
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 







4

In Figure 1.2 the wall shear stress is shown acting upwards since the downward

movement of the piston, or upward motion of the wall, causes the material to slide in the

positive z-direction. A force balance in the z-direction yields Equation (1.2).

By applying the assumptions that the friction at the wall is fully mobilized at the

Coulomb limit ,u„ , and the proportionality Err  Kcrzz between the stresses, the

differential equation governing the pressure a 	 given by,

(1.3)

The latter first-order ordinary differential equation is solved for o  using standard

methods to yield,

where 13 = 4,uK D . Upon setting z = H (the fill height of the material) in Equation (1.4)

and multiplying the result by the piston area, the normal force on the piston is given by,

Equation (1.5) predicts that F(H) asymptotes to a value that is less than the actual weight

of the material in the cylinder — a behavior that is quite different from ordinary fluids.
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In the case where the piston is moving upwards, a similar equation can be derived

following the procedure outlined above, with the only difference being the direction of

the wall shear stress, i.e.,

However, the prediction is quite different as the piston load increases exponentially with

H. Although the focus of this thesis is the phenomenon described by Equation (1.5),

preliminary simulations had been done for the case when the piston is displaced upwards

(i.e., Equation (1.6)). Here, very large force fluctuations in the simulated piston load

were found so that results were not definitive. Unfortunately, the additional simulations

needed to obtain consistent behavior could not be carried out within a reasonable time

frame on the university's computing systems.

A derivation for Janssen's constant K is easily produced via a Mohr-Coulomb

failure analysis. A brief sketch is given here for completeness, while further details can

be found in [2]. The Coulomb yield criterion for a cohesionless material takes the

form r = po- + c , where r is the shear stress, p is the coefficient of friction, o- is the

normal stress, and c is the cohesion. This criterion imposes a limit on the shear stress that

can exist within a granular material. Used in conjunction with Mohr's circle, it provides

the basis for the Mohr-Coulomb failure analysis. Two cases arise with Mohr's circle, the

active case and the passive case. In the active case the axial stress is greater than the

radial stress, while in the passive case the radial stress is larger than the axial stress.

Mohr's circle for the active state, along with the Coulomb yield criterion, denoted by IYL

(Internal Yield Locus), is shown in Figure 1.3 below.



6

Figure 1.3 Mohr's circle for the stresses in the active state.

For the case shown in Figure 1.3 a geometrical analysis from Mohr's circle will

show that the radial and axial stresses are given in Equation (1.7) and Equation (1.8),

respectively, where tit is the internal angle of friction ( v = tan - ' p ), and c is the

cohesion.

Additionally, from Mohr's circle, one can find that R = 4- sin {it . Then by

eliminating and R by combining the equations for the axial and radial stress, and

assuming a cohesionless material (i.e., c -4 0 ), one will arrive at Equation (1.9), which

relates the radial and axial stresses.
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1— sin tit
Thus, for the active case Janssen's constant is found to be K^ 	 . A similar

1+ sin yt

analysis will show that for the passive case (in which o > o 	 one finds that

1.3 Review of Published Literature

H.A. Janssen [1] (English translation is given by [15]) provided the first theoretical

model to predict the vertical pressure profile in a granular column. Since 1895, many

investigations have attempted to further understand this phenomenon, and in fact, more

than 330 published papers have cited Janssen since 1980 [15]. Table 1.1 below gives a

brief overview the literature that is most relevant to this thesis.

In his treatment of Janssen's equation, Nedderman [2] points out two questionable

assumptions of the theory. The first is that the axial a zz and radial an- stresses are

principal stresses as depicted on Figure 1.3, and proportional according to Equation (1.1).

It can be shown very easily that this assumption is incorrect because there is no shear

stress acting on a principal stress plane, which contradicts another of Janssen's model

assumptions, i.e., that frictional forces are fully activated at the wall so that r ,u„6„,..

The second assumption is that the stresses across any horizontal cross section are

uniform. The analysis here is much more complex and the reader is referred to [2] for the

details.
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Table 1.1 Overview of Selected Published Material

First Author Year Methods

Nedderman [2] 1992 Analytical

Kolb [16] 1999 Experiment

Vanel [13] 1999 Experiment

Vanel [14] 2000 Experiment

Marconi [9] 2000 Analytical

Ovarlez [12] 2001 Experiment

Ovarlez [11] 2003 Experiment

Landry [8] 2003 Simulation

Bertho [4] 2003 Experiment

Arroyo-Cetto [3] 2003 Experiment

Landry [7] 2004 Simulation

Landry [6] 2004 Simulation

Walton [17] 2004 Experiment

Bratberg [5] 2005 Experiment

In 1999, Kolb et al. [16] performed a series of experiments on pushing a two-

dimensional granular column upwards with a piston. They reported on the resistance

force encountered by the piston for a wide range of parameters such as the piston

velocity, and the particular granular fill material used. The main conclusions drawn

concerns the variability of the results and the complex features depending on the

experimental conditions. The authors were unable to provide a clear description of a

mechanism for the rather large fluctuations in the measured piston force.
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In 1999, Vanel et al. [13] reported on the static pressure at the bottom of a

granular column. Two types of experiments were performed. The first is referred to as a

"descent experiment", and the second is referred to as a "tapping experiment". A descent

experiment is intended to probe the effect of a series of downward motions of the piston.

A tapping experiment is designed to probe the effect of a changing granular density.

They report that for every set of data, the Janssen model systematically underestimated

the results from the experiments. The authors propose a two parameter model to account

for a hydrostatic-like region located at the top of the column, while the remainder of the

column behaves according to Janssen's model. Their two-parameter model equations for

the apparent mass Ma, expressed in units of fill mass M, are

where the fitting parameter Mo represents the mass of the hydrostatic zone at the top of

the column. Figure 1.4 depicts the parameters of the model. In Equation (1.10), M. 9c is a

fitting parameter that represents the difference between the 'saturation mass' and Mo.
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Figure 1.4 Apparent mass Ma as a function of the filling mass M for a packing fraction
0.585 ± 0.005. The straight dotted line indicates a hydrostatic behavior; the dashed curve
is a fit with Janssen's prediction; the solid curve is a fit with the two parameter model.
Redrawn from [13].

In 2000, Vanel et al. [14] performed experiments to measure the mean pressure at

the bottom of a column of cohesionless granular material. Here, Janssen's form was

found to be satisfactory and in accordance to their earlier experiments [13]. In addition,

they carried out separate experiments by placing an overload on the top surface of the

packed bed. Fore this case, the data could not be fit to Janssen's model. Rather, a simple

hyperbolic form having two fitting parameters was able to reproduce the experimentally

measured stress response of the material.
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In 2000, Marconi et al. [9] analytically studied the mechanisms underpinning

Janssen's law. They consider a q-model [18] for an assembly of particles on a two-

dimensional lattice which simply verified the coupling between the vertical and lateral

forces as a necessary feature for Janssen's model. However, this simply restates the

constitutive assumption that axial pressure is transferred into the lateral (or radial)

direction in a granular material. However, their model did suggest that a non-uniform

pressure profile across a horizontal plane results in a deviation from Janssen's model.

In 2001, Ovarlez et al. [12] reported on the rheology of a granular material slowly

driven in a cylindrical container. They observed blocking enhancement, aging, and

dynamical hardening effects at slow driving velocities. Their analysis showed that the

properties exhibited are due to the solid on solid friction at the particle to wall contacts.

However, a quantitative analysis in the context of Janssen's model indicated that the

dynamical restructuring effects in the bulk cannot be excluded. Additionally, they report

a very strong dependence on the relative humidity. In a subsequent paper, the authors

[11] report on extended experiments with the same configuration. Here, the piston was

translated downward at a constant velocity Vo = 1.5 ,um I s . The fill material consisted of

monodisperse particles of diameter d =1.5mm and thus this corresponded to a non-

dimensional piston velocity Vo = 0.001 d I s (particle diameters per second). Results

conformed with Janssen's model. However, when an overload was placed on the top of

the packed bed, Janssen's model failed, as was also found in [14].
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Landry et al. [8] reported on discrete element simulations of static granular

packings confined to a cylindrical container, in which the vertical stress profile along the

height of the granular fill, and the distribution of forces within the static column are

computed. They found that the majority of the particle - wall contact forces were at or

near the Coulomb failure limit, while particle - particle contact forces in the bulk were far

from this limit. Their results confirm the experimental findings of Vane! et al. [13]

regarding the hydrostatic region at the top of bed. They further demonstrate from their

simulated data that this hydrostatic region is principally due to the forces at the wall

being far from the Coulomb yield criteria.

In 2003, Berth() et al. [4] reports on experiments measuring the apparent mass of a

granular packing inside of a cylinder that was translated upward. Using a diameter

ratio 0 =15 (0 is the ratio of the cylinder to particle diameter), they found that Janssen's

model was valid for a broad range of velocities, up to several centimeters per second.

This is shown in Figure 1.5, in which Bertho's original data is redrawn. Most interesting,

is that measurements taken after the cylinder motion was halted contained more

dispersion, thereby yielding a poorer fit to Janssen's model. The authors further report

that the average solids fraction of the packing remained fairly constant during the piston

motion.
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Figure 1.5 Apparent mass Mapp as a function of the total mass M for a cylinder velocity
of 0.2mm/sec (redrawn from [4]).

Arroyo-Cetto et al. [3] described their experiments measuring the force required

to push a granular column upwards within a cylinder. To do this, the piston was fixed

and the cylinder walls were translated downwards. They reported that this force rapidly

increased with fill height, in accordance with Janssen's theory as per the form of

Equation (1.6). In addition they found that the force also increases with the velocity of

the cylindrical container. However, large fluctuations in the measurements were

observed (see Figure 2 in [3]) analogous to what was seen in the experiments of Kolb

[16].
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Recently, Landry et al. [7] reported on discrete element simulations for both two

dimensional and three dimensional static systems. For the two dimensional simulations,

they found a clear hydrostatic region at the top of the packing followed by a region not

well described by Janssen's functional form. More significantly, their results indicate

that a full three dimensional model is needed to reproduce Janssen's prediction. In a

sequent paper, the authors [6] present simulation results in which the cylinder is

translated upward at a uniform velocity. Computations of the vertical stress profile, the

Coulomb criterion at the walls (i.e., the value of the wall friction force against the

Coulomb limit), and the packing structure are described. As in experiments [13], the

initial 'poured' configuration exhibited a hydrostatic region at the top of the packing that

then crosses over to a Janssen like behavior. As the cylinder is moved upward the

vertical pressure rapidly changes, and then reaches a steady state value until the motion is

stopped. The system was then allowed to relax (or equilibrate) and the vertical pressure

computed and fit to Janssen's model. For slower cylinder velocities, the agreement of the

static (relaxed) pressure profiles deviated from the model predictions. This was attributed

to a reduction in the number of particle-particle and particle-wall contacts at the Coulomb

limit. However, it is not clear if this is the case since their force model applies friction to

the center of the particle rather than the contact surface.

Walton carried our a series of experiments using 3 mm glass beads in a 4 cm

acrylic tube with a diameter ratio 0 =13.3. The results, reported in [17], verified the

exponential functional forms of Janssen's model (see Equations (1.5) and (1.6)) for the

piston force versus fill height. Figure 1.6 summarizes the main findings of the

experiments. The most interesting aspect of the work, shown graphically in Figure 1.7, is



15

the linear variation of the product ,ua, (i.e., force required to move the cylinder) against

applied axial stress azz . However, the line does not intersect the origin in accordance with

Janssen's constitutive assumption given by Equation (1.1).

Figure 1.6 Experimental results reported by Walton verifying the functional form of
Janssen's model (redrawn from [17]).
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Figure 1.7 Experimental results reported by Walton invalidating the constitutive
assumption in Janssen's model (redrawn from [17]).

In 2005, Bratberg et al. [5] performed a series of experiments with small cylinder

aspect ratios to test the validity of Janssen's model in this configuration. They used ratios

between 0 =1.9 and 0 = 3.5 that were well below what had been done previously. The

apparent mass and the height of the granular fill was measured for both dynamic and

static situations. They reported that for an upward motion of the piston, the apparent mass

increased monotonically until a slip-stick regime was reached. Additionally, for a

downward motion of the piston, a steady state apparent mass was achieved after an

almost linear decrease in the apparent mass. However, Janssen's model did not

satisfactory fit the results with only a single parameter. More importantly they observed
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that the exponential decay characteristic of Janssen's model was not observed for a

column so narrow that each particle had only two near neighbors. This was attributed to

the coupled rotations of the particles in this configuration, an effect which is sited as

contrary to a necessary 'rotational frustration' to produce the exponential decay.

1.4 Objective

In this thesis, the results of a particle-level numerical investigation of the load on a piston

supporting a monodisperse granular material consisting of frictional, inelastic spheres of

diameter d, within a cylindrical vessel of diameter D is presented. This is done via

discrete element simulations where wall friction in activated by moving the piston down

very slowly or displacing the cylinder upwards. A review of the literature indicated that

computer simulated investigations have considered diameter-ratios ranging

from 20 to 40 with wall friction activated by the motion of the cylinder walls. In

comparison, relatively small diameter-ratios (i.e. 0 =13.3 and 0 = 26.6) are selected with

the goal of comparing results with experiments and Janssen's model predictions. Results

are discussed within the framework of the assumptions implicit in Janssen's theory.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 describes the simulation

method and its application. Chapter 3 presents the simulated results and a discussion of

their significance in the context of Janssen's theory. Chapter 4 contains the conclusions

and recommendations for further work.



CHAPTER 2

DISCRIPTION OF THE DISCRETE ELEMENT METHOD SIMULATION

2.1	 Background

The discrete element method is a computational scheme in which the equations of motion

of a system of dissipative, interacting particles are numerically integrated to determine

the phase space (i.e., positions and velocities). The technique was introduced by Cudall

and Strack in the 1970's [19] and has been employed extensively for granular flows (see

for example [20-34]). The numerical methods are identical to those used by molecular

dynamics simulations. However, engineering mechanics models of contact forces are

used in place of intermolecular force relations.

2.2	 Overview

The DEM code used in this thesis employs the inelastic, frictional soft sphere models of

Walton and Braun [33]. This code was first developed for the purpose of simulating

granular shear. Since its inception, the DEM code has undergone many modifications.

The specific DEM code used was previously designed for a rectangular geometry with an

oscillating floor. Therefore, significant modifications were required to obtain a

cylindrical geometry with a moving piston and moving cylinder wall. The reader is

referred to Appendix A for details on the modifications to the DEM code. In Appendix A

the reader will find excerpts from the code along with a description of the purpose,

variables, etc. for that section of code.
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General flow of the DEM code:

1. Read the input file, initialize simulation parameters

2. Assign particle positions

3. Update linked list of near neighbors

4. Compute inter-particle forces

5. Integrate to obtain the positions and velocities of the particles

6. Repeat from step 3 until the simulation is finished

Initially, the code will read the input file, i3ds (Sample input file shown in

Appendix D), using the subroutine datainf (All subroutines are described in section 2.3

below). If specified in the input file that the simulation is a continuation of a previous

simulation, the subroutine dumpread.f will read the dumpfile, d3ds1000, from the

previous simulation. The dumpfile, d3ds1000, is just like an input file, except that it

contains information such as particle coordinates and velocities from where the previous

simulation left off.

Following the input of simulations parameters, the subroutine init.f will initialize

the simulation by assigning initial coordinates to all of the particles. In addition init.f will

call the subroutine bound.f to initialize the boundaries of the simulation. For this thesis,

the boundary conditions consist of a cylindrical container of infinite length with a floor,

i.e., the piston. In this thesis, both the piston and the cylindrical container posses the

ability to translate along the direction of the cylindrical axis. Furthermore, all particle

initial positions are randomly generated in this thesis. The subroutine findradf is then

used to assign the particles a dimension. An overlap detection routine is used to confirm
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that none of the simulation particles are overlapping each other or a boundary when the

simulation starts. Lastly, initf will call two more subroutines, initcuml .f and initcum2.f

both of which will initialize the short and long term cumulative averages, respectively.

After the particle positions and boundaries are initialized, the simulation can

begin to loop. Subsequently, the subroutine updatef will create the linked list of near

neighbors. The subroutine updatel is called henceforth only when the cumulative

maximum displacement of a particle from each time step is greater than half the search

radius for near neighbors. In addition each time update.f is called another subroutine

deletem.f is called to remove particles from the linked list that have traveled outside of

the search radius for that particle. More information on the linked list is given in Section

2.4 below.

The next step in the simulation loop is in preparation of the integration routines.

The subroutine initstep.f is called to initialize parameters for the subroutines that compute

the inter-particle forces and the integration routines. Subsequently, the subroutine

forces.f computes the inter-particle forces due to contacts using the force model described

in Section 2.5 below. Following the computation of the contact forces, the subroutine

integl .f computes the velocities at the current time step. Next the subroutine diagnos2.f

computes the diagnostics such as the potential component of the stress tensor at the

current time step for the simulation. At this point a test for writing data to file is

performed. Data is written to file at user input time intervals dtout. If the change in time

since the previous output is at or just above the value of dtout, then the subroutine

datasav2 f is called to perform the write to file. Lastly, the subroutine integ2.f computes

the velocity at the next half time step and the position at the next half time step, and also
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increments the time step to march the simulation forward in time. Then the process

begins all over again from the start of the integration routine.

The remaining Sections of Chapter 2 are as follows: Section 2.3 Description of

Subroutines, 2.4 Contact Detection and the Linked List, 2.5 Force Model, 2.6 Integration

Method and Time Step, and lastly 2.7 Diagnostic Computations.

2.3	 Description of Subroutines

The following subroutines are the building blocks for the DEM code.

• boundf

boundf initializes the boundary particles used in the simulation.

• datainf

datainf reads the input file.

• datasav2.f

datasav2.f writes the output to a corresponding output file at a user
defined frequency dtout.

• deletem.f

deletem.f removes particle j from the linked list of particle i, if particle j
has moved beyond a specified distance of particle i.

• diagnos2.f

diagnos2.fis used to compute the simulation diagnostics.

• dumpread.f

dumpreadf is used when restarting the simulation. All the information
required to restart the simulation from a previous simulation is read in by
this subroutine.
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• findradf

findradfis used to assign the particle radii.

• forces.f

forces.f computes the inter-particle forces, along with the potential
components of the stress tensor.

• initf

init.f initializes the simulation, i.e., time step, boundary dimensions, initial
particle positions, particle masses, etc are initialized.

• initcuml.f

initcuml finitializes the short term variables.

• initcum2.f

initcum2finitializes the long term variables.

• initstep.f

initstep.finitializes the variables used in the numerical integration.

• integl .f

integl Iperforms the numerical integration at the current time step.

• integ2.f

integ2.f computes the coordinates of the particles at the end of the time
step, along with the velocities at that same time.

• update.f

update.f loops through all particles to create, or update, the linked list for
particle i. Only those particles that fall within a specified distance of
particle i are added to the list.
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2.4 Contact Detection and the Linked List

Contact detection is a very simple process in which the geometry and position of particles

are checked against each other. In essence, if the distance between two particle centers is

greater than the sum of the particle radii, then no contact. If on the other hand, the

distance between the particle centers is less than or equal to the sum of the particle radii,

then the pair is contacting.

The detection of contacting pairs of particles is very important in the DEM

simulations. However, the process is extremely expensive computationally to check for

contact between all pairs in the simulation. Thus, a linked list is implemented to reduce

the time required to check for contacts throughout the simulation. The linked list keeps

track of all particles that fall within a near neighbor radius, also known as the search

radius, of the particle under consideration. Therefore, when checking for contacting

pairs, the algorithm only needs to check the particles that belong to the linked list of the

particular particle, and not check all particles in the system. More detailed information

about the linked list can be found in [35].

2.5 Force Model

A soft sphere approach is used in which collisions occur over a finite length of time. The

contacting particles are allowed to slightly overlap and a linear stiffness in the force

model computes a contact force in proportion to the amount of overlap. Any single

particle may be contacting many other particles at the same time. The net force on the

particle is simply the vector sum of all the forces applied to the particle.
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Figure 2.1 Partially latching spring force model.

The force model implemented is the partially latching spring model developed by

Walton and Braun [33, 36-38] for an elastic-plastic material and shown pictorially in

Figure 2.1. The normal force model operates by incorporating different normal stiffness

for loading and unloading, K1 and K2, respectively as shown in Figure 2.1. As shown in

Figure 2.1 the normal force between colliding particles is a function of the relative

overlap a. The magnitude of the normal force is given by Equation (2.1). Where ao is

the remaining overlap at which point the unloading force goes to zero due to plastic

deformation of the contact. Additionally, the normal force acts along line connecting the

particle centers. Further details are presented in [33, 36-38].

(2.1)
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This model leads to a constant coefficient of restitution e, which can be shown [39] to be

given by Equation (2.2) for the partially latching spring model.

(2.2)

Additionally, it can be shown through a Hertzian contact analysis [39] that a good

estimate of the normal loading stiffness is given by Equation (2.3). In this equation, E is

the elastic modulus, and v is the Poisson ratio of the material. In addition, d is the

diameter, m is the mass of a particle, and v in. is the maximum estimated impact velocity.

The tangential force model also developed by Walton and Braun [33, 36-38] is

patterned after Mindlin's theory [40] via a contact stiffness KT that decreases with

displacement until full sliding occurs at the friction limit. The tangential force is applied

at the contact, thus allowing particles to rotate. The effective tangential stiffness KT is

given by Equation (2.4). Where FT is the total tangential force, 11 is the coefficient of

friction, N is the total normal force, y is a fixed parameter set to 1/3, and F; is the

loading reversal value. The loading reversal value is initially set to zero, and then

subsequently set to the value of the total tangential force whenever the rate of change in

magnitude changes from increasing to decreasing, or vice versa.

(2.4)
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The value of Ko is given by Equation (2.5) below, where i is the ratio of normal to

tangential stiffness, in this case set to 0.8.

The tangential force F7, is then computed according to Equation (2.8). The

tangential force is given as the sum of perpendicular and parallel components as shown in

Equation (2.6) and Equation (2.7), respectively. Where AS 1 is the amount of relative

surface displacement in the direction perpendicular to the old tangential force, and ASII is

the amount of relative surface displacement in the direction parallel to the old tangential

force. The model assumes that the relative displacements between time steps are

relatively small. Lastly, the total tangential force is checked against the friction limit

The net force Fu on particle i due to collision with particle j simply is the vector

sum of the normal and tangential contact forces descried above. Therefore the net

contact force, acting on the contact location, is given by,


