light.  The first term on the 

right hand side of the equal sign is the difference between the horizontal and vertical 

intensities of the light beam and describes the amount of linear horizontal or vertical 

polarization, followed by a term which describes the total amount of linear +45° and -45° 

polarization, and finally the last term describes the amount of right or left circular 

polarization. 

One can now write the quantities in Equation (3.15) as follows: 

 

      
     

   (3.16) 

      
     

   (3.17) 

                (3.18) 

                (3.19) 

 

 This leads to expressing Equation (3.15) in terms of the Stokes polarization 

parameters or, 

 

  
    

    
    

 . (3.20) 

 

 Using Schwarz’s inequality, it has been shown [3] that for any state of polarized 

light the Stokes parameters satisfy the following relation, 
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   (3.21) 

 

where the equality applies when completely polarized light is present, and the inequality 

when partially or unpolarized light is present. 

 The angle of the polarization field can be represented in terms of the Stokes 

parameters as 

 

      
  

  
  

(3.22) 

 

and the ellipticity angle χ can be represented as 

 

       
  

  
  

(3.23) 

  

 One can define the degree of polarization,  , of a light beam using the Stokes 

parameters as follows: 

 

  
    

      
 

√  
    

    
 

  

        
(3.24) 

 

where if P = 1 corresponds to completely polarized light, P = 0 corresponds to 

unpolarized light, and when 0 < P < 1 corresponds to partially polarized light.  It is worth 

noting that for passive systems circular polarization is often negligible    
    , as 

shown in previous work [38], therefore, the degree of polarization becomes the degree of 

linear polarization, DoLP, and is defined as 
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√  
    

 

  

           
(3.25) 

  

3.3.2 Degenerate Forms of the Polarization Ellipse using Stokes Parameters 

The special cases of the polarization ellipse discussed in the Subsection 3.2.2 can be 

expressed in terms of the Stokes parameters in the following manner, for linear 

horizontally polarized light where      , Equations (3.16) through (3.19) become 

 

      
   (3.26) 

      
   (3.27) 

      (3.28) 

      (3.29) 

 

While for linear vertically polarized light where      , 

 

      
   (3.30) 

       
   (3.31) 

      (3.32) 

      (3.33) 

 

For the case of linear +45° polarized light, where    
     

     and    °, 

the Stokes parameters convert to 
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   (3.34) 

      (3.35) 

      
   (3.36) 

      (3.37) 

 

For the case of linear -45° polarized light, where    
     

     and       , 

the Stokes parameters become 

 

      
   (3.38) 

      (3.39) 

       
   (3.40) 

      (3.41) 

 

When    
     

     and       right circular polarization occurs and in this 

case the Stokes parameters are defined as,  

 

      
   (3.42) 

      (3.43) 

      (3.44) 

      
   (3.45) 

 

Finally, for left circular polarized light, where the amplitudes are the same except 

      , the Stokes parameters become, 
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   (3.46) 

      (3.47) 

      (3.48) 

       
   (3.49) 

3.3.3 The Stokes Vector Measurement using a Polarizer 

It is common to arrange the Stokes parameter in a column matrix such as 

 

  (

  

  
  

  

)  

(

 
 

   
     

 

   
     

 

           

           )

 
 
  

(3.50) 

 

which is also known as the Stokes vector for a plane wave.  The Stokes vector, 

mathematically is not a vector, but it has been called a vector for mathematical 

convenience.  The parameter S0 in Equation (3.50) represents the total intensity of light 

captured by the sensor and it can be defined as the total intensity captured by the system 

as if all polarization elements were removed from it. Conversely, Stokes vector 

parameters S1, S2, and S3 represent the dominant orientation of the radiation (usually 

through the use of a positive or negative sign).  When S1, S2, and S3 are normalized by S0, 

these parameters range from 0 to 1 indicating the extent (in percentage) by which the 

radiation is polarized with respect to the total intensity.  If unpolarized light is 

encountered, due to the rapid varying field in random directions, S1, S2, and S3 must, in 

theory, go to zero, yielding a Stokes vector represented by, 
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)  
(3.51) 

 

 As previously mentioned for passive systems, Stokes parameter S3 is often 

negligible (S3≈0) and more often than not it is not measured by such systems.  Therefore, 

for the remainder of this work, when the words “Stokes vector parameters” are referred 

to, only the first three parameters S0, S1, and S2 should be considered.  

 The measurement of the Stokes vector using a polarization camera is 

accomplished by measuring the intensity of a scene using a polarizer rotated at 

discretionary angles.  Figure 3.4 illustrates the simplest polarimetric camera one can build 

by taking a camera with a polarizer in front of the lenses and by rotating the polarizer at 

specific angles one can measure the intensity of the scene as related to the polarization 

angle.  One must emphasize that there are many different types of polarization cameras 

that collect the same information using different methodologies.  A good explanation on 

the different types of polarization cameras can be found in Subsection 2.6.2 or in [2]. 
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Figure 3.4  A a simple polarimetric camera using a polarizer in front of the lenses.  By 

rotating the polarizer to 0°, 45°, 90°, and 135°, one can calculate the Stokes vector 

parameters. 
 

Source: http://ars.els-cdn.com/content/image/1-s2.0-S030057121200108X-gr1.jpg 

 Stokes vector parameters (S0, S1, and S2) can be easily estimated using the setup 

shown in Figure 3.4 by rotating the polarizer to specific angles (0°, 45°, 90°, and 135°) as 

discussed in Subsection 3.2.2 and taking into account that for passive remote systems S3 

is often not measured.  In order to collect    
 , the polarizer is rotated to 0°, also known as 

linear horizontal polarization using the ground plane as the reference. Consequently,    
  

is measured by rotating the polarizer to 90° such that linear vertical polarization is 

captured by the sensor.  Likewise, in order to measure the remainder degenerate cases for 

linear polarization, one must turn the polarizer to +45° and -45° (often called 135°) and 

measured their intensities.  Equation (3.52) demonstrates how to describe the Stokes 

vector parameters in terms of observed intensities captured by sensor with a polarizer 

rotated at the specific angles in the following configuration, or 
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)  
(3.52) 

 

 It must be pointed out that the Stokes parameters were derived to a specific   and 

  coordinate system.  When comparing polarimetric imagery, it is important that both 

datasets agree upon a common reference orientation from which the measurements are to 

be taken from.  It is common to use the ground plane as the horizontal axis (parallel to the 

ground plane) from which one measures horizontal polarization, and use the vertical axis 

(perpendicular to the ground plane) to measure vertical polarization.   

3.4 Reflection and Transmission of Electromagnetic Waves 

This subsection reviews the behavior of reflected and transmitted polarized light through 

interactions with dielectric surfaces.  This behavior is often expressed mathematically by 

a set of equations known as Fresnel’s equations which can be derived from Maxwell’s 

equations and describe the amount of light that is reflect and transmitted when light 

moves across two different mediums.  Other important attributes such as Brewster angle, 

total internal reflection, and Snell’s law will also be discussed since they too play an 

important role on the understanding of polarized light.  Finally, data captured using a 

LWIR polarimetric camera is presented to link the theory presented in this section to 

actual measurements in the field. 

Let’s start by defining Snell’s law, which is used to describe the relationship 

between the angle of incidence and transmission of EM waves as they pass from one 

medium to another with different indexes of refraction.  Snell’s law states that the ratio of 

sines of the angles of incident and transmission angle is equal to the ratio of the phase 
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velocities in the two media, or more commonly known, to the opposite ratio of the 

indices of refraction of each medium, 

 
     

     
 

  

  
 

  

  
  

(3.53) 

 

where   is the angle measured from the normal to the surface,   (m/s) the velocity of 

light inside the respective medium, and   the index of refraction of the respective 

medium. 

Augustine-Jean Fresnel demonstrated that for an EM wave normally incident onto 

a planar dielectric surface, reflectivity is a function of the index of refraction of the two 

mediums defined as 

 

  (
     

     
)
 

  
(3.54) 

 

where    and    are the index of refraction of each of the mediums.  However, for the 

case where the incident wave is at an arbitrary angle from the normal of the surface, the 

polarization of the wave must be taken into account. 

3.4.1  ̅ is Perpendicular to the Plane of Incidence 

For the case where the E field is perpendicular to the plane of incidence, also known as 

the “s”-polarization or transverse electric (TE), the amplitude reflection and 

transmission coefficients can be expressed in terms of the wave’s incident angle and the 

index of refraction of each medium as follows 

 

   
               

               
  

(3.55) 
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Equation (3.55) can also be expressed in terms of Snell’s law in order to eliminate 

the dependency on the indices of refraction, 

 

    
          

          
  

(3.56) 

 

The transmission coefficient can be derived as 

 

   
        

               
  

(3.57) 

 

 Similarly, it can be reduced in terms of    and   , or 

 

   
            

          
  

(3.58) 

 

3.4.2  ̅ is Parallel to the Plane of Incidence 

For the case where the E field is parallel to the plane of incidence, known as “p”-

polarization or transverse magnetic (TM) polarization, the transmission and reflectance 

Fresnel’s equations can be derived to be 

 

   
               

               
  

(3.59) 

 

or, in terms of angle of incidence and reflection only, 

 

   
          

          
  

(3.60) 

 

Furthermore, the transmission coefficient can be written as follows 

 

   
        

               
  

(3.61) 
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similarly, it can be reduced to 

 

   
            

                    
  

(3.62) 

 

More often than not, the reflectance and transmission are discussed in terms of 

power or intensity.  In this case, one needs to square the absolute value of the amplitude 

reflection coefficients,    |  |.  The transmission coefficients can be calculated from 

the law of conservation of energy, as 

 

         (3.63) 

 

and,  

 

         (3.64) 

 

where    and    is the reflected and transmitted power for   polarization and    and    

the reflected and transmitted power for   polarization. 

It is important to emphasize that Equations (3.63) and (3.64) are only valid for 

power coefficients and should not be used for amplitude coefficients (Equations (3.55) 

through (3.62)). 

 Figure 3.5 illustrates, in a simplistic matter, some of the topics discussed above as 

an EM wave propagates from medium 1 having an index of refraction    to medium 2 

with an index of refraction      The incident angle, θi,, and reflected angle θr are equal to 

each other in a perfectly smooth material, the transmitted angle θt is calculated from 

Equation (3.53) and the transmitted and reflected power from Equations (3.63) and 

(3.64). 
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Figure 3.5  Reflectance and transmission of an incoming wave with angle θi, a 

reflectance angle of θr, and a transmission angle equal to θt.  

 

 Let one consider what happens to the amplitude reflection coefficient in Equation 

(3.58) as the sum of the two angles equals to 90°.  In the case when light is polarized 

parallel to the plane of incidence, the   polarization reflection coefficient vanishes, 

setting the total transmission to unity.  The incident angle where the entire  -polarization 

power is transmitted into another medium is called the Brewster angle, and can be 

expressed in terms of the indices of refraction as follows, 

 

         
  

  
 

(3.65) 

 

 Another important angle is the critical angle     , which defines a boundary 

where total internal reflection will occur if the incident angle is higher than the critical 

angle.  When such occurs, no power will be transmitted to the other medium        .  

The critical angle can be found by solving the following equation, 
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  (3.66) 

 

 Figures 3.6 through 3.9 present the key points described in this subsection which 

will be exploited in Subsections 3.5.1 and 3.5.2 for manmade object detection using 

Stokes parameters.  Figure 3.6 and 3.7 demonstrate the reflected and transmitted power 

versus incident angle for an EM wave travelling from glass to air.  The magnitude of 

reflected power of the  -polarization is higher than  -polarization around the Brewster 

angle, which results in an increase on the transmitted power for the the  -polarization 

with respect to  -polarization. At the Brewster angle, the reflective coefficient for  -

polarization goes to zero meaning there is total transmitted power of  -polarization from 

glass to air.  As the incident angle nears the critical angle, the reflective coefficient for 

both   and   polarization go to 1, and remains at 1, resulting in total internal reflection.  

 

 
Figure 3.6  Reflectance percentage versus incident angle for       and         as a 

function of angle of incidence.  
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Figure 3.7  Transmission percentage versus incident angle for       and         as a 

function of angle of incidence. 

 

 Figures 3.8 and 3.9 illustrate the relationship between camera angle versus 

incident angle using Equations (3.53), (3.56), (3.60), (3.63), and (3.64) for       and 

       .  If the index of refraction of the material where the wave originates is higher 

than the material to which the wave is transmitted, the camera angle steps at a slower 

pace than the incident angle (Figure 3.8), however the opposite is true when n1 is smaller 

than n2 as shown in Figure 3.9 and in such scenarios total internal reflection often occurs.   

 From an exploitation point of view, which will be dealt in the Section 3.5, one 

way to discern manmade objects from natural clutter background is by looking at the 

difference between the   and   polarizations, the Stokes parameter S1.  One can 

immediately observe in Figure 3.7 that there is a limited range of angles from the sensor 

point of view that demonstrates high separability between   and   polarization; this is 

found in the vicinity of the Brewster angle.  Given that a manmade object is a 3-



70 

 

 

 

dimensional target composed of many surfaces at different angles relative to the sensor, 

one can conclude that only certain surfaces of the target (where θt + θi ≈90° suffices) 

will be clearly discernible when using the S1 parameter as a discriminant factor, while the 

remaining surfaces will not be so easily detected.  Subsection 3.4.3 demonstrates in more 

detail through experimentations the angle dependency of the   and  -polarization 

components and how this dependency affects the performance of S1 and S2 

measurements. 

 

Figure 3.8  Relationship between angle of incidence and camera angle for n1 = 1.5 and n2 

= 1. 
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Figure 3.9  Relationship between angle of incident and camera angle for n1 = 1 and n2 = 

1.5. 

 

3.4.3 Emission from a Dielectric Surface 

When dealing with remote sensing applications only the reflected or transmitted power is 

captured by the sensor of choice.  Angles such as the Brewster angle, critical angle, and 

angle of incidence angle are not known to the passive remote systems, nor can be 

calculated without other a priori parameters such as the materials’ indices of refraction.  

For LWIR polarimetric imagery, the modality of choice in this dissertation, only emitted 

energy, not reflected, is captured by the sensor.  Figure 3.10 illustrates a simplified 

version of a wave being transmitted from a painted surface to the LWIR polarimetric 

sensor.  In Figure 3.10, a wave originates from the metal due to the excitation of the 

atoms at a given temperature (in Kelvin) as a result of illumination by other sources, for 

example, the sun.  The wave travels from the metal to the dielectric material, such as 

paint coating, at a given incident angle, and then into air, through the atmosphere, and 

finally arriving at the LWIR polarimetric sensor. 
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 From a sensor point of view, one cannot see what happens prior to the wave being 

transmitted from the dielectric to the sensor.  The only information that may be available 

is the sensor angle with respect to the normal of the surface.  Without any further 

knowledge about the materials in question (n1 and n2) it is hard to identify empirically the 

Brewster angle, critical angle, and angle of incidence.  However, Brewster angle can be 

identified if the sensor/plate can be tilted across a range of angles relative to the normal 

of the surface. 

 

Figure 3.10  A simplistic model where an electromagnetic wave is transmitted from 

metal through dielectric material, such as paint on a target, travelling through the 

atmosphere to the sensor.  

 

 In order to illustrate the concepts in Sections 3.3 and Subsections 3.4.1 and 3.4.2 

from an emittance (transmission) point of view, an experiment was performed which 

entailed a Polaris LWIR polarimetric sensor overlooking the scene about 20m from the 

ground, see Figure 3.11.  In the scene, Figure 3.12, a plate painted with the color black 

was mounted on top of a pan and tilt system and positioned such that the camera was 
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normal to the plane (eyeballed).  The camera collected both the vertical ( -polarization) 

and horizontal ( -polarization) polarization measurements as the plate tilt angle was 

increased every 5° until the plate was parallel to the camera (~90°).  For reference, 

another black plate was left flat on the floor during the data collection period in order to 

confirm that the camera was working properly.   

 

 
Figure 3.11  The Polaris LWIR polarimetric camera was located about 20 meters from 

the ground overlooking the test site.  The test plate was placed on top of a pan and tilt 

system (QPT-500) and was tilted every five degrees from an initial position perpendicular 

to the camera (normal) to the final position parallel to the camera.  The 0° and 90° 

intensity measurements were collected to represent the   and  -polarization components. 
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Figure 3.12  View of the plate on the pan and tilt system (QPT-500).  In the test scene 

there are three manmade objects present, the test plate on the QPT-500, the reference 

plate on the floor, and the sidewalk.  Grass is the predominant clutter class found in the 

sensor’s field of view.  

 

 The collected imagery was then calibrated and an area of the plate was chosen and 

analyzed to demonstrate the changes in the   and  -polarization components relative to 

the viewing angle, see Figure 3.13. 
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Figure 3.13  Image illustrates the difference between the   (90°) and   (0°)polarization 

images collected by the LWIR polarimetric sensor. A small area on top of the plate was 

collected for all the different angles for further analysis. 

 

 For example, the red color in Figure 3.13 represents pixels that exhibit a dominant 

  polarization component, while any other shades of yellow and orange illustrate pixels 

where   polarization is strong but not dominant.  Conversely, dark blue represents pixels 

that exhibit a dominant   polarization component and different blue tones illustrate pixels 

where   polarization is the strong feature.  

 Figure 3.14 illustrates the intensities captured by the sensor for each degree the 

plate was tilted where, 0° means that the camera field of view is normal to the plate and 

90°, the plate is parallel to the camera.  The intensities within each polarization vary 

significantly as a result of the data collection being halted several times in order to let 
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clouds pass by.  During this waiting period solar loading was not available, as represented 

by the vertical black lines in Figure 3.14 left side, and as a result the plate got colder 

compared to previous measurements.  By taking the difference between the vertical and 

the horizontal polarization intensity, in other words, taking the horizontal polarization as 

the zero reference, one could relate the right side of Figure 3.14 to Figure 3.7.  A caution 

to the reader as to realize that the  -axis in Figure 3.14 is the transmission angle while in 

Figure 3.7 the  -axis is defined as the incident angle. 

 

 
Figure 3.14  The plot on the left represents the horizontal and vertical polarization 

radiance collected by the Polaris camera as a function of the camera’s viewing angle 

relative to the normal of the plate.  While the plot on the right represents the difference 

between vertical and horizontal components using the horizontal values as the zero 

reference. 

 

 The data collection demonstrated three key points worth highlighting: 1)  -

polarization is dominant in the emission part of the spectrum for dielectric materials; 2) 

The Brewster angle was shown to be around 55° where the difference between the   and 

  polarization is maximized; and 3) Fresnel’s equations were verified through the data for 

the emittance portion of the spectrum. 
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3.5 Exploitation Techniques for Polarimetric Imagery 

This section will explore the exploitation of PI when taking advantage of information 

learned from Section 3.3 such as the Stokes parameters as the discriminant function by 

which one can discern manmade objects from natural clutter backgrounds.  First, using 

the tilting plate experiment, Subsection 3.5.1 will demonstrate the difficulty in 

discriminating manmade objects when the sensor angle relative to the normal of the plate 

does not lend itself to high polarization difference between vertical and horizontal 

measurements, S1.  Second, S0, S2, and DoLP measurements of the tilting plate 

experiment will also be presented followed by a performance comparison between the 

Stokes parameters and DoLP in discerning the manmade objects in the scene from the 

background clutter.  Finally, using data collected of complex 3-dimensional targets at 

different aspect angles and different time periods in the day and using the lessons learned 

from previous examples, Subsection 3.5.2 will analyze the effectiveness of standard 

polarization exploitation methods, Stokes and DoLP, in detecting manmade objects in 

natural clutter backgrounds for a variety of weather events and diurnal changes of 3-

dimensional manmade objects. 

3.5.1 Exploitation of Polarimetric Imagery using Tilting Plate Data Collection 

The goal of this subsection is twofold; first, to understand how each Stokes parameter 

and DoLP compares in detecting manmade objects in natural clutter backgrounds and 

secondly to examine the dependency of the Stokes components and DoLP to the camera 

viewing angle with respect to the normal of the plate.  This comparison will be 

accomplished by utilizing a common threshold based on the image statistics in order to 

accurately compare each image as the angle of the plate changes relative to the camera. 
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The process by which the Stokes images are produced is accomplished by 

collecting the necessary imagery with the polarizer stationed at specific angles (0°, 45°, 

90°, and 135°), see Equation (3.52), for each of the angles that the test plate was tilted to 

with respect to the camera.  Stokes images were then generated by subtracting or adding 

the different combinations of the different polarization images into the S0, S1 and S2 

imagery (Equation (3.52)) and finally, the DoLP image is created (see Equation (3.25)) 

using the Stokes imagery.   

Figure 3.15 shows the total intensity of light captured by the LWIR polarimetric 

sensor in terms of radiance (
 

     
) for different tilt angles of the test plate with respect to 

the camera, as denoted on the top right corner of each sub-image.  In each sub-image, the 

test plate is located in the center of the image, the reference plate on the left side of the 

image, the sidewalk where the pan and tilt system is located, and the remainder of the 

image is composed of small vegetation.  Bright pixels indicate hot objects while dark 

pixels represent cold objects. 
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Figure 3.15  Intensity images (S0) for the test plate at different angles relative to the 

sensor where S0 is representative of the total radiance collected by the sensor as if the 

polarizing elements are removed from the system. 

 

 As it can be observed, the intensity of the plate varied throughout the data 

collection as a result of the sun’s intensity, cloud cover, air flow, and small mass.  

Conversely, the reference plate holds its temperature longer because when sun is present, 

heat is transferred from the plate to the ground below it otherwise, when the sun is not 

available, the heat transfer is reversed from the ground back to the plate.  Finally, looking 

at Figure 3.15, one can also observe two interesting details, first the sidewalk temperature 

is similar to that of clutter, and second, small portions of the background have similar or 

higher temperature relative to the test plate.   
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 One effective way to compare the performance of different metrics is by 

thresholding the output of the algorithm using a common statistical threshold.  In 

practice, anomaly detection algorithms usually rely on the background class to be 

modeled first and pixels in the image are compared to this model to determine if each 

particular pixel belongs to the clutter class.  For this experiment, one shall assume that 

the background can be modeled using a Gaussian distribution where its parameters such 

as mean and variance can be easily estimated from the test image itself.  The global mean 

value is then subtracted from all the pixels in the image and divided by the global 

standard deviation.  The result is a standardized image where its values represent the 

number of standard deviations from the mean both in the positive and negative direction. 

 Figure 3.16 illustrates a PDF plot of a Gaussian (normal) distribution in terms of 

standard deviations (σ).  The concept of using standard deviations is quite useful for 

thresholding imagery applicable to object detection applications when the image 

background clutter values follow a bell shaped curve.  For example, if the target and 

clutter PDFs are separable (e.g., different means) and assuming that the clutter PDF  is 

Gaussian, one can use the clutter distribution to set the desired Type I error (rejecting the 

null hypothesis when the null hypothesis is true).  By setting a threshold of    , it 

suggests, as per the Figure 3.16, that 99.7% of all clutter pixels will be accepted as part of 

the null hypothesis while the remainder 0.3% of the image pixels will reject the null 

hypothesis and will be designated as anomalies.  In theory, assuming that the target 

distribution has significantly different means and variances from background clutter, the 

result would entail that all target pixels would be rejected from the null hypothesis and 

identified as potential anomalies.   
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 Finally, in order to use any type of statistical threshold, the background clutter 

must be modeled by a known family of distributions (e.g., Gaussian), and the target set 

must be distinct from clutter so that the researcher can develop an effective hypothesis 

test to find manmade objects in the scene.  

 
Figure 3.16  A plot of a normal distribution also known as bell shaped curve.  Each band 

has a width of one standard deviation.  For a normal distributed population about 68% of 

the values lie in 1σ, 95.5% at 2σ, and about 99.7% at 3σ (also known as the 68-95-99.7 

rule.) 

 
Source: http://en.wikipedia.org/wiki/Standard_deviation and http://en.wikipedia.org/wiki/68-95-99.7_rule 

 

 For the examples presented in this subsection, the assumption is that the clutter 

can be modeled by a Gaussian distribution and there is no a priori knowledge on the 

targets distribution. 

 In order to standardize an input image X, where       , R and C represent the 

number of rows and columns in the FPA respectively, and      represents a pixel value 

(scalar) located at row   and column   in the image X.  The global mean (    of X can be 

estimated as the sample mean using all pixel values in X, or 

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/68-95-99.7_rule
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 The global standard deviation, denoted as   , can be estimated by the sample 

variance, or 
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 Finally, in order to standardize the image X, one must remove the global mean 

from each pixel and divide the result by the global standard deviation, or 

 

     
    

  
  

(3.69) 

 

 Figures 3.17 and 3.18 illustrate the intensity images S0 using a     and     

respectively, threshold based on the image statistics as demonstrated by Equations (3.67) 

through (3.69).  Black pixels represent locations where the null hypothesis has been 

accepted while white pixels represent locations where the null hypothesis has been 

rejected.  At this time a distinction must be made between statistics and engineering on 

the use of false alarm and true detection.  In mathematics, when the null hypothesis is 

rejected when it should be accepted is often called probability of miss however, in 

engineering that’s often called a false alarm (e.g., a clutter pixel was accepted as an 

anomaly), whereas a true detection is when the null hypothesis is successfully rejected 

and belongs to the object(s) one is trying to detect.  In the engineering field of image 

processing the concept of probability of false alarms (   ) is defined as the probability of 

pixels belonging to the clutter class that pass the imposed threshold relative to all 

background pixels, while the probability of detection      is defined as the probability of 
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target pixels that were accepted above the threshold relative to all target pixels available 

in the test image.  This notation of false alarm and true detection will be used throughout 

the dissertation. 

 
Figure 3.17  Intensity images with a threshold of     based on the image global mean 

and variance.  Black pixels represent locations where the null hypothesis has been 

accepted while white pixels represent locations where the null hypothesis was rejected.  

At      there are plenty of false alarms showing up for most of the figures however, it 

becomes quite problematic after 55° and above where significant number of false alarms 

can be detected while the test plate cannot be discriminated successfully.  

 

 The thresholded images in Figure 3.17 demonstrate that for a     the test plate, 

which is one of the targets, a manmade object, can be detected up to the 45° test image.  

From 55° image on, the lack of a constant available heating source (e.g., sun) resulted on 

the test plate getting colder relative to the background.  As such, the test plate distribution 
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fell within the chosen threshold of     resulting on its rejection as a potential anomaly.  

Conversely, the reference plate benefited from the warmed ground surface below as a 

result of the heat transfer between the two surfaces during the solar loading stage.  During 

the periods where solar loading was absent, the heat transfer cycle reverses keeping the 

plate warm for a longer period of time than the test plate.   

 One can conclude that in order to detect the test plate successfully the threshold 

needs to be lowered resulting in the detection of more false alarms, which is an 

undesirable outcome.  Intensity measurements, as explained in Subsection 2.5, is only a 

useful measure when the signal to noise ratio (in terms of radiance or temperature) 

between the target and background is high enough to be discriminatory with a minimum 

number of false alarms present.  If such criteria is not met (see Figure 3.18, 15° image, 

for example) only false alarms are detected (background pixels) while the target is 

excluded from the thresholded image. 

 Figure 3.18 illustrates the intensity imagery using a     threshold.  The key point 

that needs to be addressed in this figure is that the reference plate, which did very well 

relative to the test plate in Figure 3.17, was only partially detected four out of nine 

images.  On the other hand, the number of false alarms present in the image even at such 

high threshold remained quite high relative to    .  In other words, the reference plate 

distribution is not very distinct from the background clutter distribution in this data 

collection example. 
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Figure 3.18  Intensity images with a threshold of    .  In this figure the reference and 

test plate were only detected in a small number of images, while a significant number of 

false alarms were detected even at such high threshold.   

 

 Figure 3.19 illustrates the (-S1) image for each of the angles of the test plate.  

Since the preferred polarization orientation for manmade materials is often the vertical 

component, the negative sign was used to emphasize that preference (see Subsection 3.4).  
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Figure 3.19  (-S1) Stokes parameter for the test plate at different angles.  The negative 

sign was applied to S1 imagery to emphasize the vertical polarization component, which 

is the predominant feature when detecting polarized signals from dielectrically coated 

smooth surfaces.  Therefore, dark pixels indicate horizontal component dominance while 

bright pixels represent vertical component dominance. 

 

 Figures 3.20 and 3.21 were thresholded using the same procedure used as in 

Figures 3.17 and 3.18 where the assumption is that the clutter in -S1 is also Gaussian 

distributed.  Therefore, using the estimated global mean and standard deviation one can 

standardized the images and apply     and     threshold.  

 The right side image of Figure 3.14 is a good reference to explain Figures 3.20 

and 3.21.  If one subtracts the horizontal from the vertical component as shown in Figure 

3.14, one expects the result to be close to zero at incident angles between 0° and 20°, 
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with an increasing divergence with increasing angle up to a maximum point (Brewster 

angle, in this case 55°) and finally decreasing back to zero as the incident angle 

approaches 90°.  The S1 parameter behaves exactly as predicted in Figures 3.7 and 3.14, 

i.e., one would expect the start values from the test plate in S1 imagery to be very small 

when the camera is normal to the surface and as the camera angle relative to the normal 

of the plate’s surface increases up to the Brewster angle, the amount of radiance captured 

by the polarizer at the vertical position increases at a higher rate relative to the measured 

radiance of the polarizer at the horizontal position.  As the angle between the tilting plate 

surface and the sensor increases from the Brewster angle to 90°, the divergence between 

the radiance values captured at horizontal and vertical positions diminishes, as depicted 

in Figures 3.7 and 3.14. 

 Using a threshold of  2σ, the test plate was only detected for angles ranging from 

45° through 85° while for the remaining angles the test plate pixel values were below the 

threshold.  Conversely, the detection of the reference plate can be seen in all images 

because its angle relative to the sensor is beneficial to S1 discrimination.  When the 

threshold value was increased to  3σ, Figure 3.21, the test plate can only be 

discriminated at 55° and 65° images in contrast to the five images in Figure 3.20.  The 

reference plate can be easily identified in Figure 3.21 even with such high threshold 

value. 
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Figure 3.20  (-S1) Stokes parameter images using a threshold of  2σ.  This experiment 

illustrates the S1 angle dependency between the sensor and the test plate. The test plate is 

only detected at angles ranging from 45° through 85°.  Conversely, because the reference 

plate remained at the same constant advantageous angle one was able to detect it for the 

entire experiment. 
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Figure 3.21  (-S1) Stokes parameter images using a threshold of  3σ.  Here, as one 

expected, the number of images where the test plate was successfully detected diminished 

to only two, while the angle at which the reference plate was positioned relative to the 

camera allowed for its detection even at a higher threshold value.   

 

 Figures 3.20 and 3.21 demonstrate that the ability to detect the test plate is highly 

dependent on its angle relative to the sensor.  The key message is that algorithm 

developers must be aware of this angle dependency as the target set transitions from a 

simple flat plane surface to complex multifaceted surfaces (see Subsection 3.5.2), having 

surfaces oriented at different angles.  For example, if a target is composed several 

surfaces oriented at different angles, some of those surfaces may not favor high 

divergence between the horizontal and vertical components which would then result in 
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the inability of discriminating the whole target at a threshold level where false alarms are 

minimized. 

 Although angle dependency is a clear disadvantage with S1 (as well as S2 and 

DoLP, as it will be shown later) polarization brings an important feature which is the 

ability to detect smooth surfaces (if positioned correctly) even when their intensity values 

are within the clutter distribution.  For example, observing Figure 3.17 where the test and 

reference plate were not detected for angles between 55° through 85°, Figure 3.20 shows 

that, using S1 parameter, algorithms would have a better chance in detecting the smooth 

surfaces of both plates compared to using the S0 parameter (broadband infrared). By 

subtracting both components (horizontal and vertical for S1 and +45° and -45° for S2), 

algorithms would focus on detecting the polarization orientation of the electromagnetic 

wave within each pixel of the image while disregarding the overall intensity information 

of each object relative to the background. 

 The reference plate, on the other hand, is always visible regardless of the 

threshold since it is placed at an optimum angle relative to the camera viewing angle, 

about 55°, naturally allowing a high SNR between horizontal and vertical polarization 

components. 

 Figure 3.22 demonstrates the S2 polarization imagery for the different orientations 

of the test plate.  As one can observe in this example, S2 was not a very useful 

discriminating feature for detecting both plates from natural clutter background compared 

to S1 and, as it will be shown later, DoLP imagery.  Such performance degradation is a 

result of the orientation of the plates, relative to the sensor, which do not lend to any 

preferred orientation in the      relative to surrounding clutter.  
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Figure 3.22  Measurement of the S2 parameter images for the same scene depicted in 

Figure 3.12 as the angle of the test plate changes from 5° to 85°.  The orientation of the 

plates demonstrate that the polarization of the incoming waves does not have a preferred 

polarization shift for either     .  As a result, there is no contrast between the manmade 

objects and the natural clutter.  Bright pixels indicate a preferred      orientation and 

dark tones indicates a preferred     orientation. 

 

 Figures 3.23 and 3.24 present the S2 imagery using  2σ and  3σ thresholds.  As 

observed in Figure 3.22 the manmade objects present in the scene did not exhibit a 

preferred polarization orientation for either      and as a result their discernibility 

relative to the background is minimal, as validated by Figure 3.23, where none of the 

manmade objects in the scene were detected when using a low threshold value of  2σ.  

Conversely, one can observe that some portions of the clutter exhibited a strong preferred 
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polarization orientation that is advantageous to S2 detection and can be detected using a 

  σ or  3σ threshold. 

 
Figure 3.23  S2 Stokes parameter images using a threshold of  2σ.  In this data 

collection scenario all manmade objects were not successfully discriminated from the 

background since their orientation did not lend to any preferred polarization for      
that was substantially different from the surrounding clutter.  
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Figure 3.24  S2 Stokes parameter images using a threshold of  3σ and as expected none 

of the manmade objects were found.  However, it is interestingly to observe that some 

portions of the clutter are highly polarized in the S2 domain and can still be detected 

using such high threshold value. 

 

 Figure 3.25 demonstrates DoLP imagery and its ability to discriminate the test 

and reference plate from natural clutter. DoLP values range from 0 to 1 where 0 indicates 

no polarization preference and 1 indicates fully polarized signal is detected.  It will be 

shown in later chapters that DoLP imagery usually follows S1 performance very closely 

and vice versa.  Therefore, one can assume that in most cases, for the dataset used in this 

dissertation, S2 imagery has little or no impact on the DoLP performance compared to S1 

influence.  Such performance similarities can be readily observed in Figures 3.26 and 
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3.27, where the normalized images in Figure 3.25 are thresholded using  2σ and  3σ as 

the parameters of choice. 

 

 
Figure 3.25  DoLP parameter for the test plate at different tilting angles.  The plate 

exhibits no preferred orientation at the 5° and 15° angels, however as the angle between 

the camera and the plate increases the DoLP increases to a maximum of 0.075 at around 

55° and decreases again to about 0.02 at 85°. 

 

 Comparing Figures 3.20 and 3.26 the following can be observed: 

1) More false alarms can be found in DoLP images relative to S1.  This is a 

result of S2 influence on DoLP where for the same threshold, S2 

demonstrated, see Figure 3.23, a high number of false alarms for all 

images compared to S1. 

 

2) The detection of the test plate using DoLP for  2σ is similar to S1 with 

one exception where S1 performs slightly better than DoLP for the 85° 

image. 
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3) The reference plate was successfully detected from natural clutter by both 

S1 and DoLP using a  2σ threshold. 

 

 

 
Figure 3.26  DoLP images with a threshold of  2σ.  DoLP performs very well in 

discriminating the reference plate from clutter, while the test plate is only detected for 

five images out of the nine taken.  The number of false alarms present is significantly 

more than found in S1 imagery which is a result of the S2 term influence on DoLP. 

 

 Figure 3.27 depicts the detection of the reference and test plates using a  3σ 

threshold for different orientation angle of the test plate.  In this example, DoLP 

experienced higher number of false alarms in all images relative to S1 due to S2 influence.  

DoLP is able to successfully discriminate the test plate for 55° and 65° imagery which is 

comparable to S1; however S1 was able to discriminate a higher number of pixels on the 
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test plate for the 45° image, which in contrast DoLP, wasn’t able to discriminate any 

portion of the plate whatsoever. 

 

 
Figure 3.27  DoLP images with a threshold of  3σ.  In this example the DoLP performs 

very similarly to S1 imagery with slightly more false alarms as a result of S2 influence on 

DoLP.  Furthermore, by comparing DoLP and S1 parameters, one can observe that S1 is 

able to identify a higher number of dispersed pixels on the test plate for the 45° image 

compared to DoLP, where the latter wasn’t able to find any pixels on the test plate using 

the same threshold. 

 

 In summary, using measured data, this experiment demonstrated that the ability in 

discriminating manmade objects from clutter using S1, S2, and DoLP parameters is highly 

dependent on the angle of the manmade surfaces relative to the sensor position.  Such 

dependency becomes problematic when many of the manmade objects facets may not be 
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oriented at angles (surface normal relative sensor) that are beneficial to separate 

manmade objects from clutter.  As a result, as it will be demonstrated in Subsection 3.5.2, 

when detecting 3-dimensional manmade objects using Stokes information, only a very 

small number of facets are actually discriminated from clutter.  Therefore, any algorithm 

that uses Stokes vector information as input is also susceptible to this angle dependency, 

which in turn affects its ability in discriminating 3-dimensional objects from complex 

natural clutter backgrounds. 

3.5.2 Exploitation of Polarimetric Imagery for Discerning 3-D Objects from Clutter 

Real operational scenarios which involve the detection of complex manmade objects in 

natural clutter environments with changing weather conditions will be examined in this 

subsection.  Furthermore, in this subsection and the remainder of the dissertation, the 

SPICE data will be used to analyze existing and proposed algorithms.  SPICE data was 

collected in Northern New Jersey, USA, using a Polaris LWIR microbolometer 

polarimeter camera, which will be described in Chapter 4 in more detail.  Moreover, to 

facilitate the discussion on temporal changes within a diurnal cycle, this dissertation 

adopts a 24-hour time format (i.e., 0200h = 2:00AM, 1400h = 2:00 PM), which is 

observed as the standard format for most countries in the world. 

The targets used for this data collection were surrogate self-propelled howitzers, 

placed at about 550m (slant range) from the sensor, and each of the three available targets 

were placed at different orientations (0°, 90°, and 135°) with respect to the sensor.  The 

camera was located at a height of 55m on the data collection tower overlooking the scene 

with a depression angle of about 10°. 
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 LWIR polarimetric images were collected every 5 minutes for a period of 72 

consecutive hours of the mid-range target site (Figure 3.28) with the system pausing 

between the hours of 0300h and 0500h for sensor calibration.  The sunrise and sunset for 

the data collection presented in the dissertation for MAR (MAR) 6
th

 through 8
th

 was 

around 0625h and 1754h.  Four images were selected at specific times of the day 

illustrating, based on conventional thermal infrared which can be seen in Figure 3.29, the 

different thermal relationships between targets and background.  For example, at 0710h, 

the targets and background have similar temperature (low contrast); around 0910h the 

targets are starting to warm up and as a result the temperature difference between the 

targets and clutter start to diverge.  By 1310h, due to the continuous solar loading, the 

targets are hotter than the background and can be easily detected in the conventional 

infrared (high contrast), and finally by 2010h, about two hours after sunset, the targets are 

losing heat at a faster rate than the background as a result of their small thermal mass, 

therefore, their temperature relative to the surrounding background is once again very 

low (low contrast).   
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Figure 3.28  SPICE data collection surrogate targets placed at different viewing 

perspectives in relation to the data collection facility.  The targets are designated by their 

respective angles (counterclockwise) as shown in the figure.  The plates next to T90 were 

not present during the data collection presented in this dissertation. 

 

 Examining the S0 output surfaces for the different times of the day on 6 MAR, 

2010 in Figure 3.29, one can observe that the targets are not discriminatory against the 

background for the following timestamps: 0710h, 0910h, and 2010h.  As a result of the 

lack of solar loading, and as explained in Subsection 2.5, this is often called a low 

contrast scene and it is not suitable for detection in broadband LIWR.  Conversely, at 

1310h, as the targets have been under the effect of solar loading for quite a long time, 

their temperatures are significantly higher than the surrounding background making them 

quite noticeable in conventional infrared imagery, also known as high contrast imagery. 

 During the early stages of solar loading, timestamp 0910h, one can observe slight 

differences in the target’s temperature relative to clutter.  However, such small 
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temperature difference is not suitable for anomaly detection using broadband infrared 

imagery, as the targets are still not very discriminatory relative to the background.   

 
Figure 3.29  Output surfaces for S0 for different times of the day (0710h, 0910h, 1310h, 

and  2010h) for 6 MAR 2010, illustrating low and high contrast imagery.  As it is 

observed at timestamps 0710h and 2010h, the manmade objects in the scene are at similar 

temperature as the background making them very hard to be discriminated from clutter 

without any prior information.  The image at 1310h depicts high contrast imagery where 

the manmade objects can be easily detected as a result of solar loading.  At around 0910h 

the targets are at the early period of solar loading stage, and their temperatures are 

slightly more discriminatory than in 0710h and 2010h imagery.  

 

 

 Figure 3.30 depicts (-S1) imagery for the same four timestamps as S0.  It is 

important to remember that dielectric surfaces usually emit vertically polarized imagery 

and in order to observe such phenomenon, negating S1 imagery emphasizes such 

occurrence.  Observing Figure 3.30, one can readily notice that most of the targets are 

quite obvious to the eye compared to S0, especially when comparing low contrast 
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imagery.  However, one can also observe that only small portions of the target (top 

surfaces) are discernible while the target side surfaces values are found to be within the 

natural clutter distribution.  Moreover, also interesting is how grass, a natural material, 

exhibits slightly more vertically polarized information than trees.  In fact, the amount of 

polarization found in grass for all timestamps is relatively similar to T0.  Such similarity 

may be the result that T0 surfaces are oriented at angles that are unsuitable for 

polarization discrimination in the vertical/horizontal domain. 

 Figure 3.31 demonstrates the performance of S2 imagery for the same timestamps 

as previous figures.  Right away one notices that there is less contrast between manmade 

objects and natural clutter.  Furthermore, natural clutter as a whole does not demonstrate 

a preferred orientation to     , as seen in Figure 3.31, as its S2 response seems to be 

very homogeneous regardless of material type and time of day.   

 Although most of the surrogate targets seem to be discriminatory to the eye, the 

blackbody is not easily detected in any of the S2 imagery when compared to -S1 imagery.  

Therefore, one can conclude that the orientation of the blackbody, for this experiment, 

does not exhibit a preferred      polarization.  Moreover, as seen in -S1 imagery, T0 also 

lacks contrast relative to natural clutter for most timestamps but more significantly at 

0910h, resulting in degraded performance regardless of the time period chosen.    
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Figure 3.30  Output surfaces for (-S1) for different times of the day (0710h, 0910h, 

1310h, and  2010h) for 6 MAR 2010.  In contrast to Figure 3.29, the manmade objects 

can be found relatively easy compared to S0 imagery, especially for 0710h and 2010h.  

However, as one can observe in 0910h, T0 is not as discriminatory compared to the 

remaining timestamps and other manmade objects in the scene for the same timestamp. 
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Figure 3.31  S2 output surfaces for timestamps 0710h, 0910h, 1310h, and 2010h 

collected on 6 MAR 2010.  Unlike previous Figure 3.30, natural clutter exhibits no 

preference for      polarization independent of natural material.  The surrogate targets 

on the other hand, can be detected quite easily with the exception of the blackbody which 

does not have a noticeable preferred      polarization and as a result cannot be 

discriminated from natural clutter.  T0 once again exhibits the least amount of contrast 

relative to natural clutter of all three surrogate targets present in the scene. 

 

 Figure 3.32 demonstrates the performance of DoLP for the same four timestamps 

collected on 6 MAR 2010.  As previously mentioned, DoLP is a combination of S0, S1, 

and S2 imagery and as it was demonstrated in Figures 3.25, 3.26, and 3.27 DoLP suffered 

of performance degradation due to S2 influence.  In this experiment, however, by 

comparing Figures 3.32 and 3.30, one concludes that -S1 and DoLP have similar results 

to each other.  By examining S2 imagery, one observes that natural clutter is quite 

homogeneous regardless of timestamp or natural material present on the scene, while 

most of the manmade objects can be easily distinguished from the background clutter.  
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Therefore, one can conclude that S2, for this particular experiment, had little adverse 

influence on the number of false alarms present in DoLP imagery in contrast to what was 

shown for the tilting plate experiment, Figure 3.25. 

 
Figure 3.32  DoLP output surfaces for timestamps 0710h, 0910h, 1310h, and 2010h 

capture on 6 MAR 2010.  The results demonstrated in this figure are quite similar to the 

results shown in Figure 3.30 for (-S1) imagery.  In contrast to what was concluded from 

Figure 3.25, S2 parameter had negligible effect on the performance of DoLP.  This can be 

traced to Figure 3.31 where all the natural materials present in the scene had no preferred 

     polarization. 

 

 A more useful measure and widely used in the community to compare different 

metrics or algorithms is the Receiver Operating Curve also known as ROC curve.  This 

performance metric is calculated by varying the threshold of an output surface over all 

possible combinations and calculating the fraction of true positives (correct detection) 
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versus false positives (false alarms) according to the available ground truth.  A good 

reference source discussing the use of ROC curves can be found in [39]. 

 The ROC plots in Figures 3.33, 3.34, 3.35, and 3.36 illustrate the performance of 

each of the Stokes parameters and DoLP for each of the surrogate targets for timestamps 

0710h, 0910h, 1310h, and 2010h.  Furthermore, for each timestamp, the ROC curves are 

broken down by target aspect angle to emphasize some of the concerns demonstrated in 

Subsection 3.5.1 such as the Stokes parameters dependency on surface angle orientation.  

By imaging the same target type at three different orientation angles relative to the 

sensor, the goal is also to demonstrate the Stokes performance variability as a function of 

target aspect angle. 

 Figure 3.33 illustrates the ROC performance curves for 0710h for T0, T90, and 

T135. The following conclusions are drawn from the ROC curves:  

1) Polarimetric information appears to be useful in detecting small portions 

of the targets in low contrast scenarios at extremely low false alarm rates 

regardless of metric used. 

 

2) The trends in performance between S1 and DoLP are very similar with 

respect to each other for all targets with the exception where DoLP 

performs slightly better than S1 for T135 at higher false alarm rates.   

 

3) Overall, S1 and DoLP perform better than S2 regardless of the target angle 

indicating, as shown in Figures 3.30, 3.31 and 3.32, manmade objects 

exhibit more vertically polarized signals rather than      polarization. 

 

4) S2 performs better than S0 for false alarm rates less than 0.005, which is 

expected since the temperature of the targets is similar to the surrounding 

background and broadband imagery does not perform very well in low 

contrast imagery. 

 

5) S0 performs better than S1 or DoLP in some instances for a         , 

where   denotes approximately.  However, such high false alarm rates are 

impractical for real world applications since the number of false alarms 

present in the image will be too great to successfully discriminate the 

manmade objects from clutter.  
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6) Stokes and DoLP performances worsen as the target aspect angle changes 

relative to the sensor.  Nonetheless, S1, S2, and DoLP performances are 

still higher than conventional infrared (S0) at low false alarm rates 

         .  As shown in Subsection 3.5.1, the Stokes vector parameters 

performance are highly dependent to sensor and target aspect angle, which 

is quite problematic for anomaly detection applications. 

 

7) S1 and S2 have similar performance at extremely low false alarm rates 

indicating that similar features are available in both metrics.  As a result, 

DoLP also follows S1 and S2 performance.   
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Figure 3.33  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 0710h. DoLP and S1 performed better than S2 and S0 for most of the 

ROC curve PFA range.  S1 and S2 have similar performance at extremely low false alarm 

rates indicating that similar features are available to both metrics.  As a result, DoLP also 

follows S1 and S2 performance.  However, as S2 performance degrades quite significantly 

relative to S1 and the performance of DoLP and S1 continue to remain similar, one can 

conclude that DoLP performance becomes primarily a function of S1 performance rather 

than S2.  Conversely, for T135, DoLP actually performs better than S1 as a result of better 

performance from S2 which is the result of the orientation of the surfaces relative to the 

sensor.  
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Figure 3.33  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 0710h. DoLP and S1 performed better than S2 and S0 for most of the 

ROC curve PFA range.  S1 and S2 have similar performance at extremely low false alarm 

rates indicating that similar features are available to both metrics.  As a result, DoLP also 

follows S1 and S2 performance.  However, as S2 performance degrades quite significantly 

relative to S1 and the performance of DoLP and S1 continue to remain similar, one can 

conclude that DoLP performance becomes primarily a function of S1 performance rather 

than S2.  Conversely, for T135, DoLP actually performs better than S1 as a result of better 

performance from S2 which is the result of the orientation of the surfaces relative to the 

sensor. (Continuation) 

 

 Figure 3.34 demonstrates the Stokes vector output surfaces using a  5σ threshold 

for 0710h.  The white pixels refer to known manmade object pixels that are above the 

threshold, for example, on the top right S1 image, an observation deck of a data collection 

tower can be found.  On the far left is the blackbody followed by, from left to right, T0, 

T90, and T135, respectively.  On the contrary, red pixels indicate natural material locations 

where the values where higher than the chosen threshold, i.e., false alarms.  Before 

examining the individual performances, it is important to emphasize a critical point 

illustrated by Figure 3.34.  If one refers back to Figure 3.33, one observes that S1, S2, and 
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DoLP performed quite similarly to each other; however when the same threshold is 

applied to the three metrics only S1 and DoLP demonstrate similar performance, with 

some false alarms present, while S2 only detects a few pixels belonging to T90 and T135 

with no false alarms.  This indicates that a 5σ is a relative good threshold for S2 but not so 

useful for S1 and DoLP.  As a result, such discrepancy reveals the intricacies of choosing 

a threshold for real applications where the same threshold yields different results for 

different metrics. Such discrepancy can be primarily traced to the use of threshold values 

based on Gaussian distributions on non-Gaussian data such as Sokes vector output 

surfaces.  It is important to emphasize that the distribution of natural objects distribution 

is unknown, and clearly not Gaussian, and the distribution of manmade objects 

distribution is highly dependent on the viewing angle.  Nonetheless, Figure 3.34 is still a 

useful comparison between the four Stoke vector parameters using a similar threshold in 

order to visually compare the different performances.   

 As seen in Figure 3.34, S0, as expected, does not perform very well for a high 

threshold as the temperature values in both target and clutter classes are very similar.  S1 

and DoLP perform similarly in finding all manmande objects present in the scene with 

few false alarms.  As previously mentioned in Figure 3.30, grass exhibited a preferred 

vertical polarization similarly to that of manmade objects.  As shown in Figure 3.34, that 

preference is shown in terms of false alarms.  S2 performs very well for T90, T135, and the 

observation tower, with the exception of T0.  As described in Figure 3.31, because T0 had 

a very low contrast relative to the surrounding clutter, the use of a high threshold where 

low or no false alarms are detected also meant the elimination of low contrast manmade 

objects present in the imagery. 
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Figure 3.34  Output surfaces for Stokes and DoLP parameters using a  5σ threshold 

value for imagery collect at 0710h.  S1 and DoLP imagery reveal some false alarms 

within the grass area of the image, with DoLP having slightly more false positives than S1 

imagery as a result of S2 influence.  S2 imagery performed better than the remaining 

Stokes parameters by detecting small portions of T90, T135, and the observation tower 

with no false alarms.  S0, as expected, performed very poorly as a consequence of a very 

small temperature differential between the clutter and manmade objects. 

 

 Figure 3.35 depicts the ROC curves for timestamp 0910h for all four timestamps 

and surrogate targets.  Some differences can be observed when comparing the ROC 

curves in Figure 3.33 that need to be emphasized: 

1) The performances of S1 and DoLP are relatively similar regardless of 

target aspect angle.  Such performance similarity indicates that S2 had very 

little influence in DoLP for timestamp 0910h.   

 

2) S1, DoLP, and S2 performances degraded quite significantly with respect 

to Figure 3.33 for high false alarm rates, but with comparable results for 

the low false alarm rate region, which is the area of interest for real 

applications. 
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3) S0 performs similarly to DoLP and S1 for T135, however S0 performs quite 

poorly for T0 and T90.  Such performance degradation can be the result of 

increasing clutter temperature relative to the targets.  The reader is 

reminded that T0, T90 and T135 are hollow shells and the low ambient 

temperature (2-3° Celsius) compounded by the small amount of time of 

solar loading did not increase the temperature differential between the 

clutter and the targets. 

 

 Figure 3.36 demonstrates the Stokes parameters output surfaces using a common 

 5σ threshold for comparison.  Unlike Figure 3.34, S0 was able to successfully detect 

portions of the external blackbody and T90 with some false alarms around the transition 

area between the grass and tree line.  S1 and DoLP continued to perform very similarly 

with some very small differences in the number of false alarms detected.  These two 

parameters were able to detect all five manmade objects in the scene while S2 was only 

able to detect T90 and T135 with no false alarms.  
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Figure 3.35  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 0910h.  S0 performance is slightly degraded with respect to previous 

Figure 3.33 from clutter temperature rising slightly above the manmade objects 

temperature.  S1 and DoLP performed very similarly for all manmade objects.  Therefore, 

one can conclude that during this time period, the DoLP performance was a function of 

S1 performance in contrast to what was observed in Figure 3.33 for T135. 
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Figure 3.35  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 0910h.  S0 performance is slightly degraded with respect to previous 

Figure 3.33 from clutter temperature rising slightly above the manmade objects 

temperature.  S1 and DoLP performed very similarly for all manmade objects.  Therefore, 

one can conclude that during this time period, the DoLP performance was a function of 

S1 performance in contrast to what was observed in Figure 3.33 for T135. (Continuation) 
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Figure 3.36  Output surfaces for the different Stokes and DoLP parameters using a  5σ 

threshold.  In contrast to Figure 3.34, using a  5σ S0 detects a small portion of the 

external blackbody and T90 as well as false alarms along the grass-tree transition area.  S1 

and DoLP performed very well for 0910h by detecting all five manmade objects with 

very small number of false positives.  S2, on the other hand, continued to detect T90 and 

T135 with no false alarms, however it fails to detect T0 and the observation. 

 

 The ROC curves for timestamp 1310h are shown in Figure 3.37 where several key 

points need to be emphasized, such as: 

1) S0 performs better than previously demonstrated in Figures 3.33 (0710h) 

and 3.35 (0910h) with somewhat similar performance to S1, S2, and DoLP 

at low false alarm rates.  This performance increase is a consequence of 

the continuous solar loading effect throughout the day on the surrogate 

targets resulting in a higher temperature differential between clutter and 

manmade objects.  

 

2) S1 and DoLP performed very similarly in detecting T0 at extremely small 

and high Pfa rates.  S2 performed better than S1 and DoLP for T90 and T135 

at small Pfa rates. 
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3) S2 performed extremely well in detecting T135, Figure 3.37, for low false 

alarm rates which was better than S1 and DoLP throughout the ROC 

curve.  Only S0 performed better than S2 for T135.  The only discrepancy 

between S1 and DoLP happens at             where S1 performance 

is increasing at a slower rate than S2.  During this range of false alarm 

values, S2 influence is clearly demonstrated by a slight increase in DoLP 

performance relative to S1.  
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Figure 3.37  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 1310h.  S0 performance was significantly better than timestamps 

0710h and 0910h as a consequence of continuous solar loading effect on the surrogate 

targets.  S1, S2, and DoLP performed similarly for T0 at low false alarm rates, however S1 

and DoLP outperformed S2 for the remaider of the ROC curve.  Conversely, S2 

performed better than S1 and DoLP for low false alarm rates for T90 as well as for the full 

ROC curve for T135.  
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Figure 3.37  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 1310h.  S0 performance was significantly better than timestamps 

0710h and 0910h as a consequence of continuous solar loading effect on the surrogate 

targets.  S1, S2, and DoLP performed similarly for T0 at low false alarm rates, however S1 

and DoLP outperformed S2 for the remaider of the ROC curve.  Conversely, S2 

performed better than S1 and DoLP for low false alarm rates for T90 as well as for the full 

ROC curve for T135.  (Continuation) 

 

 The output surfaces for timestamp 1310h using a common  5σ threshold is 

demonstrated in Figure 3.38.  The key points to emphasize in Figure 3.38 are as follows: 

1) As a result of solar loading effect the temperature differential between the 

surrogates and clutter is significantly higher making the targets more 

discriminative in S0 imagery.  Conversely, both the external and the 

observation tower were not successfully detected. 

 

2) S2 demonstrates the best performance relative to previous Figures 3.34 and 

3.36 by detecting all three surrogate targets and the observation tower with 

no apparent false alarms. 

 

3) S1 and DoLP are able to detect all manmade objects in the scene but at the 

expense of also detecting a significant number of false alarms as well. 

 

4) The threshold value of  5σ chosen for S1 and DoLP was not as useful as 

in previous timestamps 0710h and 0910h (Figures 3.34 and 3.36) since the 
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number of false alarms detected were significantly higher than previously 

seen.   

 

 
Figure 3.38  Output surfaces for S0, S1, S2, and DoLP using a common threshold value of 

 5σ.  As a result of solar loading the surrogate targets are at a higher temperature than 

natural clutter allowing for their detection with no false alarms in S0 imagery.  However, 

the external blackbody and the observation tower were not successfully detected for the 

same threshold value.  S2 performs the best when compared to timestamps 0710h and 

0910h (Figure 3.34 and 3.36) by detecting all three surrogate targets including the 

observation tower with no false alarms.  Contrariwise, S1 and DoLP performed very 

poorly compared to S0 or S2.  Both metrics are able to find the all manmade objects but at 

the expense of detecting a large number of false alarms as well.  

 

Finally, the ROC curves for timestamp 2010h shown in Figure 3.39 demonstrate a 

similar trend as previously observed in Figure 3.33 with S0 underperforming S1, S2, and 

DoLP metrics for the low false alarm region where most systems like to operate.  S1 and 

DoLP performed very similarly for T0 and T90 for most of the ROC curve with the 
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exception of T135 where DoLP performed better than S1 as a result of S2 influence where  

S2 enhanced performance can be attributed to the orientation of the surfaces in T135.  

Finally, at low false alarms rates, one can observe that all polarization metrics (S1, S2, and 

DoLP) performed similarly with a                       for T0, T90, and T135, 

respectively. 

Figure 3.40 illustrates the output surfaces for Stokes parameters and DoLP with a 

 5σ threshold at 2010h for 6 MAR 2010.  The reader is reminded that white pixels 

indicate correct detections; red pixels indicate false alarms; and black pixels indicate 

locations where the values were below the threshold value.  The following key points can 

be observed from Figure 3.40: 

1) As a result of lack of solar loading, S0 once again performs very poorly 

relative to the other metrics where no target pixels were detected using the 

 5σ threshold. 

 

2) S1 performs very well in detecting all four manmade objects in the scene 

with some false alarms found in the grass area.  Thus, one can conclude 

that the grass exhibits strong vertical polarization features that are very 

similar to the features demonstrated by the manmade objects. 

 

3) S2 performs very well in detecting T90, and a very small portion of T135 

and the observation tower in the upper right corner with no false alarms 

present.  T0 and the external blackbody exhibited no strong S2 features that 

could be successfully detected using the chosen threshold value. 

 

4) Using DoLP, one was able to detect the same target pixels as S1 for T0, 

T90, T135, and the external blackbody system but with a significant higher 

number of false positives.  Conversely, DoLP was able to detect a higher 

number of pixels on the observation tower relative to S1 and S2 imagery 

which one can conclude that S0, S1, and S2 imagery together contributed 

enough information to make the observation tower more discriminatory 

than their individual output surfaces. 
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Figure 3.39  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 2010h.  With no solar loading available as in Figure 3.33, S0 

performance was significantly reduced at the lower false alarm rates making S0 imagery 

useless for an automated/aided systems.  DoLP and S1 performed better than S2 and S0 for 

most of the ROC curve PFA range for T0 and T90.  Furthermore, one can observe that S1 

and S2 have similar performance at extremely low false alarm rates indicating that similar 

features are available to both metrics.  As a result, DoLP also follows S1 and S2 

performance.  However, as S2 performance degrades quite significantly relative to S1 and 

the performance of DoLP and S1 continue to remain similar, one can conclude that DoLP 

performance becomes primarily a function of S1 performance rather than S2.  Conversely, 

for T135, DoLP performs better than S1 as a result of better performance from S2 

parameter.  
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Figure 3.39  ROC curve comparison for each of the surrogate targets for S0, S1, S2, and 

DoLP for timestamp 2010h.  With no solar loading available as in Figure 3.33, S0 

performance was significantly reduced at the lower false alarm rates making S0 imagery 

useless for an automated/aided systems.  DoLP and S1 performed better than S2 and S0 for 

most of the ROC curve PFA range for T0 and T90.  Furthermore, one can observe that S1 

and S2 have similar performance at extremely low false alarm rates indicating that similar 

features are available to both metrics.  As a result, DoLP also follows S1 and S2 

performance.  However, as S2 performance degrades quite significantly relative to S1 and 

the performance of DoLP and S1 continue to remain similar, one can conclude that DoLP 

performance becomes primarily a function of S1 performance rather than S2.  Conversely, 

for T135, DoLP performs better than S1 as a result of better performance from S2 

parameter.  (Continuation) 
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Figure 3.40  Output surfaces for S0, S1, S2, and DoLP using a common threshold value of 

 5σ.  As a result of the lack solar loading S0 once again performed very poorly with 

virtually no manmade object detected for timestamp 2010h.  S1, on the other hand, was 

able to identify all manmade objects in the scene with a lesser number of false alarms 

than DoLP.  Conversely, DoLP was able to detect more pixels on the observation tower 

than S1 imagery.  S2 successfully identified T90 and very small portions of T135 and the 

observation tower with no false alarms.  However, T0 and the external blackbody 

exhibited no strong S2 polarization features that could be easily detected using the chosen 

threshold value. 

 

 In this subsection the performance of the Stokes and DoLP parameters was 

presented for the detection of three surrogate targets placed at three different aspect 

angles from the sensor perspective.  As previously mentioned in Chapter 2, conventional 

infrared (S0) had serious limitations in detecting the three targets of interest during the 

time periods where the engines were off and solar loading was not available.   

 In such low contrast scenarios, the target temperature is often similar to that of the 

background making it difficult for algorithms to discern target from clutter.  In contrast, 



123 

 

 

 

S1, S2, and DoLP performed better than S0 for low contrast situations, and with good 

enough performance for high contrast scenes within the desired low false alarm region of 

the ROC curves.  However, these parameters were not very useful in detecting the whole 

target, rather only pixels where target surfaces exhibited strong polarization features 

because of their orientation angle relative to the sensor (see Subsection 3.5.1 for a more 

detailed explanation).  Interestingly, one could also observe S1 and DoLP performances 

behaving quite similarly throughout the ROC curve and usually over performing S2 for T0 

and T90 independently of timestamp.  The exception was observed in the detection of T135 

where S2 performed better than with previous targets, which facilitated DoLP in 

outperforming S1 for most of the T135 ROC curve.  

3.6 Summary and Conclusions 

Chapter 3 presented the building blocks of PI exploitation by introducing the derivation 

of Stokes parameters, followed by an explanation of the polarized emission properties of 

smooth plane materials using the tilting plate data collection.  In this data collection, it 

was shown that S0, intensity, had difficulty in detecting the test plate during the time 

periods where the test plate and natural clutter had similar temperature values.  

Conversely, S1 and DoLP demonstrated the capability of detecting manmade objects 

regardless of their temperature difference relative to the background clutter. 

 The caveat of using polarization as detection metrics is their dependency of 

surface orientation angle, as it was observed in Subsection 3.5.1, where, for example, S1 

and DoLP did not perform very well in discriminating the test plate at any angles below 

45°.  In conclusion the test in Subsection 3.5.1 demonstrated two key points worth 

mentioning:  
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1) In order to detect a potential manmade object, the surfaces need to be at 

favorable angles relative to the sensor in order to display a significant 

polarization difference. 

 

2) The polarization metrics such as S1, S2, and DoLP are independent of the 

target temperature.  

 

 A second data collection was then presented where real data of three surrogate 

self-propelled howitzers was shown in Subsection 3.5.2.  The data demonstrated that 

many of the target facets were not detectable as a result of their orientation relative to the 

sensor.  Furthermore, it was also observed that for the chosen threshold of  5σ, the 

number false alarms present in the scene varied depending of the time of day.  For 

example, in S1 the number of false alarms increased as the scene got hotter.  As a result, 

the data collection from Subsection 3.5.2 demonstrated that the use of the Stokes 

parameters in detecting complex 3-dimensional manmade objects in an outdoor 

environment was quite problematic for anomaly detection applications for the following 

reasons:  

1) As a result of the Stokes angle dependency, only a small number of pixels for 

each manmade object were significantly divergent from the clutter’s 

distribution.-Portions of the grass, a natural clutter class, exhibited strong 

vertical polarization which increased the number of false alarms shown in S1 

and DoLP imagery. 

 

2) Number of false alarms in S1 and DoLP imagery increased as a function of 

temperature. 

 

3) DoLP exhibited more false alarms than S1 imagery alone, which one may 

conclude that the influence of S2 degraded DoLP performance.  Conversely, 

DoLP detected more pixels on the observation tower than S1. 

 

4) Due to factor 1, 2, and 3 the ability to discriminate manmade targets from 

natural clutter decreased significantly as the temperature increased since the 

small number of disjointed target pixels could be mistaken for false alarms or 

vice-versa. 
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 In conclusion, Stokes and DoLP parameters are not good metrics for 3-

dimensional object detection as per the reasons above.  There is a need to develop 

algorithms that are diurnal cycle and surface orientation invariant to successfully detect 

potential manmade objects from clutter while at the same time reducing significantly the 

number of false alarms detected by the Stokes parameters and DoLP.  
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CHAPTER 4  

SPECTRAL AND POLARIMETRIC DATA COLLECTION EXPERIMENT 

4.1 Introduction 

This dissertation uses the Spectral and Polarimetric Imagery Collection Experiment 

(SPICE) database for algorithm development and testing of PI.  The goal of Chapter 4 is 

to describe the data collection conducted at a data collection facility located in Northern 

New Jersey.  The data collection and its setup are discussed first, followed by details on 

the targets used, sensor specifications, and data products of the SPICE effort.   

 The objective of SPICE is to collect a comprehensive database of calibrated 

measurements of hyperspectral, polarimetric, and broadband images during a period of a 

full year to capture all kinds of weather conditions and target states.  Such measured 

information can be utilized to develop and validate sensors, algorithms, and modeling and 

simulation programs.  The SPICE data collection distinguishes from previous data 

acquisitions in that it autonomously collects and stores data of two target sites at 549m 

and 1280m from the sensors.  Since the data acquisitions cover an entire year, the 

database holds a wide variation captured in the data ranging from changing weather 

conditions, environment (e.g., trees with leaves and tress without leaves depending on the 

season), geometry of illumination, and full diurnal cycles.   

 By collecting such comprehensive database, the intent of such effort allows the 

scientific community to: 1) Understand signature variability under the different weather 

patterns; 2) Develop robust algorithms; 3) Develop new sensors; 4) Improve high fidelity 

modeling and simulation programs; 5) Evaluate the different technologies (hyperspectral 
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and polarimetric) under adverse weather conditions; and 6) Evaluate the possible fusion 

of the different sensor systems. 

 The proposed chapter is organized as follows: Section 4.2 describes the location 

and facility where the SPICE collection was performed; Section 4.3 details the 

polarimetric sensor deployed; Section 4.4 explains the type of targets used; Section 4.5 

describes the autonomous data collection system; Section 4.6 details the SPICE data 

products and presents LWIR polarimetric imagery collected before, during, and after an 

adverse weather event; Section 4.7 details the dataset used in the dissertation, and finally 

Section 4.8 concludes the chapter. 

4.2 Data Collection Tower 

The data collection facility, located in Northern New Jersey, USA, is specifically 

dedicated to the testing of sensors under adverse weather conditions.  The laboratory 

consists of a base building and a 65 m data collection tower with two external elevators 

capable of serving as test beds for radars, electro-optic, or other sensors under test (see 

Figure 4.1).  The data collection tower overlooks three instrumented target site areas 

(46m, 549m, and 1280m from base) as well as a mid-range meteorological 

instrumentation site (642m from base). The facility has automated collection of ground 

truth information to accurately determine and characterize meteorological conditions, 

measure the propagation path loss, perform the required measurements, and characterize 

the clutter background and target effects. 
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Figure 4.1  The data collection facility is a 65m tower located in Northern New Jersey, 

USA. The data collection tower is specifically dedicated to the testing and evaluation of 

sensors under adverse weather conditions. 

 

 The effective height of the tower is 126m as it was specifically positioned atop a 

61m ridge, thus providing access to a vast portion of the area around it for data collection 

purposes.  

 Polarimetric imagery propagation under adverse weather conditions is certainly 

affected by the meteorological conditions present during testing and, therefore, precise 

knowledge of the actual meteorological conditions is vital to provide quantifiable results.  

Listed in Table 4.1 are a number of standard meteorological sensors that are deployed 

during adverse weather testing at the data collection. 

 Available standard meteorological instrumentation includes wind speed and 

direction, temperature, humidity, and barometric sensors.  Recording of wind speed and 

direction is important since it can affect the shape of the raindrops and snow crystals and 
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their orientation with respect to the polarimetric sensors.  The size of the raindrops or 

snow crystals can affect the emission and reflection signal propagation since in most 

cases their size is in the Rayleigh scattering region. Thus, emitted and reflected energy is 

greatly reduced in proportion to drop size.  Humidity and temperature sensors indicate 

moisture content in the air, which affects the propagation attenuation. 

 

Table 4.1  Meteorological Instrumentation used in SPICE Data Collection 

Sensor Measures Comments Units 

Thermometer Temperature  Celsius 

Humidity Sensor Humidity  Percentage 

Snow/Rain Tipping 

Bucket 

Rain rate Also melted snow 

liquid rate 

mm/hr 

Optical Rain Gauge Rain rate Possibly snow rate mm/hr 

Visibility Meter Visibility Smoke, fog, haze Km 

Pyranometer Sun and sky 

radiation 

Visible W/m
2
 

Pryheliometer Solar radiation 

direction 

Required tracking 

mount 

W/m
2
 

Pyrgeometer Sun and Sky 

radiation 

Infrared W/m
2
 

Ceileometer Cloud range and 

thickness 

Range and thickness of 

up to four layers of 

clouds 

Meters 

Total Sky Imager Cloud Cover Cloud cover estimation Percentage 

 

 Other standard instrumentation includes rain gauges, a heated tipping bucket type 

that provides information on the liquid water content of the snow, as well as that for rain. 

By connecting the meteorological instrumentation to a network data logger located at the 

base building, meteorological information is autonomously collected and stored for 

further analysis. 
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 Advanced meteorological sensors available at the data collection facility include 

an optical rain gauge, distrometers, snow depth gauge, soil moisture blocks, ceileometer, 

and a total sky imager.  Optical rain gauges have the capability of performing more 

precise measurements at low rain rates, and at extremely high rain rates.  Distrometers 

provide measurement of precipitation sizes.  Since solar radiation can potentially affect 

the performance of the infrared imagery due to thermal effect or possible inversion layer 

effects, pyranometers are deployed to measure the total sun and sky radiation.  Normal 

incidence pryheliometer along with a solar tracking mount were deployed to provide the 

measurement of the direct beam solar irradiance.  Ceileometer provides range and 

thickness information up to four cloud layers and up to a distance of 30,000 feet.  Such 

information is crucial since low cloud ceilings adversely affect polarimetric and 

hyperspectral infrared imagery.  Finally, a total sky imager is a visual based system for 

sky imaging that allows for automated report on cloud cover within an area of interest.  

Cloud cover and cloud height information along with Pyrgeometer measurements allow 

researchers to measure the amount of downwelling energy being reemitted back to 

ground and how it affects target and background signatures.  For the work in this 

dissertation, the amount of radiance being emitted from the sky is a very important 

measurement, because as the amount of radiation from the sky increases, features that 

once could be detected easily in a sunny clear day would be diminished quite 

significantly when downwelling values are extremely high. 

 Figures 4.2 through 4.6 illustrate some of the meteorological measurements that 

are available with the SPICE database.  For example, Figures 4.2 and 4.5 illustrate a 

sunny day while Figures 4.3 and 4.6 represent a cloudy day.  Figure 4.2, black curve, 
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illustrates the solar irradiance power captured by the pyrheliometer.  The smooth shape 

reveals that very few clouds were present at the scene for most of the day, except around 

1700 where one can observe a deep dip in the irradiance values as a consequence of a 

cloud blocking the sunlight.  One can clearly observe the difference between a cloudy 

and sunny day by comparing Figures 4.2 and 4.3.  In Figure 4.3, sun rays were diffused 

due to cloud cover and as a result the amount of direct sun radiation is highly attenuated.  

As previously mentioned, downwelling radiation (as well as other factors such as rain 

rate, humidity, and visibility) is often associated with decreased detection in polarization.  

If no clouds are present in the scene, one can observe that there is a clear difference 

between the upwelling and downwelling radiation values especially during the daylight 

periods.  

  



132 

 

 

 

 
Figure 4.2  Plot showing the radiance values for a sunny day on 3 April (APR) 2012.  

The black curve represents the total incident power from the sun within the 200 and 

4000nm region of the spectrum.  The blue curve represents the amount of radiance being 

emitted by the background, while the red curve represents the amount of energy being 

reflected back to the ground from the sky.  The pergyometers work within the IR region 

(4 to 1000 μm) of the spectrum. 

 

 Comparing these same parameters to Figure 4.3, one can observe that the 

difference between upwelling and downwelling is very small.  The reason is that cloud 

cover absorbs the radiation being emitted by the earth and re-radiates it back to the scene.  

The amount of re-emitted radiation is a function of cloud cover and cloud height. 
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Figure 4.3  Plot showing the radiance values for cloudy day on 1 APR 2012, measured 

by the pergyometers and the Pryheliometer.  During cloudy days the amount of direct 

solar radiation is very low as it is diffused by the clouds above.  The difference between 

the upwelling and downwelling radiance values is small compared to a good day because 

clouds become good radiators by re-emitting radiation back to scene. 

 

 Figure 4.4 demonstrates the information captured and processed by the total sky 

imager equipment.  The total sky imager works by capturing full color sky images using a 

visual camera which are then processed by software using a filter.  Blue sky will be 

designated by blue color while clouds will be designated by white color.  The amount of 

cloud cover is computed by taking the ratio of white versus blue pixels in the captured 

imagery. 
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Figure 4.4  Total Sky Imager pictures and processed images illustrating the amount of 

cloud cover for 3 APR 2012 (left side) and 1 APR 2012 (right side).  The top row 

represents the images taken by the Total Sky Imager, while the bottom row represents the 

processed images where the blue represents blue sky while white represents cloud cover. 

 

 Figures 4.5 and 4.6 illustrate the 12 hour percentile cloud cover plot for 3 and 4 

APR 2012 respectively, captured by the total sky imager.  This plot gives a better 

understanding of the cloud cover in the scene in terms of time throughout the daylight 

hours.  The yellow bar on the top represents periods of time where sunshine was detected.  

As previously mentioned, one can see very clear that on 3 APR the amount of cloud 

cover was minimal for most of the day (<10%) compared to >95% for 4 APR 2012.  
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Figure 4.5  A 12-hour percentile cloud cover plot captured by the Total Sky Imager for 3 

APR 2012 where white indicates opaque clouds, light blue thin clouds, dark blue clear 

sky.  The yellow color across the plot represents periods where sunshine was detected 

while the gray color indicates no sunshine.  In this chart one can observe that for most of 

the day very little cloud cover was detected across the 12 hour with some periods where 

high percentage of opaque cloud cover was detected between 1500 and 1600 and again 

for 1700 through 1800 hours.  

 

 In conclusion, meteorological data is of extreme importance to characterize the 

environment the target and sensor operate and aids in performance comparison of 

different systems for different weather events.  During the course of the SPICE data 

collection several sensors were added to continuously improve the quality of the 

meteorological data collected.  For example, during the 2010 data collection all sensors in 

Table 4.1 were available with the exception of the Total Sky Imager and the upwelling 

sensor, shown in Figures 4.2, 4.3, 4.5, and 4.6, which were added in mid-2012. 
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Figure 4.6  A 12-hour percentile cloud cover plot captured by the Total Sky Imager for 4 

APR 2012 where white indicates opaque clouds, light blue thin clouds, dark blue clear 

sky.  The yellow color across the plot represents periods where sunshine was detected 

while the gray color indicates no sunshine.  For this day, there were no periods of 

sunshine detected by the Total Sky Imager (see bar graph on top) and a large percentage 

of opaque could cover was detected throughout the day which supports the conclusions 

from Figure 4.3. 

 

4.3 Long-Wave Infrared Polarimetric Sensor 

The LWIR imaging polarimeter used in SPICE data collection is a microbolometer-based 

rotating retarder imaging polarimeter developed by Polaris Sensor Technologies, Inc., 

Huntsville, AL (Figure 4.7).  It operates by capturing up to 12 images sequentially in 

time, each at a different orientation of the rotating retarder.  Together, the retarder and 

linear polarizer act as a polarization state analyzer for the light forming the image.  Using 

the data reduction matrix method, the Stokes vectors are calculated, which completely 
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characterizes the polarization states of the light from the scene.  Table 4.2 lists the sensor 

specifications.  

 

Table 4.2  Specifications for the LWIR Imaging Polarimeter 

Parameter Value 

FOV 13.7x11.0 degrees 

Objective Focal Length 50mm 

f/# 0.87 

Total FPA pixels 324x256 

Pixel size 38x38 um 

Max Frame Rate (stream to disk) 30 fps 

Sensor Dimensions (inches) 10”L x 6”W x 7.5”H 

Sensor weight 12 lbs 

Power 15V;  1.2 A 

 

 

Figure 4.7  Polaris Long-Wave infrared polarimetric imaging sensor used in SPICE and 

optical layout of the spinning retarder microbolometer-based sensor. 
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4.4 Targets 

The use of actual operational military vehicle as targets to support the continuous and 

automatic nature of data collection at the facility proved to be unaffordable.  Thus, an 

alternative target approach had to be found.  The solution came in the form of a surrogate 

military vehicle in the form of a self-propelled howitzer.  

 The surrogates, pictured in Figure 4.8, provide validated vehicle signatures in the 

35GHz radio frequency (RF) and MWIR regions of the electromagnetic spectrum.  This 

was accomplished by producing a physical replication of the actual vehicle (RF region), 

by its metallic construction (RF and IR region), and the use of supplemental heated 

surfaces (IR region).   

 
Figure 4.8  Surrogate target used in the SPICE data collection. At each of the mid and 

long range target sites, three targets were placed in different orientations, 0°, 90°, and 

135° with respect to the sensor. 

 

 In the IR region, the metallic construction properly produces the correct solar 

loading characteristics.  The supplemental heated areas provide an approximate 
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characteristics of the actual vehicle in operation.  The heated areas are shown in Figure 

4.9.  

 

 
Figure 4.9  The surrogate target can be heated at different temperatures as per user needs 

to simulate a cold, idle, or running target.  Table 4.3 designates the maximum t allowed 

for each of the surfaces. 

 

 Figure 4.9 depicts the most important parts of the target:  the engine area, exhaust 

areas, gun barrel and replica road wheels can be independently heated and controlled.  

Table 4.3 shows the temperature range available for each heated element. All target 

heating elements are programmable and can be automatically controlled; a valuable 

capability for the data collection. 

 

Table 4.3. Maximum Temperature Delta Values for Each of the Different Surfaces of the 

Surrogates 

# Area Maximum t (Celsius from Ambient) 

1 Gun Tube 70 

2 Front T 30 

3 Back T 30 

4 Overhead Compartment 40 

5 Exhaust (not used) - 

6 Wheels (not shown) 30 
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4.5 Autonomous Data Collection 

Collection of imagery during adverse weather can be a hit or miss event. The use of test 

personnel for a long-term effort can be quite expensive and unproductive if waiting for a 

certain weather event to occur. Furthermore, what may be construed at first as the 

required weather events needed for algorithm development, other events may be required 

long after the data collection effort has ended.  Obviously to pre-plan a list of events that 

is required for a complete data analysis, algorithm development, and technology 

evaluation can be quite difficult as one needs to anticipate the most important factors for 

such activities.  Prediction of when such events may occur in order to have the right 

personnel on-site is not only difficult but also quite expensive to maintain. 

 To answer the difficulties in collecting a comprehensive database of a variety of 

weather patterns, the data collection facility has assembled a selection of polarimetric, 

hyperspectral, and broadband sensors into an autonomous data collection effort to collect 

a database of calibrated measurements of all atmospheric events, which includes the hit 

or miss adverse weather events.  By using an autonomous data collection system, one is 

able to collect the necessary data while keeping the data collection cost at a manageable 

level.  

 To accomplish the autonomous polarimetric data collection where the sensors 

need to collect images from the mid and long range target sites at pre-defined time 

periods and be able to self-calibrate, required a collaborative effort between Invoke LLC, 

Polaris, and the data collection facility personnel. 

 The polarimetric sensors were placed inside the facility laboratory elevator on top 

of a Quickset QTP-500 Pan & Tilt positioner (Figure 4.10). The QTP-500 can handle 



141 

 

 

 

payloads up to 500 foot-pounds of torque, and the rugged design allows it to be in direct 

contact with the elements.   

 

 
Figure 4.10  SPICE setup inside the facility elevator.  Shown in the image is: 1) Mikron 

blackbody M350, 2) Quickset QTP-500 series, 3) Mid-Wave infrared hyperspectral 

Telops camera, 4) Long-Wave infrared hyperspectral Telops camera, 5) Long and Mid-

Wave infrared polarimetric cameras from Polaris, 6) Blowers to protect sensors from rain 

and snow. 
 

 The Pan & Tilt system positions the sensors to collect data of the mid and long 

range sites by receiving positioning instructions through the network using a custom 

made control software developed by Invoke LLC. The control software reads a user 

defined excel spreadsheet (script file), which is divided into five columns (time, 

horizontal and vertical position, blackbody on/off setting, and blackbody temperature). 

The control program reads the script file and sends position instructions to QTP-500 at a 

specified time period.  The Pan&Tilt system script is written as to position the sensors to 

view the mid and long range target sites every 5 minutes, only interrupting this cycle 
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when the polarimetric sensors need to be calibrated. The positioner software also 

communicates with a Mikron Blackbody source when needed by placing the Mikron 

blackbody on standby or automatic mode and setting the required blackbody temperature.  

Currently the system only communicates one-way with the Mikron blackbody, but 

development of a more sophisticated 2-way communication system is currently under 

way. 

 The autonomous acquisition software for the LWIR camera was developed by 

Polaris for the SPICE data collection. Both cameras can use a weekly or monthly script 

broken down by hour (0000h – 2300h), which instructs the computers on the data 

acquisition interval. Currently, the LWIR polarimetric camera acquisition computer runs 

a script that captures one image every 2:30 minutes.  

 In order to calibrate the polarimetric cameras, calibration segments are allocated 

during the course of day. For each of the calibration segments: 1) the Invoke software 

sends signals to the blackbody to go into automatic mode and transmits the first 

temperature. 2)  The system waits 15 minutes prior to the first calibration session in order 

to stabilize the temperature in the blackbody. 3) Once the temperature of the blackbody 

stabilizes, the pan and tilt camera tilts downward in order to place the polarimetric 

camera in front of the blackbody. 4) Once the camera is calibrated with the first set of 

temperatures, the Invoke software tilts the camera back to a resting position and sends a 

new temperature value to the blackbody. The calibration segments repeat the above 

mentioned steps until all the temperature values are executed. 

 To minimize power consumption inside the elevator, the LWIR polarimetric 

computer was placed on a remote location of the data collection tower, outside the 
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elevator, where raw imagery and communication signals are transmitted and received 

using the data collection facility network.  

 In order to collect this massive database, the data collected by the computer is 

immediately transferred from the sensor directly to networked storage devices that give 

the ability to hot swap hard drives when storage space becomes limited. The hot-

swapping feature is totally transparent to the acquisition software and allows for 

continuous data acquisition. 

4.6 Data Collection Products 

In order to evaluate sensor technology, algorithm performance, and fusion of different 

modalities when encountering adverse weather conditions, the instrumentation must 

record the necessary data from the sensor under test and the meteorological data.  Since 

the data is obtained from different instrumentation and is recorded separately in different 

locations, accurate time tagging of the data is essential in order to enable correlation of 

the data on a post mission basis. To accomplish this, Inter Range Instrumentation Group 

(IRIG) time synchronization Global Positioning System (GPS) time is used to minimize 

drift errors of all instrumentation during the data collection.  

 The polarimetric data is recorded in its most basic format and it can be opened 

and calibrated using Polaris calibration software. Calibration of the data is accomplished 

by selecting a high and low calibration temperatures, from the calibration temperatures 

collected during sensor calibration, that best fits the target and background temperature 

values (air and ground) from the meteorological (MET) data for a particular date and 

period of time. 
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 The calibrated data may be opened as a text image using Imagej [40], Mathworks 

Matlab [41], or any other program that can read text images for further processing and 

image analysis. The facility metrological database can also be opened and plotted using 

Microsoft Excel [42] or Mathworks Matlab program.  

 To illustrate the significance of collecting adverse weather data for data analysis, 

algorithm development, and technology evaluation, a set of images are shown below 

from the SPICE data collection.  Figure 4.11 depicts some of the manmade objects found 

in the mid-range target site: T0, T90, and T135, an external blackbody covered by a black 

canvas, a metal hut, and an observation tower (not shown).  The plates found in the 

middle of the image were not present during the data collection period presented in this 

dissertation.  The background clutter is mainly composed of leafless trees, with grass and 

a gravel road in the target area.  

 Figure 4.12 illustrates the S0 image captured by the sensor of the mid-range target 

site.  In this figure, one can observe that trees are the predominant natural clutter in the 

scene.  For the data collected from 9-11 FEB 2010, T0 and T90 heating plates were on 

throughout the three days.   

 The collected imagery shown in Figure 4.13 was collected on 9 – 11 FEB 2010 at 

0600h, where in 10 FEB the data collection facility was hit by blizzard type conditions 

for 24 hours.   
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Figure 4.11  Mid-range target site has three surrogates targets and other manmade 

objects surrounded by natural clutter (trees, trunks, soil, grass) setting.  Manmade objects 

present in the scene during the actual data collection are circled, with the surrogates’ 

aspect angles labeled immediately above corresponding circles. 

 

 
Figure 4.12  Long-Wave broadband infrared image collected by the LWIR polarimeter.  

The image is predominantly dominated by leefless trees. In the open area where the three 

targets are located, grass is the predominant natural clutter. A road made of gravel exists 

between the trailer and T90.  
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Figure 4.13  Imagery collected by the Long-Wave polarimetric sensor at 0600h on the 

day before, during, and after a snowstorm.  Targets T0 and T90 were running, while T135 

was kept cold.  

 

 As Figure 4.13 demonstrates, S0 clearly shows T0 in all three days, however T90’s 

(due to its orientation relative to the sensor) hot target surface cannot be observed on 

either 9 or 11 of FEB.  On the other hand, due to the low background temperatures on 10 

FEB, the surface of T90 can be distinguished from the surrounding clutter.  T135 heating 

plates were off throughout the 3 days and as a result there is not enough contrast between 

the background and the target. 

 DoLP clearly discriminates all three targets (hot and cold) from the natural 

background for 9 and 11 of FEB.  Conversely, for 10 FEB, only T0 seems to be visible in 

contrast to T90 and T135, which are not visible during the adverse weather event.  The S1 
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metric is not capable of discriminating all of the manmade objects from the background 

compared to DoLP for the same time period in Figure 4.13.  For example, S1 was only 

capable of distinguishing T0 and T90 for 9 and 11 of FEB but not T135, while during the 

adverse weather, 10 FEB, only T0 was marginally detected. 

4.7 Dissertation Dataset Description 

As previously mentioned, the SPICE polarimetric data used in this dissertation was 

collected and recorded using a Polaris uncooled rotating polarizer LWIR microbolometer 

as described in Section 4.3.   The LWIR polarimetric sensor, in particular, was placed 

near the top of data collection facility at a 550-m slant range from the target site, see 

Figure 4.11.  The target site features three surrogate military targets posed at three aspect 

angles                                relative to the sensor’s line of sight and 

depending on the collection day, some of the surrogates’ engines were turned on.  The 

scene is dominated by a natural clutter background (canopy trees, tree trunks, sparse 

grass, canopy bushes, and soil) and, in addition to the surrogates, there were also other 

manmade objects present in the scene, including an external blackbody completely 

covered by a black canvas and a observation tower, which the latter is not shown in 

Figure 4.11.  Figure 4.11 shows the target site on 6 July (JUL) 2011, although the 

polarimetric data in reference were collected more than a year earlier on 6 MAR 2010. 

Note: the white metal plate in the scene reflecting the sky between the black canvas and 

the tank surrogate posed at 0
o
was not present in the scene during the data collection in 

MAR 2010.  

 The polarimetric dataset used to quantify the performance of algorithms in this 

dissertation were acquired continuously during a 72-hour time period between 6 and 8 
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MAR, 2010, starting at 0000h on 6 MAR with 10-minute intervals but excluding the time 

period between 0300h and 0500h for calibration each day which the sensor viewing 

direction would move to acquire data from an external blackbody—as a measurement 

reference—so at a later time radiometric calibration software could be applied to the data.   

 It is worth noting that, during the three day period, sunrise occurred at 0625h and 

sunset occurred around 1754h, hence, after 1800h the target site was completely dark to 

the naked eye.  To assess the meteorological conditions during the entire 24-hour diurnal 

cycle for 6 through 8 MAR 2010, the following meteorological parameters are measured: 

direct solar irradiance, sky downwelling, visibility, temperature, and humidity levels (see 

Figures 4.14 through 4.16). The pyrheliometer is used to measure the direct solar 

irradiance and an infrared pyrgeometer to measure the average sky downwelling (see 

Section 4.2 for more information on the meteorological sensors).  Observing Figure 4.14, 

the smooth curve shape and high value measured (>900 W/m^2) in the Normal Incident 

Power (NIP), also known as Pryheliometer, plot during the diurnal cycle, together with 

the low downwelling measurements from the sky ensured us that 6 MAR 2010 was 

characterized as a sunny day with no or very few clouds present in the sky.  An Optical 

Rain Gauge (ORG) did not detect any precipitation for the duration of the day. 

Interpretation of the visibility data showed 6 MAR 2010 as a clear day with no fog or 

haze for the entire 24-hour cycle, using as a reference the high visibility values (>25km) 

as shown in Figure 4.14.   
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Figure 4.14  Meteorological information for 6 MAR 2010 captured by the data collection 

facility located in Northern NJ. 
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 Humidity values were mostly low (about 60% and below) which correlates very 

well with the visibility meter of a clear sunny day.  Temperature ranged from -4 to 10 

degree Celsius (24.8 to 50 degrees Fahrenheit).  Between 0000h and 0900h, air 

temperature values remained below zero degrees Celsius (32 degrees Fahrenheit) while 

for the time period between 2030h and 2350h the temperature values remained above two 

degrees Celsius (35.6 degree Fahrenheit) reaching the highest temperature of 10 degrees 

Celsius (50 degrees Fahrenheit) around 1500h.  On the second day, Figure 4.15 7 MAR, 

one can observe that a sunny day was once again present (using pyrheliometer data) with 

temperatures ranging between zero and three degrees Celsius from 0000h and 0700h, and 

after sunrise the temperature increased from zero degrees Celsius to a maximum of 11 

degrees Celsius at around 1500h.  After sunset, around 1754h, the temperature dropped 

down to about -2 degrees Celsius.  However, the temperature at the data collection tower 

dropped at a slower rate with its lowest temperature at around five degrees Celsius.  The 

humidity levels for the time period between 0000h and 1800h hovered around 30% and 

50%.  A significant increase in humidity was detected at the mid-range target site after 

1800h reaching a maximum of 90% humidity around 2300h.  Again, the data collection 

tower instrumentation, where the camera was located, registered different values than 

what was recorded at mid-range target site with the humidity ranging between 40% and 

50%.  The ORG once again did not detect any precipitation during this 24-hour period.  

The visibility meter at the mid-range target site shows a slight decreasing trend from 

25km starting at around 1000h reaching its lowest value of 20 km during the time period 

between 1900h and 2300h.  Finally, on the 3
rd

 day (Figure 4.16), the pyrheliometer data 

demonstrated, once again, a sunny day where very little or no clouds were detected.  The 
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temperature in the mid-range target site ranged from zero to five degrees Celsius around 

0000h and 0200h.  The temperature stayed somewhat stable (within 1-2 degrees Celsius) 

up to sunrise with the temperature reaching a maximum of 13 degrees Celsius around 

1500h.  After sunset the temperature values captured at the mid-range dropped to about 

one degree Celsius at around 2200h.  Once again the temperature values captured by the 

data collection tower instrumentation were different from the mid-range target site with 

its lowest value around 2300h of about seven degrees Celsius.  The humidity recorded by 

the instrumentation at the mid-range target site shows that during the 0200h and 1800h 

time period, the humidity values remained around 35%-40%, while after 1800h humidity 

increased steadily to about 77% at 2200h, finally hovering around 65% for the remainder 

of the night.  On the other hand, as seen in the previous day, the data collection tower 

humidity values stayed fairly consistent at around 40% for the entire day.  The mid-range 

instrumentation recorded a visibility ranging from 20 Km and above for the 24-hour 

period, while the data collection tower visibility remained above 25 Km. 
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Figure 4.15  Meteorological information for 7 MAR 2010 captured by the data collection 

facility located in Northern NJ.   
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Figure 4.16  Meteorological information for 8 MAR 2010 captured by the data collection 

facility located in Northern NJ.   
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 Regarding the polarimetric data, the spatial area of all images used for this study 

is 256 rows by 320 columns, with a pixel resolution of approximately 1.47 m; the 

primary targets in the scene consist of 75 pixels (surrogate posed at    aspect angle), 102 

pixels (surrogate posed at     aspect angle), and 96 pixels (surrogate posed at      

aspect angle).  According to the ground truth information, in day 1, the heating engines of 

T0, T90, and T135 were turned off; in day 2, the engines of T0 and T90 were turned on, 

while T135 remained off; in day 3, all three surrogates were off again. 

4.8 Conclusions 

Chapter 4 presented details on the SPICE data collection effort, the testing facility, the 

specifications of the LWIR polarimetric cameras used, the meteorological information 

captured by the data collection tower, examples of the imagery collected using the 

autonomous data collection system, and finally a brief description of the dataset used in 

the dissertation.  Example images from SPICE were shown earlier in Chapters 2 and 3, 

and additional images representing other complex events and their implications to 

algorithm performance are shown and discussed in Chapter 5. 
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CHAPTER 5  

POLARIMETRIC IMAGERY EXPLOITATION ALGORITHMS 

 

5.1 Introduction 

This chapter introduces several contributions to the field of PI exploitation for the 

specific topic of autonomous manmade object detection using imagery spatially 

dominated by natural background clutter (forest canopy, etc.); the topic has applicability 

to commercial and surveillance systems.  These contributions fall into two very different 

fields of mathematics, the first contribution is based on set theory called mathematical 

morphology and the second contribution is based on multivariate statistics.  Regardless of 

the methodology chosen, both methods attempt to enhance the ability of identifying 

locations of interest where manmade objects may be present in the scene.  The first 

method, presented in Section 5.2, proposes the use of morphological operators to enhance 

manmade object features found in conventional Stokes imagery while reducing natural 

clutter features.  Its performance, relative to conventional Stokes, demonstrates that 

morphological operations play an important role in PI exploitation allowing for the 

development of more-effective manmade object detectors relative to conventional 

polarimetric methods, with the added benefit of easy implementation into existing 

graphic processing unit (GPU) cards, using data from polarimetric sensors available in 

today’s the market. 

 The second method, presented in Section 5.3, is based on multivariate statistics by 

using the raw polarimetric angle measurement imagery as input information, where each 

image, representing one of the angles (0°, 45°, 90°, and 135°), is stacked upon others to 

create a polarimetric data cube.  By using higher order statistics data analysis on the 
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newly proposed polarimetric data cube, an anomaly detection algorithm based on 

covariance difference test is proposed capable of discriminating manmade objects from 

natural clutter background over a variety of weather patterns.  Since higher order 

statistics between manmade objects and natural clutter change dramatically from long to 

short range PI, two variations of the proposed algorithm are recommended in order to 

make it range invariant. 

Finally, Section 5.4 conveys the conclusions and summarizes key important 

points discussed in Sections 5.2 and 5.3. 

5.2 Morphological Operators for Polarimetric Imagery 

5.2.1 Introduction to Mathematical Morphology 

Mathematical morphology (MM) was introduced in 1964 from the collaborative work 

between Matheron and Serra [43-46] to quantify mineral characteristics from thin cross 

sections.  During the 1960s and early 70s, MM focused essentially on binary imagery, 

commonly known as sets, with work by Serra on “Texture Analyser”, which allowed the 

analysis of binary images using any type of structuring element (SE) based on straight 

lines.  In 1964, Matheron defined the set addition, commonly known as dilation in MM, 

which is based on Minkowski algebra from 1903, and is today one of the basic MM 

operators or filters.  The work of both Matheron and Serra led to other developments in 

MM during this period of time, which included the hit-or-miss transform, erosion, 

opening, closing, granulometry, thinning, skeletonization, between many others.  Until 

then, all the work accomplished in MM was only applicable to binary images, when in 

1978 Nakagawa and Rosenfeld [47] were able to demonstrate that erosion and dilation in 
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binary imagery was linked to the maximum and minimum filters applied to grayscale 

imagery. 

 Heijmans [48], for example, demonstrated how binary morphological operators 

and thresholding techniques could be used to build grayscale morphological operators.  

Their implementation in terms of minimum and maximum filters proved impossible to be 

implemented into systems that required real time computation.  Shih and Mithcell [49] 

came up with an innovative approach to process grayscale morphology efficiently by 

threshold decomposition of grayscale morphology into binary morphology by 

decomposing grayscale signals into multiple binary ones, therefore, allowing them to be 

processed using binary morphology operators.  This innovative idea allowed for the real 

time implementation of morphological operations on grayscale imagery with the same 

output as grayscale MM. 

 Since then, the scope of MM applications has evolved to include image 

enhancement, segmentation, edge detection, restoration, texture analysis, compression, 

shape analysis, skeletonization, between many other applications.  MM is often referred 

as a geometrically based image processing because the basic idea of MM is the probing 

of a test image using a structuring element, see Figure 5.1, in order to quantify how well 

the structuring element fits (or not) within the image.   
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Figure 5.1  Original input image (black) and the resulting image (gray) using the SE in 

(b) 

Source: [50] 

 The use of a SE implies that the size and shape of the structuring element used to 

probe the test image has a direct effect on the output of the MM process, therefore, using 

a different probing element would then yield a different result as shown in Figure 5.2.  

Consequently the choice of structuring element is dependent on the information one 

wishes to observe or desire as an output.  Such can be seen in target recognition systems 

where the SE’s, often called “chips”, are used to probe potential anomalies found in the 

imagery based on known target shapes. 

 The use of morphological operators for image enhancement has not been widely 

used in PI for anomaly detection or feature extraction of manmade objects.  In fact, a 

search of the literature on the usage of MM in PI yielded a small number of results such 

as [51], which used MM to remove isolated pixels, fill holes, and object extraction if the 

shape was known a priori by fusing conventional and polarimetric LWIR imagery and 

[52], where morphological operators were used in S0, S1, and    (polarization angle) 

imagery to enhance and extract shape information in order to identify landmines in the 

field. 
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Figure 5.2  Original image (top) processed by the erosion operator using different 

structuring element shapes and their effect on the original image. 

 

 Unlike the above mentioned work, this dissertation proposes an algorithm based 

on MM operators that takes as an input any Stokes vector imagery (S0, S1, or S2) or 
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DoLP, enhances the manmade object features present in the image while mitigating 

clutter effectively, therefore, yielding an enhanced version of the input imagery suitable 

for anomaly detection.  To demonstrate the effectiveness of the proposed algorithm 

relative to the original input imagery, ROC curves, output surfaces, and 72-hour 

probability of detection curves will be presented (Subsection 5.2.4) for heated and cold 

targets for Stokes/DoLP and Morphology-based Stokes/DoLP where no a priori 

information (shape or structure) about the targets is used to help discriminate the objects 

from natural clutter.  Rather, a small     pixel square element was used as the SE of 

choice since, for the ranges presented in this dissertation (at about 550m), the targets 

should be partially or fully covered by the SE.  The work presented in Subsection 5.2 

clearly demonstrates the effectiveness of the proposed algorithm in enhancing the SCR of 

manmade structures relative to the background as its performance is tested and evaluated 

over 300 images of different weather patterns, temperature, low and high contrast 

imagery, without any a priori knowledge on the background or targets that may be 

present in the scene. 

 The remainder of Section 5.2 is organized as follows; Subsection 5.2.2 introduces 

MM as applied to grayscale imagery, representing the type of imagery used as input to 

the proposed set of morphological operators, followed by Subsection 5.2.3, which 

proposes the morphology-based anomaly detection algorithm for PI imagery.  Subsection 

5.2.4 illustrates an in depth study of the algorithm by presenting ROC curves for selected 

times of the day for 6 MAR 2010, their respective output surfaces, and a 72-hour 

probability of detection performance of each conventional metric (S0, S1, S2, and DoLP) 
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compared to its morphology-based version for the different manmade objects present in 

the scene.  Finally, Subsection 5.2.5 summarizes the results and concludes Section 5.2. 

5.2.2 Morphological Operations on Grayscale Imagery 

A grayscale image can be represented as a function        where   and   represent the 

coordinates of the test image, and        represents the grayscale value of the pixel at 

location      .  As with the case of binary morphology, grayscale morphology is defined 

over two images: the input image,       , and the SE denoted as        with both as 

grayscale images. 

 

 

5.2.2.1 Grayscale Dilation. The grayscale dilation of an input image by a SE is defined 

as, 

 

        {                 }  (5.1) 

 

                    , where   denotes the dilation operator, the subscript   

defines the operation for a grayscale image,   is the SE N-dimension feature space, and 

  is defined as the input image N-dimension feature space.  Grayscale dilation is 

accomplished by taking the maximum value of     in the neighborhood of the SE 

where the goal effect of such operation is to brighten the image by expanding the light 

objects while at the same time reducing or eliminating dark details by shrinking dark 

tones.  The effect of dilation on an input image, as with binary MM, it is highly 

dependent on the values and shape of the SE. 
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 Figure 5.3 illustrates an example of grayscale dilation by a     square SE which 

resulted in the brightening of the original image (from Matlab-cameraman.tif) while 

shrinking dark tones.  Notice the tripod legs for example, where portions of the legs are 

clearly brighter and the dark tones shrunk. 

  

Figure 5.3  Grayscale dilation of original image (left) by a     square SE (right). 

Notice how the image became brighter relative to the original image on the left.   

 

 

 

5.2.2.2 Grayscale Erosion. Grayscale erosion is defined as 

 

        {                 }  (5.2) 

 

and is accomplished by taking the minimum value of     in a neighborhood defined by 

the shape of the SE.  In contrary to grayscale dilation, erosion darkens the input image 

while reducing bright details and once again the effect is directly affected by the shape 

and values of the SE.  Figure 5.4 illustrates an example of grayscale erosion using     
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square SE which resulted in darkening the input imagery while reducing bright pixels 

found in the image. 

  

Figure 5.4  Grayscale erosion of original image (left) by a     square SE (right).  By 

eroding the original image the result is a darker image. 

 

 

 

5.2.2.3 Grayscale Opening. The opening operator (    for grayscale imagery by a SE  

is the result of eroding an input image by a SE, followed by dilating the result with the 

same SE, 

 

     (    )      (5.3) 

 

 The effect of opening is to diminish the intensity of all bright features found in 

  while having a negligible effect on the dark features as well as the background as it is 

shown in Figure 5.5. 
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Figure 5.5  Grayscale opening operator on original image (left) by a     square SE 

(right).  By opening the original image one can observe the brightness of bright pixels are 

diminished while dark pixels are negligibly unaffected.  

 

 

 

5.2.2.4 Grayscale Closing. Grayscale closing (  ) is the dual of opening.  

 Grayscale Closing is defined by the dilation of   by  , followed by erosion 

operator with the same SE, 

 

     (    )      (5.4) 

 

and the effect of closing a grayscale image is the attenuation of dark features while bright 

pixels and the background are negligibly affected.  Figure 5.6 demonstrates the original 

cameraman image (left) and the output when the closing operator is applied to the 

original image using a       square SE. 
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Figure 5.6  Grayscale closing operation on original image (left) by a     square SE 

(right).  The closing operator, the dual of opening, has the opposite effect where dark 

pixels are darken while bright pixels are negligibly unaffected by the operator. 

 

 

 

5.2.2.5 Applications of Grayscale Operations. Having discussed some of the most 

fundamental operators in grayscale MM, a set of examples of MM as applied to grayscale 

imagery for various applications such as filtering, smoothing, and edge detection will be 

shown in the following subsections. 

 

5.2.2.5.1 Top-Hat Transform. Morphological Top-Hat transform, denoted by  ̂ , 

for a grayscale image, is one of the most widely used MM transform for edge detection.  

As previously mentioned, the choice and size of the SE will have an effect on the final 

output image relative to a different choice or size of SE.  The Top-Hat transform is 

expressed at the subtraction of the original image   with opening of   by a SE. 

 

  ̂     (    )  (5.5) 
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 The top-hat transform can also be very useful as a pre-processing step in order to 

correct for uneven illumination that may be found in the test image prior to thresholding.  

Figure 5.7 illustrates the use of the Top-Hat transform for edge detection using a       

square SE. 

 

  

Figure 5.7  Edge detection using the top-hat transform for a square SE of     pixels.   

 

5.2.2.5.2 Smoothing. Morphological smoothing allows the removal or attenuation of 

both bright and dark artifacts and noise by performing a morphological opening followed 

by a closing operator using the same SE as follows, 

 

   (    )      (5.6) 

 

 Figure 5.8 demonstrates the result of smoothing (right image) the original image 

using a       square SE.  Notice how both bright and dark tones are smoothed out and 

detail once found in the original image (left) is eroded in the output (right). 
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Figure 5.8  Illustration of image smoothing using the opening operation followed by the 

closing operator using a square SE of     pixels. 

 

 

5.2.2.5.3 Gradient. Morphological gradient is highly used to highlight sharp gray-

level transitions in the input image and is defined as  

 

         
    (     )  (     )  (5.7) 

 

where    and    are the external and internal SE.  Equation (5.7) can be decomposed into 

the sum of two partial gradients.  The external gradient denoted as,  

 

      
    (     )     (5.8) 

 

and the internal gradient  

 

      
      (     )  (5.9) 

  

The morphological gradient can also be used as a grayscale edge detector once a 

threshold is applied to the output image of Equation (5.7).  Figure 5.9 illustrates the 
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outputs of Equation (5.8) using a       square SE (top right), Equation (5.9) using a 

      square SE (bottom left) and the subtraction of the two as per Equation (5.7) 

(bottom right).  One can conclude that the output of morphological gradient, Equation 

(5.7), clearly defines edges or transitions in the image better than the Top-Hat transform. 

  

  

Figure 5.9  Illustration of using the gradient operator as a combination of the internal 

(upper right) and the external gradient (lower left) resulting on an effective edge detector 

(lower right) compared to top-hat transform. 
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5.2.3 Morphological Image Enhancement for PI Anomaly Detection 

It is nontrivial to assemble a sequence of basic MM operators geared toward addressing a 

particular image processing problem as shown previously by combining dilation and 

erosion MM operators in order to achieve different results where the effectiveness of the 

different combinations will vary, significantly, depending on the purpose one is trying to 

achieve and the SE used with each operation.  The procedure proposed in this subsection 

for anomaly detection in PI has several stages of computing dilation and gradients or 

edges of the image within a morphological framework, together with region growing; the 

framework is consistent with other works in the literature involving the development of a 

multistage morphological procedure for prescreening large numbers of broadband 

infrared image data (see, for instance, [53-54]).  Specifically, this dissertation proposes 

the application of the following seven-step MM algorithmic sequence, shown in Table 

5.1, to the Stokes and DoLP parameters imagery for anomaly detection as follows:   

 Step 1 is only applied to S1 imagery where the end result is to emphasize the 

vertical polarization component since it is the dominant component emitted by optically 

smooth surfaces.  Step 2, dilation, is applied to the input image with the objective of: (1) 

brightening the original image by expanding light objects while (2) reducing dark tones, 

which are usually associated to natural clutter, and (3) expanding small objects (by use of 

the SE), so they become more noticeable.  The SE chosen for this experiment was a 

square of width 3, which ensures that all manmade objects in the scene are either partially 

or fully covered by the SE of choice. 

 Grayscale dilation of the input image f by the structuring element k is denoted as 

     and expressed as,  
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           {                 }  (5.10) 

 

                    .   

 

Table 5.1  Proposed Morphological Operations on Stokes and DoLP Imagery 

Step Operation Reasoning 

1* Invert S1 imagery To emphasize the vertical component 

that will be exploited by the dilation 

operator.  See Chapter 3 for more 

information on the reasoning for the 

dominance of the vertical component 

in manmade objects. 

  

2 Morphological Dilation Brighten the image by expanding the 

bright pixels while reducing or 

eliminating dark details by shrinking 

dark tones 

 

3 Morphological Gradient Used to detect the edges where there 

is a rapid light-(target) to-dark 

(background) change 

 

4 Hole Filling Fill in the internal area bound by 

edges with bright pixels 

 

5 Morphological Closing Attenuation of dark features 

(background) while bright pixels 

(target) are unaffected 

 

6 Adaptive Cutoff Threshold 

Estimation 

Threshold based on image-dependent 

estimated parameter values making it 

robust, since a robust criterion ( ) can 

be imposed a priori for all of the 

incoming images 

 

7 High Intensity (anomaly) Region 

Detection 

 

*Step 1 is only required for S1 image to emphasize the vertical component, which is the 

dominant component emitted by optically smooth surfaces. 
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 The next step employs a morphological gradient (see Subsection 5.2.2.5.3), the 

key is to capitalize any rapid light-to-dark (or dark-to-light) changes often associated with 

transitions from clutter to target or vice versa, or  

 

   (     )  (     )  (5.11) 

  

 This edge detection defines closed or semi-closed shapes, which, in theory, should 

be related to objects present in the scene while the result of performing Equation (5.11) in 

clutter, which is often shapeless, returns open lines that do not form closed shapes. 

 The region-filling process, step 4, uses an average filtering method to join the 

detached nearby edges and fill closed and semi-closed regions with representative values 

of the nearby edges with the objective of filling and accentuating regions of interests 

where targets may be present.  The region-filling process, denoted as    is defined as, 

 

   
∑ ∑                   

    
 
    

∑ ∑        
    

 
    

  
(5.12) 

 

where,   is a filter mask of size     just like the SE and      
   

 
 and the result is 

an image of size              .   

 Finally, in step 5, the morphological closing operation is applied to    with a 

    pixel square SE  .  The closing operation attenuates dark features, often associated 

with clutter, while at the same time, bright pixels, associated with manmade objects, are 

negligible affected, or  

 

   (     )      (5.13) 
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where the symbols    and    denote dilation and erosion, respectively. 

 In step 6, the dissertation proposes a simple but effective approach to determine 

the detected locations in   , i.e., a cutoff threshold     obtained via,  

 

     
    ̂  

 ̂  
    

(5.14) 

 

where  ̂   and  ̂   are the estimated sample average and standard deviation, respectively, 

using all of the pixel values in   .  The resulting image from Equation (5.14) is an image 

with positive and negative values in terms of the number of standard deviations from the 

estimated mean of   . 

 In order to find anomalous objects in the test scene a robust criterion ( ) can be 

imposed a priori for all the incoming images (    ), where     is the number of 

standard deviations above the estimated mean as shown in Equation (5.15).   

 

            (5.15) 

 

 Equation (5.15) yields a binary image, where the spatial locations of all pixels in 

    —having values greater than  —are represented by 1 in the final image, or 0 

otherwise.  It is desired that only pixels belonging to manmade objects in a scene 

dominated by natural clutter are represented by 1’s in the final image.  Notice that 

Equation (5.15) is both adaptive, since      will vary—accordingly—due to the image-

dependent estimated parameter values; and also robust, since a robust criterion (fixed   

e.g.,    ) is imposed a priori for all of the incoming images.  For convenience, from 
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here forth, one shall refer to the proposed overarching approach as the Morph anomaly 

detector. 

 Figures 5.10 through 5.13 illustrate each of the steps from Table 5.1 on the Stokes 

and DoLP imagery and the effect each morphologic operation has on the input image.  

The first image (top left) of each figure demonstrates the input imagery, with the 

exception of S1 where one inverts the surface (-S1) prior of applying any of the MM 

operators.  The input image is dilated (top right) using a     square SE resulting in 

retaining the maximum values seen by the SE when superimposed on   for a given 

location      .   

 
Figure 5.10  Illustration of each of the steps proposed for using morphological operators 

on Stokes S1 imagery. 
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Figure 5.11  Illustration of each of the steps 2-7 proposed for using morphological 

operators on DoLP imagery. 

 

 The dilation operation, as previously described, brightens the image by expanding 

bright pixels, often associated with manmade objects, and reducing dark details, which 

are often linked to natural clutter.  A gradient is then applied to    by subtracting the 

dilated with the eroded input image (  ) using the same SE (middle left), see Equation 

(5.11).  This operation allows for the isolation of edges where there is a rapid light-

(target) to-dark (background) changes, often associated with deviations from clutter to 

clutter or target to clutter.  Edges that form fully or semi-closed areas are then filled using 

the hole-filling operator (middle right), which fills up the area composed of closed and 

semi-close loops.  A closing operator is then applied to the image with the objective of 

further attenuating the background (dark pixels) while leaving bright pixels (potential 
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anomalies) unaffected (lower left image), thus in practice increasing the signal-to-noise 

ratio between dark and light pixels.  Finally, a threshold       is applied to the 

standardized image in order to identify potential areas where manmade objects may be 

present (lower right image).  These areas can then be further interrogated using other 

modalities or specialized algorithms (e.g., classifiers) in order to identify potential targets 

and/or reject anomalies.  As one can observe in Figures 5.10 through 5.13, there is a clear 

advantage in using morphological operators to extract and enhance manmade object 

features for effective identification of anomalies (manmade objects). 

 

 
Figure 5.12  Illustration of each of the steps 2-7 proposed for using morphological 

operators on Stokes S2 imagery. 

 



176 

 

 

 

 
Figure 5.13  Illustration of each of the steps 2-7 proposed for using morphological 

operators on Stokes S0 imagery. 

 

 In summary, this subsection introduced the use of morphological operators as a 

polarization feature extraction and enhancement that can be used for effective manmade 

object detection in images where natural clutter is the dominant class.  The proposed 

method, along with the chosen SE, demonstrated the capability of retrieving not only 

additional target spatial information than what was present in the original image; but also 

increased the SNR between the extracted features and natural clutter.  Figures 5.10 

through 5.13 demonstrated how the same morphological procedure could be used in all 

Stokes and DoLP imagery, and demonstrated the ability of enhancing manmade objects 

features while reducing the number of false alarms present relative to the original images.  

In the following Subsection 5.2.4, a performance comparison between the morphology-
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based Stokes/DoLP detectors and the conventional Stokes parameters and DoLP will be 

presented using ROC curves, output surfaces, and a 72-hour probability of detection 

curve for all conventional and morphology-based Stokes/DoLP metrics. 

5.2.4 Performance Assessment of Morphologic Based Stokes/DoLP Imagery 

In this subsection a comparison between conventional and morphology enhanced 

Stokes/DoLP parameters will be presented for the time period between 6 and 8 MAR 

2010.  Several key points will be made throughout this section: 

1) Applying the morphological filters on Stokes and DoLP increases the 

probability of detection of all manmade objects in the scene relative to the 

conventional Stokes and DoLP metrics. 

 

2) Morphology-based S1 and DoLP performances were very stable regardless of 

diurnal or target state changes using this particular dataset. 

 

3) ROC curves demonstrate that morphology-based Stokes exhibit high detection 

rates at very low false alarm rates, making them useful for unmanned and 

aided systems. 

 

 Figures 5.14 through 5.19 illustrate the ROC curves for the Stokes/DoLP and 

Morph-Stokes/DoLP for each of the manmade objects separately as well as the overall 

detection when all manmade objects are combined into a single class.  The plots on the 

left side of each figure illustrates a plot representative of the full ROC curve where the 

probability of detection (  ) and the probability of false alarm (   ) range from 0 to 1, 

while the right side of the figure illustrates a zoomed in version of the left side plot with 

the    still ranging from 0 to 1 and the     ranging only from 0 to 0.01.  The reason why 

0.01 was chosen is because any false alarm rate above 0.01 results in an output surface 

that is unusable by any autonomous or aided system due to the high number of false 

alarms present, diminishing the system’s ability to correctly discriminate any potential 
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targets from natural clutter.  Finally, the rows in each figure represent the different 

timestamps chosen for this comparison: 0710h, 0910h, 1310h, and 2010h. 

 To further aid the reader in comparing the performance difference between the 

different ROC curves, probability of detection  tables for each Stokes parameter and its 

morphological counterpart are given in Tables 5.2 through 5.5, while holding a more 

restrictive false alarm probability, i.e.,          .   

 Observing Figure 5.14 for manmade object T0 and timestamp 0710h, the    

difference between S0 and Morph-S0 is greater than 0.10 for a         .  By     = 

0.20, Morph-S0 has reached full detection or    = 1 while conventional S0 only achieved 

a    = 0.92.   

 Two hours later, 0910h, Morph-S0 achieves full detection at a     = 0.05 while 

conventional S0 only achieves a    of about 0.10 for the same false alarm rate.  By 

observing the zoomed in ROC curve on the right side of the figure, one notices that 

Morph-S0 clearly outperforms its conventional counterpart even at low false alarm rates 

where for a           Morph-S0 achieves a    of about 0.90 and S0 a        .  At 

1310h, where high contrast imagery can be found, Morph-S0 achieves full detection at 

about     = 0.001 with S0 measuring only a      0.20.  By 2010h, S0 and Morph-S0    

values drop significantly to approximately the same levels found in timestamp 0710h 

with Morph-S0 once again outperforming S0 greater than 0.10 for a         . 

 The impact of morphological operators can be felt more profoundly when used 

with Stokes parameters S1, S2, and DoLP, for example, observing timestamps 0710h, 

0910h, 1310h, and 2010h, the   , for a          , for conventional S1 for manmade 

object T0 is 0.32, 0.24, 0.23, and 0.33 respectively, while for Morph-S1 the    values are 
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0.96, 0.85, 0.87, and 0.88.  DoLP    values for the same probability of false alarm and 

timestamps are 0.28, 0.23, 0.12, and 0.27; while Morph-DoLP    yielded 0.96, 0.87, 

0.67, and 0.85.  Finally, for Stokes parameter S2, the performance achieved was 0.12, 

0.05, 0.28, and 0.21; while Morph-S2 attained 0.27, 0.13, 0.76, and 0.36 for the same 

timestamps and false alarm rate. 

 The average probability of detection given a           for S0, S1, S2, and DoLP 

for the four timestamps in detecting T0 was                            respectively; 

while Morph-S0. Morph-S1, Morph-S2, and Morph-DoLP had an average probability of 

detection of                           , correspondingly.   
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6 MAR 2010 – T0 

0710h 

  
0910h 

  
Figure 5.14  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T0. The average 

probability of detection given a           for S0, S1, S2, and DoLP for the four 

timestamps in detecting T0 was                           , respectively; while 

Morph-S0. Morph-S1, Morph-S2, and Morph-DoLP had an average probability of 

detection of                           , correspondingly.   
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1310h 

  
2010h 

  
Figure 5.14  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T0.  The average 

probability of detection given a           for S0, S1, S2, and DoLP for the four 

timestamps in detecting T0 was                           , respectively; while 

Morph-S0. Morph-S1, Morph-S2, and Morph-DoLP had an average probability of 

detection of                           , correspondingly.  (Continuation) 
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 Figure 5.15 illustrates the ROC curves for T90 for the Stokes parameters and 

DoLP as well as their morphological counterparts.  Once again one can observe that the 

morphological operators increased the probability of detection relative to their 

conventional counterparts.  For example, for a          , see the plots on the right 

side of the figure, S0 probability of detection for all timestamps was about 0.0, 0.05, 0.20, 

and 0.0 with Morph-S0 achieving a    of about 0.20, 0.60, 1.00, and 0.20 for 0710h, 

0910h, 1310h, and 2010h, respectively.  S1 performed better than S0 in detecting the T90 

with a probability of detection of 0.30, 0.28, 0.23, and 0.19 while Morph-S1 performed 

better than S1 with a probability of detection of 0.91, 0.81, 0.82, and 0.72 for the same 

timestamps.  For this target set one observes that DoLP performed very closely to S1 and 

as a result the performance of Morph-DoLP was very similar to Morph-S1 as well.  The 

Stokes parameter S2 had a probability of detection of 0.21, 0.15, 0.30, and 0.24 with 

Morph-S2 performing better than its counterpart with a probability of detection of 0.65, 

0.44, 0.74, and 0.59.  As with T0, Morph-S1 and Morph-DoLP are the best metrics for 

detecting T90. 

 The average detection probability for a           over all timestamps in 

detecting T90 for conventional Stokes and DoLP was                            for 

S0, S1, S2, and DoLP, respectively.  On the other hand, Morphology-based Morph-S0, 

Morph-S1, Morph-S2, and Morph-DoLP demonstrated an enhanced detection capability 

relative to their conventional equivalents with a                           , 

respectively. 
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6 MAR 2010 – T90 

0710h 

 
 

0910h 

  
Figure 5.15  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T90.  The average 

detection probability given a           over all timestamps in detecting T90 for 

conventional Stokes and DoLP was                            for S0, S1, S2, and 

DoLP, respectively.  On the other hand, Morphology-based Morph-S0, Morph-S1, Morph-

S2, and Morph-DoLP demonstrated an enhance detection capability relative to their 

conventional equivalents with a                           , respectively. 
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1310h 

  
2010h 

  
Figure 5.15  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T90.  The average 

detection probability given a           over all timestamps in detecting T90 for 

conventional Stokes and DoLP was                            for S0, S1, S2, and 

DoLP, respectively.  On the other hand, Morphology-based Morph-S0, Morph-S1, Morph-

S2, and Morph-DoLP demonstrated an enhance detection capability relative to their 

conventional equivalents with a                           , respectively. 

(Continuation) 
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 Figure 5.16 illustrates the ROC performance curves for T135 with the full range 

ROC curves on the left side of the figure and the zoomed in version on the right side.   

Here again, the plots demonstrate the effectiveness of the morphological operators in 

discriminating T135 from the background relative to conventional metrics.  Observing the 

plots on the right side, Morph-S1 and Morph-DoLP demonstrated an increased 

performance relative to their conventional counterparts and the remaining metrics for 

timestamps 0710h, 0910h, and 2010h.  As expected, Morph-S0 performed better than all 

other metrics at 1310h as a result of the solar loading effect on the targets.  Furthermore, 

one can find Morph-S1 outperforming Morph-DoLP at 1310h with a significant 

advantage at very low false alarm rates, while Morph-S2 and Morph-DoLP perform very 

similarly to each other but underperforming relative to Morph-S1.  Given the same 

         , S0 detection rate for the four timestamps was as follows: 0.02, 0.02, 0.26, 

and 0.0, while Morph-S0 achieved a    of 0.22, 0.53, 1.00, and 0.18 for the respective 

timestamps.  S1 achieved a    of 0.16, 0.16, 0.11, and 0.14 with Morph-S1 outperforming 

its counterpart with a detection rate of 0.76, 0.67, 0.71, and 0.69.  DoLP and Morph-

DoLP performed very similarly to S1 and Morph-S1, respectively.  DoLP achieved a    of 

0.15, 0.14, 0.10, and 0.14 and Morph-DoLP outperformed DoLP with a    of 0.79, 0.66, 

0.72, and 0.74 for timestamps 0710h, 0910h, 1310h, and 2010h, correspondingly.  S2 was 

the worst performing metric compared to S1 and DoLP with a    of 0.16, 0.08, 0.31, and 

0.24, while Morph-S2 outperformed S2 with a detection rate of 0.47, 0.19, 0.72, and 0.75.  

As a clarification, when using “outperformed by” term denotes |Pd of detector A – Pd of detector 

B|.  Finally, the average detection probability given a           for S0, S1, S2, and 

DoLP was                           , respectively; while Morph-S0, Morph-S1, 
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Morph-S2 and Morph-DoLP achieved a                           , 

correspondingly. 

6 MAR 2010 – T135 

0710h 

  
0910h 

  
Figure 5.16  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T135.  The average 

detection probability given a           for S0, S1, S2, and DoLP was    

                       , respectively; while Morph-S0, Morph-S1, Morph-S2 and 

Morph-DoLP achieved a                           , correspondingly. 
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1310h 

  

2010h 

  
Figure 5.16  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting T135.  The average 

detection probability given a           for S0, S1, S2, and DoLP was    

                       , respectively; while Morph-S0, Morph-S1, Morph-S2 and 

Morph-DoLP achieved a                           , correspondingly. 

(Continuation) 

 

 The ROC curves for the external blackbody can be found in Figure 5.17.  In the 

plots shown on the right side of the figure illustrate S0 as a non-performing metric for the 

detection of the blackbody in the desired low false alarm rate region of the ROC curve.  

In contrast to previous figures, Morph-S0 only performed considerably better than S0 for 

timestamps 0710h, 1310h, and 2010h.  For the remaining timestamp 0910h, neither S0 

nor Morph-S0 detected the blackbody for a          .  Morph-S1 and Morph-DoLP 
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performed very well relative to their respective conventional Stokes metrics with both 

Morph-S1 and Morph-DoLP performing very similarly to each other for 0710h and 

0910h.  However, for the remainder of the timestamps Morph-S1 performed considerably 

better than Morph-DoLP with a probability of detection difference of about 0.30 for 

1310h and 0.25 for 2010h for the     range between 0.001 and 0.003.  Also interestingly, 

S2 performed better than Morph-S2 for the low false alarm rate region at around 0.001, 

with Morph-S2 outperforming S2 for the remainder of the ROC curve. 

 Considering a constant     rate of 0.005 for all metrics, S0 was unable to detect 

any portion of the blackbody for all timestamps, while S1 achieved a    of 0.19, 0.21, 

0.14, and 0.17, S2 probability of detection was 0.17, 0.02, 0.21, and 0.24, and finally 

DoLP had a probability of detection of 0.19, 0.21, 0.12, and 0.14.  Morph-S0 probability 

of detection, for the          , was as follows: 0.38, 0.0, 0.50, and 0.17, Morph-S1 and 

Morph-DoLP probability of detection was about 0.90 for all timestamps, and finally 

Morph-S2 probability of detection was 0.62, 0.0, 0.40, and 0.38. 

 For the detection of the blackbody, the average probability of detection given a 

          for S0, S1, S2, and DoLP was                            respectively, 

and                            for Morph-S0, Morph-S1, Morph-S2, and Morph-

DoLP, correspondingly. 
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6 MAR 2010 – Blackbody 

0710h 

  
0910h 

  
Figure 5.17  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting the external 

blackbody.  The average detection rate given a           for S0, S1, S2, and DoLP was 

                          , respectively and                            for 

Morph-S0, Morph-S1, Morph-S2, and Morph-DoLP, correspondingly. 
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1310h 

  

2010h 

  
Figure 5.17  ROC curves comparing the performance between conventional and 

morphologic operator-based Stokes vector and DoLP when detecting the external 

blackbody.  The average detection rate given a           for S0, S1, S2, and DoLP was 

                          , respectively and                            for 

Morph-S0, Morph-S1, Morph-S2, and Morph-DoLP, correspondingly. (Continuation) 

 

 The performance curves between conventional and morphology-based 

Stokes/DoLP for the observation tower can be found in Figure 5.18.  One observes that 

Stokes parameters S0 and S2 were unable to detect the observation tower for the low false 

alarm rate region for all timestamps while S1 and DoLP once again performed very 

similarly to each other with an average probability of detection of about 0.30 for 

timestamps 0710h, 0910h, and 1310h, and 0.20 for 2010h.  As with its conventional 
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metrics, Morph-S0 was unable to detect the observation tower for all the timestamps 

however, Morph-S2 was able to detect small portions of the observation tower relative to 

S2.  Morph-S1 and Morph-DoLP performed very similarly to each other for all 

timestamps, with the exception of timestamp 2010h, with an average probability of 

detection of 0.80 throughout the low false alarm region of the ROC curve. For 2010h, 

Morph-S1 performed slightly better than Morph-DoLP for the very low false alarm region 

(           with Morph-DoLP converging on Morph-S1 detection rate at around 

         . 

 Using a constant false alarm rate of 0.005, S0, S2, Morph-S0, and Morph-S2 were 

unable to detect the observation tower, while S1 and DoLP had similar performance of 

about 0.33, 0.30, 0.33, and 0.18 for the respective timestamps.  Morph-S1 and Morph-

DoLP performed similarly with a constant detection rate of about 0.80 for all timestamps.  

 The average detection probability given a           in discriminating the 

tower from natural clutter for all timestamps for S0, S1, S2, and DoLP was    

                        respectively, while for Morph-S0, Morph-S1, Morph-S2, and 

Morph-DoLP was                           , correspondingly. 
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6 MAR 2010 – Observation tower 

0710h 

  
0910h 

  

Figure 5.18  ROC curves comparing the performance between regular and morphologic 

operator-based Stokes vector and DoLP when detecting the observation tower.  The 

average detection probability given a           for all timestamps for S0, S1, S2, and 

DoLP was                            respectively, while for Morph-S0, Morph-S1, 

Morph-S2, and Morph-DoLP was                             correspondingly. 
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1310h 

  
2010h 

  
Figure 5.18  ROC curves comparing the performance between regular and morphologic 

operator-based Stokes vector and DoLP when detecting the observation tower.  The 

average detection probability given a           for all timestamps for S0, S1, S2, and 

DoLP was                            respectively, while for Morph-S0, Morph-S1, 

Morph-S2, and Morph-DoLP was                             correspondingly. 

(Continuation) 

 

 Finally, Figure 5.19 illustrates the performance of all metrics in detecting all 

manmade objects as a single class.  Once again, focusing on the right side of Figure 5.19, 

S0 performed very poorly for all timestamps with the exception of 1310h where the 

average probability of detection was about 0.15 of all manmade object pixels in the 

scene.  Morph-S0 outperformed S0 detection rate by 0.17, 0.48, 0.64, and 0.14 for the 

respective timestamps for a          .  As expected, Morph-S1 outperformed S1 by as 
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much as 0.61, 0.54, 0.61, and 0.57 for the respective timestamps and for          .  

The probability of detection difference between Morph-DoLP and its conventional 

metric, DoLP, was 0.63, 0.54, 0.61, and 0.60 and the difference between Morph-S2 and 

S2 was calculated as 0.31, 0.13, 0.37, and 0.30 for the same false alarm rate and 

timestamps. 

 The average probability of detection given a           of all manmade objects 

for S0, S1, S2, and DoLP was                            correspondingly, and for 

the morphology-based Stokes and DoLP; Morph-S0, Morph-S1, Morph-S2, and Morph-

DoLP the average detection rate was                           , respectively. 

 Observing Figures 5.14 through 5.19, one can, therefore, conclude that the 

implementation of morphology-based filters on conventional Stokes parameters yields a 

significant increase in the probability of detection for the same false alarm rate.  

Furthermore, the increase in probability of detection achieved by Morph-S1 and Morph-

DoLP at low false alarm rates makes them good contenders as anomaly detectors for both 

aided and unmanned operational systems. 
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6 MAR 2010 – Overall Performance 

0710h 

  
0910h 

  
Figure 5.19  ROC curves comparing conventional and morphologic operator-based 

Stokes vector and DoLP when all manmade objects are combined into one class.  The 

average probability of detection given a           for S0, S1, S2, and DoLP was 

                           correspondingly, and for the morphology-based Stokes 

and DoLP; Morph-S0, Morph-S1, Morph-S2, and Morph-DoLP the average detection rate 

was                           , respectively. 
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1310h 

  
2010h 

  
Figure 5.19  ROC curves comparing conventional and morphologic operator-based 

Stokes vector and DoLP when all manmade objects are combined into one class.  The 

average probability of detection given a           for S0, S1, S2, and DoLP was 

                           correspondingly, and for the morphology-based Stokes 

and DoLP; Morph-S0, Morph-S1, Morph-S2, and Morph-DoLP the average detection rate 

was                           , respectively. (Continuation) 

 

 Tables 5.2 through 5.5 demonstrate the probability of detection for all manmade 

objects for a constant            for timestamps 0710h, 0910h, 1310h, and 2010h, as 

well as 0210h and 2310h where conventional Stokes/DoLP    is shown in black and 

morphology-based Stokes/DoLP in red.  The intent of each of the tables is to compare the 

effectiveness of morphology-based Stokes/DoLP to conventional Stokes for each of the 

timestamps and manmade objects in an easy to read table format.   
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 The tables demonstrate that, in general, applying the morphology-based filters to 

conventional Stokes/DoLP increases the probability of detection for all manmade objects 

regardless of which Stokes/DoLP parameter is used as input to the filters.  However, 

certain anomalies can be found, for example in Table 5.4, the performance of Morph-S2 

at timestamps 0210h and 0910h was inferior to conventional S2 but regardless, on 

average, the morphology-based Stokes (in red) parameters are consistently  and 

considerably better performers than conventional Stokes (in black).   

 From Table 5.2, the average probability of detection of S0 over the six timestamps 

for each of the targets was as follows: 0.04, 0.05, 0.05, 0.0, 0.0, and 0.04 for T0, T90, T135, 

blackbody, observation tower, and overall, respectively.  Conversely, Morph-S0 average 

performance for the same targets was 0.37, 0.40, 0.39, 0.31, 0.0, and 0.34.  As per Table 

5.3, the probability of detection difference between S1 and Morph-S1 was quite 

significant with S1 exhibiting an average probability of detection of 0.28, 0.24, 0.14, 0.16, 

0.27, and 0.21 for T0, T90, T135, blackbody, observation tower, and overall respectively, 

while Morph-S1 demonstrated an average probability detection of 0.87, 0.79, 0.70, 0.89, 

0.80, and 0.79 for the same target set.  On the other hand, observing Table 5.4, S2 

exhibited poor performance relative to S1 and DoLP with an average probability of 

detection of 0.19, 0.23, 0.18, 0.19,0.0, and 0.18 while Morph-S2 demonstrated an 

enhanced detection performance relative to conventional S2 with a probability of 

detection of 0.34, 0.59, 0.51, 0.31, 0.10, and 0.43 for T0, T90, T135, blackbody, 

observation tower, and overall, correspondingly.  Finally, DoLP and Morph-DoLP 

performed similarly to S1 and Morph-S1 respectively, with DoLP exhibiting an average 

probability of detection, as per the values in Table 5.5, of 0.23, 0.22, 0.13, 0.15, 0.25, and 
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0.19 while Morph-DoLP demonstrated an average probability of detection of 0.80, 0.78, 

0.72, 0.88, 0.79, and 0.78. 

 

Table 5.2  S0 (black) and Morph-S0 (red) Probability of Detection for Different 

Timestamps for a           

 T0 T90 T135 Blackbody Observation 

Tower 

Overall 

0210h 0.01 0.16 0.02 0.22 0.02 0.22 0 0.57 0 0 0.01 0.22 

0710h 0.03 0.04 0.01 0.22 0.02 0.22 0 0.38 0 0 0.01 0.18 

0910h 0 0.87 0.04 0.59 0.02 0.53 0 0 0 0 0.02 0.50 

1310h 0.23 1.00 0.20 1.00 0.26 1.00 0 0.50 0 0 0.18 0.84 

2010h 0 0.05 0.01 0.21 0 0.18 0 0.17 0 0 0.003 0.14 

2310h 0 0.07 0.01 0.17 0 0.18 0 0.24 0 0.03 0.003 0.14 

 

Table 5.3  S1 (black) and Morph-S1 (red) Probability of Detection  for Different 

Timestamps for a           

 T0 T90 T135 Blackbody Observation 

Tower 

Overall 

0210h 0.23 0.79 0.22 0.71 0.14 0.65 0.07 0.88 0.18 0.80 0.17 0.73 

0710h 0.32 0.96 0.30 0.91 0.16 0.76 0.19 0.90 0.33 0.80 0.25 0.86 

0910h 0.24 0.85 0.28 0.81 0.16 0.67 0.21 0.90 0.30 0.80 0.23 0.77 

1310h 0.23 0.87 0.23 0.82 0.11 0.71 0.14 0.90 0.32 0.80 0.19 0.80 

2010h 0.33 0.88 0.19 0.72 0.14 0.69 0.17 0.90 0.18 0.80 0.20 0.77 

2310h 0.31 0.85 0.21 0.77 0.11 0.72 0.17 0.86 0.28 0.80 0.20 0.78 
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Table 5.4  S2 (black) and Morph-S2 (red) Probability of Detection for Different 

Timestamps for a           

 T0 T90 T135 Blackbody Observation 

Tower 

Overall 

0210h 0.15 0.9 0.19 0.51 0.15 0.51 0.26 0.12 0 0.08 0.16 0.33 

0710h 0.12 0.27 0.21 0.65 0.16 0.47 0.17 0.62 0 0.15 0.15 0.46 

0910h 0.05 0.13 0.15 0.44 0.08 0.19 0.02 0 0 0.08 0.08 0.21 

1310h 0.28 0.76 0.34 0.74 0.31 0.72 0.21 0.40 0 0.08 0.26 0.63 

2010h 0.21 0.36 0.24 0.59 0.24 0.75 0.24 0.38 0 0.03 0.21 0.51 

2310h 0.31 0.41 0.24 0.63 0.20 0.39 0.26 0.31 0 0.15 0.22 0.43 

 

Table 5.5  DoLP (black) and Morph-DoLP (red) Probability of Detection for Different 

Timestamps for a           

 T0 T90 T135 Blackbody Observation 

Tower 

Overall 

0210h 0.21 0.79 0.20 0.63 0.14 0.68 0.07 0.88 0.18 0.75 0.17 0.72 

0710h 0.28 0.96 0.29 0.91 0.15 0.79 0.19 0.90 0.33 0.80 0.24 0.87 

0910h 0.23 0.67 0.23 0.84 0.14 0.66 0.21 0.90 0.30 0.80 0.21 0.75 

1310h 0.12 0.67 0.21 0.82 0.10 0.72 0.12 0.90 0.33 0.80 0.16 0.77 

2010h 0.27 0.85 0.19 0.72 0.14 0.74 0.14 0.90 0.18 0.80 0.18 0.78 

2310h 0.25 0.88 0.19 0.73 0.12 0.71 0.14 0.80 0.20 0.80 0.17 0.76 

 

 Figures 5.20 through 5.21 illustrate the output surfaces (top) obtained from 

conventional (left) and morphology-based Stokes (right) and their respective thresholded 

outputs on the bottom image.  The two images chosen illustrate a low contrast scenario 

observed at 0210h and a high contrast scenario captured at 1310h.  The output surfaces 

were normalized from 0 to 1 so to accurately compare each metric and the bottom image 
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was thresholded using a δ=5 threshold value.  In order to aid the reader, pixels belonging 

to the three surrogate targets that were above the threshold are represented by the color 

white, other manmade objects such as the observation tower and blackbody are 

represented by the color green, false alarms are represented by the color red, and finally 

all pixels with values below the threshold are represented by the color black.   

 Observing the performance between S0 and Morph-S0 for Figure 5.20, one notices 

that S0 is unable to detect any of the manmade objects in the scene, while for timestamp 

1310h (Figure 5.21), T0, T90 and T135 are partially visible with a small false alarm at the 

top of the output surface.  Alternatively, Morph-S0 was only able to detect the edges of 

T0, T90, T135, and the blackbody for the low contrast scene (Figure 5.20) as well as a high 

number of false alarms making Morph-S0 not a useful discriminator.  Conversely, in high 

contrast imagery Figure 5.21, Morph-S0 was able to detect a significant portion of the 

targets’ area with a small number of false alarms present in the binary image. 

 Both Morph-S1 and Morph-DoLP performed quite well relative to conventional S1 

and DoLP for both timestamps (Figures 5.20 and 5.21) and for all of the targets present in 

the scene.  The morphological operators were able to significantly reduce the number of 

false alarms present in conventional imagery while enhancing the manmade targets’ 

features, increasing the number of pixels found for each of the manmade objects.  A good 

example is Figure 5.21 for S1 and DoLP where the number of false alarms present clearly 

hinders any possibility of discriminating the surrogate targets or the blackbody from 

natural clutter.  After the morphological filters are applied to conventional S1 or DoLP, 

the number of false alarms present in the original imagery is reduced significantly, while 

the manmade objects are clearly identified.  
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 The Stokes parameter S2 performed very poorly in detecting all of the manmade 

objects present in the scene given the 5σ threshold for Figures 5.20 and 5.21.  Only 

portions of T90 are continuously detected throughout the two timestamps, while for the 

remainder of the surrogate targets, only small portions could be successfully detected at 

timestamp 1310h.  Once again, when the morphological operators are applied to the S2 

imagery, one can observe an increase in the detection of T90’s surface area relative to S2 

for all timestamps; portions of T135 are successfully detected in all timestamps, even 

when conventional S2 was not able to detect it.    
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Figure 5.20  Output surfaces (above image) for conventional and morphologic operator-

based Stokes and DoLP at 0210h and the respective thresholded outputs for a     

(bottom image).  White pixels represent the surrogate targets, the green pixels represent 

the blackbody and observation tower, while the red pixels represent the false alarms 

found in the image.  
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Figure 5.21  Output surfaces (above image)for conventional and morphologic operator-

based Stokes and DoLP at 1310h and the respective thresholded outputs for a     

(bottom image).  White pixels represent the surrogate targets, the green pixels represent 

the blackbody and observation tower, while the red pixels represent the false alarms 

found in the image.  
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 Figure 5.22 illustrates the probability of detection of S0 and Morph-S0 for each of 

the targets in the scene for a full 72-hour performance period starting on 6 MAR 2010 at 

0000h and ending on 8 MAR 2010 at 2350h for a constant false alarm rate of     

     .  One should remember that for the first and third day (6 and 8 MAR) T0 and T90 

were turned off while on the second day the heating elements under the targets fuselage 

were turned on mimicking an operating vehicle.  T135, on the other hand, remained off for 

the full three days. 

 One can readily observe that Morph-S0 was more effective in discriminating all 

surrogate targets, under low contrast situations when compared to conventional S0.  

During the periods of high humidity, starting around 2300h on day 2 through 0300h on 

day 3 and 1900h through 2359h on day 3, one can observe that the performance of 

Morph-S0 for T0 degraded significantly, however its performance was still slightly higher 

or similar to conventional S0.  For periods of low contrast and low humidity (early hours 

of 6 MAR 2010), the probability of detection difference between Morph-S0 and S0, 

Pd(morph-S0)-Pd(S0), was         for T0, where ~ denotes approximately, and         for 

T90 and T135,         for the blackbody, and        for the observation tower.  

Alternatively, for high contrast imagery (e.g., 1100h-1600h for day 1, 2 and 3), the    

difference between Morph-S0 and S0 is         for T0,         for T90, and         

for T135.  Interestingly, one can observe that the blackbody    difference between Morph-

S0 and S0 is a decreasing function with respect to time, where similar performance to S0 

can be observed during the time periods where high humidity was prevalent in the scene.  

The observation tower, although visible in the output surfaces did not fair too well for the 

false alarm rate chosen, (         ) where the    difference between the two metrics 
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(S0 and Morph-S0) was very similar (        over the 72 hours except for the periods of 

high contrast.  During the periods of high contrast, the    difference between the two 

metrics around 1300h was on average         .  Finally, observing the trend in Figure 

5.22 for the overall performance, one can conclude that during the periods of no solar 

loading, Morph-S0 exhibited a    0.20 higher than conventional S0, while for the periods 

of solar loading, this difference reached a maximum of 0.60 on average.  In summary, 

one can conclude that the Morph-S0 outperformed conventional S0 for the full 72 hours 

regardless of the timestamps and target set, with the exception of the observation tower, 

where the probability of detection was very similar for both metrics during the periods of 

low contrast. 

 The average 72-hour probability of detection for T0, T90, T135, blackbody, 

observation tower, and overall was                                       

respectively, for S0; while Morph-S0 achieved a 

                                     .  The    difference between Morph-S0 and S0 

was measured to be                                   for T0, T90, T135, blackbody, 

observation tower, and overall, correspondingly. 
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T0 

 
T90 

 
T135 

 
Figure 5.22  72-hour probability of detection curves comparing Stokes parameter S0 and 

Morph-S0.    
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Blackbody 

 
Observation tower 

 
Overall 

 
Figure 5.22  72-hour probability of detection curves comparing Stokes parameter S0 and 

Morph-S0.  (Continuation)  
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 Morph-S1 and Morph-DoLP, Figures 5.23 and 5.24, performed very similarly to 

each other with an average probability of detection for all manmade objects of         

compared to S1           and DoLP          .  Morph-S1 and Morph-DoLP 

average probability of detection for the entire 72-hour period were as follows: 0.87 

(Morph-S1) and 0.84 (Morph-DoLP) for T0, 0.74 (Morph-S1 and Morph-DoLP) for T90, 

0.66 (Morph-S1 and Morph-DoLP) for T135, 0.82 (Morph-S1) and 0.76 (Morph-DoLP) for 

blackbody, and finally 0.80 (Morph-S1) and 0.75 (Morph-DoLP) for the observation 

tower.  As one can observe, only the probability of detection for T0, blackbody, and the 

observation tower were slightly different between Morph-S1 and Morph-DoLP.  In 

contrast, the 72-hour average probability of detection for S1 and DoLP were as follows: 

0.35 (S1) and 0.30 (DoLP) for T0, 0.24 (S1) and 0.23 (DoLP ) for T90, 0.15 (S1 and DoLP) 

for T135, 0.16 (S1) and 0.15 (DoLP) for blackbody, and finally 0.32 (S1) and 0.30 (DoLP) 

for the observation tower.  In the case of conventional S1 and DoLP only T0 exhibits a 

higher discrepancy in performance between the two metrics of           as a result of 

S2 influence.  Another interesting observation is that S1, DoLP, Morph-S1 and Morph-

DoLP have stable performances even in high humidity (day 2 and day 2) for T0, T90, 

blackbody, and observation tower.  The exception happens with T135 where performance 

degradation is highly visible in the early hours of day 3, especially for Morph-S1 and 

Morph-DoLP. 
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T0 

 
T90 

 
T135 

 
Figure 5.23  72-hour probability of detection curves comparing Stokes parameter S1 and 

Morph-S1.  
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Figure 5.23  72-hour probability of detection curves comparing Stokes parameter S1 and 

Morph-S1.  (Continuation)  
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 Furthermore, from the probability of detection values shown above, one can 

calculate the 72-hour average probability of detection difference between Morph-S1 and 

conventional S1 was as follows: 0.53 for T0, 0.49 for T90, 0.50 for T135, 0.66 for the 

blackbody, and 0.48 for the observation tower.  On the other, hand the 72-hour average 

probability of detection difference between Morph-DoLP and DoLP was measured as 

0.54 for T0, 0.51 for T90, 0.51 for T135, 0.61 for the blackbody, and 0.45 for the 

observation tower.   The 72-hour average probability of detection difference between 

morphology-based and conventional S1 and DoLP parameters was greater or equal to 

    , which clearly demonstrates the power of using morphological filters to enhance the 

Stokes imagery for anomaly detection purposes. 
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Figure 5.24  72-hour performance curves comparing DoLP and Morph-DoLP.  
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Figure 5.24  72-hour performance curves comparing DoLP and Morph-DoLP.  

(Continuation)  
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 As briefly hinted in the previous paragraph and shown in the previous output 

surfaces as well as in Figure 5.25, the features present in S2 imagery were as stable 

compared to S1 and DoLP as shown by the large variability in S2’s probability of 

detection curve throughout the 72 hours.  Remarkably, even with so much variability as 

well as poor performance (see blackbody and observation tower plots) by S2 imagery, the 

morphological operators proposed in Subsection 5.2.3 when applied to S2 demonstrated 

an increased in detection relative to the original image as seen in the plot for all surrogate 

targets.  For example, the 72-hour average probability of detection for S2 and Morph-S2 

are as follows: 0.25 (S2) and 0.52 (Morph-S2) for T0, 0.25 (S2) and 0.68 (Morph-S2) for 

T90, and 0.25 (S2) and 0.58 (Morph-S2) for T135. 

 However, when discriminating the blackbody, S2 and Morph-S2 at times 

performed very similarly, while during other periods S2 performed better than Morph-S2 

or vice-versa.  Interestingly, one can observe a tremendous amount of variability in 

Morph-S2 compared to a more stable performance by conventional S2.  This can be the 

result of the enhancement procedure which magnifies target features and/or false alarms 

in S2 imagery depending of the available features.  The 72-hour average probability of 

detection for the blackbody was calculated as 0.22 for S2 and 0.39 for Morph-S2.  On the 

other hand, Morph-S2 was able to discriminate the observation tower from the natural 

clutter better than S2, with a 72-hour average probability of detection of 0.14 versus 0.00 

from conventional S2.  Overall, when all targets are combined into a single class, S2 

average probability of detection was         compared to Morph-S2 with a        .   
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Figure 5.25  72-hour probability of detection curves comparing Stokes parameter S2 and 

Morph-S2.  
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Figure 5.25  72-hour probability of detection curves comparing Stokes parameter S2 and 

Morph-S2.  (Continuation)  
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 Subsection 5.2.4 presented a performance comparison between conventional and 

morphology-based Stokes and DoLP metrics using individual ROC curves, output 

surfaces, and a 72-hour    comparison for a constant false alarm rate of 0.005.  The 

comparison demonstrated the following key points: 

1) Applying the morphological filters on Stokes and DoLP increased the 

probability of detection of all manmade objects in the scene relative to the 

conventional Stokes and DoLP. 

 

2) The morphology-based S1 and DoLP performances were very similar 

regardless of diurnal changes or target state for this particular dataset.  

Furthermore, these two parameters were the most effective of all the metrics 

tested in Subsection 5.2.4 as per the average probability of detection over the 

72-hour period. 

 

3) The individual ROC curves, Figures 5.14 through 5.19, demonstrated that 

morphology-based Stokes had a higher detection rate at low false alarm rates 

making them highly desirable for autonomous as well as aided system to 

detect manmade objects in natural clutter backgrounds. 

5.2.5 Summary and Conclusions 

In Section 5.2 an efficient image enhancement technique based on morphological 

operators was presented with the capability of enhancing target features present in Stokes 

and DoLP imagery while significantly reducing potential false alarms found in the 

original imagery.  On contrary to other morphology-based algorithms presented in 

previous work where the objective was either to eliminate single pixels from a threshold 

image or object extraction using a priori information, the focus of this section was on the 

problem of anomaly detection by improving the signal-to-noise ratio between manmade 

objects and clutter, demonstrating that one could detect manmade objects with very low 

false alarm rates when compared to their conventional equivalent imagery.  The new 

method, as discussed in Subsection 5.2.4, demonstrated an enhanced capability in not 

only extracting the spatial features of the target but also dramatically reducing the false 
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alarms present in the original image.  Another very important aspect of the proposed 

algorithm is its ability to enhance the performance of all input imagery regardless of the 

metric used, making the proposed algorithm input image invariant for Stokes parameters 

or DoLP.   

5.3 Covariance Based Anomaly Detectors for Polarimetric Imagery 

5.3.1 Introduction 

Section 5.2 introduced a new image enhancement algorithm for Stokes vector based on 

morphological operations and presented a comparison between Morph-Stokes and 

conventional Stokes, see Subsection 5.2.4.  The results demonstrated that the 

morphological filters successfully enhanced manmade object features while mitigating 

natural clutter features which then translated into higher probability of detection 

compared to conventional Stokes/DoLP.  Section 5.3 introduces, to the best of the 

committee’s knowledge, the first set of anomaly detectors based on multivariate statistics 

using the independent individual polarization components captured by a polarimetric 

sensor (i.e., 0°, 45°, 90°, and 135°) as input to the proposed algorithms.  Unlike the 

previous algorithm presented in Section 5.2 where the input imagery was a 2-dimensional 

image (e.g., Stokes and DoLP), in this chapter the goal is to use the individual 

polarization angle imagery to create a polarimetric data cube (PC) of p-dimensional space 

where each pixel represents the spatial and polarization information characterizing the 

material(s).  Using the PC, one can take advantage of the variability found in the 

polarization bivariate space, which happens to be discriminant between two general 
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classes of material (manmade and natural clutter background) to introduce novel concepts 

for anomaly detection applications in the PI community.   

 The word “anomaly detection” has been previously introduced in applications 

employing hyperspectral sensors for discrimination of signatures that do not lend 

themselves as part of the overall composition of the scene.  This chapter introduces the 

same concept of anomaly detection for polarimetric imagery by demonstrating how 

certain features when properly exploited can be used to determine if a test pixel does or 

not belong to the overall statistical representation of the natural clutter present in the 

imagery.  In using these new features, a polarimetric anomaly detection algorithm based 

on multivariate statistics is presented for the first time to discriminate manmade objects 

from natural clutter environment over a variety of weather conditions, diurnal cycle, as 

well as hot and cold objects significantly better than conventional Stokes/DoLP metrics 

can.  

 Subsection 5.3.2 introduces the concept of polarimetric data cube, followed by an 

introduction to the hypothesis test for anomaly detection algorithms in Subsection 5.3.3.  

Subsection 5.3.4 presents some key results from data analysis using PI, where some novel 

features are proposed that potentially discriminate manmade from natural objects.  An 

algorithm capable of exploiting these key features will be presented in Subsection 5.3.5 

followed by, in Subsection 5.3.6, the implementation and performance analysis that also 

include contrasting it with performances of conventional Stokes and DoLP parameters.  

Subsection 5.3.7 analyses the potential limitations of the proposed algorithm.  In 

Subsection 5.3.8 a variation of the proposed anomaly algorithm called RS-M is offered, 

which removes three major limitations of the approach presented in Subsection 5.3.5 
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involving order statistics on covariance determinants, sample size equality requirements, 

and range dependency.  A performance analysis and implementation of the RS-M is 

shown in Subsection 5.3.9 and finally Subsection 5.3.10 presents the limitations of the 

RS-M algorithm.  Subsection 5.3.11 presents a more generalized anomaly detector called 

the PRS-M.  This new proposed variation has the same benefits as the two previous 

detectors found in Subsections 5.3.5 and 5.3.8, with the added benefit that it is able to 

identify anomalous objects under more difficult and ambiguous sample cases.  A 

performance evaluation of the proposed algorithm is shown in Subsection 5.3.12 

followed by a discussion on the PRS-M limitations in Subsection 5.3.13.  Finally 

Subsection 5.3.14 concludes the chapter with a summary, conclusions, and emphasis on 

the contributions made in Section 5.3. 

5.3.2 Polarimetric Cube and Window Sampling 

As discussed in Chapter 2, polarimetric imagery is produced by a sensor that rotates a 

polarizer in front of the lens in order to produce four images at different angles (0°, 45°, 

90°, and 135°).  Each pixel in these images corresponds to a ground sampling area at the 

different polarization angles which can be expressed as follows: 

 

  [               ]  (5.16) 

 

where the scalars LU, (              , are the radiances in units W/cm
-2

sr
-1

 for a 

particular pixel for each of the polarization states.  If a pixel represents a polarizing 

surface, the combinations of radiances of                               are found to be 

highly positively or negatively correlated.  For example, if a polarizing surface has a 

preferred vertical polarization, then one expects that all pixels in the surface to have a 
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higher     value compared    resulting in negative correlation between    and    .  In 

contrast, if the surface has a preferred horizontal polarization, then    will have higher 

values than    , resulting in positive correlation between the two components.  The same 

is true for surfaces that exhibit      polarization.  The only exception to the rule is if the 

material in the scene is completely unpolarized, then in theory,                , 

therefore, all polarization component measurements would be uncorrelated (see Section 

3.2 and 3.3 for more information).  

Using Equation (5.16), a PC can be built where         , representing a 

spatial area of       pixels by   polarization components , or 

 

  [

       

   
       

], (5.17) 

 

where,     is an observation vector located at row               and column       

       . 

Anomaly detectors are used to find outliers in a given image using small windows 

(also known as blocks of data) that move across test image X and it is customary to 

model the background clutter with a known distribution, so, if local observations fall 

outside the range of the known distribution, that spatial location will be designated as an 

anomaly (outlier). 

Therefore, a moving window of size       (where      and     , and   

indicates much less than)  moving across X can be represented as follows, 
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(5.18) 

 

 The moving window reference pixel starts at the index   and   and spans   pixels 

in both   and   directions relative to the rows and columns of X.  Equation (5.18) 

represents an       window at the pixel location i = 3, j = 2 in X.  As the moving 

windows slides across X it will observe different classes of materials in the scene 

represented by the vector information in   until all the polarization vectors in X are 

observed through the       window.   

 Typically, prior to any type of processing or modeling, the data is rearranged in 

column or row vector format as follows, 

 

  [                                                                      ] 
(5.19) 

       [       ]  

 

where       ,           pixels, and                 .  Once the data is in 

a suitable format, various statistical parameters (e.g., mean, covariance, kurtosis, etc.) can 

be estimated in order to extract intricate relationships within the vectors of the moving 

window. 
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5.3.3 Hypothesis Test for Anomaly Detection 

Unlike the composite hypothesis test where one tries to classify an unknown sample to 

one of L classes, anomaly detectors are considered a simple hypothesis test.  Simple 

hypothesis tests are often used when one class is well defined while the other(s) is(are) 

not [56,p. 67].  Such a test involves measuring the “distance” between an unknown 

sample and a known reference sample, where a cutoff threshold is attained (through a 

PDF assumed for the reference sample) and applied as part of the test to determine 

whether the test sample is also controlled by the same PDF; if the latter is not true, the 

test sample is labeled as an anomaly relative to the reference sample.  Although this 

technique is quite useful and widely used, its performance suffers as the dimensionality 

of the data increases.  For example, it has been shown in [56,p. 67-73] that as the number 

of dimensions increases, the error of the simple hypothesis test increases as well, 

independently of whether the assumption given to the reference sample is satisfied or not.  

This error is the result of mapping the original  -dimensional feature space onto a one 

dimensional feature space as this transformation destroys valued information otherwise 

available in the original feature space, where potential discriminant information 

contained in the original data is lost after the transformation. 

When using any hypothesis test, it is imperative that a distribution is defined for 

the reference samples to which a test sample will be tested against.  By determining or 

assuming the distribution of the input samples, the output of the employed discriminant 

function test itself is modeled by a resulting distribution where a fixed criterion based on 

error probability can be used to attain the cutoff threshold. 



224 

 

 

 

As an example, let us assume that a reference and test sample, denoted as      

                   respectively, are captured from the scene in question, where 

     is defined by the samples within the moving window as it slides across X, as 

specified in Equations (5.18) and (5.19) and      the reference sample is denoted by all 

the information in X in the form of Equation (5.19).  One will also assume that the spatial 

area of the moving window       is much smaller in relation to the area of X, (i.e., 

        ) and that the vectors of X are multivariate normally distributed with  -

dimensions with mean    and covariance matrices   , or 

 

               (5.20) 

 

Since the pixel area occupied by potential anomalies in X is very small compared 

to the size of X, their effect on the overall distribution of X would be negligible.  The 

hypothesis test for this example is as follows, 

 

            

, 

            

 

(5.21) 

 

where    represents the mean vector of X and       the mean of a test window of size 

    pixels.  Equation (5.21) states that if          then the spatial location where 

data are observed through the test window is labeled as not being anomalous to the 

reference data; otherwise, the reverse is declared as per the alternative hypothesis H1. 

Because the distribution of X is assumed multivariate normal with mean vector 

   and covariance matrix  , the PDF of a block of data taken from X is given by 
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   (5.22) 

 

 It is worth mentioning, in Equation (5.22), that the term 

(        ) 
  (        )

 
 is a generalized distance measure also known as the 

Mahalanobis distance test [56-58], where using the same notation of Equation (5.22), 

 

   (        ) 
  (        )

 
. (5.23) 

 

 The parameter    increases as the dissimilarity between the two vectors also 

increases. The output    follows a Chi-Square distribution    
   [56-58], with   degrees 

of freedom, where one can test the null hypothesis H0 by specifying a criterion based on 

the desired probability of error.  Some notes follow about Equation (5.23) and H0:  

1) The best one can claim is that H0 cannot be rejected, which indicates 

that it would be better to accept H0 than to accept H1.  The reason is 

that only the Type I Error is taken into account as the criterion to 

determine the cutoff threshold; Type II Errors are not taken into 

account; which is usually the case for most if not all of the hypothesis 

test used in practice. [59 and 60] 

 

2) Under H0, Equation (5.23) follows a chi-square distribution; this 

statement would not be true under H1.   

 

3) In this example, the output of the discriminant function    under the 

null hypothesis is a     
  distribution with α the Type I Error (or the 

probability of missing the correct detection of a value under Equation 

(5.23), given that H0 is true) and   the number of degrees of freedom.  

Given that the test yields values of a known distribution, under the 

assumption that the data are normally distributed, the user then can set 

a statistical threshold of, for instance,          
    where all the values 

below six do not reject H0, and any value above or equal to six rejects 

H0, according to tables in [61].   
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For illustration, Figure 5.26 depicts the shapes of a   
  distribution with    

              . 

 
Figure 5.26    

  PDF for different degrees of freedom. 

 

Under H0 and assuming that the data are normally distributed, notice that as the 

degree of freedom increases, the variability of the PDFs shown in Figure 5.26 increases 

as well; the same requested Type I Error yields significantly higher cutoff thresholds as a 

function of increasing degrees of freedom, especially as the dimensionality of the data 

increases.  Nonetheless, even when the data is clearly not normal, the assumption of 

normality is often used (even for high dimensionality data) because of its analytical 

tractability [57,p.30]; scholars argue that “the simplicity and robustness of the linear 

classifier more than compensate for the loss in performance” [56, p.131].  
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5.3.4 Feature Determination for PI Exploitation  

In order to define a useful hypothesis test for an anomaly detector for PI, one must first 

determine the features that will be effective in discerning potential manmade objects from 

clutter.  This subsection accomplishes this goal by analyzing a novel construct - bivariate 

polarimetric data cubes - in the form of          such that a vector   is composed of 

  [      ], see Equation (5.16).   

 As mentioned earlier, samples to be tested are observed using the moving window 

     that slides across the entire test image X where the mean and covariance of the 

samples are often calculated for each location in X.  The reference sample is usually 

defined as the statistical distribution of the materials in the scene excluding the potential 

targets that may be present.  In a practical sense, since one often does not know where the 

object(s) of interest is(are) located in the scene, it is customary to build the reference 

distribution in one of three ways:   

1) Global information –in this framework, the unknown parameters, such as 

mean and variance/covariance, of the assumed reference PDF are estimated 

from the entire image.  This method is only valid when the spatial area of all 

objects of interest is much smaller than the total image spatial area.  This 

method is widely used in the HS community as no a priori information about 

range or target size is needed.   

 

2) Local Information (Inside and Outside window) - in this method two windows 

simultaneously move across the image centered at a pixel location   and     
The inside window is defined as the test window while the outside window is 

designated as the reference window.  The main concern of using such method 

is that the user needs to know a priori the physical scale of the target in the 

ground and altitude of the airborne platform carrying the employed sensor, 

since the unknown scale of an example target in the imagery may either cause 

both windows (reference and test) to cover the same target or cause the test 

window to partially cover both target and background material types; in both 

cases, the anomaly detection test will be compromised. 

 

3) Quasi Global Information (Random Sampling) – In this construct, the 

reference sample is assembled by randomly taking a number of observations 
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from the scene in order to represent the background clutter; however, for this 

purpose, the author finds the use of the Parallel Random Sampling (PRS) 

discussed in [62-66], to be noticeably more effective, as it will be 

demonstrated later on in this dissertation (Subsections 5.3.8 and 5.3.11). 

 

 For the data analysis performed in this subsection, due to the size of the objects of 

interest compared to the image size and the fact that the scene is dominated by natural 

clutter, the global information should be a particular good fit as a reference distribution 

because natural clutter is often weakly polarized, imposing that all material types 

composing the scene background fall under a single class. 

 In order to determine the features needed to discriminate manmade objects from 

clutter, random blocks representing both classes (clutter and target) will be collected from 

the imagery and the mean and covariance of the samples estimated.  The mean and 

covariance parameters will also be estimated using data from the entire imagery (global 

information).  The strategy here is to use individually estimated parameters from random 

blocks of data and from global information, as reference, and test against the estimated 

parameters from target data in order to determine the particular parameter that will best 

separate the two object classes, using the results from the proposed bivariate polarization 

feature space. 

 Figure 5.27 illustrates the locations of blocks of data of size 7 x 7 pixels of 

background clutter used for the experiment.  In contrast, due to the limitation of available 

target pixels, all target pixel information is used to determine the mean and covariance 

for each manmade object, as shown in Figure 5.28   
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Figure 5.27  Location of the ten random blocks used for data analysis representing 

natural background material types, each block having 7 x 7 pixels.  Blocks of data C1 

through C7 correspond to trees while C8 through C9 correspond to grass.  A gravel road, 

not visible, leads to one of the targets where C10 is sampled from.  C10 is in essence a 

combination of samples of both grass and gravel stone where grass is the predominant 

class. 
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Figure 5.28  Locations of the four manmade objects used for the data analysis.  The red 

color depicts the pixels taken from each manmade object where each manmade object is a 

separate class for the data analysis. 

 

 For each target and background sample, the mean and covariance were estimated 

and used to plot the ellipsoids, shown in Figure 5.29 and 5.30, using the Gaussian PDF as 

a model only for the purpose of visual appreciation.  Where y-axis and x-axis are labeled 

as I90 and I0 respectively, representing the two polarization components composing X.  In 

particular, the plots shown in Figures 5.29 and 5.30 represent four distinct times of the 

day, 0710h, 0910h, 1310h, and 2010h chosen to represent low and high contrast imagery.  

Figures 5.29 and 5.30 show the estimated parameters in terms of the normal distribution 

model set to a 3σ (standard deviations) boundary for each of the individual material 

samples as well as for the global information.  The plotting of the data using normal 
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distribution was done in order for the reader to easily compare the different material 

classes to the global reference class.  Using the normal distribution plots does not imply, 

in any shape or form, that the data in X is Gaussian distributed.   

 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.29  Distribution of ten (10) random background samples (in black) and the 

global distribution of X (red).  The ellipsoids in black plotted inside the ellipsoid in red 

represent the seven blocks of data from the tree class in this feature space.  Conversely, 

the ellipsoids representing grass and mixed materials samples (grass and gravel) can be 

found outside the one in red implying that the temperature of the grass was cooler than 

the trees. 
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0710h 0910h 

  
1310h 2010h 

  
Figure 5.30  Distribution of eight (8) target samples (black) and the global distribution of 

X (red).  Notice that the distributions of the target samples include samples of the global 

distribution.  This implies that the mean of the target samples may not be very 

discriminant relative to the mean using the entire data cube (the global information).  But, 

in contrast, notice also that the variability of targets in this feature space is significantly 

higher than that of the global information. 

 

Figures 5.29 and 5.30 illustrate the distribution of the random samples of 

background and target classes (both in black) in contrast to the global distribution of X in 

red, being used here as an empirical reference.  From these figures, one may draw the 

following important conclusions:  

1) Figure 5.30 demonstrates that the target sample variability seems to be 

higher than the global sample variability, indicating that this feature ought 

to be exploited for discriminating manmade objects from natural objects, 

where the latter dominates the global information of X.  Moreover, this 

desired characteristics is consistent over different times of the day.  On the 
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other hand, the mean value of the target samples distribution lies close or 

within X distribution. 

 

2) In Figure 5.29, where local natural objects are compared to the global 

information (again, spatially dominated by natural objects in the scene), 

the tree class distribution (mean and variance of the class) is included in 

the global distribution of X, while the distribution of the grass (located 

around the targets) is different from the distribution of X due to a mean 

shift (lower radiance values both in I0 and I90 for all the four timestamps).  

However the variability of grass seems to be similar to the variability of 

the global information of X. 

   

In order to quantify some of these preliminary conclusions one can compare the 

amount of variability in each of the target and background samples with respect to the 

global distribution by taking the determinant [67, Chapter 5] of the covariance matrix of 

each of the samples and divide them by the determinant of the global covariance, 

 

   
        

             
  (5.24) 

 

where    represents the covariance matrix for each test sample  ,         the global 

covariance matrix of data cube X, and         denotes the determinant. 

Examining Equation (5.24), if the covariance of a test sample is greater than the 

reference then    , otherwise    .  In the context of anomaly detection, it is desired 

that     when the test sample represents a manmade object in the scene spatially 

dominated by natural clutter; otherwise,     when the test sample represents a subset 

of the background clutter. 

  



234 

 

 

 

0710h 0910h 

  
1310h 2010h 

 
 

Figure 5.31  Comparison of covariance determinants between each random block of data 

and the global information, using Equation (5.24).  The figure demonstrates that the 

global covariance has significantly more variability than any individual covariance 

estimated for this analysis.   

 

Figure 5.31 illustrates the result of Equation (5.24) when each of the clutter 

samples covariance matrices is compared to the global covariance of X, where the 

horizontal axis represents the sample and the vertical axis represents the covariance 

determinant ratio of a sample relative to the global.  One can clearly observe that all 

clutter classes, regardless of grass or tree, have less variability than the global reference 

irrespective of the mean value of each of the samples.  One may conclude from this 
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finding that when     the individual samples taken from a spatially dominating natural 

background ought to be declared as a non-anomaly. 

Figure 5.32 illustrates the result of Equation (5.24) for each of the different 

manmade objects in the scene, where the horizontal axis represents the samples drawn 

from the manmade objects from the test image and the vertical axis represents the 

covariance determinant ratio of the manmade object samples and the global data.  Right 

away one can observe that the amount of variability encountered within the target (T0, 

T90, T135  and the external blackbody) distribution is significantly larger than the 

variability in the natural background clutter.  As such, D values for the manmade objects 

in question varied substantially higher,       , in contrast to the realization of D 

observed for natural clutter, shown in Figure 5.31,             
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0710h 0910h 

 
 

1310h 2010h 

 
 

Figure 5.32  Comparison of covariance determinants between each random block of data 

and the global information, using Equation (5.24).  In contrast to the Figure 5.31, the 

power (the determinant) of the covariance matrix for each manmade object is 

significantly larger than the global covariance.  

 

Figure 5.33 demonstrates the Euclidean distance between the mean value of X, 

and the mean value of each block of clutter            , where the Euclidean distance 

between two dimensional vectors   [     ]
  and   [     ]

 , where T denotes the 

transpose operator [67, p. 96], is as follows, 

 

‖   ‖  √                 . (5.25) 
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 The horizontal axis of plots in Figure 5.33 represents the labeled samples and the 

vertical axis represents the Euclidean distance between each estimated sample mean per 

Ci and the global mean, using Equation (5.25). 

 

0710h 0910h 

  
1310h 2010h 

 
 

Figure 5.33  Euclidean distance between the mean of each clutter sample collected from 

the scene using a       window and the global mean of the test scene, X.  As expected 

from Figure 5.29 the samples collected from trees have a smaller distance than the 

samples from grass.  The high Euclidean distance between the global mean and the grass 

samples were a result of the significantly lower temperature found in the grass samples 

with respect to the overall scene temperature. 

 

 The results in Figure 5.33 are quite interesting because there seems to be a higher 

variability in the Euclidean distance results between the trees and grass classes, where 

grass exhibits higher values than trees.  This result is expected since Figure 5.29 
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demonstrated that grass was at a lower temperature (low radiance values) with respect to 

the overall scene temperature.  Moreover, since most of the scene is dominated by trees 

and only a small portion of the image is dominated by a grass field one also expects that 

the tree samples taken from the image exhibit similar values relative to the global 

information.  Although, one can observe that the Euclidean distance difference between 

the grass and trees is reduced around timestamp 0910h, by 1310h when the air 

temperature is at its highest value, this difference is actually more accentuated with the 

tree canopy having higher temperature than grass. 

  



239 

 

 

 

0710h 0910h 

 
 

1310h 2010h 

 
 

Figure 5.34  Euclidean distance between the mean of each of the targets and the global 

mean of the test scene, X.  Contrary to Figure 5.33, the plots in this figure show less 

variability between the different manmade objects with T0 having the highest Euclidean 

values for 0710h and 2010h, the blackbody for 0910h, and T90 at 1310h. 

 

Figure 5.34 illustrates the Euclidean distance between each of the manmade 

objects in the scene and the global mean of X using Equation (5.25).  Contrary to Figure 

5.33, one can observe less variability in the results among the manmade objects.  

Although some differences can be observed, for example, T0 seems to have a higher 

result at timestamp 0710h and 2010h, T90 for 1310h, and the blackbody at 0910h, their 

differences are minimum with respect to the other objects. 
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Comparing the plots in Figures 5.33 and 5.34, reveals that the mean-difference 

between manmade objects and the global mean of X is not very discriminatory as seen 

from the results between the tree and grass relative to the global mean.  A conclusion that 

can be drawn from results in this subsection is that the data analysis clearly indicates a 

hypothesis test focused on discriminant functions that take advantage of covariance-

difference methodologies should be suitable for the application of distinguishing 

manmade objects from natural objects using PI, as proposed in this dissertation.   

Before moving on to a hypothesis test, it is important to describe to the reader, in 

polarization terms, the reasoning of why the variability of a moving window when 

sampling a 3-dimensional manmade object is more discriminatory relative to the global 

information than its mean value. 

Manmade objects like the targets in the test scene are complex 3-dimensional 

object.  Complex, in this case, implies multiple facets at different angles and as described 

in Section 3.4 their polarization values can vary dramatically as a function of the viewing 

angle of the camera relative to the normal of a dielectric surface.  Referring to Figure 

5.35, when a sliding window moves across the target, each pixel is observing different 

values of polarization as a result of the different orientation of each of the plates with 

respect to the sensor angle.  Therefore, the values of observables I0 and I90 within the 

inside window vary significantly, which in turn implies high variability within the 

covariance matrix.  On the other hand, natural objects, as discussed earlier, are expected 

to emit EM in an unpolarized fashion or at best, weakly polarized.  When the moving 

window moves across natural clutter, in principle, it will only collect weakly polarized 

signals and as a result one should expect for the variability of a test window when 
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capturing natural clutter to be lower than the samples of 3-dimensional manmade objects.  

From these facts one can conclude that in the context of anomaly detection an effective 

covariance based test is a suitable means to distinguish manmade objects from natural 

clutter. 

 
Figure 5.35  Illustration on how the variability of a window superimposed on manmade 

objects and natural clutter differs from each other.  In this situation, the test window 

exhibits higher variability when sampling the target because each pixel in the test 

window samples different surfaces at different angles with respect to the sensor.  

 

This subsection presented a data analysis of polarimetric imagery which allowed 

for the identification of features that could be used to develop an effective discriminant 

function for manmade object detection using PI as input.  As seen from the data analysis, 

one can conclude that a covariance-difference based methodology will potentially be 

highly effective in discriminating the targets from natural clutter.  It was also determined 

that using the global distribution of X as a reference seemed to be appropriate since 

natural clutter dominated the scene and the variability of the background samples 

collected were similar or smaller than the variability in the reference (global) distribution 

while manmade objects exhibited higher variability in its observables than the reference.  

Finally, it was described in simple terms why one would expect the observations on 
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variability to be true by referencing some of the lessons learned on polarization from 

Section 3.4. 

5.3.5 Covariance Equality Test for PI Anomaly Detection 

This subsection presents a hypothesis test based on the conclusions of the Subsection 

5.3.4 and proposes an effective discriminant function for anomaly detection using PI as 

input; the discriminant function is based on the M-Box covariance equality test proposed 

by Bartlett [68] and Box [69].  The equations found in this subsection are based on 

information found in [70].  

 Subsection 5.3.4 demonstrated that a covariance test approach seemed to be 

adequate to discriminate potential manmade objects from a scene dominated by natural 

clutter.  Subsection 5.3.4 also concluded that the global covariance is an effective 

reference to which a local window can be tested against in order to determine whether the 

data observed through the local window are anomalous to the spatially dominant data 

composing the background scenery.  It was shown that samples from natural clutter 

exhibited similar or less variability than the global reference, while targets on the other 

hand exhibited higher variability compared to the reference.   

From the conclusions in Subsection 5.3.4 one would like to test if the variability 

of a window moving across an image X with p observables exhibits the same variability 

as the reference sample.  If the variability is the same, then there is a strong likelihood 

that the local sample is from a natural object, given that Subsection 5.3.4 showed that 

manmade objects are expected to yield a higher variability from that of natural objects.  

Let one assume F is a     matrix where each row is independently drawn from 

a  -variate normal distribution with zero mean and covariance matrix  , such that 
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                    , (5.26) 

 

where   represents the number of samples and   the number of dimensions in F. 

A Chi square random variable,   , is defined as the sum of squares of 

independent normal random variables, for example Equation (5.26), such that 

 

       (5.27) 

 

 The resulting   is a     matrix with a Wishart distribution in the form of 

 

         , (5.28) 

 

Where   is the degrees of freedom and      , and   is the scale matrix. 

 The likelihood of Equation (5.28) is then 
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     (    )  (5.29) 

 

 It has been shown in [70, page 185] that the maximum likelihood estimator for 

Equation (5.29) is equivalent to the estimated sample covariance of the data in F or  ̂  

 

 
.  Therefore, as a result, the maximum likelihood of Equation (5.29) is 
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         (5.30) 

 

 Let one assume that there are two groups (   and   ) and one would like to test if 

their scale matrices are equal.  Assuming that    and    are independent where 
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The hypothesis to test if the two scale matrices are equal can be formulated as 

follows, 

 

          ( ̂   ̂ ) 

          ( ̂   ̂ ). 

(5.32) 

 

It will be shown that testing the scale matrices is equivalent to testing the 

estimated covariance matrices belonging to groups    and   .   

The likelihoods for both    and    can be defined as Equation (5.33) for H1 

(because      are independent), or 
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but in the special case of   , Equation (5.33) becomes Equation (5.34), or  

 

              | |             ( 
 

 
  {          })  

(5.34) 

 

where under the null hypothesis         .  [70, page 186] demonstrates that the ratio 

of the maximum likelihood estimate of Equations (5.33) and (5.34) is,  
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 Notice that by using the maximum likelihood of    and   , Equation (5.35) is no 

longer dependent on the scale matrix V, rather it is dependent on    and   . 

 Finally, by taking the         , 
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  Previously,  ̂  was defined as  ̂  
  

  
 

    
 

  
 , as the estimated covariance 

matrix of the samples in  , which was based on the fact that  ̂  is the maximum 

likelihood estimator of Equation (5.29).   

 Therefore, Equation (5.36) can be re-written in terms of covariance estimates, or 
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(5.37) 

 

where Equation (5.37) is the well-known Bartlett test of equality for covariance matrices 

for      .  Under the null hypothesis, Equation (5.37) approaches a Chi square 

distribution               
  with               degrees of freedom, where   is 

defined as the number of covariance matrices being tested and   the number of 
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observables.Furthermore, if       Equation (5.37) can be further simplified as shown 

below,  

 

  

   
        

 

 
   | ̂ |  
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⁄ |  (5.38) 

 

Barlett demonstrated that Equation (5.37) is approximated by the limiting    

distribution given by          while Lee et al. [71] presented the exact upper 5% 

points of Equation (5.38) for the special case where               . 
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where the pooled covariance matrix ( ̂  ) is defined as 
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  (5.40) 

 

In the cases where the    distribution is not sufficiently accurate, Anderson [72] 

proposed two improvements known as “Barlett improvement”, where the first 

improvement divides         by a constant C such that the mean of  
       

 
 is closer to 

the mean of the limiting    distribution and the second is obtained by adding an extra 

term to the limiting    distribution of order         

In 1949 and 1950, Box [69], also proposed a    approximations for the 

distribution of Equation (5.37), also referred as M-Box’s tests. For the    distribution, 

Box proposed 
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In this subsection the Bartlett’s test of equality for covariances is proposed as an 

anomaly detector for polarimetric imagery; implementation details of this approach using 

a relevant dataset are shown in Subsection 5.3.6.  The use of covariance-different tests is 

based on the covariance and mean data analysis presented in the previous Subsection 

5.3.4.  If possible, it is desirable to have the search window to be the same size as the test 

window in order to simplify Equation (5.37) into (5.38) as well as to mitigate any sample 

size differences between the two covariance matrices.  In the next subsection, the 

implementation of the algorithm, which for the remainder of the dissertation will be 

referred as M-Box, is presented and a comparison of its performance against the Stokes 

vector and DoLP is shown. 

5.3.6 Performance Assessment of M-Box 

This subsection presents the implementation of the covariance test proposed in 

Subsection 5.3.5 to the application of anomaly detection using polarimetric imagery as 

input data.  The polarimetric input data is a data cube X, where          where   by 

  pixels define the spatial information in the x- and y-axis and     the polarization 
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measurements of I0 and I90.  A performance analysis comparing the M-Box algorithm to 

Stokes and DoLP imagery using the SPICE database is also presented. 

 

5.3.6.1 Algorithm Implementation.  Let   be an R C image of p observables s.t. 

        .  The implementation of the proposed anomaly detector algorithm is 

twofold: (1) Find a reference covariance matrix to which all moving window locations 

will be compared to and (2) apply Equation (5.38) using the reference covariance and the 

test window sliding as it moves across the spatial area of X.   

 In order to find the reference covariance matrix from X, one could use all of the 

polarization signatures to estimate the global distribution parameters such as the mean 

and covariance.  However, one must be aware of some potential complications that may 

reduce the effectiveness of the proposed test.  For example, the M-Box algorithm is a 

very sensitive covariance test where its robustness suffers as a result of its high sensitivity 

to different sample sizes [73].  A significant difference in sample sizes between the 

reference and test covariance matrices increases the power of the output of the test 

significantly where the resulting output deviates from the desired   

 
           
  

distribution of the null hypothesis. 

In order to mitigate sample size differences between the reference and locally 

estimated covariance matrices, this dissertation proposes to keep the sample size for the 

moving and reference covariance matrix identical as follows: the data analysis in 

Subsection 5.3.4 concluded that the natural clutter variability was significantly lower than 

any of the manmade objects in the scene, as a result, one could safely deduce that there is 

a location in the test scene where a covariance matrix with the smallest variance should 
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be representative of natural clutter.  By using a search window of the same size as the test 

window to search for a location in X with the smallest variability, one would be able to: 

(1) find an effective reference covariance matrix for the M-Box test and (2) eliminate any 

sample size difference between the reference and test window as required for the M-Box 

test. 

Let’s start by using a window in the form of Equation (5.18) to collect samples as 

shown in Equation (5.19) across the image for each      .  For the first location       

     , the determinant of the covariance of the sliding window is estimated and stored in 

a temporary variable, where (using the notation employed in Equation (5.19)) 

 

       [        ]         (5.43) 

 

and      . 

The covariance of        is calculated as 

 

         ((          )(          )
 
)    (5.44) 

 

 In this dissertation the PC is composed of I0 and I90 measurements or    , 

therefore, the determinant of the              is given by, 

 

          (       )  (   
      

 )  (       )  (5.45) 

 

For the first location,            , the result of Equation (5.45) is used as the 

initial reference value          .  Subsequent locations in the polarimetric data cube X 

are estimated using Equations (5.44) and (5.45).  The result of 5.45 for each combination 

      where     and     is compared to    and if the result of        for any location 
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in X is smaller than the current   , then the new smaller value becomes the new 

reference. 

The         which estimates the smallest    in data cube X becomes the reference 

covariance matrix (          ) by which all other covariances in the image shall be 

tested against using the covariance test (Equation (5.38)) proposed Subsection 5.3.5. 

The next step in the implementation is to test the covariance matrix   
      for all 

locations       in data cube X to the reference covariance    using Equation (5.38).  The 

output of Equation (5.38) for all combinations of       yields an output surface in the 

form of,  

 

   [
                 

   
                         

]  (5.46) 

 

 The spatial size of Z is                    is a result of using a sliding 

window across X in the form of Equation (5.18) to test a center location in        of size 

      pixels.  Since not all the pixel locations close to the boundaries of image X are 

tested due to window size,   output surface size will be smaller than X by       

     . 

Once the output surface is complete for all possible locations of  , if pixels in 

       fall under the null hypothesis, then their distribution is                      
 , and as 

a result one can calculate the Type I error given                 
  by specifying α.  Figure 

5.36 illustrates the               
  for two observables       using a Type I error of α = 

0.05 or         and α = 0.01 or           The y-axis corresponds to the    probability 

given a value  , and the x-axis represents the values that span the distribution.  Although 
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most texts use   as a variable in the x-axis, it was decided to use   for easy 

correspondence to the values from the output surface in Equation (5.46).  

 
Figure 5.36  Illustration of a    distribution with three degrees of freedom.  Probability 

of miss     = 0.05 (z = 7.9) and α = 0.01 (z = 11.4) are shown in the figure. 

 

Figure 5.37 illustrates the use of the               
  on Z using the proposed M-

Box as the anomaly algorithm for α = 0.05, 0.01, and 0.001.  The output surface Z is 

shown on the top left of the figure.  The binary surfaces for different α are shown in the 

top right (α = 0.05), bottom left (α = 0.01), and bottom right (α = 0.001) and the 

manmade objects present in the scene are specified in the bottom left image.   

As previously explained, under the construct of the anomaly algorithm when 

setting a desired probability of miss, the user is fixing the probability of missing the 

incorrect rejection of the null hypothesis.  However, from a user/system perspective the 

probability of missing is usually referred as the probability of false alarms (what the user 
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does not want to detect) and the intended targets, in this case manmade objects, are 

considered the true detections.  From this point on, the dissertation will refer to pixels 

related to the TYPE I errors (natural clutter that was incorrectly rejected by the null 

hypothesis) as false alarms.  

One can observe when using α = 0.05, the number of false alarms allowed to pass 

through is quite high, but as the Type I error decreases to α = 0.01, the number of false 

alarms are greatly reduced while preserving the anomalies of interest.  If one is to further 

decrease the Type I error to α = 0.001, only T0, T90 and the blackbody are retained but the 

ability to detect the observation tower and T135 successfully is lost. 
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Figure 5.37  Illustration of an example of output surface Z and the threshold imagery 

given different values of α for a   
  distribution.  The output surface Z is located on the 

top left of the figure for reference.  The Z surface thresholded using a        is shown 

on the top right,        is on the bottom left, and finally         is shown on the 

bottom right of the figure.  Using a        demonstrates the ability to detect all 

manmade objects with very few false alarms. 

 

 

 In this subsection the implementation of the anomaly detection algorithm 

proposed in Subsection 5.3.5 was presented by using a two-step approach to first find the 

reference covariance matrix and then process small pixel neighborhoods in the data cube 

X using Equation (5.38).  Finally, since the null hypothesis values follow a 

              
 , one can determine a probability of miss     that can be used to estimate 

the threshold value using the number of degrees of freedom in the data.  Finally, an 
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example of an output surface Z thresholded by different values of α was also presented to 

the reader. 

 

5.3.6.2 Performance Analysis. A performance comparison between the proposed 

detector and the different Stokes parameters and DoLP metrics is now presented.   

 This performance comparison will use ROC curves and output surfaces for the 

data collection period of 6 MAR 2010, and a 72-hour detection performance for a    = 

0.005 to demonstrate the effectiveness of the proposed algorithm.  The intent of this 

subsection is to demonstrate:  

1) The proposed M-Box algorithm greatly surpasses the detection 

performance of the Stokes and DoLP parameters for all manmade objects 

with the exception of the observation tower. 

 

2) At low false alarm rates there is a significant performance difference 

between the Stokes/DoLP and the proposed algorithm. 

 

3) The M-Box algorithm performed very well for the entire 72-hour data 

collection regardless of the targets state or perspective angle, with only 

reduced performance during the periods of high humidity (>80%) and only 

affecting the performance of T135 more than any other object in the scene. 

 

 The ROC curves for the four timestamps (Figures 5.38-5.43) demonstrate how 

each of the metrics performs in discriminating the different manmade objects present in 

the scene.  Reiterating an important key point previously mentioned, the manmade 

objects are at the same temperature or colder than the background for timestamps 0710h, 

0910h, and 2010h, while for timestamp 1310h the manmade objects are hotter than the 

background.  These situations are commonly found in surveillance applications where 

target temperature varies widely depending of their state (engine on or off). 
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For each timestamp there are two ROC plots.  The first plot (on the left side of 

each figure) spans the full range of the     (       ) to show the reader the full 

performance of the algorithms over the entire probability of false alarm.  The ROC plot 

on the right side focuses on the low     region where most systems and users desire to 

operate. 

 Figure 5.38 illustrates the performance of the Stokes vector parameters, DoLP, 

and the M-Box algorithm for T0 for 0710h, 0910h, 1310h, and 2010h.  For the remainder 

of this subsection, the focus will be on the low     range, right side plots, although the 

full-range ROC curve (left side) is available to the reader if interested.  

 Referencing Figure 5.38, one can observe that the performance of conventional 

infrared (S0) at the operating false alarm range (        ) is extremely poor for all 

timestamps with the exception of the high contrast scenario (1310h).  During this 

timestamp, S0 probability of detection increases at a faster rate to about 0.20 for a 

          relative to S1 and DoLP and by         , S0 performs similarly to S1.  S2, 

on the other hand, does not perform very well in discriminating T0 from the background 

except for timestamp 1310h where its performance is better than S0, S1, and DoLP for a 

              .  For the remainder to the timestamps, S2 performance can be 

characterized as somewhat in the middle of S1 and S0.  S1 performs the best when 

compared to the remaining metrics for all timestamps except for 1310h.  As it was 

demonstrated in Section 3.5.2, in high contrast scenarios a significant number of false 

alarms were usually detected, which in turn degraded the performance of S1 compared to 

other metrics.  Conversely, the M-Box algorithm performed very well in discriminating 

T0 regardless of its state relative to the background.  Its probability of detection in the low 
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false alarm rate for a           was in excess of 0.35 for 0710h, about 0.15 higher 

than S1,    0.68 for 0910h with a probability of detection difference (e.g., 

                            
) of 0.48 relative to S1,    1.00 for timestamp 1310h, once 

again with a probability of detection difference of 0.77 higher performance than S2, and 

finally,    0.93 for 2010h, which translated into 0.76 probability of detection difference 

from S1. 

 By fixing the reference     to      , the M-Box algorithm had the best average 

probability of detection for the four timestamps with a        , followed by S1 

(       ), DoLP (        ), S2 (        ), and finally S0 (       ).  
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6 MAR 2010 – T0 

0710h 

  
0910h 

  
Figure 5.38  ROC curves for T0 comparing the probability of detection between M-Box 

detector and conventional Stokes vector and DoLP.  The M-box algorithm had the best 

average probability of detection over the four timestamps with a         for a 

reference          , followed by S1, DoLP, S2, and S0 with a 

                          , respectively. 
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1310h 

  

2010h 

  
Figure 5.38  ROC curves for T0 comparing the probability of detection between M-Box 

detector and conventional Stokes vector and DoLP.  The M-box algorithm had the best 

average probability of detection over the four timestamps with a         for a 

reference          , followed by S1, DoLP, S2, and S0 with a 

                          , respectively. (Continuation) 

 

 By observing the Stokes performance in detecting T90 (Figure 5.39 right side plot) 

one can find a few differences relative to the previous Figure 5.38.  One can still observe 

that S0 performs very poorly, as expected, during the times of low contrast while 

demonstrating better performance during the high contrast scenario.  The main difference 

relative to Figure 5.38 is that S0 is not the highest performing metric for the high contrast 

scenario when compared to the remaining metrics, rather S2 performed very well for 

timestamps 1310h and 2010h, with a probability of detection difference of almost 0.10 
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(for a          ) at timestamp 1310h when compared to Stokes parameter, S1.  S1 was 

once again the best performing Stokes/DoLP metric for timestamps 0710h and 0910h, 

however as previously mentioned S2 outperformed S1 for the remaining timestamps.  The 

M-Box algorithm once again performed very well relative to all metrics.  For T90, its 

probability of detection for timestamp 0710h, 0910h, 1310h, and 2010h was 0.92, 0.97, 

1.00, and 0.86, respectively.  The probability of detection difference between the M-Box 

and the second highest performing metric for a           was: 0.67 (for S1 at 0710h); 

0.76 (for S1 at 0910h); 0.70 (for S2 at 1310h); and 0.65 (for S2 at 2010h).  Finally, the 

average probability of detection for each metric over timestamps 0710h, 0910h, 1310h, 

and 2010h in Figure 5.39 using a reference           was measured as:    

                             for S0, S1, S2, DoLP and the M-Box algorithm, 

respectively. 
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6 MAR 2010 – T90 

0710h 

  
0910h 

  
Figure 5.39  ROC curves for T90 comparing the probability of detection between M-Box 

and conventional Stokes vector and DoLP.  The probability of detection difference 

between the M-Box and the second highest performing metric for each timestamp using a 

reference           was: 0.67 (for S1 at 0710h); 0.76 (for S1 at 0910h); 0.70 (for S2 at 

1310h); and 0.65 (for S2 for 2010h).  The average probability of detection of each metric 

over the four timestamps and using a reference           was calculated as    

                             for S0, S1, S2, DoLP and M-Box algorithm, respectively. 
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1310h 

  
2010h 

  
Figure 5.39  ROC curves for T90 comparing the probability of detection between M-Box 

and conventional Stokes vector and DoLP.  The probability of detection difference 

between the M-Box and the second highest performing metric for each timestamp using a 

reference           was: 0.67 (for S1 at 0710h); 0.76 (for S1 at 0910h); 0.70 (for S2 at 

1310h); and 0.65 (for S2 for 2010h).  The average probability of detection of each metric 

over the four timestamps and using a reference           was calculated as    

                             for S0, S1, S2, DoLP and M-Box algorithm, respectively.  

(Continuation) 

 

 

 One can observe the same trend as found in Figure 5.39 when examining the 

performance of the Stokes and DoLP parameters in discriminating T135.  S1 performed the 

best, relative to the remaining Stokes and DoLP metrics, for timestamp 0910h while S2 

performed very well for timestamps (1310h and 2010h).  Furthermore, S1, S2, and DoLP 

performed similarly for timestamp 0710h throughout the low false alarm rate of the ROC 
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curve (see right side ROC plot).  As expected, the M-Box algorithm performed better 

than the Stokes and DoLP with a probability of detection of 

                          , where ~ denotes approximately, for all timestamps using 

a reference          .  Finally, the probability of detection difference between the M-

Box algorithm and the second best performing metric for the same reference           

was                            for timestamps 0710h, 0910h, 1310h, and 2010h, 

correspondingly.  Overall, when averaging the probability of detection over the four 

timestamps using a reference          , the M-Box algorithm performed the best with 

an average probability of detection        , followed by S2, S1, DoLP, and S0 with a 

                          , respectively. 
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6 MAR 2010 – T135 

0710h 

  
0910h 

  
Figure 5.40  ROC curves for T135 comparing the probability of detection between M-Box 

and conventional Stokes vector and DoLP metrics.  The best performing metric was the 

M-Box algorithm with an average probability of detection over the four timestamps with 

a         for a          , followed by S2, S1, DoLP, and S0 with a    

                       , respectively. 
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1310h 

  
2010h 

  
Figure 5.40  ROC curves for T135 comparing the probability of detection between M-Box 

and conventional Stokes vector and DoLP metrics.  The best performing metric was the 

M-Box algorithm with an average probability of detection over the four timestamps with 

a         for a          , followed by S2, S1, DoLP, and S0 with a    

                       , respectively. (Continuation) 

 

 Figure 5.41 illustrates the performance of all the metrics in discriminating the 

blackbody from natural clutter background.  Once again, the following discussion will 

focus entirely on the ROC plot on the right side of Figure 5.41.  For this manmade object 

the performance of S0 was very poor regardless of timestamp with a probability of 

detection of nearly zero while the remaining Stokes parameters performed as follows:  

1) S1 once again performed better than S2 for timestamps 0710h and 0910h, 

while at the same time, matching its performance to DoLP. 

 

2) S2 performed better than S0, S1, and DoLP for timestamp 2010h. 
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3) For timestamp 1310h both S1 and DoLP had slightly higher probability of 

detection than S2 for a            while for the remaining false alarm 

operating range,               , S2 performed better than S1 and 

DoLP.   

 

 Once more, the M-Box algorithm performed very well for all the timestamps 

exhibiting a probability of detection of 0.94, 0.79, 0.98, and 0.98 for 0710h, 0910h, 

1310h, and 2010h respectively.  The probability of detection difference between the M-

Box and the next best metric for a           was calculated as 0.75, 0.59, 0.86, and 

0.81 for 0710h, 0910h, 1310h, and 2010h, respectively.  The average probability of 

detection over the four timestamps for a           was as follows:         for M-

Box, followed by S2 with a        , S1 and DoLP with a        , and finally S0 

with a       . 
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6 MAR 2010 – Blackbody 

0710h 

  
0910h 

  
Figure 5.41  ROC curves for Blackbody comparing the probability of detection between 

M-Box and conventional Stokes vector and DoLP.  The average probability of detection 

over all timestamps using a reference           was as follows: M-Box with a 

       , followed by S2 with a        , S1 and DoLP with a        , and finally 

S0 with a       . 
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1310h 

  
2010h 

  
Figure 5.41  ROC curves for Blackbody comparing the probability of detection between 

M-Box and conventional Stokes vector and DoLP.  The average probability of detection 

over all timestamps using a reference           was as follows: M-Box with a 

       , followed by S2 with a        , S1 and DoLP with a        , and finally 

S0 with a       . (Continuation) 
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 Figure 5.42 illustrates the probability of detection of all the metrics in 

discriminating the observation tower from the natural clutter background.  As one can 

observe from the ROC plot on the right side of Figure 5.42, S0 and S2 performed very 

poorly with a probability of detection of nearly zero for the     range between     

        .  On the other hand, the probability of detection of the M-Box relative to S1 

or DoLP varies tremendously depending of the false alarm rate chosen.  For example, for 

timestamp 0710h, both S1 and DoLP perform better than the M-Box throughout the low 

false alarm range (see right side plot of Figure 5.42), while for the remainder of the 

timestamps: (1) S1 and DoLP perform better than the M-Box for extremely low false 

alarm rates only, e.g.,           for 0910h,            for 1310h, and           

for 2010h; (2) the proposed algorithm performs better than the Stokes and DoLP 

parameters for a          .  For the four timestamps shown in Figure 5.42, the M-Box 

algorithm demonstrated an average probability of detection relative to Stokes and DoLP 

with an average         for a          .  S1 and DoLP performed slightly better 

than M-Box with an average probability of detection of                  respectively, 

and finally S0 and S2 exhibited an average probability of detection of        .  One can 

observe in Figure 5.42, depending of the     chosen, the    difference between S1 and M-

Box can be more or less accentuated. 

  



269 

 

 

 

6 MAR 2010 – Observation tower 

0710h 

  
0910h 

  
Figure 5.42  ROC curves comparing the probability of detection of the observation tower 

between M-Box and conventional Stokes vector and DoLP.  S1 and DoLP demonstrated 

the best average probability of detection (over the four timestamps and for a     

     ) with a                  respectively, followed by the M-Box algorithm with 

an average        , and finally S0 and S2 with a       . 
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1310h 

  
2010h 

  
Figure 5.42  ROC curves comparing the probability of detection of the observation tower 

between M-Box and conventional Stokes vector and DoLP.  S1 and DoLP demonstrated 

the best average probability of detection (over the four timestamps and for a     

     ) with a                  respectively, followed by the M-Box algorithm with 

an average        , and finally S0 and S2 with a       . (Continuation) 

 

 Figure 5.43 demonstrates the probability of detection when all manmade objects 

are grouped into a single class.  As expected, from previous ROC figures shown in this 

subsection, the proposed algorithm (M-Box) performs very well compared to the Stokes 

or DoLP metrics.  Even with the low probability of detection in discriminating the tower 

from clutter, the probability of detection of the M-Box algorithm in Figure 5.43 using a 

          can be measured as 0.62, 0.74, 0.89, and 0.72 for 0710h, 0910h, 1310h, and 

2010h, respectively.  The probability of detection difference between the M-Box and the 
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subsequent higher performing metric was measured as 0.42, 0.56, 0.67, and 0.56 for the 

respective timestamps.  The average probability of detection over the four timestamps 

and using a reference           was measured as:         for the M-Box, followed 

by S1, S2, and DoLP with a                       respectively, and finally S0 with a 

       . 

 

6 MAR 2010 – Overall 

0710h 

  
0910h 

  
Figure 5.43  ROC curves comparing the probability of detection of all manmade objects 

as a single class between the M-Box and conventional Stokes vector and DoLP.  The 

average probability of detection over the four timestamps for a           was 

measured as:         for M-Box, followed by S1, S2, and DoLP with a    
                   respectively, and finally S0 with a        . 
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1310h 

  

2010h 

  
Figure 5.43  ROC curves comparing the probability of detection of all manmade objects 

as a single class between the M-Box and conventional Stokes vector and DoLP.  The 

average probability of detection over the four timestamps for a           was 

measured as:         for M-Box, followed by S1, S2, and DoLP with a    
                   respectively, and finally S0 with a        . (Continuation) 

 

 Table 5.6 represents the probability of detection of each target separately as well 

as all manmade objects grouped into a single class for a           where the proposed 

algorithm is referenced by the color red to distinguish from conventional Stokes and 

DoLP metrics.  The timestamps chosen for this performance comparison were 0210h, 

0710h, 0910h, 1310h, 2010h, and 2310h for 6 MAR 2010.  For the chosen     the M-

Box algorithm performed very well compared to the Stokes parameters for T0, T90, T135, 

and the blackbody for all of the timestamps, with the exception of the observation tower 
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where the M-Box either performed better or similarly to S1 or DoLP for three out of the 

six timestamps.   From the tables below, one can measure the following average 

probability of detection for a           over all timestamps, 0210h, 0710h, 0910h, 

1310h, 2010h, and 2310h, as follows: S0 probability of detection for T0, T90, T135, 

blackbody, observation tower, and combined was measured as 0.04, 0.05, 0.05, 0.0, 0.0, 

and 0.04, respectively.  S1 and DoLP had similar average probability of detection of 0.28, 

0.24, 0.14, 0.16, 0.27, and 0.21 for T0, T90, T135, blackbody, observation tower, and 

combined, correspondingly. S2 exhibited an average probability of detection of 0.19, 

0.23, 0.18, 0.19, and 0.0, and 0.18.  Finally, M-Box algorithm performed extremely well 

compared to conventional Stokes and DoLP with an average probability of detection 

measured as 0.94, 0.79, 0.99, 0.21, and 0.76. 

 In conclusion, the M-Box algorithm demonstrated an enhanced capability in 

detecting most of the manmade objects better than the Stokes parameters over the six 

timestamps, with the exception of the observation tower, where its performance was 

found to be similar to S1 and DoLP parameters. 
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Table 5.6  Probability of Detection Comparison Between Stokes and M-Box for 

Different Timestamps for a           

 T0 T90 T135 

 S0 S1 DoLP M S0 S1 DoLP M S0 S1 DoLP M 

0210h 0.01 0.23 0.21 0.87 0.02 0.22 0.20 0.87 0.02 0.14 0.14 0.56 

0710h 0.03 0.32 0.28 0.75 0.01 0.30 0.29 0.97 0.02 0.16 0.15 0.81 

0910h 0.00 0.24 0.23 0.83 0.04 0.28 0.23 1.00 0.02 0.16 0.14 0.93 

1310h 0.23 0.23 0.12 1.00 0.20 0.23 0.21 1.00 0.26 0.11 0.10 1.00 

2010h 0.00 0.33 0.27 0.99 0.01 0.19 0.19 0.93 0.00 0.14 0.14 0.74 

2310h 0.00 0.31 0.25 0.79 0.01 0.21 0.19 0.89 0.00 0.11 0.12 0.69 

 

 

Table 5.6  Probability of Detection Comparison Between Stokes and M-Box for 

Different Timestamps for a           (Continuation) 

 Blackbody Observation tower Overall 

 S0 S1 DoLP M S0 S1 DoLP M S0 S1 DoLP M 

0210h 0.00 0.07 0.07 1.00 0.00 0.18 0.18 0.05 0.01 0.17 0.17 0.55 

0710h 0.00 0.19 0.19 1.00 0.00 0.33 0.33 0.20 0.01 0.25 0.24 0.71 

0910h 0.00 0.21 0.21 0.98 0.00 0.30 0.30 0.30 0.02 0.23 0.21 0.87 

1310h 0.00 0.14 0.12 1.00 0.00 0.32 0.33 0.48 0.18 0.19 0.16 0.94 

2010h 0.00 0.17 0.14 1.00 0.00 0.18 0.18 0.25 0.003 0.20 0.18 0.82 

2310h 0.00 0.17 0.14 1.00 0.00 0.28 0.20 0.00 0.003 0.20 0.17 0.69 

 

 Figure 5.44 illustrates the broadband images on the left (for visual appreciation) 

and the output surfaces for M-Box (top left), S0 (top right), S1 (bottom left), and DoLP 

(bottom right).  The output surfaces are normalized so they can be easily compared.  For 
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this particular example it is desirable to have manmade locations with the color red and 

natural clutter as the color blue.   

 One can readily observe that the M-Box algorithm is able to discriminate 

manmade objects very well as evident by their large red and yellow areas, which unlike 

the remainder of the metrics the target locations are not as noticeable.  For example, S0 is 

only useful at 1310h due to high contrast between the manmade objects and natural 

clutter, while for the remainder of the timestamps the manmade objects have similar 

temperature to natural clutter and as a result S0 is unable to discriminate them at all.  S1 

and DoLP have similar performance in discriminating the manmade objects from within 

the natural clutter.  As a result of the angle dependency between the target surfaces and 

the sensor only a small number of pixels are clearly visible for each of the manmade 

objects while the remainder of the targets is within the natural clutter background 

distribution (blue color).  The M-Box performed very well throughout the six timestamps 

shown in Figure 5.44 by identifying the locations where the manmade objects are present 

relative to conventional Stokes and DoLP.  Furthermore, one can also observe an 

interesting characteristic when using the M-Box algorithm; in low contrast scenarios the 

M-Box can identify manmade objects as a result of their polarimetric variability with 

respect to the background.  However, during the high contrast periods, the M-Box 

performance increases as a result of the polarimetric diversity as well as the temperature 

difference between the manmade objects and clutter.  
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6 MAR 2010 

0210h 

 
0710h 

 
0910h 

 
Figure 5.44  Output surfaces for the proposed M-Box algorithm and S0, S1, and DoLP.  
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6 MAR 2010 

1310h 

 
2010h 

 
2310h 

 
Figure 5.44  Output surfaces for the proposed M-Box algorithm and S0, S1, and 

DoLP.(Continuation) 
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 Figures 5.45 through 5.49 illustrates the probability of detection of all metrics for 

a 72-hour performance period from 6 through 8 MAR, 2010 for each of the individual 

manmade objects in the scene for a          , while Figure 5.50 illustrates the 

probability of detection when all the manmade objects are grouped into a single class.   

 As expected, the probability of detection plots vary significantly over the 72 hours 

regardless of the metric used since the output surfaces for each algorithm also vary as a 

consequence of diurnal cycles, weather events, and target states.  As mentioned before, 

for each of the figures, a common           was chosen to fairly compare the 

performance of each algorithm independent of threshold. 

 Figure 5.45 demonstrates the probability of detection of all the metrics for T0 for 

the 72-hour performance period.  As anticipated, S0 only performed well in situations 

where the target is either in a solar loaded state, during the day time (1st and 3rd day), or 

when the target is internally heated (day 2).  As previously observed, S1 and DoLP 

exhibited similarly probability of detection; however one can notice some significant 

differences in their performances that are worth mentioning.  In day 1, there is a 

probability of detection difference between DoLP and S1, where DoLP lagged in 

performance between 1100h and 2300h, finally catching up to S1 after 2330h on the same 

day.  This lagging effect can be observed once again in day 2, while in day 3, both the 

DoLP and S1 behave quite similarly to each other for the full 24 hours.  S1, on average, is 

the best performing metric (highest average probability of detection over the 72-hour 

period) relative to the remaining Stokes parameters and DoLP in discriminating T0 from 

natural clutter background.  S2 performs better than S1 during some periods but such 

occurrences are rare and only for brief moments.  In general, S2 underperforms both S1 



279 

 

 

 

and DoLP over the 72-hour period.  The M-Box algorithm, on the other hand, 

demonstrates a tremendous capability in discriminating T0 from natural clutter in 

comparison to the remaining metrics.  Two extreme performance degradations during the 

72-hour data can be observed.  For example, the first occurs on the first day at around 

0600h while the second happens during the last few hours of day 3.  The first 

performance degradation can be contributed, to the best of the author’s knowledge, to a 

considerable change in T0’s polarization diversity relative to the background, which in 

turn affected the output of the M-Box algorithm, while the second, is a direct 

consequence of extremely high humidity values (>80%).  During these two situations, the 

performance of the M-Box algorithm, for the most part, performed better than the Stokes 

or DoLP metrics.  As expected, the M-Box algorithm had the best 72-hour average 

probability of detection of all metrics with a        , followed by S1, DoLP, S2, and S0 

with a                           , correspondingly. 
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Figure 5.45  72-hour probability of detection comparison between Stokes parameters, 

DoLP, and M-Box algorithms in discriminating T0 from natural clutter.  The M-Box 

algorithm demonstrated the best 72-hour average probability of detection with a    
    , followed by S1, DoLP, S2, and S0 with a                           , 

correspondingly. 

 

 Figure 5.46 illustrates the 72-hour probability of detection of all metrics in 

discriminating T90 from natural clutter background.  In this figure, one observes some 

interesting dissimilarities relative to the previous Figure 5.45 that are important to 

comment.  In Figure 5.45, one could clearly observe S1 as the best performing 

Stokes/DoLP metric for the full 72 hours, although S2, at times and very rarely, 

performed slightly better than S1.  In Figure 5.46, there’s a clear back and forth between 

S1 and S2 as the best performing metric for the 72-hour data in discriminating T90.  For 

example, between 0000h and 1200h in day 1, one observes a good S1 performance 
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relative to S2.  Conversely, between 1200h in day 1 and 1000h in day 2, S2 becomes the 

best performing metric, when compared to S0, S1, and DoLP.  Then once again S1 

performs better than S2 for a brief moment in day 2 between 1100h and 1200h. S2 once 

more performed better than S1 between the hours of 1200h and 1900h, and finally S1 

performed better than S2 for the remaining of day 2.  Finally in day 3, S2 appears to be the 

best performing metric compared to the remaining Stokes and DoLP parameters.  DoLP, 

unlike previous Figure 5.45, also performed quite well, demonstrating similar 

performance to S1.  S0, as expected, did not perform as well when compared to the 

remaining metrics, demonstrating extremely poor performance results for day 2 and 3 

regardless of high or low contrast scenarios, while for day 1, its probability of detection 

was quite comparable to S1, S2, and DoLP but only for high contrast scenarios and for 

brief periods of time.   

 The M-Box algorithm, see Figure 5.46, performed quite remarkably compared to 

the remaining metrics with two extreme performance degradations at the end of day 2 and 

day 3.  These two degradation events, as explained in the previous Figure 5.45, are a 

result of high humidity (>80%) encountered during these two periods of time.  The 

performance degradation that occurs at the end of day 2 is more pronounced for T90 than 

T0 while for the third day, the degradation encountered is lesser than shown in the 

previous Figure 5.45.  Nonetheless, the M-Box algorithm was still the best performing 

metric with an average probability of detection over the 72 hours with a        , 

followed by S1, S2, and DoLP performing similarly to each other with a        , and 

finally S0 with a        . 
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Figure 5.46  72-hour probability of detection comparison between Stokes parameters, 

DoLP, and M-Box algorithms in discriminating T90 from natural clutter.  The M-Box 

algorithm demonstrated the best 72 hour average probability of detection with a    
    , followed by S1, S2, and DoLP with a        , and finally S0 with a        . 

 

 Figure 5.47 demonstrates the probability of detection of Stokes, DoLP, and M-

Box for the 72-hour period for T135 discrimination from natural clutter background.  Once 

again, there are certain performance dissimilarities shown in T135 relative to previous 

targets (T0 and T90).  For example, S2 in this case, exhibits the best average probability of 

detection throughout the 72-hour period with some rare periods where one finds similar 

detection rates for S1 and DoLP.  These periods can be found during the first hours of day 

1 as well as some underperforming periods close to the end of day 2.  S2 probability of 

detection was highly variable throughout the three days, however one can observe that for 
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high contrast periods S2 performs better compared to low contrast scenes.  During high 

contrast periods, S2 probability of detection hovered between 0.30 and 0.40, while during 

low contrast periods, S2 probability of detection was measured to be between 0.15 and 

0.30.  S1 and DoLP 72-hour average probability of detection was about 0.15 with some 

periods of better performance found in day 3 as well as periods of low performance found 

at the end of day 2 as a consequence of high humidity.  During this event all metrics, 

including the M-Box algorithm, were adversely affected. 

 S0 in Figure 5.47, surprisingly, performed much better compared to the previous 

two targets (T0 and T90) where during the high contrast periods the S0 performance was 

higher or similar to the other Stokes metrics, while during the periods of low contrast, S0 

once again performed very poorly. 

 The proposed algorithm, M-Box, demonstrated once more its ability to 

discriminate T135 successfully from natural clutter background relative to the remaining 

metrics.  On the contrary to what was observed with T0 and T90, there’s a tremendous 

amount of variability in the 72-hour probability of detection measurements, where high 

probability is synonymous to high contrast scenarios as low probability is to low contrast.  

Nonetheless, the measured probability of detection for the M-Box algorithm was 

considerably higher relative to Stokes and DoLP parameters by a significant margin for 

most of the 72-hour period, with some probability of detection degradation found during 

the periods of high humidity at the end of day 2 and day 3.  For the detection of T135 the 

M-Box average 72-hour probability of detection was measured to be        , followed 

by S2 with a        , then S1 and DoLP with a        , and finally S0 with a 

       . 
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Figure 5.47  72-hour probability of detection comparison between Stokes parameters, 

DoLP, and M-Box algorithms in discriminating T135 from natural clutter.  The M-Box 

average 72-hour probability of detection was measured to be        , followed by S2 

with a        , then S1 and DoLP with a        , and finally S0 with a        . 

 

 Figure 5.48, which demonstrates the 72-hour probability of detection of all 

metrics in discriminating the blackbody from natural clutter, illustrates some of the trends 

shown in previous Figure 5.47.  For this manmade object, S2 once again performs very 

well in discriminating the blackbody from natural clutter compared to S1 and DoLP for 

the 72-hour period.  S1 and DoLP only demonstrate better probability of detection during 

the periods of high contrast more specifically around 1200h.  S0 performed the worst of 

all metrics with absolutely no detection whatsoever for the chosen probability of false 

alarm.  The M-Box algorithm on the other hand, had almost perfect detection rate 

(       ) for most of the 72 hours with very few periods where the probability of 
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detection fell below 0.90 which, as stated before, are due to the adverse conditions found 

in those periods of time.  In sum, the M-Box was the best performing metric with an 72-

hour average probability of detection of        , followed by S2, S1, DoLP, and S0 

with a                          . 

 
Figure 5.48  72-hour probability of detection comparison between Stokes parameters, 

DoLP, and M-Box algorithms in discriminating Blackbody from natural clutter.  The M-

Box exhibited the best 72-hour average probability of detection with a        , 

followed by S2, S1, DoLP, and S0 with a                          . 

 

 Figure 5.49 illustrates the 72-hour probability of detection of all metrics for the 

discrimination of the observation tower from natural clutter background. The plot 

demonstrates some interesting differences not seen in previous figures that must be 

acknowledged.  For starters S2 is unable to discriminate the observation tower throughout 
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the whole 72-hour period given the false alarm rate chosen.  Furthermore, S0 is only 

effective in detecting portions of the observation tower in high contrast periods, more 

specifically around 1400h.  Surprisingly, S1 and DoLP are quite efficient in 

discriminating the observation tower from natural clutter; however their probability of 

detection varies depending if it is a high or low contrast scene, where high probability of 

detection equates to high contrast and vice versa.  

 Although the M-Box performed quite well for most of the manmade objects in the 

scene, the measured probability of detection for the observation tower is less than 

desirable with a probability of detection of less than 0.10 for the low contrast periods 

while higher detection rates were found during periods of high contrast.  One of the 

reasons for the low discrimination is the result of the size of the test window relative to 

the number of observation tower pixels available in the image.   

 The observation tower demonstrates the first encounter where the assumption that 

manmade objects always have larger covariance matrices than natural clutter fails.  The 

reason is as follows, let us refer back to Figure 5.34 where it was reasoned that in order to 

observe high variability in manmade objects one must collect samples of facets at 

different angles thus demonstrating a variety of polarizing features.  Since only one facet 

of the observation tower is available, the amount of variability encountered is actually 

less than found in the other objects where more facets and, therefore, higher polarization 

diversity, is available.  In subsequent subsections, this dissertation will demonstrate how 

to detect such objects when the variability is less than that of natural clutter. 
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 Nonetheless, the 72-hour average probability of detection for the M-Box was 

measured to be        , followed by S1 and DoLP with a        , and S0 and S2 

with a        . 

 
Figure 5.49  72-hour probability of detection comparison between Stokes parameters, 

DoLP, and M-Box algorithms in discriminating observation tower from natural clutter.  

For the observation tower, the 72-hour average probability of detection of the M-Box 

algorithm was significantly lower than previous figures measured as        , followed 

by S1 and DoLP with a        , and S0 and S2 with a        . 

 

 Finally, Figure 5.50 represents the probability of detection for all metrics when 

considering all manmade objects as a single class.  In this figure, one can conclude the 

following:  

1) S1, S2, and DoLP performed very similarly to each other with some of the 

metrics doing better than others for certain periods of times.   
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2) S0 only performed well during periods of high contrast while during the 

periods of low contrast its performance was less than desirable. 

 

3) The M-Box algorithm demonstrated good overall discrimination performance 

throughout the 72-hours with some performance degradation as a result of 

adverse weather conditions, however its performance was still higher than the 

Stokes or DoLP detection rate. 

 

 The M-Box algorithm was proposed as a covariance based discriminant function 

for polarimetric imagery in Subsection 5.3.5 based on the results of Subsection 5.3.4.  In 

Subsection 5.3.6, the performance results of the M-Box algorithm against the Stokes 

parameters and DoLP for a full 72-hour performance period were presented as well as 

ROC curves and output surfaces results for specific timestamps.  From the results shown 

in this subsection, the M-Box algorithm clearly demonstrated enhanced detection 

capability at very low false alarm rates (         ) compared to the Stokes and DoLP 

metrics.  The best metric for detecting all the manmade objects in a single class was the 

M-Box algorithm with an 72-hour average probability of detection of 0.81, followed by 

S1, S2, and DoLP with similar performance (        , and finally S0 with a          
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Figure 5.50  72-hour all manmade object detection comparison between Stokes 

parameters, DoLP, and M algorithms. M-Box algorithm exhibited a 72-hour average 

probability of detection of 0.81, followed by S1, S2, and DoLP with a        , and 

finally S0 with a          
 

In conclusion, this subsection demonstrated that:  

1) The proposed M-Box algorithm greatly surpasses the detection 

performance of the Stokes and DoLP parameters for all manmade objects 

with the exception of the observation tower, which as a result of the 

tower’s spatial resolution relative to the moving window area created 

some difficulties for the algorithm to differentiate the manmade object 

from other natural clutter samples. 

 

2)  At low false alarm rates the M-Box algorithm clearly shows a tremendous 

improvement relative to Stokes/DoLP metrics. 

 

3)  The M-Box algorithm performed very well for the entire 72-hour data 

collection regardless of the surrogate target state or perspective angle, with 

only reduced performance during the periods of high humidity (>80%) and 
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only affecting the performance of T135 more than any other object in the 

scene. 

 

5.3.7 Limitations of the M-Box Anomaly Detector 

As shown in Subsection 5.3.4, covariance tests are an efficient method in discriminating 

potential anomalies (manmade objects) from natural cluttered backgrounds by testing the 

hypothesis, 

 

      
     

    

      
     

     

(5.47) 

 

where    is the reference covariance matrix that may be known a priori or collected from 

the image as per the proposed implementation in Subsection 5.3.6.1, and    
     

 is the 

estimated covariance matrix of a moving window at location       in the test scene, X.  

Equation (5.47) was used in Subsection 5.3.5 as a two sample test         between the 

reference and test covariance.  It is worth noting that the reference covariance matrix was 

specified a priori as the covariance with the smallest variability in the scene based on the 

data analysis in Subsection 5.3.4, which suggested that the determinant of a covariance 

estimated from manmade objects in the bivariate space I0 and I90 yielded larger values 

than any corresponding covariance matrices representative of natural objects.  However, 

what if the determinant of manmade objects’ covariances yielded smaller values than the 

ones found in natural clutter background?  How would the proposed M-Box 

implementation in Subsection 5.3.6.1 behave under such situations? 
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 The goal of this subsection is to demonstrate the limitations of the M-Box 

implemented as per Subsection 5.3.6.1.  In that construct, the following key points will be 

presented: 

1) Not all manmade covariance matrices yield larger determinant values than 

natural clutter.  Data analysis on a previously shown dataset will be presented 

here where the determinant of manmade objects’ covariance yields smaller 

values than natural clutter.   

 

2) Under such circumstances, the implementation of M-Box algorithm as 

proposed in Subsection 5.3.6.1 will not correctly discriminate manmade 

objects from natural clutter.  

 

 

5.3.7.1 Data Analysis. Up to now, long range imagery of manmade objects has 

been presented geared towards surveillance applications.  Under these situations the 

implementation proposed in Subsection 5.3.6.1 demonstrated that the M-Box algorithm 

was robust in discriminating manmade objects from natural clutter backgrounds.   

 However, the assumption that the determinant of a manmade covariance is always 

greater than the determinant of natural clutter covariance matrix is not very robust. 

The intent of this subsection is to present a dataset which demonstrates that in 

certain conditions, the variability found in manmade objects can be smaller than 

encountered in natural clutter.   

 Figure 5.51 has been shown previously Subsection 3.5.1, where the goal was to 

demonstrate how S1, S2, and DoLP measurements varied as the test plate (center) angle 

changed from 0°, normal, to 90°, parallel to the camera’s viewing perspective.  The data 

from Figure 5.51 was collected from a plate about 20 meters from the sensor, while the 

data from Figure 5.35 was collected from surrogates at about 550m from the sensor. 
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 Figure 5.51 illustrates the locations of ten random blocks of size       pixels 

collected from the image representative of natural clutter class.    

 
Figure 5.51  Locations of blocks of data collected of natural clutter using a       

blocks of data size. 

 

 Figure 5.52 assumes that the data distribution controlling each block is 

multivariate Gaussian (for illustration purposes only), where the mean and covariance 

were estimated of each block.  The distribution of each natural clutter random block is 

represented black lines, while the global distribution is shown in red for the periods 

where the test plate was angled at 5°, 25°, 50°, and 75° degrees from the camera viewing 

perspective.  The y-axis and x-axis are labeled as I90 and I0, respectively, representing the 

two polarization components composing X.  Once again, as previously mentioned in 

Subsection 5.3.4, the plotting of the data using a normal distribution was done in order 
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for easy comparison between the different material classes and the global reference class, 

and that using the normal distribution plots does not imply, in any shape or form, that the 

data in X is Gaussian distributed.   

 In contrast to what has been suggested in Subsection 5.3.4 where clutter had 

always a smaller spread than the reference, Figure 5.52 demonstrates that the clutter 

sample distributions spread are shown to be wider, equal, or smaller than the global 

reference.  Another way to visualize the results from Figure 5.52 is to take the ratio of the 

determinant of each of the natural clutter covariance matrices relative to the global using 

Equation (5.24) as it was done in Subsection 5.3.4.  If     then the variability 

encountered in the random block of data is higher than the reference, otherwise    .  It 

is also important to note that Subsection 5.3.4 suggested that for manmade objects     

and natural clutter    . 

 Figure 5.53 illustrates the ratio of the determinant of the covariance for each block 

of data representative of natural clutter relative to the determinant of the global 

covariance.  Right away some interesting results can be observed that defy previous 

results shown in Subsection 5.3.4.  In Figure 5.53 for example, the determinant of the 

covariance samples shown in the 5° imagery are smaller than the determinant of global 

covariance matrix (   ), however for images 25°, 50°, and 75° clutter samples four 

and five exhibit larger variability relative to the reference global covariance matrix, while 

the remaining samples still exhibit lesser variability relative to the reference.  For the 

time being, one can conclude that in this dataset not all natural clutter samples 

demonstrate lesser variability relative to the global distribution. 
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5° 25° 

  
50° 75° 

  
Figure 5.52  Comparison between the distribution of each natural clutter block of data 

(black) and global distributions (red dashed) for 5°, 25°, 50°, and 75°.  Although most 

clutter distributions demonstrate smaller variability relative to the global reference, there 

are some outliers that exhibited larger variability relative to the global. 
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5° 25° 

  
50° 75° 

  
Figure 5.53  Ratio of determinant of each manmade covariance matrix     

  and the 

global reference      using Equation (5.24) for 5°, 25°, 50°, and 75°.  In contrast to what 

was demonstrated in Subsection 5.3.4 there are some outliers in clutter where their 

variability was larger than the reference matrix.  Nonetheless, for most of the clutter 

samples collected still exhibited smaller variability relative to the global covariance. 

 

 Focusing on the manmade objects present in the scene, Figure 5.54 illustrates ten 

blocks of data, denoted as     
, representative of the different manmade objects present 

in the scene where three blocks of data represent the test plate (MM1-3), five represent 

the concrete slab (MM4-8), and two represent the reference plate (MM9 & 10).  It is 

important to note that each of the blocks of data are extremely smaller relative to the 
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surfaces of each manmade object, which is in contrast to Subsection 5.3.4 where each 

block of data covered at least two or more surfaces at different orientation angles. 

 The Figure 5.55 illustrate the sinusoidal plots of     
 and    using a normal 

distribution model as reference while Figure 5.56 illustrates the ratio   
    (    

)

    (  )
 .   

 
Figure 5.54  Locations of blocks of data collected from manmade objects where three 

blocks of data were collected from the test plate (MM1-3), five from the concrete slab 

(MM4-8), and two from the reference plate (MM9 & 10). 

 

 Right away one can observe an interesting phenomenon unlike previously seen in 

Subsection 5.3.4; Figures 5.55 and 5.56 demonstrate that all manmade objects 

distributions, regardless of material, can also exhibit smaller variability in the I0 and I90 

bivariate space when compared to the global distribution or the clutter samples shown in 
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Figures 5.52 and 5.53.  Although at a glance these results may be somewhat 

contradictory, the reasoning on why such happens is simple to explain.  In Subsection 

5.3.4 a block of data representative of a manmade object collected information of several 

surfaces oriented at different angles relative to the camera (see Figure 5.35), which as 

explained in Subsection 5.3.4, the result of a moving window in observing different 

manmade surfaces yielded higher variability than what was measured from the clutter.  In 

this case, however, one has quite the opposite.  At closer range the polarization 

information is based on smooth and homogeneous surfaces yielding less variability than 

natural clutter, but at longer ranges and using more complex manmade objects in the 

scene the variability is dominated by orientation diversity than any other phenomena.   
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5° 25° 

  
50° 75° 

  
Figure 5.55  Comparison between the distribution of each block of data representative of 

a manmade object (black) and the global distribution (red dashed) for 5°, 25°, 50°, and 

75°.  In contrast to the results in Subsection 5.3.4 the manmade materials in this 

experiment exhibit smaller variability relative to the global distribution or the individual 

clutter samples from Figures 5.52 and 5.53.  
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5° 25° 

  
50° 75° 

  
Figure 5.56  Ratio between the determinant of each     

 relative to the determinant of 

   for 5°, 25°, 50°, and 75°.  As a result of collecting polarization information from 

homogeneous surfaces the variability exhibited in the test window was extremely smaller 

      than the global reference and clutter information.  

 

 In summary, by comparing figures 5.53 and 5.56, the following conclusions can 

be reached: 

1) The distribution of manmade objects was, in contrast to earlier drawn 

conclusions from Subsection 5.3.4, smaller than the global distribution and 

the background samples for the 5°, 25°, 50° and 75°images.  

 

2) The reason for low variability is the result of collecting data at close range 

where each block of data size is smaller than any single manmade surface 

and, therefore, the information captured by the block of data of a smooth 

homogeneous surface yields small variability. 
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3) Because natural clutter surface is more heterogeneous (e.g., different 

materials or same material at different angles) the value from Equation 

(5.24) is higher than that of manmade objects for close range PI. 

 

4) One can conclude that for close proximity or zoomed in polarimetric 

where the test window is smaller than any surface of a manmade material, 

the variability captured by the window will be less than that of a clutter 

sample.   

 

 As per the conclusions above, one can predict that the M-Box algorithm, proposed 

in Subsection 5.3.5, and as currently implemented as per Subsection 5.3.6.1, will not 

operate as expected when processing close range PI.  Because the smallest determinant is 

now representative of a manmade object, one can expect that most of the samples 

(clutter) that one would like to accept under   |    
  will now be rejected, (  represents 

the desired probability of miss) and vice versa.   

 

 

5.3.7.2 M-Box Anomaly Detector Results. The implementation of the M-Box anomaly 

detector in Subsection 5.3.6.1 assumes that the reference covariance matrix,   , is the 

covariance matrix with the smallest variability found in the test image representative of 

natural clutter in the scene.  In other words, to successfully detect a manmade object in 

the test image the assumption |        |  |  |, where | | denotes the determinant, 

must be satisfied in order to accept or reject H0 successfully.  As seen in the previous 

Subsection 5.3.7.1, such assumption is definitely not satisfied since the smallest 

determinant value in the scene may be in fact representative of one of the manmade 

objects in the scene.  Therefore, since |        |  |  | cannot be satisfied, one can 

predict from the implementation proposed in Subsection 5.3.6.1 that all manmade object 

locations will be represented with very low scores (e.g., close to zero, accepting H0) 
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while background clutter will be represented with high scores (rejecting H0), which is 

clearly an undesirable result as shown in Figures 5.57 and 5.58. 

Figure 5.57 illustrates the output surfaces from the M-Box algorithm implemented 

using the instructions in Subsection 5.3.6.1.  The output surfaces were normalized for 

visual appreciating and comparison by the reader and the angles on the top right of each 

sub-image represent the angle at which the test plate was oriented relative to the sensor’s 

viewing perspective.  The dark blue color represents low values which for the sake of 

argument will be accepted under   , the red color represents high values illustrating 

pixels which will be rejected under   .  At a glance, one can observe that all manmade 

objects are represented by the color blue, which will be accepted under the null 

hypothesis, conversely, there are portions of the clutter which will definitely be rejected 

under the null hypothesis as shown by the color red. 
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Figure 5.57  Output surface of the M-Box algorithm for the close-range polarimetric 

imagery.  Note that all manmade objects are in dark blue color, these locations will be not 

be rejected under the H0 while the red color are locations that will be rejected by the null 

hypothesis, in this case clutter.   

 

 Figure 5.58 illustrates corresponding binary images after cutoff threshold were 

applied to the output surfaces in Figure 5.57 under   |       
 .  In this figure, the black 

pixels represent locations below the cutoff threshold and white pixels represent locations 

above the same cutoff threshold.  All the pixels representing manmade objects were 

accepted under           meaning the decision making process accepted those locations 

as being representative of natural clutter per the algorithm implementation in Subsection 

5.3.6.1, while at the same time the clutter was rejected under the null hypothesis; an 

undesirable result. 
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Figure 5.58  Binary surface of each output surface of the M-Box algorithm for close 

range imagery for   |       
 .  All manmade objects values are below the cutoff 

threshold chosen while a very large part of the clutter values is above the threshold. 

 

 Figure 5.59 represents the PDF of each of the output surfaces shown in Figure 

5.57 with normalized x- and y-axis.  As shown, the first peak (on the left side of each 

plot) represents the manmade object pixels in the image, while the wider peak represents 

locations representative of natural clutter.  In the M-Box implementation in Subsection 

5.3.6.1, clutter is represented by the smallest | | and one expects that H1 should represent 

manmade objects and H0 clutter.  However, when using the implementation in Subsection 

5.3.6.1 in close range PI the manmade objects are represented by H0 while clutter is 

represented by H1.  This result is in contrast to what was shown in Subsection 5.3.5. 
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Figure 5.59  PDF plots for all output surfaces shown in Figure 5.57. 

 One can conclude that the implementation of the M-Box algorithm as proposed in 

Subsection 5.3.6.1 has a clear limitation when used in close proximity or zoomed in 

polarimetric imagery since the location with the smallest variability will be representative 

of a manmade object rather than natural clutter. 

 

5.3.7.3 Data Analysis on the Observation Tower.  Figure 5.49 demonstrated that 

the M-Box algorithm performed extremely poor in discriminating the observation tower 

from natural clutter with some exceptions during high contrast time periods between 

1100h and 1500h. 

 Figure 5.60 illustrates the distribution of T90, the observation tower, and natural 

clutter from a polarimetric data cube collected at 0710h on 6 MAR 2010.  The remainders 
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of the manmade objects’ distributions are not important to show as they bring little to the 

overall discussion.  What is important to note from this figure is twofold: 1) as expected 

the T90 (as well as T0, T135, and the blackbody not shown) distribution demonstrates large 

variability in the I0 and I90 bivariate space relative to the natural clutter and 2) Most 

importantly, the observation tower exhibits less variability relative to the global 

distribution, or similar to that of natural clutter, defying the conclusions in Subsection 

5.3.4. 

 

 
Figure 5.60  Statistical distribution of T90, observation tower, and global information.  As 

expected from Subsection 5.3.4 the surrogate target exhibited higher variability relative 

to the global distribution.  Conversely, the observation tower, another manmade object, 

exhibited lesser variability relative to the global. 
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 The principal reason on why the variability of the observation tower is similar to 

natural clutter is because: (1) only one facet, belonging to the observation tower, can be 

seen from the sensor’s viewing perspective and (2) the facet may not be very polarized as 

a consequence of its angle relative to the sensor.  Referring to the results shown in 

Subsection 5.3.7.1, observing only one facet with very little polarization diversity in the 

bivariate space severely limits the amount of variability that can be collected from the 

manmade object, which validates the results shown in Figure 5.60.  

 Furthermore, the spatial resolution of the tower was much smaller relative to the 

moving window area (about 17% the size of the moving window), the distribution of the 

moving window when centered on the observation tower yielded a distribution with 

significantly smaller variability than natural clutter distribution, and as a result the M-

Box could not successfully discriminate from natural clutter as shown in Figure 5.49.   

 In the following Subsection 5.3.8, a variant of the M-Box anomaly detector will 

be presented which: (1) removes the assumption that the smallest | | is representative of 

natural clutter and (2) allows for the M-Box to be range invariant, and as a result of these 

two features, the M-Box will be able to discriminate the tilting plane (Figure 5.51) and 

the observation tower from natural clutter successfully. 

5.3.8 Random Sampling M-Box (RS-M) Anomaly Detector 

Subsection 5.3.7 demonstrated a concerning limitation of the M-Box algorithm, when 

implemented as proposed by Subsection 5.3.6.1, where it restricted the use of the M-Box 

algorithm to long range imagery only or in situations where the determinant value of a 

manmade object covariance matrix was always larger than any covariance matrix 

determinant representing natural clutter.   
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 This subsection proposes the implementation of a random sampling process with 

the M-Box algorithm to remove the above mentioned assumption, therefore, allowing the 

M-Box anomaly detection algorithm to become range invariant, while at the same time 

retaining equal sample sizes for both the reference and test windows. 

 The goal of this subsection is to demonstrate that by using the a random sampling 

process together with the M-Box algorithm allows to: 

1) Keep both the reference and test with equal samples size. Such is 

desirable because the M-Box covariance test is very sensitive to 

sample size differences. 

 

2) Make the M-Box algorithm range invariant, thus eliminating the 

limitations presented in Subsection 5.3.7. 

 

 Furthermore, as a result of the random sampling process, the possibility of 

contamination has limited effect on the overall output of the algorithm as long as the 

number of random samples representing clutter far exceeds the number of contaminated 

samples. 

 

5.3.8.1 Random Sampling Approach. In Subsection 5.3.5, the M-Box algorithm 

was proposed as a two covariance test where one of the covariance matrices was defined 

as the reference and the other the test.  In summary, Equation (5.30) sets the possible 

hypothesis where H0 represents the occurrence when both the test and reference sample 

are drawn from the same distribution while H1 (the alternative) represents when both the 

test and reference samples come from difference distributions.  The reference covariance 

matrix was estimated from the test image by using a search algorithm to find the smallest 

determinant in the scene (e.g., covariance with the smallest variability) as presented in 

Subsection 5.3.4.  This search algorithm was included in this particular implementation to 



308 

 

 

 

impose sample size equality of both samples (test and reference), therefore, removing any 

sample size differences that can adversely influence the result of the M-Box algorithm.  

However, this implementation made an assumption that the determinants of the manmade 

object covariance matrix always exhibited larger values than that of natural clutter, and as 

it was shown in Subsection 5.3.7, it also limited the use of the M-Box algorithm to data 

acquisitions at long ranges only. 

This subsection proposes a background characterization methodology based on a 

random sampling process to characterize the test scene.  As a result, it removes any 

assumption on the spread of background and manmade objects’ distribution allowing the 

M-Box to work in both short and long range imagery (range invariant), while at the same 

time retaining similar sample size between the reference and test windows. 

In a very simplistic explanation, the proposed random sampling scheme consists 

of N     (pixel) blocks of data that are randomly collected from spatial locations in the 

polarimetric data cube X with the objective of characterizing the background.  Each 

random block is automatically designated as a reference clutter sample; however there 

might be a possibility that a random sample could also represent other than natural clutter 

(this will be discussed later).  These clutter samples are then used as reference by the M-

Box algorithm to test if an unknown sample collected from the scene using the test 

window is similar (or not) to that of the reference samples.  Since the knowledge of both 

the number and locations of anomalies in the scene is unknown, the test window is 

expected to slide across the entire spatial area of X in order to test all possible locations 

in the imagery. 
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A quick example can be explained as follows, if one were to sample Figure 5.61 

with 20 random blocks of data (N=20) of size     pixels, one could safely assume that 

from the data analysis in Subsection 5.3.4, the distribution of all the clutter samples 

would have a smaller spread (variability) than any of the surrogate targets on the scene, 

or (see Figure 5.62) 

 

 |        
 |  |        |          (5.48) 

 

where | | designates the determinant,         
  defines the random reference sample 

covariance matrices, and          the manmade covariance matrix. 

Figure 5.62 illustrates the Gaussian distribution of the 20 random blocks of clutter 

and the manmade object T90 as an example.  As previously stated for similar plots, the 

data blocks are assumed to be Gaussian for illustration purposes.  The covariance was 

estimated from each of the random blocks of data and T90 pixels and used to plot the 

Gaussian distribution shown in Figure 5.62.  The mean of each block was removed so 

that visual comparison can be focused on the data variability.   

The results from Figure 5.62 validate the results found in Subsection 5.3.4 where 

all of the random blocks representative of clutter exhibit smaller spread relative to T90.  

Therefore, one can then conclude that random sampling the background as shown in 

Figure 5.61 would reach, to a certain extent, the same reference covariance spread as the 

implementation proposed in 5.3.6.1. 
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Figure 5.61  Illustration of 20 blocks of clutter randomly collected from the scene 

represented by the color red.  The reference surrogate target is represented by the color 

blue, also known in this dissertation as T90. 
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Figure 5.62  Gaussian distribution representation of the 20 random samples in red and 

T90 in blue.  As expected, the data once again validates the results shown in Subsection 

5.3.4 where all clutter samples distribution exhibited smaller spread relative to the target 

surrogate. 

 

 Figure 5.63, on the other hand, illustrates close range PI, where ten and five 

blocks of data were randomly collected from clutter (red) and manmade objects (blue), 

respectively.  Figure 5.64 presents the Gaussian distribution for each of the clutter and 

manmade samples centered at zero for visual appreciation and comparison. 

 Figure 5.64, as expected from the conclusions from Subsection 5.3.7.1, 

demonstrates that each clutter sample distribution exhibits larger spread relative to the 

manmade objects’ distribution. 
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Figure 5.63  Ten random samples were collected from the natural clutter (red) and five 

random samples were collected from the difference manmade objects present in the scene 

(blue). 

 

 Therefore, for close proximity PI, each of the clutter samples exhibit the 

following relationship relative to the manmade objects, 

 

|        
 |  |        |          (5.49) 

 

 In this experiment, the use of the random sampling approach was successful in 

characterizing the background for short range PI, whereas the assumption from 

Subsection 5.3.6.1 would have failed.  Therefore, the implementation of random 

sampling methodology has shown the ability to characterize the two extreme cases (short 

and long range data acquisitions).  Therefore, combining the random sampling with the 
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M-Box covariance test results in a more generalized detector that could be used in 

situations where the manmade object and clutter spread is not readily defined. 

 

 
Figure 5.64  As expected from the conclusions in Subsection 5.3.7. 1, the distribution 

spread of the manmade objects is smaller than that of the natural clutter when the area of 

the moving window is smaller than any of the manmade objects surfaces.   

 

The focus now turns to the adaptation of the M-Box algorithm with the random 

sampling technique.  Equation (5.38), shown in Subsection 5.3.5, was used to test two 

covariance matrices (k=2) where the first covariance matrix was the reference and the 

other the test.  The hypothesis test for the M-Box algorithm can be easily extended to k>2 

as shown in Equation (5.50).  
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(5.50) 

 

The random sampling methodology can be easily adapted with Equation (5.39) by 

taking, for the time being, a test image and (1) random sampling it with   blocks of data 

and automatically designating them as clutter information (regardless if they are or not).  

Each of the   blocks of data uses a window size of     pixels, which is the same size 

as the test window.  Since the number of target pixels present in the scene is usually 

lesser than the available spatial area in X, for the time being, one assumes that no 

manmade object is sampled during the random sampling procedure.  (2) All   blocks of 

data are automatically designated as the reference library set {  
 }   

          

      and each   
  is rearranged into a sequence of vectors, see Equation (5.19), of 

size       in the form of   
  (  

       
 ) where {  

 }
   

  
.  (3) The covariance 

matrix is calculated for each individual location in   
  to yield   covariance matrices 

{  
 }   

 , which are used as reference to the M-Box detector.   

(4) Once all   
  are calculated for all   reference samples, a moving window 

  
     

 of size       slides across X at every location       for all possible locations in 

X, see Equation (5.18), calculating   
     

.  (5) The M-Box covariance test compares 

  
     

to all reference   
  using Equation (5.39) to either reject (or not) the null hypothesis 

as follows, 

 

      
      

    
     

   

      
      

    
     

   

(5.51) 
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Now to understand how this all comes together with the hypothesis test (Equation 

(5.51)), let’s assume that all of the blocks of data randomly collected from the scene are 

representative of natural clutter only, such that   
      

 . 

If the moving window,   
     

, as it moves across X, collects clutter samples only, 

then   
      

    
     

 and one can conclude that H0 would not be rejected.  On the 

other hand, if   
     

 happens to sample a manmade object, then   
      

    
     

 

and as a result H0 is likely to be rejected. 

Given that   reference blocks of data are available to test the hypothesis 

(Equation (5.51)), as previously mentioned the M-Box equation can be extended to a 

       covariance matrices test as follows, [68] and [69] 

 

          (        |   |    |  
 |    |  

 |      |  
 |    |  

     
|) 

                        (        |   |  ∑   |  
 |

 

   

   |  
     

|)   

(5.52) 

 

where        ,   is the number of random samples collected from the scene,   
  is 

the covariance matrix for each block of data randomly collected from X,   
     

 is the test 

covariance for location       in X, and     is the pooled covariance defined as     

∑     
  

        
     

∑     
     

 for   
      and   

     
.  Note that using the random sampling technique 

allowed to keep the test and reference window sample size the same, which was one of 

the goals in this subsection. 
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 The reason for       , is that the M-Box algorithm test determines if all 

covariance matrices are equal or not, which now includes the   random blocks of data 

and the test window.  Equation (5.52) when used with the random sampling scheme will 

be known from now on as the Random Sampling M-Box or RS-M for short.  The null 

hypothesis distribution of Equation (5.52) is defined by a    distribution with    

           degrees of freedom, where      , the   random blocks collected 

from the image plus the test window.  The degrees of freedom can be further simplified 

in terms of random blocks only as           when substituting   with    . 

 In conclusion, this subsection demonstrated the following: 

1) Random sampling technique is highly beneficial for characterizing an 

unknown test scene eliminating the need to define a priori the clutter 

spread relative to that of manmade objects. 

 

2) The M-Box can be easily implemented with the random sampling 

technique since it is able to test multiple covariance matrices 

simultaneously. 

 

3) The random sampling technique allows for the reference and the test 

blocks to have the same sample size, which is desirable since the M-Box 

covariance test is highly sensitive to unequal sample sizes. 

 

 

5.3.8.2 Short Range PI Results using RS-M. The goal of this subsection is to 

quantify the performance of the RS-M using close range PI.  Figure 5.65 illustrates a 

simple example where the intent is to show the effectiveness of the random sampling 

technique when implemented with the M-Box equation in the form of Equation (5.52) as 

an effective manmade object discriminator.  In this example four clutter samples, in red, 

were manually collected from the test scene and used as reference samples.  Ten test 

samples were collected from the scene where five are representative of manmade objects, 
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shown in blue from one through five, and the remaining five samples from clutter, shown 

in yellow from six through 10.  The intent of this example is to understand how effective 

Equation (5.52) is in rejecting, or not, the null hypothesis when the test sample is 

representative of natural clutter or rejecting the null hypothesis when the test sample is 

from a manmade object. 

 Figure 5.66 illustrates the Gaussian distributions of all the reference and test 

samples, where the reference samples are shown in color red, manmade test samples are 

shown in blue, and the clutter test samples in black.  As one can observe in Figure 5.66 

the manmade objects distribution has a smaller spread than any of the clutter samples 

(reference and test).  Therefore, when using the reference clutter samples to test if a block 

of data is from a manmade object or not, one expects that the result of Equation (5.52) 

should yield a high score if the test sample is from a manmade object and a low score if it 

is from clutter. 
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Figure 5.65  Four clutter samples were collected from image (red) to be used as reference 

and ten samples, five from manmade objects (1 through 5) in blue and five from natural 

clutter (6 through 10) in yellow will be used for testing. 
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Figure 5.66  Gaussian distribution of the reference clutter samples (red), manmade 

objects (blue), and natural clutter (black).  Notice that the natural clutter test samples are 

in black instead of yellow so they can be easily discriminated from the white background. 

 

 Figure 5.67 presents the    distribution with 12 degrees of freedom for different 

probabilities of miss and their respective thresholds, α = 0.10 (z = 18.6), α = 0.05 (z = 

21.1) and α = 0.01 (z = 26.3).  These thresholds allow to determine if the results of 

Equation (5.52) reject or not the null hypothesis.   

 Figure 5.68 illustrates the results of Equation (5.52) where the x-axis represent the 

test samples; MM1 through MM5 are for blocks of data representative of manmade while 

BKG represents natural clutter.  The y-axis represents the equation output score for each 
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of the test and the manually picked samples from Figure 5.65.  Two horizontal lines are 

also shown in this plot that depict different cutoff thresholds for           
  and           

 . 

 
Figure 5.67     distribution with 12 degrees  of freedom for α = 0.10 (z = 18.6), α = 0.05 

(z = 21.1) and α = 0.01 (z = 26.3). 

 

 Overall, the results of the RS-M shown in Figure 5.68 seem quite promising since 

all of the five samples representing manmade objects were rejected by the null hypothesis 

with a cutoff threshold of z=21.1 (      ).  Conversely, when the test sample came 

from a natural clutter, the null hypothesis could not be rejected using the same threshold. 
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Figure 5.68  Results from Equation (5.52) using the four samples (red) shown in Figure 

5.65 as reference and the blue and yellow blocks of data as test.  MM1 through MM5 

represent the blue blocks of data from manmade objects one through five, while the BKG 

represent the five clutter samples.  It is clear that using the reference blocks in Equation 

(5.52) to test the unknown samples demonstrated the ability to discriminate the manmade 

objects from natural clutter using a       . 

 

 In conclusion, from this limited example results, one can suggest that using 

random samples collected from clutter as reference and used with the M-Box algorithm, 

one was successful in discriminating the manmade object samples from natural clutter 

samples. 

 In the following example, the RS-M will be used to process the images, shown in 

Figure 3.15, with the objective to show that (1) the random sampling technique is 

effective in characterizing the background, resulting in successful discrimination of all 

manmade objects from natural clutter backgrounds, and (2) as the number of samples,  , 
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increase so does the ability of the M-Box algorithm in discriminating the manmade 

objects from clutter with a lesser number of false alarms. 

 Clutter samples were manually collected from each of the test images for the 

different angles.  The first experiment manually sampled the background 20 times or 

    , while the second experiment manually sampled the background 30 times or 

    .  All sampled blocks of data are reference samples to be used with the M-Box 

algorithm in Equation (5.52) and the resulting output surfaces are shown in Figures 5.69 

and 5.70.  From here on out the RS-M will be defined as RS-20 or RS-30 when   = 20 or 

30. 

 Figure 5.69 illustrates the output surfaces for the M-Box and RS-M, where the 

RS-M used 20 and 30 reference samples to characterize the test imagery.  All of the 

output surfaces are normalized for visual appreciation.  However, it is important to note 

that Figure 5.69 can be quite little misleading since there are several pixels (especially for 

RS-M algorithm) that display extremely high scores and as a result of the normalization 

the output surface reveals very low contrast between manmade objects and clutter. 

 More importantly, Figure 5.70 illustrates the binary output surfaces for a 

probability of miss of 0.05 for the M-Box and RS-20 and 30.  One can clearly observe the 

RS-M anomaly detector working very well when the output surfaces are thresholded.  

 For example, Figure 5.70 demonstrates that the ability in discriminating the 

manmade objects relative to natural clutter was very similar for both               

reference samples.  On the other hand, the number of false alarms actually decreased 

significantly as a function of increasing N, which should be expected since more samples 

(usually) imply better background characterization.   
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Figure 5.69  Output surface comparison between the M-Box, RS-20, and RS-30.  
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Figure 5.70  Threshold binary images for each of the input images in Figure 5.69 for 

  |       
 . 
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 The following trends can be observed in Figure 5.70: 

1) As explained in Subsection 5.3.7, the M-Box algorithm, when 

implemented as per Subsection 5.3.6.1 only rejected natural clutter while 

in contrast RS-M successfully rejected the manmade objects.  

 

2) As the number of reference samples increased from 20 to 30, the number 

of false alarms decreased significantly as a result of better background 

characterization. 

 

 Figure 5.71 illustrates the PDF plot for the RS-20 output surfaces in Figure 5.69.  

In this image the higher peak (left) in each of the distributions represents the clutter and 

the lower peak (right) the manmade objects in the scene.  The PDF plots for RS-30 are 

not shown due to the redundancy. 

 
Figure 5.71  PDF plots of the output surfaces of RS-20 from 5° to 85°.  

 The important point to stress from Figure 5.71 is that the output surface for the 

RS-M seems to achieve the shape and form of what is expected from the PDF under   , 
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where in this context natural objects respond with values far left toward zero and 

manmade objects respond with values far right toward large numbers.  This desired 

outcome justifies putting a high cutoff threshold far right, based on a   distribution, and 

rejecting    for values above the threshold.  From the M-Box limitations discussed 

earlier in Subsection 5.3.7, the PDF plots shown in Figure 5.59 for the M-Box output 

surfaces do not show the desired features depicted in Figure 5.71. 

 

5.3.8.3 Long Range PI Results using RS-M. In Subsection 5.3.8.2, the RS-M 

demonstrated the capability in discriminating manmade objects in close proximity PI, 

unlike the M-Box implementation presented in Subsection 5.3.6.1.  This subsection 

evaluates the RS-M methodology in discriminating manmade objects in natural clutter 

background for long range (550m) PI. 

 The goal of this subsection is to demonstrate that, using the RS-M to test imagery 

collected at long range: 

1) The RS-M is a versatile anomaly detection algorithm that is able to 

characterize the background successfully using the random sampling 

approach. 

 

2) The RS-M is as effective as the M-Box algorithm in detecting the 

surrogate targets and external blackbody. 

 

3) The RS-M is able to successfully discriminate the observation tower 

from natural clutter unlike the M-Box algorithm from Subsection 

5.3.6.1. 

 

 Figure 5.72 illustrates a broadband image of a scene collected on 6 MAR, 2010 at 

0710h.  In this figure, all manmade objects have similar temperature relative to the 

natural clutter.  Five random samples       were manually collected from natural 

clutter shown in red and used by the RS-M as reference clutter blocks. 
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Figure 5.72  Broadband image collected on 6 MAR 2010 at 0710h.  The manmade 

objects had similar temperature as the natural background.  Five clutter samples were 

manually collected from the scene and used as reference blocks for the RS-M. 

 

 Using Equation (5.52), the reference covariance matrices estimated from each 

block of data are represented by {  
 }   

  while the covariance test matrix estimated from 

the samples of the test window of size     for each location       is represented by 

  
     

.  In order to test the whole image, the test window has to cover all possible 

locations       resulting in an output surface of size               .  In this 

experiment, both the reference blocks of data and the test window have identical sample 

sizes. 
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 Figure 5.73 demonstrates the output surface          , where dark red color 

indicates pixels that are very likely to be rejected by the null hypothesis and dark blue 

represents pixels that are very likely to accepted by the null hypothesis.  In this 

framework, it is desired to have all manmade objects in yellow-red color so they can be 

rejected by the null hypothesis (for a given probability of miss).  What is important to 

emphasize in Figure 5.73 is that not only the surrogates and the blackbody were 

successfully discriminated from the background, the tower was also successfully 

discriminated unlike the results shown earlier in Subsection 5.3.6.2 for the M-Box. 

  



329 

 

 

 

 
Figure 5.73  Output surface of Equation (5.52) using five clutter samples shown in 

Figure 5.72.  All manmade objects are shown in the desired yellow-red color indicating 

that there is a high probability that their locations will be deemed as anomalies when a 

desired probability of miss ( ) is applied.  

 

 Figure 5.74 presents the binary output surfaces for different probability of miss, 

                                        , shown on the top left, top right, and 

bottom images, respectively. 

 Figure 5.74 shows that as the number of false alarms diminishes as a function of 

decreasing probability of miss (incorrectly rejecting   ), all pixels representing manmade 

objects were successfully rejected by the null hypothesis, a highly desirable outcome.  

More importantly, the pixels representing the observation tower were also successfully 
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discriminated using the RS-M anomaly detector, unlike the M-Box algorithm discussed 

in Subsection 5.3.6.1. 

 

      

 
Figure 5.74  Threshold output surfaces of Figure 5.73 using a probability of miss of 

                  .  In this example, the surrogates and the external blackbody are 

clearly detected, performing similarly to the M-Box algorithm.  In addition, unlike the M-

Box, RS-M was also able to discriminate the observation tower successfully.  

 

 This subsection presented results on the RS-M in discriminating manmade objects 

from natural clutter background using long range PI.  The conclusions one can draw from 

this subsection are as follows: 

1) By using a random sampling technique to characterize the background, 

the RS-M is able to discriminate manmade objects in both close range 
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(Subsection 5.3.8.2) and long range (Subsection 5.3.8.3) PI unlike the 

M-Box anomaly algorithm. 

 

2) The RS-M demonstrated that is as effective as the M-Box algorithm in 

detecting the surrogate targets and external blackbody. 

 

3) The RS-M is able to successfully detect the observation tower from 

natural clutter unlike the M-Box algorithm. 

 

5.3.8.4 Contamination Effects on the RS-M Performance. The case of 

contamination of target pixels in   
  as a result of the random sampling process is now 

addressed.  Contamination in this framework indicates that one or more blocks of data 

randomly collected from X, captured information from a manmade object present in the 

scene.   

 Let one assume as an example that N blocks of data are randomly collected from 

a test scene where N-1 blocks are representative of natural clutter and their covariance 

matrices estimated from the blocks of data are similar to each other, or   
    

    
  

    
   .  The remaining N

th
 block of data collects information of a manmade object 

(contamination) present on the scene and the covariance matrix estimated from that same 

block of data is represented by   
 .  Let one also assume that the location of the test 

window   
     

 is identical to the location of the N
th

 random block of data such that, 

   
     

     
, where both   

  and   
     

 represent the same manmade object.  An important 

question follows: what happens to the RS-M ability in discriminating that same manmade 

object when contamination occurs? 

The goal of this subsection is twofold: 

1) Rationalize the reason why as the number of random blocks of data 

(N) collected from the test scene increases (which as a result also 
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increases the probability of contamination), the overall adverse effect 

on the discriminant power of the RS-M is insignificant. 

 

2) Present data analysis and quantify the RS-M capability of 

discriminating manmade objects from natural clutter when 

contamination occurs. 

 

Let one assume that a test scene is random sampled using   blocks of data to be 

used as reference to the RS-M.  As expected, increasing   would also increase the 

probability that one or more random blocks of data can sample manmade objects present 

in the test scene.  Although such contamination issue seems quite problematic at first, the 

truth is that as the number of random blocks of data (N) increases, a large number of 

those N blocks of data should represent only clutter.  In other words, for each block of 

data that is representative of a manmade object, chances are there are many more blocks 

of data representative of natural clutter.   

In order to appreciate how the RS-M may be robust to contamination one must 

understand the impact of the pooled covariance on the overall result of the M-Box 

algorithm. 

Examining Equation (5.40), the pooled covariance by definition is the sum of all 

covariance matrices (reference and test), each multiplied by the respective sample size 

and the result is then divided by the total number of samples of all the covariance 

matrices.  Under this scenario, one would expect that the determinant of the pooled 

covariance matrix |   | would lie somewhere between the determinant values of 

{  
 }   

  and |  
     

|, [58,p. 256], since the pooled estimation is the average of the 

individual estimations.   
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Since     is the average of all   reference and test covariance matrices, as the 

number of blocks of data random sampled from the scene increase, the probability that a 

significant large percentage of all   blocks of data is representative of natural clutter 

should be quite high.  If such is true, then     would be inclined to bear the values of 

representatives of natural clutter only.  Using this rationale, one would expect that 

contamination should have little effect on the overall result of Equation (5.40) with 

increasing  .  The following figures check its validity. 

In order to visualize this effect on the pooled covariance, let one assume that ten 

random samples, red blocks shown in Figure 5.75, are collected from a test scene where 

all random samples are representative of natural clutter only.  At the same time, a test 

sample is collected from the test plate (blue). 

Figure 5.76 illustrates the distributions of the ten reference samples (red), the 

manmade object sample (blue), and the pooled covariance (black).  Notice that all clutter 

samples distributions are wider than the manmade object distribution.  Since, the pooled 

distribution, as mentioned earlier, is the average of all the reference and test distributions, 

the pooled covariance distribution lies closer to the reference samples distribution.  

Therefore, one can conclude that the pooled and the ten reference samples distributions 

are very different from the test sample. 
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Figure 5.75  Ten clutter samples were manually collected from the image shown in red to 

be used as reference blocks for the RS-M.  One manmade object sample, in blue, was 

collected to be compared to the reference samples in Figure 5.76. 
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Figure 5.76  The ten clutter samples distributions from Figure 5.75 are shown in red, the 

manmade sample distribution is shown in blue, and the pooled distribution is shown by a 

dashed black line.  The pooled distribution is shown to be the average of all the clutter 

distributions which, as expected, is very different from the manmade distributions.  All 

distributions are centered at zero for visual appreciation. 

 

 Conversely, Figure 5.77 illustrates the concept of contamination.  In this figure, 

nine reference samples are collected from natural clutter and one reference sample from 

the tilting plate (red) as the contaminated sample, and the same manmade sample, as in 

Figure 5.75, was collected again (blue). 
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Figure 5.77  Illustration of contamination where nine out of the ten reference samples are 

taken from clutter and the remaining one from the test plate.  As with Figure 5.75 the 

same manmade sample (blue) was once again to be compared to the reference samples in 

Figure 5.78. 

 

Figure 5.78 illustrates the reference samples distribution in red, the manmade 

object in blue, and the pooled covariance in black.  In contrast to Figure 5.76, Figure 5.78 

presents the situation of contamination where one of the reference samples collected 

information from the same manmade object.  As a result, one can observe that the 

distribution of the manmade object (in blue) and the contaminated sample are similar to 

each other.  Comparing the distributions of the pooled covariance from Figure 5.76 and 

5.78 one can observe both to be very similar to each other as well. 
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Figure 5.78  Distribution of all the reference samples (red), manmade sample (blue), and 

the pooled distribution (dashed black line).  In this example, the contaminated sample has 

the same distribution as the blue distribution.  Since nine of the samples are 

representative of the background, the pooled covariance is similar to the one found in 

Figure 5.76. 

 

In order to compare the pooled covariances, Figure 5.79 compares the distribution 

of the pooled covariance when no contamination is present (black line) and when 

contamination is present (dashed black line).  The left plot shows both pooled 

covariances plotted on Figure 5.78 and the right plot demonstrates a zoomed in version of 

the left plot for visual appreciation.  What is interesting to note is that even with the one 

sample of contamination present, the difference between the spread of the pooled 

covariance relative to the uncontaminated pooled covariance was minimum, which is 

desirable.   
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For a situation such as in Figure 5.72 where the RS-M algorithm will be applied 

to, as N, the number of random blocks collected from the scene, increases, the probability 

that one or more blocks will sample a manmade object will increase as well.  However, 

the probability that most of the random samples will be representative of the natural 

clutter is also very high, and as a result, the pooled covariance will be representative of 

the natural clutter and the contamination will have little effect on the overall distribution 

of the pooled statistics. 

 

 
Figure 5.79  Comparison between the uncontaminated (black line) and contaminated 

(dashed black line) pooled distributions.  The left plot illustrates the two pooled 

distribution plotted on the Figure 5.78 while the right plot is zoomed in for visual 

appreciation.  One can clearly observe that both the contaminated and uncontaminated 

distributions yield similar spread. 

 

 Finally, Figure 5.80 illustrates the output surfaces when using the reference 

samples from Figure 5.75 (top) and Figure 5.77 (bottom).  It is important to note that for 

the top image in Figure 5.80, all reference samples were collected from clutter while for 

the bottom image one of the ten reference samples was collected from the tilting plate 

while the remaining nine samples were collected from natural clutter.  In comparing the 
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top and bottom images in Figure 5.80, one readily notices that the manmade objects in 

the top image have a higher contrast relative to the surrounding clutter compared to the 

bottom image where contamination occurred.  One also notices that the same false alarms 

located at the top right of the image can be seen in both output surfaces.  This could be 

the result where that precise location exhibits a very different distribution from the 

surrounding clutter and since no random sample was collected from that location, it 

showed up as an anomaly.  

 Figure 5.81 illustrates the binary output surfaces using a cutoff threshold of 22.31 

for a probability of miss of       .  The top image represents the binary cutoff image 

for the uncontaminated output surface (Figure 5.81 top image) and the bottom image 

represents the binary cutoff image for the contaminated surface (Figure 5.81 bottom 

image). 

At a glance, one can observe that for both binary surfaces all manmade objects 

were successfully detected, however the bottom image, where contamination occurred, 

one can find a few more false alarms than in the top image.  The main key point to take 

from these images (and subsection) is that contamination although a possibility has 

limited effect on the final output of the RS-M as long as the number of contaminated 

blocks of data is much less than the number of blocks of data representing clutter.   
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Figure 5.80  Output surfaces for Figures 5.75(top) and 5.77 (bottom).  Both figures 

demonstrate the ability to discriminate all manmade objects from natural clutter 

background.   
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Figure 5.81  Binary surfaces using a cutoff threshold of 22.31 (          

 ) for Figure 

5.80.  The top image had no contamination in the reference samples unlike the bottom 

figure.  All manmade objects are clearly discriminated from natural clutter, however one 

can find a few more false alarms present in the bottom image relative to the top image. 
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 In conclusion, the RS-M algorithm is a more versatile algorithm which can be 

used for a variety of situations where manmade distribution spread may fluctuate between 

being larger or smaller than natural clutter and there is no need for a priori knowledge of 

the background as described in Subsection 5.3.7 and tested in this subsection with short 

and long range imagery.  Finally, this subsection demonstrated some key facts worth 

mentioning again: 

1) The random sampling was proposed as a background characterization 

methodology to be implemented with the M-Box algorithm, known as RS-

M. 

 

2) The RS-M was able to discriminate manmade objects from natural clutter 

background for both short and long range PI. 

 

3) Increasing the number of random samples increases the ability to 

characterize the background very well, resulting in fewer false alarms 

detected. 

 

4) A certain level of contamination in the randomly chosen data blocks from 

the testing imagery, although a potential problem, has little adverse effect 

on the RS-M discriminant output. 

 

 In the next subsection, the RS-M performance will be compared to the M-Box 

algorithm using long range PI as input. 

5.3.9 Performance Assessment of RS-M 

The implementation of the RS-M detector and its performance against the baseline 

algorithm, the M-Box detector, is presented in this subsection. 
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5.3.9.1 Algorithm Implementation.  Let X be an R C image of p observables 

such that         .  

 The first step in implementing the RS-M is to collect   number of blocks of data 

in the form of {  
 }   

  where   
        for any given  , and all N blocks of data are 

automatically designated as reference clutter signatures.  Figure 5.82 illustrates a 

polarimetric test image randomly sampled with different  , e.g., five (red), 10 (green), 15 

(blue), and 20 (yellow). 

 

 
Figure 5.82  Locations of random blocks collected from the scene for the M algorithm 

for                    without any a priori knowledge on the locations of manmade 

objects in the scene. 
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The covariance of each random block of data,   
 , is given by 

 

  
   [(  

     
 )(  

     
 )

 

]    
(5.53) 

 

where    
  is the mean of   

 , and the determinant of   
       is calculated as, 

 

  
        

    (5.54) 

 

Once the determinant of the covariance for each   block of data is calculated, a 

sliding test window moves across image X for every possible location       in X where 

  
     

, the covariance matrix of   
     

, is calculated.  Given the   reference covariance 

matrices    
   and   

     
, Equation (5.55) is used to test the null hypothesis shown in 

Equation (5.51). 

 

                 (        |   |  ∑   |  
 |

 

   

   |  
     

|)  (5.55) 

 

where   
  represents the covariance matrices of the observed data for each of the random 

blocks of data,   
     

 the covariance matrix calculated from the observed data in the 

moving window, | | represents the determinant,   the sample size for both the test and 

reference matrices,     the pooled covariance matrix.   

   is the output surface of Equation (5.55) for all possible combinations of       in 

X of the moving window, such that 
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]  (5.56) 

 

where                   , as a result of using a moving window size of     across 

X in the form of Equation (5.18) to test a center location in   
     

 of size     pixels.  It 

is important to note that     
     in order to keep the sample size between the 

reference and test samples equal to each other. 

Once Z is computed, local results (using samples from     spatial locations 

across X) that fall under    are expected to follow the    distribution, which in turn 

allows to specify a cutoff threshold based on a desired probability of miss (α). 

 

 

5.3.9.2 Performance Analysis  This section reviews the performance of the RS-M 

algorithm for different number of N = 5, 10 and 15 blocks of data randomly collected 

from a test scene with no a priori information on the location of the manmade objects. 

  The results will be compared to the baseline M-Box algorithm proposed in Subsection 

5.3.5 using ROC curves, output surfaces, and a 72-hour performance comparison for each 

of the manmade objects.  The performance between the RS-M and the Stokes vector 

parameters and DoLP are not shown here since it was previously demonstrated, 

Subsection 5.3.6.2, that the proposed M-Box algorithm performed far better than the 

Stokes vector parameters or DoLP.  Therefore, subsequent subsections in Chapter 5 will 

consider the M-Box algorithm as the baseline by which new algorithms will be compared 

to. 
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Figure 5.83 illustrates the probability of detection of T0 for the standard 

timestamps (0710h, 0910h, 1310h, and 2010h) for 6 MAR 2010 for a     range between 

      and       for the M-Box and RS-M.  The full ROC curve is not shown because 

the RS-M and the baseline perform similarly to each other as the     value increases.  

One can readily observe that both RS-5 and RS-10 perform poorly with respect to the 

baseline for all timestamps with the exception of timestamp 1310h.  Interestingly, one 

can also observe that the performance of RS-5 was actually better than RS-10 for 

timestamps 0710h and 0910h.  Such performance difference can be explained as follows, 

because one is collecting random samples from the test imagery and use them as 

reference points, the locations of the random samples and, therefore, their “quality” have 

a direct influence in how well the background is characterized.  This ability to 

characterize the background well has a direct impact on the algorithm’s ability in 

detecting manmade objects in the scene.  It is important to note that in this frame work 

the term “quality” is used loosely to convene how valuable is the information collected 

by each sample relative to the remaining random samples.  It is important to remind the 

reader that increasing the number of samples does not always imply a significant 

improvement in performance as demonstrated by RS-5 and RS-10 performances.  At the 

same time, as demonstrated by RS-15, by increasing the number of random samples from 

10 to 15 the probability of detection rate, using a reference          , for T0 relative to 

the baseline was considerably better with a         compared to the baseline of 

        for 0710h.  For timestamp 0710h, RS-15 exhibited higher probability of 

detection relative to the baseline for the entire ROC curve, shown in Figure 5.83, and 

with similar detection rate for 1310h ROC curves.  The probability of detection of RS-15 



347 

 

 

 

was reduced slightly relative to the baseline for 0910h and 2010h with the RS-15 

performing very well for extreme low false alarm rates, (          ), while the 

baseline performed better for the remaining     values.  The average probability of 

detection for all timestamps for each metric in discriminating T0 using a reference 

          was         for RS-15 and the baseline, and RS-5 and RS-10 with a 

                , respectively. 

6 MAR 2010 – T0 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.83  ROC curves for T0 comparing the performance between the baseline and 

RS-M for different random sample locations.  The     axis of the ROC curves shown is 

limited to very small numbers 0.000 and 0.005.  The average probability of detection for 

all timestamps for T0 using a reference           for all metrics was         for 

RS-15 and the baseline, and RS-5 and RS-10 with a                 , respectively. 
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 Figure 5.84 shows the performance comparison in detecting T90.  One can observe 

that for 0710h RS-10 once again underperformed RS-5 for most of the ROC curve, while 

RS-15 exhibited a higher probability of detection relative to RS-5 and RS-10 for the full 

false alarm range.  Interestingly, as shown in Figure 5.83, RS-15 outperforms the baseline 

for a           , whereas for the remainder of the     range, the baseline once again 

becomes the best performing metric with RS-15 catching up to the baseline    at around 

         .  Conversely, all metrics had similar probability of detection for timestamps 

0910h and 1310h with the exception of the baseline which performs slightly poorly for 

low false alarm rates (          ) for timestamp 1310h.  Timestamp 2010h 

demonstrates the same trend found in 0710h with the baseline having better probability of 

detection than RS-M for             while RS-10 and RS-15 exhibit a better 

detection rate for            .  Nonetheless, by           the RS-M catches up to 

the baseline with a                       for RS-5, RS-10, and RS-15, respectively, 

compared to the baseline with a        .  Finally, the average probability of detection 

of all detectors for a           and the four timestamps was relatively the same with a 

       . 
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6 MAR 2010 – T90 

0710h 0910h 

  
1310h 2010h 

  

Figure 5.84  ROC curves for T90 comparing the performance between the baseline and 

RS-M for different random sample locations. The     axis of the ROC curves shown is 

limited to very small numbers 0.000 and 0.005.  The average probability of detection of 

all detectors for the four timestamps was relatively the same with a         for a 

         . 

 

 Figure 5.85 illustrates the probability of detecting T135 for the M-Box and RS-M.  

As seen in the previous figure, once again RS-10 trails all the other metrics for 0710h and 

0910h while demonstrating similarly    rate for the remaining timestamps.  RS-5 exhibits 

better probability of detection over the     range relative to RS-10 for the first two 

timestamps and similarly to it for timestamp 2010h.  RS-15 once again exhibits better 

probability of detection relative to the baseline for very small            which is 
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highly desirable, while for higher     values, the M-Box algorithm performs better as 

shown in timestamps 0710h and 2010h. Finally, for the remainder two timestamps the 

baseline performs very similarly to RS-15.  RS-10 once again demonstrates a lesser 

detection rate than RS-5, RS-15, and the baseline for the low false alarm rate,     

     , but it quickly catches up to the other algorithms as the     increases close to 

0.005. 

 As such for a          , both the RS-M and the baseline have similar detection 

rate, for example, for 0710h RS-15 and the baseline have a detection rate of         

and        , respectively.  For timestamp 0910h, RS-5, RS-10, RS-15, and the 

baseline have similar probability of detection,                           , and for 

timestamp 1310h a         was measured for all metrics.  Finally, for timestamp 

2010h, a probability of detection of                            can be found for the 

baseline, RS-5, RS-10, and RS-15, respectively.  The average probability of detection for 

the four timestamps using a reference           was                            

for the baseline, RS-5, RS-10, and RS-15, respectively. 
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6 MAR 2010 – T135 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.85  ROC curves for T135 comparing the performance between the baseline and 

RS-M for different random sample locations. The     axis of the ROC curves shown is 

limited to very small numbers 0.000 and 0.005.  The average probability of detection for 

the four timestamps using a reference           was                            

for the baseline, RS-5, RS-10, and RS-15, respectively. 

 

 Unlike what has been demonstrated in the previous ROC curves, the baseline 

revealed to be quite effective in discriminating the blackbody from natural clutter at low 

false alarm rates relative to the other metrics as shown in Figure 5.86.  This trend is 

illustrated in all timestamps where the baseline performs very similarly to RS-M, 

regardless of the number of samples, within the very low false alarm rate of     

      .  For                  the baseline performs better than the RS-M for 
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0710h, 0910h, and 2010h, and as the false alarm rate approaches          , all metrics 

have a similar   .  The divergences between the M-Box and RS-M are shown to be in 

timestamps 0710h, 0910h, and 2010h, while for high contrast scenes (1310h), all metrics 

perform very similarly regardless of    .  The average probability of detection for all 

timestamps given a           were measured as follows; the baseline had the best 

performance with a        , followed by RS-5 and 15 with a        , and finally 

RS-10 with a        . 
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6 MAR 2010 – Blackbody 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.86  ROC curves for the external blackbody comparing the performance between 

the baseline and RS-M for different random sample locations.  The     axis of the ROC 

curves shown is limited to very small numbers 0.000 and 0.005.  The average probability 

of detection for all timestamps given a           were measured as follows; the 

baseline had the best performance with a        , followed by RS-5 and 15 with a 

       , and finally RS-10 with a        . 

 

 As demonstrated in Subsection 5.3.6.2, the M-Box algorithm performed 

extremely poorly in discriminating the observation tower from natural clutter.  Figure 

5.87 once more validates those results by zooming in further than previously shown in 

Subsection 5.3.6.2.  As expected, from the limited results shown in Subsection 5.3.8.3, 

the RS-M algorithm performs extremely well in discriminating the observation tower 
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from natural clutter.  In Figure 5.87 one observes that RS-15 clearly exhibits a better 

detection rate than all other metrics at extremely low false alarm rates for all timestamps 

with RS-5 performing as the second best metric for timestamps 1310h and 2010h and RS-

10 for 0710h and 0910h.  Once again, the M-Box probability of detection is less than 

0.30 for a          .  The average probability of detection for all timestamps using a 

reference           for the observation tower was         for RS-15, followed by 

RS-5, RS-10, and the baseline with a                      , respectively. 

 Figure 5.88 illustrates the overall performance as if all manmade objects were 

combined into a single class.  Overall, for a          , one concludes that the RS-15 

performed very well in discriminating all the manmade objects in the scene with a 

                           for 0710h, 0910h, 1310h, and 2010h, respectively.  The 

M-Box was measured as the second best performing metric with a 

                          , followed by RS-5 with a 

                          , and finally RS-10 with a 

                          .  Interestingly, the ranking changes dramatically if one 

changes the reference to be          .  For example, for a          , RS-15 still 

remains the best performing metric with a                           , followed by 

RS-5 with a                           , then RS-10 with 

a,                           , and finally the M-Box algorithm with a    

                       .  In conclusion, depending of the     chosen, the 2
nd

, 3
rd

, and 

4
th

 ranking changes while RS-15 still remains the best performing metric for the chosen 

timestamps. 
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6 MAR 2010 – Observation Tower 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.87  ROC curves for the observation tower comparing the performance between 

the baseline and RS-M for different random sample locations.  The     axis of the ROC 

curves shown is limited to very small numbers 0.000 and 0.005.  The average probability 

of detection for all timestamps for the observation tower was         for RS-15, 

followed by RS-5, RS-10, and the baseline with a                      , 

respectively. 
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6 MAR 2010 – Overall Performance 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.88  ROC curves for all manmade objects in the scene comparing the 

performance between the baseline and RS-M for different random sample locations.  The 

    axis of the ROC curves shown is limited to very small numbers 0.000 and 0.005.  For 

a           RS-15 is the best performing metric with a 

                          , followed by RS-5 with a 

                          , then RS-10 with a,                            , and 

finally the M-Box algorithm with a                           . 

 

 Table 5.7 illustrates a performance comparison between the M-Box algorithm 

proposed in Subsection 5.3.6.1 and RS-M for N = 5, 10, and 15 random samples for a 

         .  The color scheme used for Table 5.7 represents the following: 1) Red – the 

algorithm(s) with the best probability of detection            for a specific timestamp; 2) 

Green – represents any algorithm where the difference in probability of detection from 
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the highest          is less than 0.03 per object for a given timestamp; 3) black –

algorithms that performed outside the previous two parameters. 

 For T0, RS-15 performed the best by exhibiting both the best    (red) or similarly 

to              five out of the six timestamps, while the M-Box algorithm performed 

better or similarly four out of the six timestamps.  On T90, all metrics performed similarly 

to each other, within the 0.03    difference tolerance, with M-Box algorithm achieving 

the best probability of detection for all timestamps, except for 2010h where RS-10 

demonstrated a better    value than all other metrics by a      difference.  For the T135, 

the M-Box algorithm once again performed very well with six out six timestamps with 

either the best or similar detection rate, followed by the RS-15 with five out the six 

timestamps, and finally RS-5 and 10 with four out of the six timestamps, respectively.  

The M-Box algorithm once again had the best probability of detection for the blackbody 

for all six timestamps, followed by RS-5, 10, 15 with five out of the six timestamps.  

However, the proposed RS-M algorithm has a clear advantage over the M-Box algorithm 

in detecting the observation tower.  For this manmade object, RS-15 was able to 

outperform all of the other algorithms by a significant margin regardless of timestamp.  

Overall, the RS-15 had the best detection rate for all timestamps than the M-Box detector, 

RS-15, and RS-10.  However, it is important to emphasize the differences between the 

RS-M and the baseline is because the RS-M algorithm was able to detect the observation 

tower with a very high probability of detection, which the M-Box could not.  Therefore, it 

more than compensated for any    degradation the RS-M had for any of the other 

manmade objects in the scene. 
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Table 5.7  Performance Comparison Between M-Box and RS-M for Different 

Timestamps for a           

 T0 T90 T135 

 M RS-5 RS-

10 

RS-

15 

M RS-5 RS-

10 

RS-

15 

M RS-5 RS-

10 

RS-

15 

0210h 0.87 0.48 0.31 0.65 0.87 0.85 0.84 0.85 0.56 0.47 0.42 0.50 

0710h 0.75 0.53 0.37 0.92 0.97 0.95 0.94 0.96 0.81 0.72 0.65 0.81 

0910h 0.83 0.67 0.55 0.80 1.00 1.00 1.00 1.00 0.93 0.94 0.94 0.95 

1310h 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2010h 0.97 0.88 0.91 0.96 0.93 0.94 0.95 0.93 0.74 0.66 0.67 0.70 

2310h 0.79 0.60 0.77 0.96 0.89 0.86 0.88 0.87 0.69 0.62 0.65 0.70 

 

Table 5.7  Performance Comparison Between M-Box and RS-M for Different 

Timestamps for a           (Continuation) 

 Blackbody Observation tower Overall 

 M RS-5 RS-

10 

RS-

15 

M RS-5 RS-

10 

RS-

15 

M RS-5 RS-

10 

RS-

15 

0210h 1.00 1.00 1.00 1.00 0.05 0.68 0.53 0.80 0.55 0.65 0.59 0.71 

0710h 1.00 1.00 1.00 1.00 0.20 0.85 0.78 1.00 0.71 0.79 0.73 0.91 

0910h 0.98 0.93 0.83 0.93 0.30 0.53 0.25 1.00 0.87 0.86 0.79 0.94 

1310h 1.00 1.00 0.98 0.98 0.48 0.98 1.00 1.00 0.94 1.00 1.00 1.00 

2010h 1.00 0.98 0.98 0.98 0.40 0.70 0.80 0.93 0.83 0.82 0.84 0.87 

2310h 1.00 1.00 1.00 1.00 0.00 0.65 0.70 0.95 0.69 0.73 0.78 0.86 

 

 

 Figure 5.89 illustrates the 72-hour performance for 6-8 MAR 2010 between the 

baseline (M-Box algorithm) and RS-M for different number of random blocks of samples 

collected from the test scene for a            .  Examining the RS-M performance for 
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RS-M for different  , one can readily observe that overall, RS-15 demonstrated 

comparable probability of detection to RS-5 and RS-10 for the 72-hour period excluding 

the periods of adverse weather, where RS-15 performance was very similar to RS-10 

during the high humidity period in the last few hours of day 3 or better for the remaining 

periods.  The baseline performed remarkably well for most of the 72 hours matching the 

RS-15 probability of detection with some differences worth mentioning.  For example, 

during the beginning hours of day 1, the M-Box algorithm actually performed reasonable 

well compared to RS-M while during the last hours of day 3, the baseline performed very 

poorly relative to RS-10 and RS-15 but exhibiting better detection rate than RS-5.  

During the high contrast periods, all metrics performed similarly to each other.  The best 

average probability of detection over the 72-hour period was RS-15 and the baseline with 

a        , followed by RS-10 (       ), and finally RS-5 (        . 



360 

 

 

 

 
Figure 5.89  72-hour performance comparison between RS-M and M algorithm in 

discriminating T0 from natural clutter. The best average performing metric over the 72-

hour period was RS-15 and the baseline with a        , followed by RS-10 (   
    ), and finally RS-5 (        . 
   

Figure 5.90 illustrates the 72-hour probability of detection of T90 for the baseline 

and the different RS-M.  The RS-M, regardless of number of samples collected, 

performed comparably well to the baseline for most of the 72-hour period of performance 

with the exception for the periods of high humidity found in day 2 and 3.  In the first 

adverse weather period, RS-10 and RS-15 exhibited degraded performance relative to the 

baseline and RS-5, while for the second period, RS-5 performed very poorly compared to 

the remaining metrics.  During the periods of high contrast all metrics performed 
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similarly to each other, while during the periods of low contrast RS-M performed slightly 

worse than the baseline. 

Regardless of the performance differences, on average, all metrics performed very 

similarly to each other, with the best average performing metric as the M-Box algorithm 

with a        , followed by RS-10 and RS-15 with a        , and finally RS-5 with 

a        . 

 For the detection of T135, Figure 5.91, the baseline demonstrated better probability 

of detection than RS-M for the 72 hours where one can find a maximum    divergence of 

0.10 during the early hours of 6 MAR 2010.  During the time periods where the target is 

solar loaded or high humidity is present, both RS-5 and RS-10 display similar probability 

of detection as the baseline.  It is interestingly to notice that during the periods of high 

contrast scenarios all metrics performed quite similarly, while during the periods of low 

contrast scenarios the baseline performs better than RS-M.  For the period of high 

humidity in day 2, all metrics performed very poorly in discriminating T135 from natural 

clutter with no or very low detection probability, while for the next high humidity period 

found at the end of day 3, all metrics, with the exception of RS-5,  had similarly 

probability of detection.  The best performing metric in discriminating T135 over the 72-

hour period was once again the M-Box algorithm with an average detection rate of 

       , followed by RS-15 (       ), and RS-5 and RS-10 with a          
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Figure 5.90  72-hour performance comparison between RS-M and M algorithm in 

discriminating T90 from natural clutter.  The best average performing metric for T90 was 

the M-Box algorithm with a        , followed by RS-10 and RS-15 with a        , 

and finally RS-5 with a        . 

  

 Figure 5.92 illustrates the probability of detection comparison between the 

baseline and the different RS-M for the blackbody.  In this figure, RS-15 demonstrated 

similar probability of detection relative to the baseline and at the same time 

outperforming both RS-5 and RS-10 for most of the timestamps.  During the periods 

where high humidity was present, RS-15 demonstrated a very slight decrease in the 

detection rate compared to the baseline.  Conversely, RS-5 performed similarly to the 

baseline and RS-10 throughout the 72-hour period with the exception of the last hours in 
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day 3 where RS-5 performed slightly worse than the baseline, RS-10, and RS-15.  The 

baseline performed better than the remaining metrics during this same period.  

Furthermore, observing the period of high humidity at the beginning of day 3, one 

observes that the baseline performs better in detecting the blackbody compared to the RS-

M with a probability of detection difference of about 0.20 at certain times.  Therefore, it 

is with no surprise that in detecting the blackbody the M-Box algorithm demonstrated the 

best a 72-hour average probability of detection with a        , followed by RS-10 

(        , RS-15 (       ), and RS-5 (       ). 

 
Figure 5.91  72-hour performance comparison between RS-M and M algorithm in 

discriminating T135 from natural clutter.  For T135 target set the best performing metric 

was the M-Box algorithm with an average detection rate of        , followed by RS-

15 (       ), and RS-5 and RS-10 with a          
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Figure 5.92  72-hour performance comparison between RS-M and M algorithm in 

discriminating the blackbody from natural clutter.  For the blackbody target set, the M-

Box algorithm clearly outperforms all other metrics with a        , followed by RS-10 

(        , RS-15 (       ), and RS-5 (       ). 

 

 

As shown in previous ROC curves for the observation tower, Figure 5.87, the RS-

M performed very well over the entire 72-hour performance period, Figure 5.93, with the 

baseline demonstrating some relatively good detection rates during the periods of high 

contrast only.  One also observes that both RS-5 and RS-10 exhibit higher variability in 

the probability of detection throughout the 3 days, especially during the periods of 

adverse weather found in day 2 and 3.  In contrast, the probability of detection of RS-15 

was far more stable throughout the 72-hour relative to the other metrics as a result of 
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better background characterization.  For Figure 5.93 the metric with the best average 

probability of detection over the 72-hours was RS-15 (       ), followed by RS-5 and 

RS-10          , and finally M-Box (       ). 

 
Figure 5.93  72-hour performance comparison between RS-M and M algorithm in 

discriminating the observation tower from natural clutter.  The best average probability of 

detection for the 72-hours was achieved by RS-15 (       ), followed by RS-5 and 

RS-10          , and finally M-Box (       ). 

 

Finally, Figure 5.94 represents the overall probability of detection for the 72-hour 

period of performance when all manmade objects are placed into a single class.  From 

Figure 5.94 one observes that the RS-M had similar or better detection rate than the 

baseline during the late morning hours of each day, while during the periods of high 
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humidity both RS-10 and RS-15 exhibited better probability of detection compared to the 

baseline.  On average, the probability of detection for the 72-hour period was measured 

as follows: RS-15 was the best performing metric with an average detection rate of 

       , followed by RS-10 (       ), RS-5 (       ), and finally M-Box 

(       ). 

 
Figure 5.94  72-hour performance comparison between RS-M and M algorithm for all 

manmade objects in the scene.  The average probability of detection for the 72-hour 

period was measured as follows: RS-15 was the best performing metric with an average 

detection rate of        , followed by RS-10 (       ), RS-5 (       ), and 

finally M-Box (       ). 
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The above Figures 5.89 through 5.94 demonstrated some key points worth 

emphasizing: 

1) The RS-M demonstrated a tremendous capability in discriminating the 

observation tower from natural clutter relative to the baseline. 

 

2) For the chosen           the RS-15 demonstrated similar 72-hour 

average probability of detection compared to the baseline for most 

manmade objects with some few exceptions: 

 

a. The baseline exhibited better detection rate than RS-15 for the 

external blackbody. 

 

b. The RS-M demonstrated better detection rate than the baseline 

for the observation tower. 

 

3) RS-M using      had the best 72-hour average probability of 

detection compared to RS-M using          . 

 

4) There was very little difference in the 72-hour average probability of 

detection between RS-5 and RS-10. 

 

Figure 5.95 presents the broadband images on the left (for visual appreciation) 

and the output surfaces for the baseline, RS-5, RS-10, and RS-15 for timestamps 0210h, 

0710h, 0910h, 1310h, 2010h, and 2310h on 6 MAR 2010.  These output surfaces are 

normalized for visual appreciation and ease of comparison.   

Right away one observes that all metrics are capable of discriminating most of the 

manmade objects successfully, with the exception of the baseline which cannot 

discriminate the observation tower.   

The number of false alarm regions shown in the M-Box algorithm is higher than 

the ones found in the RS-M.  In fact, as the number of   increases, the width and number 

of false alarms tend to decrease significantly.  
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In conclusion, Figure 5.95 demonstrates that as   increases from five to 15 

random samples, the output surfaces of the RS-M algorithm seem to be more visually 

appealing to an operator than the one provided by the baseline. 
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6 MAR 2010 

0210h 

 
0710h 

 
0910h 

 
Figure 5.95  Output surfaces for M-Box and RS-M algorithm for N = 5, 10, and 15 

random samples.  
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6 MAR 2010 

1310h 

 
2010h 

 
2310h 

 
Figure 5.95  Output surfaces for M-Box and RS-M algorithm for N = 5, 10, and 15 

random samples.(Continuation)  
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In this subsection the performance of the RS-M was presented and compared to 

the baseline, M-Box.  The following key points can be summarized from this subsection 

as follows:  

1) The ROC curves demonstrated that the baseline performed better than 

the RS-M for very low false alarm rates          , however by 

          both the RS-M and the baseline demonstrated similar 

performances. 

 

2) The RS-M was capable of detecting the observation tower better than 

the baseline for the ROC curves and the 72-hour performance period. 

 

3) The ROC curves demonstrated that, in general, the RS-5 displayed 

better detection rate than RS-10 at low false alarm rates, and as the 

false alarm rate reached 0.005 both RS-5 and RS-10 performed very 

similarly.  Consequently, one could find little difference in the 72-hour 

average probability of detection between RS-5 and RS-10.  One can 

conclude that for the low false alarm rate region, the locations or 

“quality” of samples collected from the scene directly influenced the 

algorithm’s ability to discriminate the manmade objects. 

 

4) For the chosen          , the RS-15 demonstrated similar or better 

72-hour average probability of detection for T0, T90, T135 and the 

observation tower relative to the baseline.  Conversely, its detection 

rate was inferior to the baseline in discriminating the external black 

body. 

 

5) RS-M using      had the best 72-hour average probability of 

detection compared to RS-5 and RS-10.  Therefore, increasing the 

number of random samples enhanced the algorithm’s ability in 

discriminating the manmade objects from the natural clutter. 

 

6) As the number of samples increased, the output surface from the RS-M 

became more visually appealing compared to the baseline. 

 

Finally, the limitations of the RS-M will be presented in the next subsection. 
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5.3.10 Limitations of the RS-M Anomaly Detector 

Subsection 5.3.8 demonstrated that by implementing a background characterization 

methodology based on a random sampling scheme with the M-Box test the newly 

proposed algorithm, the RS-M, became range invariant.  This range invariance was 

validated using close and long range imagery (Subsection 5.3.8.2 and 5.3.8.3) and the 

results demonstrated that the RS-M was highly successful in discriminating the manmade 

objects from natural clutter background regardless of the range.  Furthermore, Subsection 

5.3.8.4 confirmed that there was limited adverse effect from potential manmade sample 

contamination as a result of the random sampling scheme, a highly desirable robustness.  

Subsection 5.3.9 presented a performance analysis between the M-Box and the RS-M and 

demonstrated that the RS-M not only exhibited similar performance to the M-Box 

algorithm for a           but it was also capable of detecting the observation tower, 

which the M-Box algorithm could not.  Also, as the number of random samples collected 

from the scene     increased from five to 15 random samples, the RS-M ability in 

discriminating the target at very low false alarm rates increased as well. 

This subsection will present a significant limitation of the RS-M in situations 

where the scene’s manmade objects covariance determinant value lies in between clutter 

values or |          |  |        |  |          |.  In such situation, the RS-M will not 

be able to detect the manmade object, in fact, as it will be shown later on, all test samples 

regardless if they come from natural clutter or not will be deemed as anomalies making 

the output surface unusable for anomaly detection applications.   

Before showing any results, it is important to emphasize that until this day the 

SPICE data collection effort has not collected any dataset that specifically shows 
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manmade objects covariance determinant values in between two clutter classes.  The fact 

that any analysis performed for this work has not found this particular subtle case in the 

SPICE dataset does not mean it cannot be manifested in real data, as a result it was 

decided to further investigate this particular limitation.  In order to present scenarios 

where the RS-M limitation is evident, clutter samples from short and long range PI were 

collected and their Gaussian distributions estimated for the following examples.   

Figure 5.96 illustrates a synthetic scene made up of three distributions, Clutter A, 

Clutter B, and manmade.  Clutter A and manmade signatures were generated using the 

Matlab
©

 multivariate random generator (mvnrnd) [74] using the estimated mean and 

covariance from clutter and manmade samples, respectively, collected from close range 

PI, whereas Clutter B signatures were generated using estimated mean and covariance 

using clutter samples collected from long range PI.  Different shades of red exemplify a 

hot object while shades of blue a cold object.  The estimated mean and covariance 

matrices of the clutter and manmade samples are shown in Table 5.8 and their 

distributions are plotted in Figure 5.97 where distribution Clutter A is plotted as a black 

solid line, distribution Clutter B as a dashed black line, and the manmade distribution as a 

red solid line. 

In the next set of examples, five and ten samples             from distribution 

Clutter A and/or Clutter B are manually collected from the image.  Test samples are then 

collected from either distribution Clutter A, Clutter B, or manmade to assess if the RS-M 

test rejects or not the null hypothesis. 

It is important to note that the first experiment does not illustrate the limitation of 

the RS-M per say, rather is used as a precursor to the introduction of the limitation.  The 
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first experiment entails the collection of ten random samples from distribution A only, 

which will be used as reference, and three test samples are collected from each of the 

distributions Clutter A, Clutter B, and manmade.   

 

Table 5.8  Estimated Statistical Parameters for Manmade and Clutter Classes 

     

Manmade 
[0.0007439 0.0007386] 

[
            
            

]        

Clutter A 
[0.0007143 0.0007121] 

[
            
            

]       

Clutter B 
[0.0004456 0.0004564] 

[
            
            

]        
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Figure 5.96  Synthetic image illustrating two clutter classes (Clutter A and Clutter B) and 

a manmade class.  Each of the areas were randomly generated by Matlab
©

 multivariate 

random generator using estimated mean and covariance matrices from real data.  Clutter 

A and manmade statistics were estimated from close range PI while Clutter B statistics 

were estimated from long range PI. 
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Figure 5.97  Distribution of all three classes, manmade and Clutter A and Clutter B.  

Clutter A exhibits a larger spread relative to manmade object while Clutter B exhibits a 

smaller spread. 

 

The first example entails the collection of ten reference blocks of data from 

Clutter A only.  Figure 5.98 illustrates the distribution of Clutter A, Clutter B, and 

manmade, as shown in Figure 5.97, with the addition of the pooled distribution when all 

reference samples are taken from Clutter A only.  As expected, since all ten reference 

samples are collected from distribution Clutter A and only one test sample is collected 

from either one of the three distributions, the pooled distribution follows the distribution 

Clutter A very closely, which is expected.  One can then conclude that if a test sample is 

taken from Clutter A, one would expect that the output of the RS-M should yield a very 
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low score; otherwise if the test sample is collected from Clutter B or manmade object, the 

RS-M should yield a high score.   

Figure 5.99 presents the RS-M output values when the ten reference samples are 

taken from Clutter A and compared to test samples taken from all distributions (three 

from each distribution).  As shown in Figure 5.99, if the test sample is collected from 

distribution Clutter A, the output of the RS-M yields a very low score (9.96, 11.34, 9.81), 

therefore, not rejecting the null hypothesis, for                                 

                   .  If the test samples are taken from distribution Clutter B or 

manmade then the RS-M yields very high scores (86.22, 85.53, 106.75, 49.09, 48.60, 

36.11), therefore, rejecting the null hypothesis.  Although not shown here, if one collects 

ten random samples from distribution B only, then the RS-M output scores for any test 

sample from distribution B yields a low score (8.5, 5.12, 13.91) while any test sample 

from either manmade or distribution A yields a high RS-M output value (331.22, 375.68, 

322.06 for distribution A, 398.25, 307.57, 337.38 for manmade).  Table 5.9 illustrates the 

results from the experiments for both cases when the reference samples were collected 

from distribution Clutter A or Clutter B only. 
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Figure 5.98  By collecting all ten reference samples from Clutter A only the pooled 

distribution is similar to that of Clutter A distribution.  Therefore, any test sample taken 

from distribution Clutter A the result of the RS-M will yield a small value, otherwise it 

will yield a high value. 
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Figure 5.99  Since all reference samples were taken from distribution Clutter A, the 

result of the RS-M when a test sample is taken from Clutter A yield very small values 

compared to test samples from distribution Clutter B or manmade. 

 

Table 5.9 compares the output of the RS-M for the different test samples and the 

reference samples when collected from Clutter A or Clutter B only.  Table 5.9 shows, as 

expected, that collecting reference samples from distribution Clutter A or Clutter B 

demonstrates that the RS-M does not reject the null hypothesis if test samples come from 

the same reference distribution, otherwise it rejects the null hypothesis for any test 

sample collected from other distributions based on the threshold values shown above for 

a probability of miss of                      .  
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Table 5.9  RS-M Results for Reference Samples Taken from Clutter A or B 

 

Clutter A Only Clutter B Only 

T1 T2 T3 T1 T2 T3 

Manmade 49.09 48.60 36.11 398.25 337.38 307.67 

Clutter A 9.96 11.34 9.81 331.22 375.68 322.06 

Clutter B 49.09 48.60 36.11 8.5 5.12 13.91 

 

Now let’s consider the case when the reference values are collected from both 

distributions controlling Clutter A and Clutter B.  For example, let two sets of five 

reference samples be manually collected from distribution Clutter A and Clutter B for a 

total of ten reference samples.  The distributions of Clutter A, Clutter B, manmade, and 

the pooled distribution are shown in Figure 5.100.  In this example, because the 

distribution spreads of Clutter A and Clutter B is larger and smaller, respectively, relative 

to the manmade object distribution, the pooled distribution of all samples lies close to the 

distribution of the manmade object somewhere between the two clutter distributions.  

However, the result of the RS-M test yields very high scores for all test samples, virtually 

rejecting the null hypothesis (values are above                ) regardless of where 

the test samples are collected from, see Figure 5.101.  Although counterintuitive at first, 

one should remember that the RS-M hypothesis test (Equation (5.50)) is comparing all 

covariance matrices to see if they are equal to each other or not.  This is accomplished by 

Equation (5.52), which compares the individual covariance matrices to the pooled 

covariance.  As a result, when the test sample is from a manmade object, ten (reference 

samples from Clutter A and B) of the eleven distributions are highly different from the 

pooled distribution, and the output of the RS-M test yields extremely high scores.  If the 
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test sample is collected from either Clutter A or Clutter B then five of the eleven 

distributions are significantly different from the pooled distribution and once again the 

RS-M yields a high score.  Therefore, one can conclude that in situations where clutter 

distribution spread is both larger and smaller compared to manmade object distribution 

and the number of random samples collected from both distributions is also similar, the 

RS-M will reject the hypothesis for any test sample in the scene making it unusable as an 

effective anomaly detector. 

 
Figure 5.100  Two sets of five random samples were manually collected from Clutter A 

and B, respectively.  In this case the pooled distribution lies somewhere between the two 

clutter distributions, in this case similar to the manmade object distribution.  Unlike 

Figure 5.98 the pooled distribution is not representative of any of the clutter classes. 
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Figure 5.101  Since ten of the eleven distribution spreads (all clutter reference samples) 

are highly different from the pooled covariance the output of the RS-M yields an 

extremely high result, ensuing that the hypothesis is rejected (all values are 

above                 ) regardless if the sample is from clutter or not. 

 

In the previous example the same number of samples, five, were collected from 

each of the clutter and the RS-M output values shown in Figure 5.101.  Table 5.10 

presents the RS-M output values as the number of samples collected from Clutter A 

increases relative to Clutter B.  In this example, as expected, the RS-M output values for 

test samples belonging to Clutter A decreased as function of increasing the number 

reference samples collected from Clutter A.  The same is true for reference samples and 

test samples taken from Clutter B. 

Nonetheless, what is important to emphasize from this table is that even as the 

number of samples collected from Clutter A increase to nine out of the ten collected 
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samples the spread of the distribution from Clutter B still influences significantly the 

result of the RS-M to reject the null hypothesis (using a threshold of 30.57) regardless if 

the samples come from Clutter A or not.   

Therefore, one must conclude that the RS-M is not a reliable algorithm for 

situations where the manmade covariance determinant values are found in between two 

different clutter values. 

Table 5.10  Experiment to Show the RS-M Limitation Using a Threshold of 30.57 

Clutter A Samples Clutter B Samples Test Sample Result 

5 5 Clutter A 330.27 

5 5 Clutter B 365.98 

5 5 Manmade 366.60 

6 4 Clutter A 315.04 

6 4 Clutter B 347.79 

6 4 Manmade 338.12 

7 3 Clutter A 265.88 

7 3 Clutter B 301.78 

7 3 Manmade 288.66 

9 1 Clutter A 95.98 

9 1 Clutter B 311.18 

9 1 Manmade 129.45 

 

In conclusion, the RS-M is a very versatile algorithm in discriminating manmade 

objects from natural clutter backgrounds as previously shown for close and long range PI  

where these two situations the spread of the distribution of the clutter was either smaller 
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than manmade distribution (long range) or larger (short range).  Conversely, as presented 

in this subsection, if a test scene exhibits clutter that has both larger and smaller 

distribution spread relative to the manmade objects the RS-M will fail to discriminate the 

manmade object from natural clutter.   

Again, the specific problematic case described in this subsection was not found in 

the dataset presented in other subsections in this dissertation and the results present here 

used distribution samples from several close and long range test images to demonstrate 

the potential limitation of the RS-M in a practical environment. 

The next subsection will present a new variation of the RS-M algorithm called 

Parallel Random Sampling M-Box anomaly detector and this new variation is both range 

invariant as the RS-M without the limitation shown in this subsection. 

5.3.11 Parallel Random Sampling M-Box (PRS-M) Anomaly Detector 

Subsection 5.3.5 proposed the M-Box covariance test as an anomaly detector for 

manmade objects in natural clutter backgrounds based on the discriminant features found 

in Subsection 5.3.4.  The implementation proposed for the M-Box algorithm in 

Subsection 5.3.6.1 demonstrated exceptional performance compared to Stokes and DoLP 

parameters; however, as a result of the proposed implementation, the M-Box algorithm 

was limited to long range PI (see Subsection 5.3.7 for details).  Subsection 5.3.8 proposed 

the Random Sampling M-Box anomaly detector, which much like the M-Box from 

Subsection 5.3.6.1 excelled in discriminating manmade objects from natural clutter 

backgrounds with the added benefit that the RS-M could be operated in both close and 

long range PI with no a priori information about the test scene.  Nonetheless, the RS-M 

performance could be adversely affected if a test scene exhibited a manmade distribution 
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where its spread lies in between two clutter distributions spreads.  In such situation, as 

shown in Subsection 5.3.10, any test sample, regardless if it would come from clutter or 

not, the output from the RS-M yielded high values that were prone to be rejected by the 

null hypothesis, thus making the RS-M an ineffective anomaly detector. 

Before diving into the PRS-M, it would be beneficial to describe how some of the 

features previously individually implemented into the M-Box and RS-M from 

Subsections 5.3.6.1 and 5.3.8 are now implemented conjointly into the PRS-M.   

As shown previously, the implementation of the M-Box from Subsection 5.3.6.1 

suffered from range limitations (Subsection 5.3.7) and one way to bypass this limitation 

was the introduction of the random sampling methodology, which was used as a 

background characterization method for the M-Box test in the RS-M anomaly algorithm, 

thus making the RS-M range invariant.  Therefore, to keep the M-Box covariance test 

still range invariant the random sampling technique still needs to be incorporated. 

On the other hand, the RS-M had difficulty in discriminating manmade objects 

from natural clutter in situations where the manmade covariance determinant value lies in 

between two or more clutter covariance determinant values.  In this situation the test 

rejected the hypothesis regardless if the test sample was representative from clutter or 

manmade objects making the RS-M impractical as an anomaly detector.  This limitation 

was directly influenced by the pooled distribution when the covariance test compared all 

N reference and test samples to the pooled covariance in a single equation.  Therefore, it 

isn’t practical to use the M-Box to test   samples, where    ; as shown in Subsection 

5.3.8.  Instead, for situations where the clutter distributions change dramatically with 

respect to the manmade object, the test should remain between each of the reference 
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samples and the test sample only or      .  In this case, by keeping    , the pooled 

covariance will be influenced only by the test sample and each individual reference 

sample. 

In conclusion, for the reasons mentioned in the previous paragraphs, the proposed 

algorithm should retain the random sampling approach presented in Subsection 5.3.8 and 

at the same time keep the number of covariance matrices tested by the M-Box as     

as discussed in Subsection 5.3.5.   

This subsection proposes to combine the powerful test statistic presented in 

Subsection 5.3.5 (M-Box algorithm) with an existing autonomous background 

characterization method known as Parallel Random Sampling (PRS) that has been 

previously proposed as a highly efficient background characterization method for HS 

imagery [62-66].  This methodology demonstrated the ability to increase an algorithm’s 

performance for a variety of adverse weather conditions.  In this subsection the PRS and 

the M-Box are combined to yield an even more effective anomaly detector when 

compared to the M-Box and RS-M detectors while preserving the range invariance 

needed for close and long range PI as well as mitigating the RS-M limitation introduced 

in Subsection 5.3.10. 

The parallel random sampling methodology, as the name implies, uses the random 

sampling technique to collect information about the scene (scene characterization) that 

will be used by the detector to discriminate potential manmade objects from the scene.  

The parallel term is added because each set of random sampling and image processing is 

repeated multiple times independently of each other and the output surfaces from all the 

parallel outputs are then fused together to yield a final output surface. 
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5.3.11.1 Using the Random Sampling Approach with the PRS-M.  As shown in 

Subsection 5.3.8, by random sampling the scene with N blocks (windows) of data and 

designate them as clutter allowed for the RS-M to be range invariant.  The same concept 

is again used for the PRS-M by implementing the random sampling method to 

characterize the test scene.   

 The difference between what was proposed in Subsection 5.3.8 and in this 

subsection is that M-Box compares the distance between each individually randomly 

selected reference samples with the test sample, and for reasons to be explained shortly, 

keep the result with the lowest score out of all N scores.   

For example, let one assume that a PC X, such that         , is to be tested 

and   blocks of data of size       are randomly collected from the image and used as 

reference in the background library set, such that each reference block is represented by 

{  
 }

   

 
 and          , where each   

  contains the polarization vector information 

collected from X in the form of, 

 

  
  [    

         
 ], (5.57) 

 

where       is the number of total pixels collected by each block of data and   
  

     is a p-dimensional vector.  From each   
  ,   

  is calculated for each individual 

random block.  As the moving window moves across the image in X, collecting a block 

of data of size     pixels, at a given location       denoted as   
     

 where, 

 



388 

 

 

 

  
     

 [  
     

      

     
]  (5.58) 

 

and the covariance of   
     

is given by   
     

.  Since there are   reference covariance 

matrices, one needs to test if  

 

         
   

         
   

(5.59) 

 

for all   blocks of data and produce a final output value for each location      , such that 

 ̃ 
     

  .  Therefore, for each location      , the hypothesis test (Equation (5.59)) will 

be tested N times, yielding N results in the form of { ̃ 
     

}
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 is represented as, 
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(5.60) 

 

for all           and         .  Then, 

 

 ̃         
     

 ̃ 
     

  (5.61) 

 

where  ̃      is the final value at location       in the output surface. 

 The reason for taking the minimum of all   results is as follow, let one assume 

that all   blocks of data that were randomly collected from the image are representative 

of background only.  If the moving window collects samples representative of clutter then 
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one could predict that all   results would yield small scores since the reference and the 

test samples come from the same class (natural objects), in other words one would not 

reject    for all   results.  Therefore, taking the minimum of all   scores one would still 

not reject   .  Conversely, if the moving window collects a sample representative of a 

manmade object, then in principle all   results would yield high scores, rejecting   , and 

once again if the minimum score were to be taken it would still reject the null hypothesis.   

 Furthermore, by calculating the score between each individual random sample 

and the test sample the RS-M limitation is removed.  To validate this statement let’s take 

the same example shown in Subsection 5.3.10 in Figures 5.96 and 5.97 using the 

estimated distributions of Clutter A and Clutter B and manmade from Table 5.8.  For this 

experiment each clutter distribution will be manually sampled once (Figure 5.96) and 

used as reference and a test sample from each clutter and manmade distribution will be 

used in Equation (5.60), respectively, to determine if one should reject (or not) the null 

hypothesis. 

 For the first example, a test sample is collected from Clutter A and compared to 

both Clutter A and Clutter B distributions as shown in Figure 5.102.  As seen in the top 

plot of Figure 5.102, both the distribution of the test sample, Clutter A, and the pooled 

covariance are extremely similar. However, as shown in the bottom plot, the test sample 

is very different from Clutter B and consequently the pooled covariance is also different 

from the two distributions.  When testing Clutter A reference sample to the test sample 

the M-Box result was 0.6918 while when testing Clutter B reference sample to the test 

sample yielded 1338.  In this example, taking the minimum of  ̃ , it is obvious that the 

test sample came from Clutter A distribution, therefore, one should not reject   . 
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 The next example illustrates the opposite where a test sample from Clutter B was 

collected and tested in Equation (5.60) for each of the reference samples.  As shown in 

the top plot of Figure 5.103, the test sample distribution is very different from the Clutter 

A distribution and as a result the pooled covariance is also different from both the test 

and Clutter A distribution.  Conversely, since the test sample comes from Clutter B 

distribution, the pooled covariance is also similar to the two distributions.  For this 

scenario, the M-Box yielded the following values; 1277 (when comparing Clutter A 

reference samples to the test sample) and 3.08 (when the reference samples were taken 

from Clutter B).  Once again, one can conclude that the test sample was taken from 

Clutter B and by taking the minimum of  ̃  one would not reject   . 
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Figure 5.102  Illustration of the pooled covariance when the test sample comes from the 

same distribution as the reference sample.  In this case the test sample is collected from 

the same distribution as the Clutter A reference sample.  As a result the pooled 

covariance is similar to the test and reference sample.  On the other hand, since the test 

sample is different from Clutter B distribution the pooled covariance is also very different 

from the test and the reference sample. 
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Figure 5.103  In this example the test sample is drawn from the same distribution as the 

reference sample (Clutter B).  As shown previously, the pooled covariance is similar only 

to the reference and test samples when the latter are both from the same distribution. 

  

 So what happens when the test samples come from a manmade object?  As shown 

in Figure 5.104, the manmade distribution is very different from Clutter A (top plot) and 

Clutter B (bottom plot) distributions resulting on a M-Box score of 17.72 when taking 

Clutter A as the reference sample and 71.84 when Clutter B was used the reference 
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sample.  By taking the minimum of the two values, one could still reject    with a very 

low probability of miss of       

 Figure 5.105 illustrates a summary of the results as a bar graph.  The x-axis 

references where test sample was taken from, the y-axis the M-Box result between the 

reference and test covariance matrices, while the bar illustrates the reference samples 

(dark tone for Clutter A and light tone for Clutter B).  The y-axis is topped at 90 for 

visual appreciation for the manmade sample results.  As shown in Figure 5.105 when the 

test sample is from clutter A, the dark tone bar (using Clutter A as reference) is close to 

zero while light tone bar displays a very high score.  Conversely, when the test sample is 

taken from Clutter B, the dark tone bar shows a very high score while the light tone bar 

yields a value very close to zero.  Finally, when the test sample is from a manmade object 

both the dark and light tone bar yield a high score greater than 17, therefore, rejecting the 

null hypothesis with a probability of miss of     .   
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Figure 5.104  When a test sample is different from any of the reference samples, all the 

distributions (test, reference, and pooled) are highly different from each other.  As a 

result the M-Box algorithm has a high probability of deeming the test sample as an 

anomaly. 
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Figure 5.105  M-Box covariance test results.  The x-axis defines which distribution the 

test sample was drawn from, the y-axis displays the output of the M-Box test, and finally 

the bar in red delineates if the reference sample is from distribution Clutter A (dark tone) 

or Clutter B (light tone). 

 

 In conclusion, unlike the RS-M, which wasn’t able to discriminate clutter from 

manmade for the same example, the proposed implementation for the PRS-M was 

capable of distinguishing each of the test samples as clutter or anomaly successfully for 

the same example which RS-M failed.  By taking the minimum of  ̃  one is capable of 

successfully rejecting (or not)    as shown in this example. 

 

5.3.11.2 The Effect of Contamination in the PRS-M as a Result of the Random 

Sampling.  When random blocks of data are collected from a test scene there is a 

probability that a manmade object may be sampled as well, also known as contamination.  
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Contamination is a more serious incident for the PRS-M than it was for the RS-M (i.e., 

one of the reference blocks of data includes target pixels) because it is assumed that all 

reference samples represent natural objects.  If this assumption is violated then the 

presence of manmade objects could potentially not be detected.  To illustrate this 

problem, let one randomly collect N blocks of data from an image where N-1 reference 

blocks belong to clutter and the N
th

 block represents a manmade object.  Under the PRS 

method, if the test sample came from the same manmade object one would expect high 

output scores from Equation (5.60) for the first N-1 reference samples and a very low 

score for the last reference sample (manmade).  By retaining the minimum value of all N 

results, it would specify that specific location where the manmade object is located as a 

non-anomaly, which is a highly undesirable result. 

 To demonstrate the severity of the problem let one assume that the reference 

samples are taken from the three distributions in Figure 5.97, i.e., Clutter A, Clutter B, 

and manmade and a test sample from the same manmade distribution is also collected and 

tested against all reference samples using Equation (5.60).  Figure 5.106 illustrates the 

distribution of the reference samples relative to the test sample, in this particular case 

manmade, and the pooled distribution.  All distributions are centered at zero for visual 

appreciation.  The top left plot illustrates the distribution of Clutter A, test sample and its 

respective pooled distribution, while the top right illustrates the distribution of Clutter B, 

test sample, and its corresponding pooled distribution, and finally the bottom picture 

illustrates the distribution of manmade, test sample, and its equivalent pooled 

distribution. 
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Figure 5.106  Example illustrating a case of contamination.  Contamination is a problem 

because it is assumed that all reference samples randomly selected from the imagery 

represent natural objects, so if this assumption is violated then the presence of manmade 

objects could potentially not be detected.  In this example three reference samples were 

collected from the scene but one of the reference samples was collected from the 

manmade object itself.  Consequently, the manmade location will be deemed as a non-

anomaly because the test sample is similar to one of the reference samples. 

 

 As shown in Figure 5.106 because the test sample came from a manmade 

distribution only the bottom image demonstrates the reference, test sample, and the 

pooled sample with similar distributions, while for the remainder of the plots the test 

distribution is very different from the reference distribution.   

 As a result, see Table 5.11, if contamination occurs (labeled reference sample - 

Manmade) and a test sample comes from the same manmade object, Equation (5.60) 
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yielded a result of 10.40, 65.12, and 0.68 when the reference sample represents Clutter A, 

Clutter B, and Manmade distributions, respectively.  By taking the minimum of the third 

row of the test samples (test sample – Manmade) one would retain 0.68, therefore, not 

rejecting the null hypothesis and labeling the manmade test sample as a non-anomaly.   

Moreover, as shown from the results in Table 5.11, if the image was composed of only 

Clutter A and Clutter B as the natural background clutter and the manmade object had 

been sampled during the random sampling process, one can very easily see that all pixels 

in the output surface would be accepted by the null hypothesis. 

 

Table 5.11  M-Box Output for Difference Combination of Reference and Test Samples 

  
T

es
t 

S
am

p
le

s 

 

Reference Samples 
   

     
 ̃  

Clutter A Clutter B Manmade 

Clutter A 2.73 73.14 27.12 2.73 

Clutter B 52.95 2.70 55.24 2.70 

Manmade 10.40 65.12 0.68 0.68 

 

 The top image of Figure 5.107 illustrates an example using long range PI where 

out of the five random samples collected from the test image, one sampled T0.  The 

output surface of Equations (5.60) and (5.61) is shown at the bottom image of Figure 

5.107.  As shown in the previous examples, since one of the reference samples came from 

T0, this manmade object is completely mitigated from the output surface.  Conversely T90 

and T135 are slightly discriminated from most of the background although one can still 

find many false alarms around the area where the surrogate targets are located in.  The 

blackbody on the other hand is slightly more discriminated (red color) than the surrogate 
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targets.  One can then conclude that the distribution of T0 is to some extent similar to T90 

and T135 but different from the external blackbody distribution.  Nonetheless, the key 

message from this experiment is that contamination will have a serious impact on the 

algorithm’s performance. 
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Figure 5.107  Example demonstrating the effects of contamination.  In the top image 

because one of the reference samples collected samples from T0, the manmade object is 

completely omitted from the output surface.  The other surrogates although visible, their 

output values are very similar to false alarms present in the scene which one may deduce 

that the distribution of T0 is similar but not equal to the other surrogate targets. 
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 So, how often can contamination occur during the random sampling process?  

Let’s assume that manmade pixels are present in a      spatial area of a PC cube X 

where          such that their total spatial area in X is denote by  . Let us denote   

as the probability of sampling a manmade pixel out of all the pixels         in 

image X, such as 

 

  
 

 
  (5.62) 

 

Let   blocks of data of size    such that            be randomly selected 

from X.  Assuming        and that all manmade pixels in X are disjoint and randomly 

scattered across the image area, the probability   where at least one block of data 

samples a manmade pixel is  

 

                               

                               
(5.63) 

 

where parameter   represents the number of random blocks of data containing target 

pixels and   is the Binomial density function given by 

 

   |     
  

        
            (5.64) 

 

where   and   were previously defined as probability of sampling a manmade pixel and 

the number of random blocks of data collected from the image, respectively.  Before 

continuing it must be noted that the assumption that manmade pixels are disjoint and 

scattered throughout the imagery is usually not met in practice.  Nonetheless, the 
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assumption allows for a baseline approach to understand the implications of choosing 

different   and the probability of contamination as a result of the random sampling 

process. 

 Figure 5.108 illustrates the theoretical probability of contamination (      ) 

of one or more blocks of data for different   and different number of random samples  .  

It is obvious that, given a constant  , as the number of random blocks of data collected 

from X increase, so does the probability that one or more random blocks of data sample 

target pixels.  At the same time, if the number of random blocks collected from the 

imagery is unchanged, but   increases, the probability of contamination also increases 

since the total number of available target pixels in the image increases with respect to the 

image spatial area.  In summary, Figure 5.108 illustrates the trade-off between 

characterizing the background well with a large number of blocks of data, which is a 

desired outcome (better background characterization), and the probability of 

contamination, an undesirable consequence.  One must remember, as per the examples 

shown previously, that the inclusion of target samples into one of the reference blocks of 

data would result on the target being suppressed since the algorithm defines each random 

block of data as being representative of clutter.   
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Figure 5.108  Probability of contamination curve for different values of   for     for 

                         .  The probability of contamination increases as a function 

of increasing manmade object area and/or number of blocks of data collected. 
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 From the ground truth available for the long range test scenes, a        was 

calculated which, from Figure 5.108, the probability of contamination (      ) when 

collecting   = 10 is            , while for   = 20 the            .  As 

previously stated one must remember that these probability values are to be used as a 

guide as the real probabilities can fluctuate higher or lower depending on the number of 

targets present in the image. 

 In conclusion, when randomly collecting   blocks of data from an image where 

manmade objects may be present there is a probability of random sampling those same 

manmade objects as shown previously in Figure 5.108.  If such happens, under the PRS 

method, one would eliminate the target from ever being discriminated since its 

information, as a result of the random sampling process, is by design designated as 

background clutter.  Therefore, the result of Equation (5.60) between the test and any 

reference blocks of data, which are contaminated with target information would yield 

(when taking the minimum of the all the results) a very low score (e.g., close to zero), 

resulting on not rejecting the null hypothesis, as shown in Figure 5.107 bottom image. 

 In summary, contamination in the PRS-M is highly problematic because: 

1) If a manmade object is sampled by chance and denoted as a reference 

natural object sample by design, it will not be discriminated as shown in 

Figures 5.106 and 5.107, and Table 5.11. 

 

2) The probability of contamination, as shown in Figure 5.108, increases as a 

function of: 

 

a. Increasing manmade object area, or  

 

b. Decreasing scene spatial area, or 

 

c. Increasing N, the number of random samples collected from the 

image. 
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5.3.11.3 Mitigating Contamination in the PRS-M.  The previous subsection 

demonstrated the adverse effect of contamination in the PRS-M.  In order to mitigate the 

probability of inclusion of manmade object pixels into the reference blocks of data, [62] 

proposes repeating each trial (random sampling process plus the processing of the test 

image) M number of times.  By repeating each trial M times the probability that the same 

target is sampled by chance on all trials can be easily modeled by the Binomial 

distribution as a decreasing function of increasing M (number of trials).  As described in 

[62], all M output surfaces are fused (summed) together to yield a final output surface.  

The reasoning for the fusing is as follows; let one assume that a number of M trials’ 

output surfaces (>2 and <M) eliminated a specific manmade object as a result of 

contamination while at the same time at least one or more remaining output surfaces 

successfully discriminated the same manmade object.  By fusing all M parallel outputs 

one assures that the desired manmade object is retained in the final output surface, as it 

will be shown very briefly. 

 To understand how repeating each trial M number of times can mitigate 

contamination in the final output surface let one assume that the random sampling 

process together with the algorithm of choice is denoted as a trial.  If each trial operates 

on the same image   times for a given   and  , knowing that            and 

                 , and assuming that each processing block when 

collecting random samples is entirely independent of all other trials, the probability that 

all trials sample the same manmade object is a decreasing function of increasing   

defined as follows, 
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  (5.65) 

 

 Equation (5.65) can also be expressed as a binomial distribution by letting   be the 

number of trials (or parallel processes) that are contaminated out of M trials.  By defining 

  {       } and using        as the probability of contamination per trial, the 

probability that all trials are indeed contaminated is as follows, 

 

        
  

        
(      )

 
(        )

   
  

                      (      )
 
  

(5.66) 

 

Figure 5.109 illustrates the cumulative probability of having at least one 

contamination data block per trial as a function of M trials, for a fixed N and four values 

of  .  As expected, as   increases, there is a need to increase   to reduce the probability 

of contamination in all trials as a result of a higher probability of contamination within 

each trial.  One must remember that if all trials sample the same manmade object the 

result would be the total suppression of the manmade object in all trials, which is an 

undesirable result.  Although in theory one would like to have a high number of trials, for 

example     , in practice the introduction of unnecessary parallel processes (trials) 

may increase the number of processing operations and as a consequence processing time, 

which again would be an undesired effect.  Therefore, one must be aware that a tradeoff 

must be considered when applying the PRS method in real world applications between   

and   parameters relative to: (1) the type of background one will encounter; (2) the 

potential number of target pixels that could be in the test scene    , and (3) the 

processing time available for each test scene. 



407 

 

 

 

 
Figure 5.109  Cumulative probability of contamination of having at least a contaminated 

data block per trial as a function of M trials, for a fixed N and four values of  .  The 

message: as M increases the cumulative probability decreases, which is desired and may 

be used as a guide by the user to minimize the effect of contamination. 

 

As previously shown, Equation (5.60) represents the M-Box test between each 

reference sample and the test sample yielding a vector of   output scores.  Equation 

(5.61) places the smallest value from the vector  ̃ 
     

 into the location (i,j) of the output 

surface. 

As the moving window covers all potential locations in X for all   processes a 2-

dimensional output surface is generated (denoted as  ̃ ) as  ̃                   where 

            represents the parallel process number, or 



408 

 

 

 

 ̃  [
 ̃          ̃            

   
 ̃              ̃                

] (5.67) 

 

 The spatial area of  ̃  is smaller than X due to the test window size,   
     

, being 

greater than one pixel or     .  From Equation (5.67),  ̃  implies that there are   

output surfaces representative of all   parallel processes which need to be fused together 

to yield a final output surface that can be thresholded. 

 Reference [62] proposed to sum these output surfaces into a single final output 

surface  .  Let’s assume as an example, that the same manmade object happens to be 

sampled in     parallel processes, with the last     parallel process not sampling the 

target.  By using the addition operation as the fusing process the energy of the manmade 

object detected in the     output surface would be retained in Z output surface.   

 Therefore, summing all   output surfaces yields a final 2-dimensional output 

surface represented by                    as, 

 

  

[
 
 
 
 
 
 

∑ ̃        

 

   

 ∑ ̃            

 

   

   

∑ ̃            

 

   

 ∑ ̃                

 

   ]
 
 
 
 
 
 

 (5.68) 

  

 Figure 5.110 illustrates the locations of five random blocks of data       

where each color represents a different parallel process when the PRS-M was applied to a 

SPICE test image.  Interestingly, one can observe that on Figure 5.110 one of the samples 

for     collected information on T0, which as previously shown, it should result on the 

elimination of that same object from the 2
nd

 parallel process output surface.  
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Figure 5.110  Location of random blocks collected from the scene for N = 5 and M = 5, 

with blue representing   =1, red   = 2, yellow   = 3, green   = 4, and brown   = 5.  Notice 

that in  =2 one of the random blocks collected information on T0. 

 

Figure 5.111 illustrates the effectiveness of the fusion process when 

contamination occurs (using the random samples from Figure 5.110) by presenting the 

output surfaces for each parallel process (denoted as   = 1,..., 5), as well as the final 

output surface   (lower right).  One can readily observe from Figure 5.110 that T0 had 

been sampled during the random sampling process for trial   = 2 and as a result, as shown 

in Figure 5.111, the output surface   = 2 demonstrates that T0 is highly suppressed from 

the output surface with T90 and T135 also having degraded discrimination with the 

exception of the tower which still shows up very strongly in the output surface.  By 

fusing (summing) all parallel processes, T0, T90, and T135 are successfully retained in the 

final output surface and can be easily discriminated as anomalies.   

However, one must ask if by summing all the M output surfaces wouldn’t that 

also increase the number of false alarms found in  ?  It is important to remember that 
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when each parallel process random samples the background, each set of random locations 

in each     process is independent from all the other parallel process.  As a result, there is 

a very high probability that their locations are totally different from trial to trial, see 

Figure 5.111, therefore, the locations of the false alarms, as well as their energy, are 

highly different from all of the other trials.  In conclusion, summing all M trials should, 

in principle, keep the false alarms values relatively low, because their spatial locations 

are random (as a result of the random blocks of data locations for each trial), compared to 

manmade objects, which are usually detected in the same location over multiple trials, 

see  Figure 5.111. 
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6 MAR 2010 13:10 

  = 1   = 2 

  
  = 3   = 4 

  
  = 5 Fusion(   

  
Figure 5.111  Output surfaces for the different trials and the final fused image for 6 

MAR 2010 at 1310h.  As result of contamination in parallel process 2, T0 was eliminated 

from the output surface while the other surrogate targets energy was highly attenuated 

compared to the other trials.  Nonetheless, by summing all M trials all manmade objects 

were well discriminated from the natural clutter background. 
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 This subsection demonstrated the following key points: 

1) The cumulative probability of a trial being contaminated by at least a data 

block can be modeled by the family of Binomial probability distribution 

functions. 

 

2) The cumulative probability of contamination decreases as the number of 

trials (M) increases. 

 

3) The fusion (summing) of all parallel processes introduces two benefits: 

 

a. It retains anomalies detected in at least one of the M parallel 

processes. 

 

b. Mitigates false alarms in the final output surface. 

 

 

5.3.11.4 Adaptive Threshold for PRS-M.  As shown in Subsections 5.3.5 and 

5.3.8, the M-Box and the RS-M algorithms null hypothesis were easily modeled by a    

with (k-1)p(p+1) degrees of freedom.  Given the degrees of freedom, the user could 

choose a reasonable probability of miss where the cutoff value to threshold the incoming 

imagery Z is then calculated.  The final output surface on the PRS-M (Z), however, does 

not follow such model when M>1 because of the final output surface is the sum of all 

individual output surfaces  ̃.   

 In order to circumvent this problem, an adaptive threshold is proposed much like 

the one proposed in Subsection 5.2.3 where the cutoff threshold is obtained using 

Equations (5.14) and (5.15).  Once the image is standardized using Equation (5.14), a 

robust criterion (δ) can then be imposed for all images Z where δ represents the number 

of standard deviations above the estimated mean.  In this construct, pixels with values 

greater or equal to δ are represented by 1 in the binary image (thresholded), or 0 

otherwise.  It is desired that all manmade objects are represented by 1’s. 
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5.3.11.5 PRS-M Results on Close Range PI.   This subsection presents the PRS-M 

results for close range PI with the objective of discriminating manmade objects from 

natural clutter background.  Figure 5.51 is used as the test scene and it is composed of a 

test plate placed on a pan and tilt system, a reference plate lying on the floor (right), the 

sidewalk where the pan and tilt system is located, and natural clutter (grass). 

 The test scene was processed by the PRS-M using five and 20 manually collected 

blocks of data with only one parallel process since the user made sure that only 

background information was collected as reference samples, eliminating the need for 

multiple parallel processes.  Figures 5.112 illustrates the output surfaces for RS-M 20  

(RS-20) and 30 (RS-30) reference samples and the PRS-M               and       .  

Figure 5.112 illustrates only six out of the ten available angles that were collected due to 

the page size constrain.  As previously stated in Subsection 5.3.8 some pixels located in 

test plate and/or clutter exhibited very large values and when the RS-M images were 

normalized, manmade object values were highly attenuated and as a result do not show 

up in red color as one would like to.  However, when thresholded, as one shall see 

briefly, the manmade objects are successfully discriminated from natural clutter.   
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Figure 5.112  RS-20 and RS-30 and PRS-M (5,1) and PRS-M (20,1) output surfaces.  

Notice that the PRS-M does very well in discriminating (visually) the manmade objects 

from natural clutter background.  In this example all anomalies that exhibited high energy 

values belong primarily to clutter in the RS-M while for PRS-M the anomalies exhibiting 

high values were from manmade objects which is highly desired. 

  

 Figure 5.113 illustrates a comparison between PRS-M and RS-M thresholded 

(binary) images using a constant probability of miss of       .  A close examination of 

both figures demonstrates that both PRS-M       and PRS-M        yield similar results 
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in most images for manmade object discrimination.  However, one can also observe that 

the PRS-M (20,1) has significantly less false alarms relative to PRS-M (5,1), which is 

directly related to the high number of reference blocks of data manually collected from 

the test scene (or better background characterization).   

 Furthermore, Figure 5.113 shows that the PRS-M performs similarly or better 

than the RS-M in detecting manmade objects while at the same time reducing the number 

of false alarms significantly. 
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Figure 5.113  RS-M and PRS-M binary output surfaces using a threshold of   |       

 .  

As the number of reference samples collected for the PRS-M increased to 20 one finds 

that the number of false alarms decreases relative to PRS-M       while maintaining 

similar detection rate.  Furthermore, one finds that the PRS-M performs significantly 

better than the RS-M regardless of whether 20 or 30 blocks of data were collected to 

represent the scene background.  

 

 Before getting into performance assessment, let’s highlight some key points in the 

discussion thus far on the PRS-M.  The PRS-M detection, similarly to the RS-M detector 
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relies on random sampling process to characterize the background and as a result the 

PRS-M is also range invariant as shown in Subsection 5.3.11.4.  One significant 

difference between the RS-M and PRS-M is that the latter performs the covariance test 

between the test sample and each randomly selected reference block of data (i
th

 block of 

data out of N blocks), which then solved (see Subsection 5.3.11.1) the limitation 

characteristic to the RS-M anomaly detector (Subsection 5.3.10).  Consequently, this 

procedure makes contamination a problematic situation for the PRS-M (Subsection 

5.3.11.2).  Subsection 5.3.11.3 demonstrated that if one is to repeat each trial M number 

of times, the probability that all M trials are contaminated with at least one random block 

of data is a decreasing function of M.  Furthermore, by fusing all M output surfaces into 

one single output surface; (1) the final output surface, in principle, retains all of the 

anomalies detected in at least one of the M parallel processes, and (2) it mitigates false 

alarms in the final output surface.  Finally, Subsection 5.3.11.4 proposed using an 

adaptive threshold based on the fused output surface statistics for the PRS-M. 

 In conclusion, the PRS-M is an extremely versatile anomaly detector that retains 

the benefits of the RS-M anomaly detector while improving over RS-M deficiencies.  In 

the next subsection a performance comparison between the PRS-M and M-Box anomaly 

detector is presented. 

5.3.12 Performance Assessment of PRS-M 

This subsection presents the implementation of the PRS-M anomaly detector and a 

performance comparison between the PRS-M and M-Box detector.   
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5.3.12.1 Algorithm Implementation.  The implementation of the PRS-M is 

shown in this subsection. 

 In order to implement the PRS methodology with the M-Box algorithm, one must 

random sample image X, where X is a R C test image of p observables s.t.         , 

using a determined number of blocks of data (N), each of size n2=n
2
, as {  

   }
   

 
 

where   
          representing N reference samples (blocks of data) in the     parallel 

process (or trial) out of M possible trials.   

The estimated covariance for each   
   

 and   
     

 is calculated as 
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and the determinant for each   
         and   

     
     is given by 
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(5.70) 

 

The score between the test covariance matrix,   
     

  and each reference 

covariance,   
   

, is given by Equation (5.60) yielding a vector of N scores denoted as 

 ̃ 
     

, where  ̃ 
     

     .  Taking the minimum of  ̃ 
     

 (Equation (5.61)) yields a 

scalar representing the score of the reference sample (out of the possible N) that is closest 

to the test sample.  When all combinations of       are taken into consideration an output 

surface,  ̃                           , for each     parallel process is completed (see 
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Equation (5.67)).  Finally, by fusing (summing) all   parallel processes (trials) the result 

yields the final output image  , Equation (5.68). 

Z is then standardized using Equation (5.14) and a cutoff threshold (δ) is applied 

(see Equation (5.15)) and all pixel locations above the cutoff threshold are represented by 

1’s are considered anomalies.  It is desired that all manmade objects in the scene are 

represented by 1’s in the final thresholded (binary) image. 

 

5.3.12.2 Performance Analysis This subsection presents a comparative 

performance analysis between the PRS-M and M-Box anomaly detection algorithms.   

 In order to determine the (N,M) configuration two approaches were taken.  The 

first approach used a priori information about the scene such as the total target area     

and the type of background while for the second approach no a priori information was 

available to the user.  For the first approach the area composed of all manmade objects in 

the scene was calculated to be       .  Based on this information, the type of natural 

clutter background, and referencing Figure 5.108, five random samples seemed to be 

sufficient to characterize the test scene with a probability of contamination per trial of 

0.049.  By setting N = 5 and referencing Figure 5.109, the parameter M was set to five 

trials where the probability of contamination of all trials was calculated as 2.8276 10
-7

.
  

Although unnecessary to go beyond five trials, the performance of the PRS-M was 

calculated for different M = 5, 10, 15 (for same N =5) to illustrate any potential 

performance differences as a function of increasing M.  For the second approach, N was 

set to 20 random samples in order to characterize an unknown scene very well.  By 

setting N = 20 and using a q = 0.01, the probability of contamination per trial, see Figure 
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5.108, was measured to be 0.18.  As a result, a high M was required to mitigate the 

inclusion of target samples in all trials.  Therefore, M, the number of trials, was chosen to 

be 10 lowering the probability of contamination in all trials to 4 10
-8

. 

 This subsection demonstrates the performance of the PRS-M algorithm versus the 

baseline algorithm (M-Box) using ROC curves (for the standard four timestamps 0710h, 

0910h, 1310h, and 2010h for 6 MAR 2010), output surfaces, a table that illustrates the 

detection rate, and finally a 72-hour performance comparison for            for the 

different targets.  Notice that for this comparison the false alarm range is a lot smaller 

than previously used which demonstrates that the PRS-M can perform extremely better 

than previously proposed algorithms.   

 Several key points will be addressed in this subsection:  

1) Increasing  , the number of samples, increases the ability in 

successfully characterizing the test scene, resulting in higher 

probability of detection. 

 

2) Increasing  , the number of parallel processes, allows for:  

 

a. Mitigation of the inclusion of manmade samples into the 

reference library which is believed to be comprised of natural 

objects’ samples only.  

 

b. Mitigates false alarms in the final output surface  . 

 

3) PRS-M demonstrates exceptionally high performance especially in the 

low false alarm rate region compared to the baseline for a     

     . 

 

 Figure 5.114 illustrates the ROC curves for T0 by comparing the baseline 

algorithm (M-Box) with the PRS-M for different combinations of   and   for a     

     .  Several key points can be observed in this figure:  

1) Increasing the number of random samples (N) increased the PRS-M 

probability of detection especially in the low false alarm rate region. 
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2) The baseline was the worst performing metric for all timestamps with 

the exception of 1310h. 

 

3) PRS-M (20,10) performed the best throughout the four timestamps.  

 

4) The remaining PRS-M metrics performed better than the baseline for 

all timestamps with the exception of 1310h where (5,5) and (5,15) 

performed similarly to the baseline. 

 

5) PRS-M (5,15) performed slightly better than (5,5) and (5,10) for 

0710h, 0910h, and 1310h. 

 

 Observing the T0 ROC curves in Figure 5.114, the following probability of 

detection, in the order of best score, for a            is as follows: PRS-M (20,10) 

with a                            for timestamps 0710h, 0910h, 1310h, and 2010h, 

respectively.  Followed by PRS-M (5,15) with a                           , then 

(5,10) with a                           , PRS-M (5,5) with a 

                          , and finally the baseline with a 

                             

 Figure 5.115 illustrates the performance between the two metrics for T90.  Once 

again, in most cases one can observe that the PRS-M performs slightly better than the 

baseline in the low false alarm region with one exception, shown on 1310h. 

 PRS-M (5,5) and (5,10) performed very similarly to each other for 0710h and 

0910h while trailing PRS-M (5,15) for most of the ROC curves.  However, for 1310h and 

2010h all combinations of N=5 performed very similarly.  In contrast, PRS-M (20,10) 

demonstrated the best probability of detection of all metrics for 0710h, 0910h, and 2010h, 

and similar performance for 1310h. 
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 Using the same            as reference, all metrics performed similarly to 

each other with a       detection rate difference of each other with PRS-M (20,10) 

performing similarly to the baseline with a                             

 

6 MAR 2010 – T0 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.114  ROC curves for T0 comparing the performance between the baseline and 

PRS-M for different combinations of      .  For a            PRS-M (20,10) 

achieved the best detection rate with a                            for timestamps 

0710h, 0910h, 1310h, and 2010h, respectively.  Followed by PRS-M (5,15) with a 

                          , then PRS-M (5,10) with a 

                          , next is PRS-M (5,5) with a 

                          , and finally the baseline with a 
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6 MAR 2010 – T90 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.115  ROC curves for T90 comparing the performance between the baseline and 

PRS-M for different combinations of         PRS-M (20,10) performed the best in the 

low false alarm region of the ROC curve followed by PRS-M (5,10) and PRS-M (5,15).  

Using the same            as the threshold, all metrics performed similarly to each 

other with a       detection rate difference of each other with PRS-M (20,10) once 

again performing the best with a                             
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 The performance of T135, shown in Figure 5.116, demonstrates the same trend that 

was observed in the previous two figures (Figures 5.114 and 5.115) where the PRS-M in 

general performs the best relative to the baseline in the low false alarm region of the ROC 

curve.  One particular difference in Figure 5.115 happens at 1310h where PRS-M (5,5) 

performs slightly worse than all other metrics for       0.0007. 

 Nonetheless, on average for a           , PRS-M (20,10) once again 

performed very well with a                           , followed by PRS-M (5,5,), 

PRS-M (5,10), and PRS-M (5,15) with a       detection rate difference of each other 

with a (                           , and finally the baseline with a    

                         

 In Figure 5.117, blackbody ROC curves, some differences occur between the 

baseline and the PRS-M relative to the previous figures.  For example, at the low false 

alarm rate region (          ) one observes that at timestamp 0710h all metrics have 

the same performance, however at           , the baseline starts to perform better 

than the PRS-M algorithm with PRS-M (20,10) trailing all other.  At timestamp 0910h 

and using            as a reference, once again the PRS-M performed better than the 

baseline.  Approaching the level of           , the baseline performance surpasses the 

PRS-M (20,10), PRS-M (5,10), and PRS-M (5,15) with PRS-M (20,10) demonstrating 

the worst performance (probability of detection).  For timestamps 0910h and 2010h, the 

baseline performed worse or similarly to PRS for            and as the     increased 

the baseline performed similarly (same probability of detection) to PRS-M (5,10), PRS-

M (5,15), and PRS-M (20,10).  Finally, one can observe that timestamp 2010h trends 

very similarly to 0710h with the baseline underperforming at            and over 
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performing the PRS-M for an increasing false alarm rate. In conclusion, the baseline was 

the best performing metric if the reference false alarm rate remains the same as the 

previous figures or             where the baseline detection rate was measured to be 

                           for timestamps 0710h, 0910h, 1310h and 2010h, 

respectively.  PRS-M (5,10) was second best performing metric with a    

                       , followed by PRS-M (5,15) with a 

                          , PRS-M (20,10) with a                           , 

and finally PRS-M (5,5) with a                           .  
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6 MAR 2010 – T135 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.116  ROC curves for T135 comparing the performance between the baseline and 

PRS-M for different combinations of (N,M).  PRS performs the best relative to the 

baseline in the low false alarm region of the ROC curve.  For a           , PRS-M 

20,10) once again performed the best with a                           , followed by 

PRS-M (5,5), PRS-M (5,10), and PRS-M (5,15) with a       detection rate difference of 

each other with a (                           , and finally the baseline with a 
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6 MAR 2010 – Blackbody 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.117  ROC curves for Blackbody comparing the performance between the 

baseline and PRS-M for different combinations of (N,M).  For a reference             

the baseline was the best performing metric with a                            for 

timestamps 0710h, 0910h, 1310h and 2010h, respectively.  PRS-M (5,10) was second 

best performing metric with a                           , followed by (5,15) with a 

                          , (20,10) with a                           , and 

finally (5,5) with a                           . 
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 In Figure 5.118, observation tower ROC curves, the PRS-M performs very well 

compared to the baseline in discriminating the observation tower in the test scenes, which 

is similarly to what was observed for the RS-M in Subsection 5.3.9.2.  For the reference 

           one can observe that the baseline did not detect the observation tower at all 

          for any of the timestamps, while PRS-M (20,10) was the best performing 

metric with a         for all timestamps, followed by PRS-M (5,15) and PRS-M (5,5) 

with the same probability of detection (                            for 0710h, 

0910h, 1310h, and 2010h, respectively.  Finally, PRS-M (5,10) was the worst performing 

metric of all PRS-M combinations with a                            as a result of a 

performance degradation on timestamp 0910h potentially due to a set of bad “quality” 

background samples. 
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6 MAR 2010 – Observation Tower 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.118  ROC curves for observation tower comparing the performance between the 

baseline and different combination of PRS-M.  PRS-M (20,10) was the best performing 

metric with a         for all timestamps at           , followed by PRS-M (5,15) 

and PRS-M (5,5) with the a probability of detection (                            for 

0710h, 0910h, 1310h, and 2010h respectively, followed by PRS-M (5,10) with a    
                       , and finally the baseline with no detection whatsoever for all 

timestamps.  
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 Finally, If one combines all objects (T0, T90, T135, blackbody, and observation 

tower) into a single class, the performance of each metric is shown in Figure 5.119 where 

the PRS-M (20,10) was clearly the best performing metric for all timestamps, followed 

by PRS-M (5,15).  There is a clear flip flopping between PRS-M (5,5) and PRS-M (5,10) 

for the third best performing metric where the former performs better at 0910h and the 

latter at 1310h.  Nonetheless, the baseline is the worst performing metric regardless of 

timestamp.  Again, for a reference           , PRS-M (20,10) demonstrated a very 

good probability of detection,                           , followed by PRS-M 

(5,15) with a                           , then PRS-M (5,5) 

(                           , next PRS-M (5,10) with a 

                          , and finally the baseline with a 

                            

 Table 5.12 illustrates the probability of detection for the M-Box algorithm 

(baseline), and PRS-M (5,5), PRS-M (5,15), and PRS-M (20,10) for a            for 

six different timestamps: 0210h, 0710h, 0910h, 1310h, 2010h, and 2310h for all 

manmade objects in the scene including the overall performance.  For each target (T0, 

T90, T135, observation tower, blackbody, and overall), the red color indicates the metrics 

where the detection rate was the highest (     ) at a given timestamp, green represents 

performances where the detection rate was within a 0.03 difference of      , and finally, 

the color black indicates the detection rates that do not fall in the previous two categories. 
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6 MAR 2010 – Overall Performance 

0710h 0910h 

  
1310h 2010h 

  
Figure 5.119  ROC curves for overall performance comparing the performance between 

the baseline and PRS-M for different combinations of (N,M).  for the reference     

      , PRS-M (20,10) demonstrated a detection performance of 

                          , followed by PRS-M (5,15) with a 

                          , then PRS-M (5,5) (                           , 

next PRS-M (5,10) with a                           , and finally the baseline with a 
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 Overall, PRS-M (20,10) clearly outperformed all other metrics for T0, T90, T135, 

observation tower, and overall detection for all timestamps, with only the baseline 

outperforming PRS-M (20,10) for the blackbody.  PRS-M (5,5) and PRS-M (5,15) had 

similar performance for T0, T90, blackbody, and the observation tower while PRS-M (5,5) 

performed slightly better for T135, and PRS-M (5,15) performed better for the overall 

detection rate.  Finally, the baseline was the worst performing metric for all manmade 

objects with the exception of the blackbody where its probability of detection was 

measured to be the best relative to all the metrics.  The best average probability of 

detection for all timestamps for T0 was demonstrated by PRS-M (20,10) with a    

    , followed by PRS-M (5,5) and PRS-M (5,15) with a        , and finally the 

baseline with a        .  For T90, all combinations of the PRS-M performed similarly 

to each other with a         followed by the baseline with a        .  PRS-M (20,10) 

once again performed the best for T135 with an average         over all timestamps, 

followed by PRS-M (5,5) with a        , PRS-M (5,15) with a        , and finally 

the baseline with a        .  The baseline had the best probability of detection in 

discriminating the blackbody from clutter with an average         over all 

timestamps, followed by PRS-M (5,15), PRS-M (20,10), and PRS-M (5,5) with a 

                     , respectively.  However, for the observation tower PRS-M 

(20,10) exhibited the best average probability of detection (        , followed by 

PRS-M (5,5) and PRS-M (5,15) with a        , and finally the baseline with zero 

detection.  Overall, PRS-M (20,10) exhibited the best average probability of detection 

with a        , followed by PRS-M (5,5) and PRS-M (5,15) with the same detection 

rate of        , and finally the baseline with a probability of detection of        . 
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Table 5.12  Performance Comparison Between M-Box and PRS-M for Different 

Timestamps for a            

 T0 T90 T135 

 M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

0210h 0.13 0.35 0.21 0.75 0.63 0.71 0.70 0.73 0.29 0.41 0.35 0.48 

0710h 0.28 0.81 0.83 0.97 0.86 0.86 0.86 0.87 0.62 0.70 0.70 0.75 

0910h 0.51 0.55 0.64 0.77 0.96 0.98 0.98 0.98 0.80 0.85 0.86 0.87 

1310h 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

2010h 0.87 0.89 0.95 0.97 0.81 0.77 0.77 0.77 0.61 0.62 0.61 0.63 

2310h 0.41 0.85 0.83 0.95 0.73 0.77 0.77 0.77 0.53 0.62 0.58 0.63 

 

Table 5.12  Performance Comparison Between M-Box and PRS-M for Different 

Timestamps for a            (Continuation) 

 Blackbody Observation tower Overall 

 M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

M PRS-

M 

(5,5) 

PRS-

M 

(5,15) 

PRS-

M 

(20,10) 

0210h 0.71 0.62 0.62 0.64 0.0 0.78 0.80 0.95 0.36 0.54 0.50 0.67 

0710h 0.91 0.83 0.83 0.74 0.0 1.00 1.00 1.00 0.58 0.81 0.82 0.85 

0910h 0.71 0.64 0.74 0.79 0.0 0.88 0.88 1.00 0.69 0.81 0.84 0.89 

1310h 0.93 0.88 0.93 0.93 0.0 1.00 1.00 1.00 0.88 0.98 0.99 0.99 

2010h 0.86 0.64 0.67 0.67 0.0 0.80 0.80 1.00 0.67 0.74 0.75 0.78 

2310h 0.86 0.67 0.71 0.64 0.0 0.85 0.80 1.00 0.54 0.74 0.72 0.77 
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Figure 5.120 illustrates the broadband imagery for each of the timestamps for 

visual appreciation (left images) and the output surfaces (right quad images) for the M-

Box algorithm and the different PRS-M combinations (5,5), (5,15), and (20,10).  As 

shown in the previous figures (ROC curves) as   increased from       to       , the 

ability in discriminating all manmade objects in the scene increased as well.  As 

previously stated anomaly detectors do not need to find the whole target; they need, 

however, find a portion of the target with the lowest false alarm rate possible for further 

inquisition by other sensors or algorithms.  In this case and shown in previous figures and 

tables, PRS-M (20,10) performs very well in detecting the necessary regions of interest 

where manmade objects are located with very few false alarms.  One can also observe a 

reduction of false alarms as   remained the same and   increased from five to 15 

parallel processes.  This is expected because one is averaging a higher number of parallel 

processes (          ) and the random sampling process within each parallel process 

is independent of all others, therefore, the locations of the false alarms are also random 

for each individual trials.  As such, the score of all false alarm locations should diminish 

as   increases, when averaged, while retaining the target information which, when using 

an effective detector, should always be in a deterministic location. 
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6 MAR 2010 

0210h 

 
0710h 

 
0910h 

 
Figure 5.120  Output surfaces for M-Box and PRS-M (5,5), PRS-M (5,15), and PRS-M 

(20,10) for all six timestamps.  
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6 MAR 2010 

1310h 

 
2010h 

 
2310h 

 
Figure 5.120  Output surfaces for M-Box, PRS-M (5,5), PRS-M (5,15), and PRS-M 

(20,10) for all six timestamps. (Continuation)  
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Figures 5.121 through 5.125 examine the 72-hour performance for each of the 

manmade objects present in the scene as well as the overall performance (Figure 5.126) 

for the baseline and PRS-M (5,5), PRS-M (5,15), and PRS-M (20,10).  Figure 5.121 

illustrates the 72-hour performance metric for the detection of T0 for 6-8 MAR 2010.  As 

explained with previous 72-hour figures, Subsections 5.3.6.2 and 5.3.9.2, there are three 

periods of high humidity found in the beginning of day 2 and 3 and the last one at the end 

of day 3.  Figure 5.121 demonstrates that PRS-M (20,10) performs very well for most of 

the degradation periods found in the 72-hour period.  The first period of adverse weather, 

beginning of day 2, the PRS-M (20,10) performs very well compared to the remaining 

metrics with the baseline clearly performing the worst.  Conversely, for the beginning of 

day 3, although once again PRS-M (20,10) performs very well, the worst performing 

metric this time was measured to be the PRS-M (5,15).  Finally, for the last adverse 

weather event at the end of day 3 no metric performed very well with the exception of 

PRS-M (5,5) which exhibited a         of T0 during this period of time.  For the periods 

of high contrast, all metrics performed very similarly to each other with a probability of 

detection above 0.97 for all three days.  The 72-hour average T0 probability of detection 

from highest to lowest was PRS-M (20,10), PRS-M (5,5), PRS-M (5,15), and the baseline 

with a                           , respectively.  For this target set, PRS-M (20,10) 

demonstrated almost 0.10 probability of detection difference compared to the baseline. 
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Figure 5.121  72-hour performance comparison between PRS-M and M-Box algorithm 

in discriminating the T0 from natural clutter.  The 72-hour average probability of 

detection from highest to lower was PRS-M (20,10), PRS-M (5,5), PRS-M (5,15), and 

the baseline with a                           , respectively. 

 

 

 T90 72-hour performance of all metrics is shown in Figure 5.122.  In this figure all 

metrics perform similarly to each other for the first day with the baseline trailing PRS-M 

during the periods of low contrast.  Interestingly, for the first period of high humidity 

found in the beginning of day 2 all metrics were pretty robust in detecting T90 compared 

to T0.  The PRS-M (20,10) performance dipped a bit compared to all other metrics for the 

period of high contrast in day 2, nonetheless its detection rate was always above 0.90, 

which is a highly desirable result for the very low false alarm rate shown here.  PRS-M 
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(20,10) PRS-M (5,5), and the baseline performed similarly to each other for the second 

period of adverse weather found in the beginning of day 3 with PRS-M (5,15) performing 

slightly worse with probability of detection difference of 0.15 around 0100 on day 3.  

Finally, for the last adverse weather period at the end of day 3, both the baseline and 

PRS-M (5,15) are the worst performing metrics with similar probability of detection.  

Conversely, PRS-M (20,10) and with PRS-M (5,5) exhibited the best probability of 

detection during this time period.    The average 72-hour probability of detection for T90 

was very similar for all the metrics with a                            for the 

baseline, (5,5), (5,15), and (20,10), respectively. 

 Figure 5.123 illustrates the performance of all metrics in detecting T135.  For this 

target set PRS-M (20,10) performs very well from day 1 through the first adverse weather 

period at the beginning of day 2.  Conversely, PRS-M (20,10) trailed all other metrics 

with a slight performance degradation during the periods of high contrast into the low 

contrast period during the hours between 1600h and 2359h on day 2.  For the second 

adverse weather event at the beginning of day 3, one finds that none of the metrics were 

able to discriminate T135 between 0000h and 0100h.  However, this trend reversed after 

0500h with all metrics discriminating significant portions of the T135 for the chosen    .  

For the last period of adverse weather, end of day 3, both PRS-M (5,5) and PRS-M 

(20,10) performed similarly to each other with a    difference relative to PRS-M (5,15) 

and the baseline of about 0.12.  Nonetheless, when averaging the 72-hour probability of 

detection, similar values are measured for the baseline, PRS-M (5,5), PRS-M (5,15), and 

PRS-M (20,10) with a                           , respectively. 
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Figure 5.122  72-hour performance comparison between PRS-M and M-Box algorithm 

in discriminating the T90 from natural clutter.  The 72-hour average probability of 

detection was similar for all the metrics with a                            for the 

baseline, PRS-M (5,5) , PRS-M (5,15), and PRS-M (20,10), respectively. 
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Figure 5.123  72-hour performance comparison between PRS-M and M-Box algorithm 

in discriminating the T135 from natural clutter.  The 72-hour average probability of 

detection were measured to be, from highest to lowest, the baseline, PRS-M (5,5), PRS-

M (5,15), and PRS-M (20,10) had a detection rate of                           , 

respectively. 

 

 From the results in Table 5.12 and Figure 5.117 it is no surprise that the baseline 

algorithm (M-Box) clearly performed very well when compared to PRS-M in detecting 

the external blackbody, Figure 5.124.  Due to the variability in the probability of 

detection for both PRS-M and the baseline it is hard to observe a clear trend throughout 

the 72 hours.  However, some interesting tendencies can be discussed, for example, for 

the low contrast period during day 1 through day 2 the PRS-M (20,10) performs poorly 

relative to all other metrics, while the baseline performs the best.  For the second period 
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of adverse weather (high humidity), beginning of day 3, none of the metrics were able to 

discriminate the blackbody, however by 0500h all metrics exhibited a        .  For the 

third adverse weather event, end of day 3, all of the metrics perform similarly to each 

other with PRS-M (5,15) demonstrating degraded performance in some instances.  

Nonetheless, the 72-hour average probability of detection demonstrates that all metrics do 

exhibit similar performances measured as                            for the 

baseline, and PRS-M (5,5), PRS-M (5,15), and PRS-M (20,10), respectively. 

 

 
Figure 5.124  72-hour performance comparison between PRS-M and M-Box algorithm 

in discriminating the blackbody from natural clutter.  The 72-hour average probability of 

detection was measured to be                            for the baseline, and PRS-

M (5,5), PRS-M (5,15), and PRS-M (20,10), respectively. 
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 Figure 5.125 demonstrates the detection performance of all metrics for the 

observation tower during the 72-hour performance period.  As demonstrated in Table 

5.12 and Figure 5.118 the baseline did not perform very well at all during the periods of 

low contrast.  Only during the periods of high contrast the M-Box was able to 

discriminate the tower from clutter with a probability of detection of above 0.70.  

Conversely, PRS-M (20,10) demonstrated to be the best performing metric reaching a 

        for most of the 72-hour period.  During the second adverse weather event, 

PRS-M (5,5) and PRS-M (20,10) performed very well with PRS-M (5,15) exhibiting 

degradation sometimes in the excess of 0.60 at some instances relative to PRS-M (20,10).  

However, for the third period of adverse weather, PRS-M (5,15) exhibited a        , 

PRS-M (20,10) a        , PRS-M (5,5) a        , and finally the baseline with 

      .  The average probability of detection for the 72-hour period was    

                        for the baseline, PRS-M (5,5), PRS-M (5,15), and PRS-M 

(20,10), respectively. 
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Figure 5.125  72 hour performance comparison between PRS-M and M-Box algorithm in 

discriminating the observation tower from natural clutter.  The 72-hour average 

probability of detection was                            for the baseline, PRS-M 

(5,5), PRS-M (5,15), and PRS-M (20,10), respectively. 

 

 Finally, when all targets are combined into a single class, Figure 5.126, one can 

clearly observe that the baseline underperforms all combinations of PRS-M for most part 

of the 72-hour period with the exception of the periods of adverse weather (high 

humidity) at the beginning and end of day 3 where similar performances between PRS-M 

and the baseline can be found.  During the periods of high contrast, PRS-M exhibits 

better    than the baseline.  The average 72-hour probability of detection for Figure 

5.126 from highest to lowest metric was PRS-M (20,10) with a        , followed by 
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PRS-M (5,5) with a        , then PRS-M (5,15) with a        , and finally the 

baseline with a        . 

 

 
Figure 5.126  72-hour performance comparison between PRS-M and M-Box algorithm 

for all manmade objects in the scene.  The average 72 hour probability of detection from 

highest to lowest was PRS-M (20,10) with a        , followed by PRS-M (5,5) with a 

       , then PRS-M (5,15) with a        , and finally the baseline with a    
    . 

 

 From the figures presented in this section, one concludes that for most part 

increasing   clearly helped the PRS-M in discriminating the manmade objects from 

natural clutter, which meant the PRS-M was able to characterize the test scene more 

effectively.  By increasing   on the other hand, the performance of the PRS degraded or 
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improved relative to a lesser number of   but for most part when averaging the 

performance over a large number of images the performances were relatively similar.  As 

one should remember, increasing the value of   is not done necessarily to increase the 

performance, that’s primarily accomplished by increasing  .  Increasing M, decreases the 

probability that all parallel processes are contaminated with at least one block of data, see 

for example Figure 5.111 where the PRS methodology was able to successfully 

discriminate T0 even though one of the parallel process did not identify T0 as an anomaly. 

 This subsection presented a performance comparison between the PRS-M 

methodology and the baseline algorithm as proposed in Subsection 5.3.5.  The following 

key points can be concluded from the data shown in this subsection: 

1) Increasing  , the number of samples, increases the ability in 

successfully characterizing the test scene very well, which then results 

in a higher probability of detection for the same    . 

 

2) Increasing  , the number of parallel processes, allows for:  

 

a. Mitigation of the inclusion of manmade samples during the 

random sampling process in all parallel processes (or trials). 

  

b. Reduces the false alarms energy relative to manmade objects in 

the final output surface  . 

 

3) PRS-M demonstrates exceptionally high performance especially in the 

low false alarm rate region compared to the baseline for a           

as shown in the ROC curves. 

 

4) As with the RS-M, PRS-M was able to discriminate the tower very 

well unlike the baseline. 

 

5) PRS-M performed better or similarly to the baseline for the 72-hour 

data collection period with two exceptions: 

 

a. The baseline demonstrated better average probability of 

detection for the external blackbody.  Nonetheless this 

difference was minimal, 0.06, between the baseline and the 

PRS-M. 
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b. PRS-M demonstrated better average probability of detection 

for the observation tower.  In this case, PRS-M (20,10) 

demonstrated a probability of detection difference relative to 

the baseline of 0.85. 

 

5.3.13 Limitations of the PRS-M Anomaly Detector 

The PRS-M, as well as the RS-M and the M-Box, have a similar limitation, they are all 

simple anomaly detectors that provide no additional information about the anomalous 

objects and as a result more sophisticated algorithms and/or sensors are needed to 

discriminate false alarms from targets.  In this dissertation, the background clutter is 

relatively easy with trees composing most of the scene.  One would then expect that more 

diverse backgrounds consisting of lots of different natural materials could in principle 

exhibit more false alarms especially in transition areas between the different natural 

clutter; see Figure 5.120 where transitions (heterogeneous) areas were more accentuated 

than homogeneous areas.  In this construct, a heterogeneous area implies a location where 

the moving window samples two or more natural clutter class that can, in principle, 

display different radiance (temperature) values.  If such occurs, i.e., different classes 

exhibiting different radiance values, the variability within the moving window samples 

may be very high resulting in a potential false alarm. 

5.3.14 Summary and Conclusions 

Subsection 5.3 presented novel ways to analyze and process polarimetric information that 

steered away from current polarimetric peer-review research topics.  One of the most 

important key findings demonstrated in Subsection 5.3.4 was the use and analysis of 

individualized polarization features (I0 and I90) to separate manmade and natural clutter 

distributions in the bivariate space, which concluded that the covariance of natural clutter 
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of a block of data of size     as it moves across the image was smaller than the 

covariance of manmade objects presented in the scene.  This feature was a result of the 

window observing a large variability in the radiance values when it was place over two or 

more manmade surfaces at different orientations relative to the camera viewing angle (see 

Chapter 3 for more information on this phenomenon).  Conversely, as the window moved 

across natural clutter background, the radiance values were found to be more 

homogeneous, therefore, resulting in lower variability within its pixels.   

This information allowed for the proposition of using a covariance-difference 

multivariate algorithm based on the M-Box covariance test (Subsection 5.3.5), which 

resulted in an extremely efficient algorithm to pin-point the locations of manmade objects 

present in the scene compared to conventional Stokes parameters and DoLP (Subsection 

5.3.6).  However, as shown in Subsection 5.3.7, the implementation proposed in 

Subsection 5.3.6 assumed that the determinant of manmade objects’ covariance matrices 

were larger than the determinant of background covariance and as a result, the 

implementation of the M-Box (Subsection 5.3.6) failed in close proximity PI.   

In analyzing short range PI, the assumption on the variability exhibited by 

manmade objects and natural clutter was reversed, i.e., the determinant of natural clutter 

covariance was actually larger than that of manmade objects.  As a result, Subsection 

5.3.8 proposed the RS-M which combined a random sampling scheme to characterize the 

natural clutter background with the M-Box covariance test proposed in Subsection 5.3.5.  

The implementation of these two methods made the algorithm suite (1) range invariant, 

now the M-Box covariance test could be used in both short and long range PI, and (2) 

allowed for both the reference and test windows to have equal sample sizes.  The results 
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in Subsection 5.3.9 demonstrated that RS-M had comparable or better performance to the 

baseline as a function of increasing   (better background characterization).  In addition, 

the RS-M was able to detect the observation tower, a manmade object, which the M-Box 

failed to detect as shown in Subsection 5.3.6.2.  Subsection 5.3.10 presented a potential 

limitation of the RS-M in detecting manmade object in PI.  This condition arose when a 

manmade object covariance determinant value was found to be in between two clutter 

covariance determinants and as a result of this condition, the RS-M could not 

discriminate a manmade object from clutter.  However, although the RS-M limitation is 

of a concern, as it was noted in Subsection 5.3.10, the data used to highlight the 

concerning case were fictitious, and examples of similar cases could not be found in the 

database used for the work described in this dissertation.   

Finally, the PRS-M was proposed in Subsection 5.3.11 as a generalized anomaly 

detector for PI.  Just like the RS-M, it implemented a random sampling technique that 

allowed the M-Box algorithm to remain range invariant.  In addition, by keeping the M-

Box covariance test to k = 2, eliminated the RS-M limitation as presented in Subsection 

5.3.10.  On the other hand, unlike the RS-M, contamination was a serious limitation to 

the PRS-M and as a consequence, the need to parallelize each trial was implemented to 

mitigate the overall probability of contamination in all trials.  Fusing all the trials’ output 

surfaces introduces two benefits: (1) retains anomalies when detected in at least one of 

the M parallel processes and (2) mitigates false alarms in the final output surface. 

All of these features when implemented with the M-Box algorithm, allowed the 

covariance test to work in any situation, as long as, the variability within a test window 
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representing manmade objects is significantly different from any of the random samples 

collected from natural clutter.   

Subsection 5.3.12 demonstrated that just like the RS-M, the PRS-M performance 

increased as a function of increasing   (number of random samples).  Moreover, ROC 

curves demonstrated that the PRS-M performed very well at very low probability of false 

alarm rates              with a minimum        as shown in Table 5.12. 

Finally, Subsection 5.3.13 illustrated the limitations posed by the PRS-M.  In this 

case, the PRS-M is a simple anomaly algorithm that provides no additional information 

about the anomalous objects.  Furthermore, the clutter in this database can be viewed as a 

relatively easy background where trees compose over 90% of the scene.  Therefore, as 

scenes become more diverse (different natural clutter material) the number of false 

alarms may increase as well if a suitable N is not chosen. 

 

5.4 Conclusions 

Chapter 5 introduced two significantly different methodologies for processing PI; the first 

was based on morphological operations that were capable of enhancing manmade object 

features with respect to natural clutter, improving manmade object detection over 

conventional Stokes and DoLP parameters.  The first method utilized the conventional 

Stokes and DoLP imagery as input to the proposed set of MM operators, so in some 

aspect, its performance was directly influenced by the available features in the original 

conventional Stokes/DoLP imagery.  As it was shown in Section 5.2, if such features 

were not readily available, the morphological operators would not be able to extract 

meaningful information needed to enhance the target to clutter contrast. 
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 The second method eliminates the use of Stokes, considered by many as the 

foundation of PI, and DoLP, focusing on the development of multivariate algorithms that 

take as input the individual polarization angle imagery captured by the camera as the 

polarizer changes angles (0°, 45°, 90°, and 135°).  Section 5.3 proposed, what this 

dissertation believes to be, the first multivariate algorithm based on the statistics of the 

individual angle imagery for anomaly detection applications in PI.  By taking into 

consideration the variance between the pixels of a test window as it moves across the 

image it was shown that one can take advantage of the covariance difference between 

manmade objects and natural clutter environments to discriminate one from the other.  

These analyses resulted in the proposition of using the M-Box algorithm as the 

covariance difference anomaly detector for PI.  As effective as the M-Box was, the 

algorithm was bounded by a strict assumption, i.e., the determinant of the covariance of a 

clutter sample was always smaller than the determinant of the covariance of manmade 

objects, which in some situations could not prevail.  Subsections 5.3.8 and 5.3.11 then 

proposed two variants to the M-Box, called the RS-M and PRS-M anomaly detector.  The 

RS-M is an extension of the M-Box algorithm for   samples using a proposed random 

sampling scheme, while the PRS-M (which was introduced as the generalized M-Box 

anomaly detector) used the same random sampling technique found in RS-M coupled 

with a parallel process to mitigate contamination of manmade samples into the reference 

signatures.  The PRS-M proved to be a more sophisticated algorithm because it was able 

to remove all assumptions inherent in the M-Box and RS-M anomaly detectors.  Finally, 

the M-Box, RS-M, and PRS-M were tested against an extensive database comprised of 

three consecutive 24-hour days exhibiting a variety of complex weather conditions and 
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target states while performing extremely well relative to conventional PI exploitation 

techniques
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CHAPTER 6  

CONCLUSION AND FUTURE WORK 

6.1 Summarized Conclusions 

The objective of this dissertation focused on proposing and evaluating unconventional 

polarimetry based algorithms for the autonomous detection of manmade objects in the 

presence of natural background scenes.  The aim was set high at significantly improving 

performance for suitable surveillance applications; both commercial and military.  The 

dissertation supervisory committee sincerely believes the goals of this dissertation were 

all achieved. 

 A significant amount of research can be found focused on Stokes imagery as the 

primary input for polarimetric anomaly detection while at the same time failing to 

address the underlying problems of angle dependency and, most commonly seen, 

inseparable clutter-manmade distributions in PI.  A key goal in this work was to identify 

some fundamental challenges characteristic from polarimetric theory which limit the 

applicability of Stokes imagery.  Another goal demonstrated that, in most cases, the 

manmade distribution is found within the clutter distribution for both S1 and S2 images 

making these images unsuitable for anomaly detection. 

 An image enhancement algorithm was proposed to improve the signal to noise 

ratio between manmade objects and natural clutter background by squeezing the clutter 

distribution while spreading the target distribution further away from clutter as shown in 

Subsection 5.2.  The use of morphological filters on the Stokes imagery demonstrated 

that the enhanced images could be used as anomaly detection surfaces by applying a 
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threshold based on the assumption that the null hypothesis could be modeled by a 

Gaussian distribution. 

 However, as successful as the morphologic filters were in enhancing manmade 

features in Stokes imagery, S1 and S2 in general provide limited information for the 

development of more sophisticated anomaly detection algorithms.  As a result, the 

dissertation proposed the notion of using a polarimetric cube composed of individual 

polarization component imagery captured by the camera as the polarizer changes angles 

(0°, 45°, 90°, and 135°).  This novel idea steered away from common use of polarization 

information and introduced three benefits, (1) analysis on manmade and clutter 

distribution using direct polarization measurements; (2) discovery of key features that 

separate manmade objects from clutter; and (3) the use of multivariate scoring algorithms 

that take advantage of the key features.  

 Subsection 5.3.4 demonstrated that by taking into consideration the variance 

between the pixels of a test window as it moves across the image, one could take 

advantage of the covariance difference between manmade and natural clutter to 

distinguish both object classes. 

 A covariance different test, known as M-Box, was proposed as the anomaly 

detector of choice demonstrating enhanced detection performance relative to 

conventional Stokes.  However, the implementation proposed in Subsection 5.3.6.1 

prevented the M-Box algorithm from working at both short and long range PI, and two 

more variants of the same algorithm were proposed in Subsections 5.3.8 and 5.3.11, as 

RS-M and PRS-M, respectively, to remedy those limitations.   
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 The RS-M is an extension of the M-Box algorithm for   samples using a random 

sampling scheme to characterize the scene.  The RS-M performance was similar to the 

M-Box proposed in Subsection 5.3.6.1 with the added benefit of range invariant 

performance, not requiring a priori information about the distribution spread between the 

two classes. 

 The PRS-M on the other hand was introduced as a generalized M-Box anomaly 

detector using the same random sampling technique found in RS-M, coupled with a 

parallel process to mitigate contamination of manmade samples into the reference 

signatures.  The PRS-M was able to remove all assumptions inherent to the M-Box and 

RS-M anomaly detectors and demonstrated the capability of discriminating manmade 

objects from natural clutter at very low false alarm rates than previously seen in the other 

proposed algorithms. 

6.2 Limitations 

The algorithms presented in this dissertation have the following limitations: 

1) Anomaly Detection Is Not Target Detection: All of the algorithms proposed in 

this work merely detect regions of interest that are considerably different from 

the background clutter.  The algorithms provide no additional information on 

the anomalies and as a result other more sophisticated algorithms need to be 

deployed to further inquire the regions of interest, having the ability to 

separate targets from non-targets.  It is important to remember that in the 

construct presented in this work the detected anomalies were usually of 

manmade objects, however in more complicated backgrounds correct anomaly 

detection may not always correspond to manmade object detection.   

 

2) Manmade Object Size Restriction: Throughout Section 5.3 the proposed 

algorithm were successful in detecting manmade objects that were slightly 

smaller or larger than the sliding window.  If the manmade object covers a 

very small portion of the total area of the moving window, the overall 

variability of the sliding window may resemble the variability of the clutter 

and as a result the location may not be deemed anomalous.   
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3) Higher Dimensional Datacubes:  The work presented here focused on 

bivariate data cube composed of I0 and I90 polarization components.  In order 

to estimate an unbiased covariance matrix of the sliding window samples a 

7 7 sampling window was employed.  As the number of dimensions 

increases the sliding window size needs to increase as well to calculate an 

unbiased estimate of the covariance matrix.  An increase in the sliding 

window size can adversely affect the proposed algorithms ability in detecting 

potential manmade objects as per the reasoning in point 2.  

 

4) Weather Conditions:  Chapter 5 demonstrated very good results of the 

proposed anomaly algorithms for most of the weather conditions available in 

the 72-hour database.  Nonetheless, the amount of weather variability 

presented in this work is very limited compared to what surveillance systems 

actually operate in.  As such, these results should not be extrapolated to other 

more severe weather conditions; and certainly does not imply that by 

exploiting the same key features similar good results would be expected using 

sensors operating in other regions of the spectrum, such as SWIR or MWIR 

where reflectivity properties of the materials play an important role as well. 

6.3 Future Work 

The work presented in this dissertation can be further developed into the following areas: 

1) Multi-Polarimetric Datacube:  The work presented in this dissertation focused 

on a bivariate data cube composed of I0 and I90 polarization components.  A 

natural progression of this work would be to evaluate how the addition of 

other polarization components can separate manmade objects from natural 

clutter more effectively and/or create the possibility to go beyond simple 

anomaly detection applications. 

 

2) Polarization Component Selection:  The addition of more information (e.g., 

polarization components) often comes with a heavy computational price.  

Therefore, the development of autonomous polarization component selection 

algorithms promises to add value in reducing computational cost.  This type of 

work can exploit recent accomplishments in the field of hyperspectral imagery 

exploitation where spectral band selection algorithms and methodologies have 

been already developed for anomaly and target detection applications, see for 

example [77-80].  

 

3) Further Evaluation of Proposed Algorithms:  All proposed algorithms will be 

further evaluated using additional PI datasets exhibiting different weather 

conditions, background clutter, and target sets.  Furthermore, additional 

datasets collected by SWIR and MWIR sensors will be used to evaluate the 

performance of the propose algorithms in detecting manmade objects in those 

regions of the spectrum. 
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6.4 Summary 

Anomaly detection algorithms are highly sought after due to their mathematical 

simplicity and their ability to detect regions of interest where known and unknown targets 

may be located.  Users require such algorithms to work for a variety of target sets of 

different sizes and shapes under a variety of atmospheric conditions and unknown 

illumination environments for different ranges and viewing perspectives.   

The work presented in this dissertation offers several anomaly detection 

algorithms capable of detecting the presence of manmade objects in natural clutter 

backgrounds using LWIR polarimetric imagery.  Performance analysis demonstrated that 

the specific algorithms were capable of discriminating a variety of manmade objects of 

different sizes, shapes, and/or placed at different aspect angles and ranges, while working 

under a variety of illumination and atmospheric conditions and holding a high probability 

of detection as required by the users.   

The research community can benefit from the ideas and anomaly detection 

algorithms presented in this dissertation. 



 

458 

 

REFERENCES 

 

 

[1] W. L. Wolfe, Handbook of Military Infrared Technology. Michigan University, MI: 

Ann Arbor, 1965. 

[2] J.S.Tyo, D. L. Goldstein, D.B.Chenault, and J.A. Shaw, Review of passive imaging 

polarimetry for remote sensing applications,” Appl. Opt., vol. 45(22), pp. 5453-

5469, Aug. 2006. 

[3] E. Collett, Polarized Light Fundamentals and Applications, New York, New York: 

Marcel Dekker Inc., 1993. 

[4] I. S. Reed and X. Yu, "Adaptive multiple-band CFAR detection of an optical pattern 

with unknown spectral distribution", IEEE Trans. Acoust., Speech Signal 

Process., vol. 38, no. 10, pp. 1760-1770, 1990. 

[5] S. Matteoli, M. Diani; G. Corsini, "A tutorial overview of anomaly detection in 

hyperspectral images," Aerospace and Electronic Systems Magazine, IEEE , vol. 

25, no. 7, pp. 5-28, July 2010. 

[6] Y. Chen; N.M. Nasrabadi; T.D. Tran, "Sparsity-based classification of hyperspectral 

imagery," Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE 

International, pp. 2796-2799, 25-30 July 2010. 

[7] S. Khazai et al., "Anomaly Detection in Hyperspectral Images Based on an Adaptive 

Support Vector Method," Geoscience and Remote Sensing Letters, IEEE, vol.8, 

no.4, pp.646-650, July 2011. 

[8] Sakla, W.; Chan, A.; Ji, J.; Sakla, A, "An SVDD-Based Algorithm for Target 

Detection in Hyperspectral Imagery," Geoscience and Remote Sensing Letters, 

IEEE, vol. 8, no. 2, pp. 384-388, March 201. 

[9] M. Felton; et al., “Comparison of the inversion periods for MidIR and LWIR 

polarimetric and conventional thermal imagery.” Proc. SPIE 7672, Polarization: 

Measurement, Analysis, and Remote Sensing IX, April  2010. 

[10] R. Mayer et al., “Detection of camouflaged targets in cluttered backgrounds using 

fusion of near simultaneous spectral and polarimetric imaging.” Navy Research 

Laboratory, NRL Tech. Rep. 2000. 

[11] M. R. Bradley et al. "Detection and tracking of RC model aircraft in LWIR 

microgrid polarimeter data ", Proc. SPIE 8160, Polarization Science and Remote 

Sensing V, Sept.  2011. 



459 

 

 

 

[12] F.A. Sadjadi and C.S.L.Chun, "Passive polarimetric IR target classification," 

Aerospace and Electronic Systems, IEEE Transactions on, vol. 37, no. 2, pp. 

740,751, April 2001. 

[13] J. Zallat; P. Grabbling; Y. Takakura, "Using polarimetric imaging for material 

classification," Image Processing, 2003. ICIP 2003. Proceedings. 2003 

International Conference on, pp. 14-17, Sept. 2003. 

[14] V. Thilak; C.D. Creusere; D.G. Voelz, "Passive Polarimetric Imagery Based 

Material Classification For Remote Sensing Applications," Image Analysis and 

Interpretation, 2008. SSIAI 2008. IEEE Southwest Symposium on,  pp. 153-156, 

24-26 March 2008. 

[15] K. P. Gurton and M. Felton; “Detection of disturbed earth using passive LWIR 

polarimetric imaging”. Proc. SPIE 7461, Polarization Science and Remote 

Sensing IV, Aug. 11, 2009. 

[16] J.L. Miller, Principles of Infrared Technology: A Pratical Guide to the State of the 

Art. New York, New York: Van Nostrand Reinhold, 1994. 

[17] International Commission on Illumination. (2011). Report: CIE S 017/E:2011 

[18] M. Planck, Theory of heat Radiation. New York, Dover: Courier Dover, 1959.  

[19] R. Hudson, Infrared System Engineering. New York, New York: Willey-Blackwell, 

1969. 

[20] "Wien's law". (2012) Encyclopedia Britannica. Encyclopedia Britannica Online. 

Encyclopedia Britannica Inc., Available: 

http://www.britannica.com/EBchecked/topic/643338/Wiens-law. 

[21] L.R. Koller, Ultraviolet Radiation. 2
nd

 edition. New York, New York: Willey, 1965. 

[22] J. R. Schott, Fundamentals of polarimetric remote sensing. vol. 26. Society of Photo 

Optical, 2009. 

[23] G.J. Zissis and W.L. Wolfe. The Infrared Handbook. Infrared Information and 

Analysis Center, Ann Arbor, MI: Office of Naval Research Dept., 1978. 

[24] M.F. Modest, Radiative Heat Transfer. Academic Press, 2003 

[25] M. Riedl, Optical Design Fundamentals for Infrared Systems, 2nd, Bellingham, 

WA: SPIE Press, 2001. 

[26] B.W. Silverman, Density estimation for statistics and data analysis. vol. 26. 

Chapman & Hall/CRC, 1986. 

http://www.britannica.com/EBchecked/topic/643338/Wiens-law


460 

 

 

 

[27] D.W. Scott, Multivariate Density Estimation, New York, New York: Wiley, 1992. 

[28] S.J. Sheather and M.C. Jones. "A reliable data-based bandwidth selection method for 

kernel density estimation." Journal of the Royal Statistical Society. Series B, pp. 

683-690, 1991. 

[29] MATLAB ksdensity. (2013). Available: 

http://www.mathworks.com/help/toolbox/stats/ksdensity.html 

[30] F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images 

with support vector machines," Geoscience and Remote Sensing, IEEE 

Transactions on , vol.42, no.8, pp. 1778-1790, Aug. 2004. 

[31] L.S. Bernstein et. al, "A new method for atmospheric correction and aerosol optical 

property retrieval for VIS-SWIR multi- and hyperspectral imaging sensors: 

QUAC (QUick Atmospheric Correction)," Geoscience and Remote Sensing 

Symposium, IEEE International, vol.5,  pp. 3549-3552, July 2005. 

[32] M.W. Matthew et. al, "Atmospheric correction of spectral imagery: evaluation of the 

FLAASH algorithm with AVIRIS data," Applied Imagery Pattern Recognition 

Workshop, 2002. Proceedings. 31st , pp. 157-163, Oct. 2002. 

[33] T. Krishna. “Exploiting Passive Polarimetric Imagery for Remote Sensing 

Applications.” Dissertation, New Mexico State University, U.S.A., 2008. 

[34] J.M. Romano et al. “Spectral and Polarimetric Imagery Collection Experiment,” 

Army Armament Research and Development and Engineering Center, Picatinny 

Arsenal, NJ, Tech. Rep. No. ARMET-TR-11027., 2011. 

[35] V. Thilak; C.D. Creusere; D.G. Voelz, "Material Classification using Passive 

Polarimetric Imagery," Image Processing, 2007. ICIP 2007. IEEE International 

Conference on , vol.4, pp. 121-124, 2007. 

[36] E. Collett, Field guide to polarization. SPIE, 2005.  

[37] G. G. Stokes, "On the change of refrangibility of light." Philosophical Transactions 

of the Royal Society of London, vol. 142, pp. 463-562, 1852. 

[38] K. L. Coulson, Polarization and Intensity of Light in the Atmosphere. A Deepak 

Pub, 1988. 

[39] ROC Curves Explanation. Wikipedia. (2013). Available: 

http://en.wikipedia.org/wiki/Receiver_operating_characteristic. 

[40] ImageJ. (2013). Available: http://rsbweb.nih.gov/ij/. 



461 

 

 

 

[41] Matlab©. (2013). Available: http://www.mathworks.com. 

[42] Microsoft Excel. (2013). Available: http://www.office.microsoft.com. 

[43] J. Serra, Image Analysis and Mathematical Morphology, London, UK: Academic 

Press,  1982. 

[44] G. Matheron, Elements pour une Théorie des Milieux Poreux, Masson, Paris, France, 

1967.  

[45] G. Matheron, Random Sets and Integral Geometry, New York, New York: Wiley, 

1975.  

[46] G. Matheron and J. Serra, “The Birth of Mathematical Morphology,” in 

Mathematical Morphology, Proceedings of the VI International Symposium 

ISMM, pp. 1-16, Australia, April 2002.  

[47] A. Rosenfeld, “Picture Processing by Computer”. ACM Comput. Surv., pp. 147-176, 

1969. 

[48] J.J.A.M. Heijmans, “Theoretical aspects of gray-level morphology,’ IEEE Trans. 

Patter Analysis and Machine Intelligence, vol. 13, no.6, pp. 568-582, June 1991. 

[49] F.Y. Shih and O.R. Mitchell, “Threshold decomposition of grayscale morphology 

into binary morphology,” IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol. 11, no. 1, pp.31-42, Jan. 1989. 

[50] E. R. Dougherty, and A. L. Roberto, Hands-on morphological image processing, 

Belligham, WA: SPIE Press, 2003. 

[51] O. G. Merino. Image analysis of Infrared Polarization measurements of 

landmines.Master thesis. Vrije Universiteit Brussel (VUB)-ETRO department, 

2001. 

[52] F. Cremer, “Polarimetric Infrared and Sensor Fusion for the Detection of 

Landmines,” Ph.D. dissertation, Delft University, Netherlands, 2003. 

[53] V. Tom and T. Joo, “Morphological detection for scanning IRST sensor,” Final 

Report TR-1167-90-1, Atlantic Aerospace Electronics Corporation, 1990. 

[54] V. Tom and T. Joo, “Morphological-based front end processing for IR-based ATR 

systems,” Final Report 1992, Atlantic Aerospace Electronics Corporation , 1992. 

[55] R.C. Gonzalez and R.E. Woods, Digital Image Proceesing. New York, New York: 

Prentice Hall, 1992. 



462 

 

 

 

[56] K. Fukunaga, Introduction to Statistical Pattern Recognition. 2
nd

, New York, New 

York: Academic Press, 1990. 

[57] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. 2nd. Wiley-

Interscience. 

[58] A. C. Rencher, Methods of multivariate analysis. New York, New York: Willey 

Interscience, 2002. 

[59] J. Neyman and E.S. Pearson, "The testing of statistical hypotheses in relation to 

probabilities a priori". Joint Statistical Papers. Cambridge University Press., pp. 

186-202, 1967. 

[60] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures. 

Boca Raton, Florida: Chapman and Hall/CRC Press, 2004. 

[61] R. V. Hogg, J. W. McKean, and A. T. Craig, Introduction to Mathematical Statistics. 

Upper Saddle River, NJ: Pearson Prentice Hall, 2005. 

[62] J. M. Romano and D. Rosario, “Random sampling statistical analysis for adaptive 

target-scale-invariant hyperspectral anomaly detection”. Proc. SPIE 6565, 

Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral 

Imagery XIII, 2007. 

[63] D. Rosario and J. Romano, “Wide-area hyperspectral chemical plume detection 

using parallel random sampling”. Proc. SPIE 6554, Chemical and Biological 

Sensing VIII, 2007. 

[64] J Romano et al, “Analysis of an autonomous clutter background characterization 

method for hyperspectral imagery”. Proc. SPIE 6966, Algorithms and 

Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, 

2008. 

[65] J.M. Romano; D. Rosario; Luz Roth, “VNIR hyperspectral background 

characterization methods in adverse weather conditions”. Proc. SPIE 7334, 

Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral 

Imagery XV, 2009. 

[66] D. S. Rosario and J.M. Romano, “Ground viewing perspective hyperspectral 

anomaly detection.” US Army Research Laboratory, Maryland, ARL Tech Report 

4583 SEP 2008. 

[67] G. Strang, Introduction to linear algebra. Wellesley, Massachusetts: Wellesley 

Cambridge Pr, 2003. 



463 

 

 

 

[68] M.S. Bartlett, “Properties of sufficiency and statistical tests,” Proc. R. Soc. Lond. pp. 

268-282, May 1937. 

[69] G.E.P. Box, “A general distribution theory for a class of likelihood criteria.” 

Biometrika, vol. 36, pp. 317-346, 1949. 

[70] J. Marden. (2012). Multivariate Statistics Old School [PDF Online]. Available: 

http://istics.net/pdfs/multivariate.pdf 

[71] J.C Lee; T.C. Chang; P.R. Krishnaiah,”Approximation to the distributions of the 

likelihood ratio statistics for testing certain structures on the covariance matrices 

of real multivariate normal distributions. Multivariate Analysis, vol. 4, pp. 105-

118, 1977. 

[72] T.W. Anderson, An introduction to multivariate statistical analysis. New York, New 

York: John Wiley, 2003.  

[73] B. G. Tabachnick and L. S. Fidell, Multivariate analysis of variance and covariance. 

Boston, Massachusetts: Allyn and Bacon, 2001. 

[74] MATLAB mnvrnd function. (2013). Available: 

http://www.mathworks.com/help/stats/mvnrnd.html. 

[75] J.M. Romano; D. Rosario; J. McCarthy, "Day/Night Polarimetric Anomaly 

Detection Using SPICE Imagery," Geoscience and Remote Sensing, IEEE 

Transactions on, vol. 50, no. 12, pp. 5014-5023, Dec. 2012. 

[76] J. Romano; D. Rosario; N. Nasrabadi, "Covariance trace for polarimetric anomaly 

detection," Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE 

International, pp. 4233-4236, July 2012. 

[77] C. Chein-I; S. Wang, "Constrained band selection for hyperspectral imagery," 

Geoscience and Remote Sensing, IEEE Transactions on, vol. 44, no. 6, pp. 1575-

1585, June 2006. 

[78] D. Hongtao et al., "Band selection using independent component analysis for 

hyperspectral image processing," Applied Imagery Pattern Recognition 

Workshop, 2003. Proceedings. 32nd , pp. 93-98, Oct. 2003. 

[79] L. Paluchowski and P. Walczykowski, "Preliminary hyperspectral band selection for 

difficult object detection," Hyperspectral Image and Signal Processing: Evolution 

in Remote Sensing, 2009. WHISPERS '09. First Workshop on, pp. 1-4, Aug. 2009. 

[80] Y. Yufeng; Y. Jinhua; L. Shijin, "A Fast Approach to Hyperspectral Band Selection 

Based on Time Series Analysis," Pattern Recognition (CCPR), 2010 Chinese 

Conference on, pp. 1-5, Oct. 2010. 


	Exploitation of infrared polarimetric imagery for passive remote sensing applications
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)

	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introdcution
	Chapter 2: Introduction to Infrared
	Chapter 3: Overview of Polarimetry
	Chapter 4: Spectral and Polarimetric Data Collection Experiment
	Chapter 5: Polarimetric Imagery Exploitation Algorithms
	Chapter 6: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 31)
	List of Figures (2 of 31)
	List of Figures (3 of 31)
	List of Figures (4 of 31)
	List of Figures (5 of 31)
	List of Figures (6 of 31)
	List of Figures (7 of 31)
	List of Figures (8 of 31)
	List of Figures (9 of 31)
	List of Figures (10 of 31)
	List of Figures (11 of 31)
	List of Figures (12 of 31)
	List of Figures (13 of 31)
	List of Figures (14 of 31)
	List of Figures (15 of 31)
	List of Figures (16 of 31)
	List of Figures (17 of 31)
	List of Figures (18 of 31)
	List of Figures (19 of 31)
	List of Figures (20 of 31)
	List of Figures (21 of 31)
	List of Figures (22 of 31)
	List of Figures (23 of 31)
	List of Figures (24 of 31)
	List of Figures (25 of 31)
	List of Figures (26 of 31)
	List of Figures (27 of 31)
	List of Figures (28 of 31)
	List of Figures (29 of 31)
	List of Figures (30 of 31)
	List of Figures (31 of 31)

	Symbols and Abbreviations (1 of 3)
	Symbols and Abbreviations (2 of 3)
	Symbols and Abbreviations (3 of 3)


