
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Spring 5-31-2006

Dynamic recomposition of documents from distributed data Dynamic recomposition of documents from distributed data

sources sources

Abhishek Verma
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Verma, Abhishek, "Dynamic recomposition of documents from distributed data sources" (2006). Theses.
439.
https://digitalcommons.njit.edu/theses/439

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/439?utm_source=digitalcommons.njit.edu%2Ftheses%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

DYNAMIC RECOMPOSITION OF DOCUMENTS
FROM DISTRIBUTED DATA SOURCES

by
Abhishek Verma

Dynamic recomposition of documents refers to the process of on-the-fly creation of

documents. A document can be generated from several documents that are stored at

distributed data sites. The source can be queried and results obtained in the form of XML.

These XML documents can be combined after a series of transformation operations to

obtain the target document. The resultant document can be stored statically or in the form

of a command, which can be invoked later to recompose this document dynamically.

Also, in case a change is made to a document, then only the change can be stored, instead

of storing the modified document in its entirety.

The purpose of this research was to provide a way to recompose dynamic

documents. A solution is proposed at the level of algebra for update and recomposition of

documents stored at distributed data sources. The issue of representation of a document

by a command, i.e., a composition operator and/or an editing command along with one or

more path expressions has also been researched. The construction of a dynamic document

has three phases to it. The first one is the information retrieval. Phase two deals with

building of real document: this includes the filtering of retrieved data by selecting

relevant subset of a document and then applying update operations, and finally the

ordering and assembling of the document. The final phase consists of displaying or

storing or exchanging it over the web through a convenient means.

DYNAMIC RECOMPOSITION OF DOCUMENTS
FROM DISTRIBUTED DATA SOURCES

by
Abhishek Verma

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer Science

May 2006

APPROVAL PAGE

DYNAMIC RECOMPOSITION OF DOCUMENTS
FROM DISTRIBUTED DATA SOURCES

Abhishek Verma

Dr. Vincent Oria, Thesis Advisor
Assistant Professor of Computer Science, NJIT

Date

Dr. Michael P. Bieber, Committee Member 	 Date
Professor of Information Systems, NJIT

Dr. Dimitrios Theodoratos, Committee Member 	 Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	 Abhishek Verma

Degree:	 Master of Science

Date:	 May 2006

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology, Newark, NJ, 2006

• Master of Computer Applications,
Bangalore University, Bangalore, India, 2003

• Bachelor in Commerce (Honors),
University of Delhi, New Delhi, India, 2000

Major:	 Computer Science

To my parents, Dr. Bindra Prasad and Dr. Pushpa Verma;
and my sister, Sonika Sharma.

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Vincent Oria, who not only served

as my research supervisor, providing valuable and countless resources, insight, and

intuition, but also constantly gave me support, encouragement, and reassurance. Special

thanks are given to Dr. Michael Bieber and Dr. Dimitrios Thedoratos for actively

participating in my committee.

I would like to thank my parents for their constant support and encouragement.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 1

1.2 Virtual Documents 	 1

1.3 Dynamic Recomposition of Documents 	 2

1.4 System Description 	 4

2 BACKGROUND WORK 	 6

2.1 XML Document and Schema 	 6

2.2 Introduction to XQuery/XPath 	 7

3 BASIC UPDATE OPERATIONS ON A DOCUMENT 	 9

3.1 Insert Operation 	 9

3.1.1 Definition 	 9

3.1.2 Symbolic Notation 	 10

3.1.3 Usage 	 10

3.1.4 General Constraints 	 10

3.1.5 Use Cases 	 13

3.1.6 Algebraic Laws 	 18

3.1.7 Primitive Insert Operations 	 18

3.2 Delete Operation 	 21

3.2.1 Definition and Symbolic Notation 	 21

3.2.2 Usage 	 21

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2.3 General Constraint 	 21

3.2.4 Use Case 	 21

3.2.5 Algebraic Laws 	 22

3.3 Rename Operation	 22

3.3.1 Definition and Symbolic Notation 	 22

3.3.2 Usage 	 22

3.3.3 General Constraints 	 22

3.3.4 Use Cases 	 23

3.3.5 Algebraic Laws 	 24

3.4 Replace Operation 	 24

3.4.1 Definition and Symbolic Notation 	 24

3.4.2 Usage 	 25

3.4.3 General Constraints 	 25

3.4.4 Use Cases 	 25

3.4.5 Algebraic Laws 	 27

	

4 ADVANCED RECOMPOSITION OPERATIONS ON DOCUMENTS 28

4.1 Project Operation 	 28

4.1.1 Definition and Symbolic Notation 	 28

4.1.2 Usage 	 28

4.1.3 General Constraints 	 28

4.1.4 Use Case 	 28

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.1.5 Derivability 	 32

4.1.6 Algebraic Laws 	 32

4.2 Merge Operation 	 34

4.2.1 Definition and Symbolic Notation 	 34

4.2.2 Usage 	 34

4.2.3 General Constraints 	 34

4.2.4 Use Cases 	 34

4.2.5 Derivability 	 35

4.2.6 Algebraic Laws 	 35

4.3 Move Operation 	 36

4.3.1 Definition and Symbolic Notation 	 36

4.3.2 Usage 	 36

4.3.3 General Constraints 	 36

4.3.4 Use Case 	 36

4.3.5 Derivability 	 38

4.3.6 Algebraic Laws 	 38

4.4 Extract Operation 	 39

4.4.1 Definition and Symbolic Notation 	 39

4.4.2 Usage 	 39

4.4.3 General Constraints 	 39

4.4.4 Use Cases 	 39

ix

TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.4.5 Derivability 	 41

4.4.6 Algebraic Laws 	 41

5 IMPLEMENTATION 	 42

5.1 Insert Operation 	 42

5.2 Delete Operation 	 43

5.3 Replace Operation 	 44

5.4 Rename Operation 	 45

5.5 Project Operation 	 46

5.6 Merge Operation 	 47

5.7 Move Operation 	 49

5.8 Extract Operation 	 51

5.9 Multiple Operations on Distributed Documents 	 52

6 CONCLUSION 	 55

REFERENCES 	 56

LIST OF TABLES

Table	 Page

3.1	 Snapshot of Employee Table 	 14

3.2	 Snapshot of Project Table 	 16

3.3	 Snapshot of Works Table 16

xi

LIST OF FIGURES

Figure Page

1.1 Process of dynamic recomposition of documents 3

1.2 Components of the system and their interaction 4

3.1 Relational database schema 	 11

3.2 XML schema for employee.xml 	 11

3.3 XML schema for project.xml 12

3.4 XML schema for works.xml 	 13

3.5 Abbreviated set of data showing the XML format of the instances for
employee.xml, project.xml and works.xml 	 14

4.1 XML document - Bookl.xml 29

4.2 XML document — Book2.xml 	 30

4.3 XML document — Book3.xml 	 31

4.4 XML schema for Bookl.xml, Book2.xml and Book3.xml 33

xii

CHAPTER 1
INTRODUCTION

1.1 Objective

The objective of this thesis is to provide a way to recompose dynamic documents. This

research provides a solution at the level of algebra for update and recomposition of

documents stored at distributed data sources. The issue of representation of a document

by a command, i.e., a composition operator and/or an editing command along with one or

more path expressions has been researched as well.

Recently, document regeneration has emerged as an increasingly active research

area. A document can be generated from many different documents that are stored at

distributed data sites. The source can be queried and results can be obtained in the form

of XML. These XML documents can be combined after a series of update and

recomposition operations to obtain the target document. The resultant document can be

stored statically or in the form of a command, which can be later invoked to recompose

this document dynamically. Also, in case any change is made to a document, then only

the change can be stored, instead of storing the modified document in entirety.

1.2 Virtual Documents

The model of the Web has shifted the expectations for access to information. Previously,

the information was accessed by the retrieval of electronic copies of documents from a

large repository of relatively static information. One now expects to access information

through the manipulation of a large collection of information resources. Some of these

1

2

resources are documents and some of these resources are processes that create

documents.

An electronic document consists of both the content and the links associated with

that document. Therefore, documents on the Web may be composed of one or more Web

pages (Crowston & Williams, 1999). A document can be stored statically and made

persistent or it may be generated dynamically whenever the user desires and remain

virtual. A virtual document is a document for which no persistent state exists and for

which some or all of each instance is generated at run time (Waters 1999). A virtual

document can then be multiple pages, application results, and may or may not have

associated links. The content may be defined by a database query, a template, a program,

or by some application.

1.3 Dynamic Recomposition of Documents

The idea of dynamic recomposition of documents refers to the process of on-the-fly

creation of documents. The resulting document not only exactly matches a user's request

but even may be adapted to the user's background and personality. Most of these visions

of dynamic documents are heavily influenced by the enormous growth of the World

Wide Web. The Web is an ideal base for dynamic documents because it can be used as

both source and target.

The construction of a dynamic document has three phases to it. The first one is the

information retrieval. The second one is the building of real document; this includes the

filtering of retrieved data by selecting the relevant subset of documents and then applying

update operations, and finally ordering and assembling of the document. The final phase

3

consists of displaying or storing or exchanging it over the web through a convenient

means.

Figure 1.1 Process of dynamic recomposition of documents.

Figure 1.1 above shows the process of dynamic recomposition of documents. The

XML documents XML Doc 1 , XML Doc2 and XML Doc3 are generated by distributed

data sources. In the information retrieval phase, XQuery engine selects the subset of these

documents and sends it to the document generation phase. During the document

generation phase the intermediate document is modified by applying a series of update

operations, i.e., insert that inserts copies of one or more nodes into a designated position,

4

delete for deletion of one or more nodes, replace to replace the value of node or node

itself and rename to replace the name property of a data model node with a new name.

The intermediate results are then subjected to advanced recomposition operations like

projection, merge, move and extract. In final phase the result document may be presented

to the user, stored in a database as a static document or represented in form of a

command, or exchanged as an instance of XPath/XQuery Data Model.

1.4 System Description

Figure 1.2 shows interaction among various components of the system. The update or

recomposition query goes to parser. Parser after it processes the query, forwards parsed

Figure 1.2 Components of the system and their interaction.

5

result to the module responsible for implementing various operations at the level of

algebra. The local algebra module handles insert, delete, rename, replace, project, merge,

move and extract operations. Resultant document is then forwarded to the XML store for

persistent storage.

CHAPTER 2
BACKGROUND WORK

2.1 XML Document and Schema

XML stands for EXtensible Markup Language, it is a markup language much like

HTML. The primary purpose of XML is to describe data. It does not have any predefined

tags rather they can be defined by user giving utmost flexibility. A Document Type

Definition (DTD) or an XML schema is used to describe data and structure of the

document.

With XML, plain text files can be used to share data. Since documents are stored

in plain text format, XML provides a software and hardware-independent way of sharing

data. This makes it much easier to create data that different applications can work with. It

also makes it easier to expand or upgrade a system to new operating systems, servers,

applications, and new browsers. Another purpose of XML is to store data in form of plain

text files or in databases. Applications can be written to store and retrieve information

from the store, and generic applications can be used to display the data.

XML can make the data more useful by making it available to more users. Since

XML is independent of hardware, software and application, the data is available to other

than only standard HTML browsers. Other clients and applications can access XML files

as data sources, like they are accessing databases. Data can be made available to all kinds

of "reading machines" (agents), and it is easier to make it available for blind people, or

people with other disabilities. It is used to exchange data between incompatible systems.

In the real world, computer systems and databases contain data in incompatible formats.

6

7

One of the most time-consuming challenges for developers has been to exchange data

between such systems over the internet. Converting data to XML can greatly reduce this

complexity and create data that can be read by many different types of application.

The purpose of an XML schema is to define legal building blocks of an XML

document, just like a DTD. It defines elements and attributes that can appear in a

document. It defines which elements are child elements, their order and number. Also, it

defines whether an element is empty or can include text along with their data types. The

XML schema has certain advantages, like they are extensible to future additions. It is

written in XML and hence it is richer and more useful than DTDs. Also, it supports data

types and namespaces.

2.2 Introduction to XQuery/XPath

)(Path is a language for finding information in an XML document. It is used to navigate

through elements and attributes in an XML document. XPath is a syntax for defining

parts of an XML document it uses path expressions to navigate in XML documents and

contains a library of standard functions. In XPath, there are seven kinds of nodes:

element, attribute, text, namespace, processing-instruction, comment, and document

(root) nodes. XML documents are treated as trees of nodes. The root of the tree is called

the document node (or root node). XPath uses path expressions to select nodes in an

XML document. Predicates are used to find a specific node or a node that contains a

specific value. Predicates are always embedded in square brackets.

XQuery is designed to query XML data, not just XML files, but anything that

might appear as XML, including databases. It is built on XPath expressions and

8

supported by all major database vendors like IBM, Oracle, Microsoft, etc. It can be used

to extract information to use in a web service, to generate summary reports, to transform

XML data to XHTML, and to search web documents for relevant information.

CHAPTER 3
BASIC UPDATE OPERATIONS ON A DOCUMENT

This chapter describes the basic update operations on a document, the operations

discussed are: insert, delete, rename and replace. The update primitives for Insert

operation have been discussed in detail. Use cases provide the actual implementation of

the update algebra and cover variety of update scenarios.

3.1 Insert Operation

3.1.1 Definition

The Insert operation inserts copies of one or more nodes into a designated position in a

document instance. The Insert operation is an updating operation. It has the following

categories:

■ Insert Into — Inserts copies of one or more nodes into a document. The position of
the inserted nodes within their parent is implementation-dependent.

■ Insert Before — Inserts copies of one or more nodes into a document before the
target expression.

■ Insert After — Inserts copies of one or more nodes into a document after the target
expression.

■ Insert Into as First — Inserts copies of one or more nodes into a document as the
first expression.

■ Insert Into as Last — Inserts copies of one or more nodes into a document as the
last expression.

9

10

3.1.2 Symbolic Notation

Insert Into — I

Insert Before — Is

Insert After — IA

Insert Into as First — IF

Insert Into as Last — IL

3.1.3 Usage

I <source expression> (D) <target expression>

IB <source expression> (D) <target expression>

IA <source expression> (D) <target expression>

IF <source expression> (D) <target expression>

IL <source expression> (D) <target expression>

Where `D' is the name of document.

3.1.4 General Constraints

■ The <source expression> must not be an updating expression. The source
expression is a sequence of nodes to be inserted.

■ The <target expression> must not be an updating expression. The target
expression is evaluated. If into is specified the result must be a single element
node or a single document node. If before or after is specified, the result must be a
single element node.

1 1

EMPLOYEE (ENO, ENAME, TITLE)
PROJECT (PNO, PNAME, START_DATE, BUDGET)
WORKS (ENO, PNO, RESP, DUR)

Figure 3.1 Relational database schema.

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<xs:schema	 xmlns:xs="http://www.w3.org/2001/XMLSchema "
elementFormDefault="qualified">

<xs:import namespace="http://www.w3.org/XML/1998/namespace "/>
<xs:element name="employee">

<xs:complexType>
<xs:sequence>

<xs:element	 ref="employee_tuple"	 minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="employee_tuple">

<xs:complexType>
<xs:sequence>

<xs:element ref="eno"/>
<xs:element ref="ename"/>
<xs:element ref="title"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="eno">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>
<xs:element name="ename">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>
<xs:element name="title">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 3.2 XML schema for employee.xml.

12

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<xs:schema	 xmlns:xs="http://www.w3.org/2001/XMLSchema "
elementFormDefault="qualified">

<xs:import namespace="http://www.w3.org/XML/1998/namespace "/>
<xs:element name="project">

<xs:complexType>
<xs:sequence>

<xs:element	 ref="project_tuple" 	 minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="project_tuple">

<xs:complexType>
<xs:sequence>

<xs:element ref="pno"/>
<xs:element ref="pname"/>
<xs:element ref="start_date" minOccurs="0"/>
<xs:element ref="budget"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="pno">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>
<xs:element name="pname">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>
<xs:element name="start_date">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>
<xs:element name="budget">

<xs:complexType mixed="true">
<xs:choice minOccurs="0" maxOccurs="unbounded"/>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 3.3 XML schema for project.xml.

13

3.1.5 Use Cases

This use case is based on three separate input documents named employee.xml,

project.xml, and works.xml. Each of the documents represents one of the tables in the

relational database described in Figure 3.1, using the XML schema in Figures 3.2, 3.3

and 3.4. The instances of the relational table are shown in Tables 3.1, 3.2 and 3.3. Figure

3.5 contains an abbreviated set of data showing the XML format of instances.

<?xml version=" 1.0" encoding="UTF-8" standalone="no"?>
<xs: schema xmlns:xs="http://www.w3.org/2001/XMLSchema " elementFormDefault="qualified">

<xs: import namespace="http://www.w3.org/XML/1998/namespace "/>
<xs:complexType name="works">

<xs: sequence>
<xs:element ref="works_tuple" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
<xs:element name="works" type="works"/>
<xs:complexType name="works_tuple">

<xs: sequence>
<xs:element re!"eno"/>
<xs:element ref="pno"/>
<xs:element ref="resp"/>
<xs:element ref="dur"/>

</xs: sequence>
</xs:complexType>
<xs:element name="works_tuple" type="works_tuple"/>
<xs:complexType name="eno" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>
<xs:element name="eno" type="eno"/>
<xs:complexType name="pno" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>
<xs:element name="pno" type="pno"/>
<xs:complexType name="resp" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>
<xs:element name="resp" type="resp"/>
<xs:complexType name="dur" mixed="true">

<xs:choice minOccurs="0" maxOccurs="unbounded"/>
</xs:complexType>
<xs:element name="dur" type="dur"/>

</xs:schema>

Figure 3.4 XML schema for works.xml.

14

<employee>
<employee_tuple>

<eno>E 1 </eno>
<ename>G. Elmasry</ename>
<etitle>Electrical Engineer</etitle>

</employee_tuple>
<!-- ! ! ! Snip ! ! ! -->

<project>
<project_tuple>

<pno>P 1 </pno>
<pname>Data Quality Management</pname>
<start_date>05/0 1 /2004</start date>
<budget> 5 00000</budget>

</project_tuple>
<!-- ! ! ! Snip ! ! ! -->

<works>
<works_tuple>

<eno>E 1 </eno>
<pno>P 1 </pno>
<resp>Manager</resp>
<dur> 1 2</dur>

</works_tuple>
<!-- ! ! ! Snip ! ! ! --!>

Figure 3.5 Abbreviated set of data showing the XML format of the instances for
employee.xml, project.xml and works.xml.

Table 3.1 Snapshot of Employee Table

ENO ENAME ETITLE
El G. Elmasry Electrical Engineer
E2 C. Peckham System Analyst
E3 H. Garcia Mechanical Engineer
E4 P. Petrov Programmer
E5 A. Flynn System Analyst
E6 H. Dobbs Electrical Engineer
E7 I. Kilpatrick Mechanical Engineer
E8 M. Roman System Analyst

3.1.5.1 Add a New Project (with No Start Date) to project.xml.

Source Expression:

src_expr F {<project_tuple>

<pno>P6</pno>

<pname>ERP</pname>

<budget>250000</budget>

</project_tuple>}

Target Expression:

trg_expr F doc("project.xml")/project

Update Operation:

I src_expr (project.xml) trg_expr

Expected resulting content of project.xml:

<project>
<project_tuple>

<pno>P 1 </pno>
<pname>Data Quality Management</pname>
<start_date>05/01/2004</start_date>
<budget>500000</budget>

</project_tuple>
<!-- !!! Snip !!! -->
<project_tuple>

<pno>P6</pno>
<pname>ERP</pname>
<budget>250000</budget>

</project_tuple>
</project>

15

Table 3.2 Snapshot of Project Table

PNO PNAME START_DATE BUDGET
P1 Data Quality Management 05/01/2004 500000
P2 Instrumentation 06/01/2003 200000
P3 Maintenance 03/15/2005 100000
P4 Database Development 07/12/2005 350000
P5 CAD/CAM 02/01/2006 600000

Table 3.3 Snapshot of Works Table

ENO PNO RESP DUR
E 1 P1 Manager 12
E2 P1 Analyst 24
E2 P2 Analyst 6
E3 P3 Consultant 10
E3 P4 Engineer 48
E4 P2 Programmer 18
E5 P2 Manager 24
E6 P4 Manager 48
E7 P3 Engineer 26
E7 P5 Engineer 23
E8 P3 Manager 40

3.1.5.2 Add a New Employee as First to employee.xml.

Source Expression:

src_expr f<employee_tuple>

<eno>E9</eno>

<ename>A. Petrock</ename>

<etitle>Accountant</etitle>

</employee_tuple>1

Target Expression:

trg_expr doc("employee.xml")/employee

16

17

Update Operation:

IF src_expr (employee.xml) trg_expr

Expected resulting content of employee.xml:

<employee>
<employee_tuple>

<eno>E9</eno>
<ename>A. Petrock</ename>
<etitle>Accountant</etitle>

</employee_tuple>

<employee_tuple>
<eno>E 1 </eno>
<ename>G. Elmasry</ename>
<etitle>Electrical Engineer</etitle>

</employee_tuple>
<!-- !!! Snip !!! -->

3.1.5.3 Insert a New Project in project.xml After Tuple with Project Name

"Database Development". Project Number is P6, Project Name is

"Datawarehousing", Start Date as 09/10/2005 and Budget as 150000.

Source Expression:

src_expr E- f<project_tuple>

<pno>P6</pno>

<pname>Datawarehousing</pname>

<start_date>09/1 0/2005</start_date>

<budget>150000</budget>

</project_tuple>1

Target Expression:

trg_expr F. doc("project.xml")/project/project_tuple[pname="Database Development"]

18

Update Operation:

IA src_expr (project.xml) trg_expr

Expected resulting content of project.xml:

<!-- !!! Snip !!! -->
<project_tuple>

<pno>P4</pno>
<pname>Database Development</pname>
<start_date>07/12/2005</start_date>
<budget>350000</budget>

</proj ect_tuple>
<project_tuple>

<pno>P6</pno>
<pname>Datawarehousing</pname>
<start date>09/10/2005</start_date>
<budget>150000</budget>

</proj ect_tuple>
<!-- !!! Snip !!! -->

</project>

3.1.6 Algebraic Laws

The Insert operation is non-commutative and non-associative for a document where left

to right order of nodes within the tree representation of the document is significant.

3.1.7 Primitive Insert Operations

The primitive insert operations are implemented internally, they are not directly available

to users.

3.1.7.1 Insert Before (/b). Insert Before inserts source node immediately after target

node.

Symbolic Notation: -lb <source_node> (D) <target_node>

Constraints: Target node must be an element, text, processing instruction, or comment

node. Source node must be a sequence containing only element, text, processing

19

instruction, and comment nodes.

Effects on nodes in source and target:

■ For each node in source, the parent property is set to parent of target.

■ The children property of the parent of target node is modified to add the nodes in
source just before target, preserving their order.

■ If, as a result of the previous step, the children property of the parent of target
contains adjacent text nodes, these adjacent text nodes are merged into a single
text node.

3.1.7.2 Insert After (h). Insert After inserts source node immediately after target

node.

Symbolic Notation: /a <source_node> (D) <target_node>

Constraints: Target node must be an element, text, processing instruction, or comment

node. Source node must be a sequence containing only element, text, processing

instruction, and comment nodes.

Effects on nodes in source and target:

■ For each node in source, the parent property is set to parent of target.

■ The children property of the parent of target node is modified to add the nodes in
source just after target, preserving their order.

■ If, as a result of the previous step, the children property of the parent of target
contains adjacent text nodes, these adjacent text nodes are merged into a single
text node.

3.1.7.3 Insert Into (/). Insert Into inserts source node as children of the target node,

in an implementation-defined position.

Symbolic Notation: / <source_node> (D) <target_node>

Constraints: Target node must be an element or document node. Source node must be a

sequence containing only element, text, processing instruction, and comment nodes.

20

Effects on nodes in source and target:

■ For each node in source, the parent property is set to parent of target.

■ The children property of the target node is changed to include the nodes in the
source node. The order among the children and their position within the parent
node is implementation-dependent.

■ If, as a result of the previous step, the children property of the parent of target
contains adjacent text nodes, these adjacent text nodes are merged into a single
text node.

3.1.7.4 Insert Into as Last (//). Insert Into as Last inserts source node as the last

children of target node.

Symbolic Notation: II <source_node> (D) <target_node>

Constraints: Target node must be an element or document node. Source node must be a

sequence containing only element, text, processing instruction, and comment nodes.

Effects on nodes in source and target:

■ For each node in source, the parent property is set to parent of target.

■ The children property of the target node is modified to include the nodes in the
source node as last children, preserving their order.

■ If, as a result of the previous step, the children property of the parent of target
contains adjacent text nodes, these adjacent text nodes are merged into a single
text node.

3.1.7.5 Insert Attributes (4).	 Insert Attributes inserts source node as attributes of

target node.

Symbolic Notation: 4 <source_node> (D) <target_node>

Constraints: None

Effects on nodes in source and target:

■ For each node in source, the parent property is set to target.

■ The attributes of target node are modified to include the nodes in source.

21

3.2 Delete Operation

3.2.1 Definition and Symbolic Notation

Definition: The Delete operation deletes one or more nodes from a document instance. It

is an updating operation.

Symbolic Notation: X

3.2.2 Usage

X <target_expression> (D)

Where 13' is the name document.

3.2.3 General Constraint

The target expression must not be an updating expression. The target expression is

evaluated. The result must be a sequence of nodes.

3.2.4 Use Case

Delete all records for M. Roman from works.xml.

Target Expression:

$eid := doc("employee.xml")/employee/employee_tuple[ename="M. Roman"]/eid

trg_expr := doc("works.xml")/works/works_tuple[eno=$eid]

Update Operation:

X <trg_expr> (works.xml)

Expected resulting content of works.xml:

<!-- !!! Snip !!! --!>
<works>

<works_tuple>
<eno>E7</eno>
<pno>P3</pno>

22

<resp>Engineer</resp>
<dur>26</dur>

</works_tuple>
<works_tuple>

<eno>E7</eno>
<pno>P5/pno>
<resp>Engineer</resp>
<dur>23</dur>

</works_tuple>
<works>

3.2.5 Algebraic Laws

AXB=BXA

(A X B) X C=AX (B X C)

Delete operation is both commutative and associative.

3.3 Rename Operation

3.3.1 Definition and Symbolic Notation

Definition: The Rename operation replaces name property of the target expression with a

new name. It is an updating operation.

Symbolic Notation: P

3.3.2 Usage

P <new_name_expression> (D) <target_expression>

3.3.3 General Constraints

■ The <target expression> must not be an updating expression. It is evaluated. The
result must be a single element, attribute, or processing instruction node.

■ The <new_name_expression> must not be an updating expression. It is evaluated.

23

3.3.4 Use Cases

3.3.4.1 Rename the eno Element of the First Employee to employee-number in

employee.xml.

Target Expression:

trg_expr := doc("employee.xml")/employee/employee_tuple[1]/eno

Update Expression:

P "employee-number" (D) trg_expr

Expected resulting content of employee.xml:

<employee>
<employee_tuple>

<employee-number>E 1 </employee-number>
<ename>G. Elmasry</ename>
<etitle>Electrical Engineer</etitle>

</employee_tuple>
<!-- !!! Snip !!! -->
<employee_tuple>

<eno>E8</eno>
<ename>M. Roman</ename>
<etitle>System Analyst</etitle>

</employee_tuple>
</employee>

3.3.4.2 Rename the pname Element of All Projects to project-name in project.xml

that is the Value of the Variable $newname.

Target Expression:

trg_expr := doc ("proj ect.xml")/proj ect/project_tuple/pname

Update Expression:

P {$newname} (D) trg_expr

Expected resulting content of project.xml:

<project>

24

<project_tuple>
<pno>P 1 </pno>
<project-name>Data Quality Management</project-name>
<start_date>05/0 1 /2004</start date>
<budget>500000</budget>

</project_tuple>
<!-- !!! Snip !!! -->
<project_tuple>

<pno>P5</pno>
<project-name>CAD/CAM,/project-name>
<start_date>02/0 1 /2006</start date>
<budget>600000</budget>

</project_tuple>
</project>

3.3.5 Algebraic Laws

APB=BPA

(A P B) PC=A P (B P C)

Rename operation is both commutative and associative. It is assumed that A, B and C

have distinct target expressions.

3.4 Replace Operation

3.4.1 Definition and Symbolic Notation

Definition: A Replace operation replaces a node or modifies the value of a node. A

replace operation has two forms, depending on whether value of is specified. If the value

of is specified then the value of the node is replaced, otherwise each replacement replaces

one node with a new sequence of zero or more nodes. It is an updating operation. Replace

can also be implemented by delete followed by insert operation.

Symbolic Notation: r

25

3.4.2 Usage

r <source expression> (D) <target expression>

r <source expression> (D) value_of(<target expression>)

3.4.3 General Constraints

The <source expression> must not be an updating expression. The source expression is

evaluated and the result is a sequence of nodes called the replacement sequence. The

<target expression> must not be an updating expression. It is evaluated and the result

should be a single node. If value of is specified, a replace expression is used to modify

the value of a node while preserving its node identity.

3.4.4 Use Cases

3.4.4.1 Replace name A. Flynn with A. Reinhardt in employee.xml.

Target Expression:

trg_expr := doc("employee.xml")/employee/employee_tuple[ename="A. Flynn"]/ename

Update Expression:

r "A. Reinhardt" (D) value_of(trg_expr)

Expected resulting content of employee.xml:

</employee>
<!-- !!! Snip !!! -->
<employee_tuple>

<eno>E5</eno>
<ename>A. Reinhardt</ename>
<etitle>System Analyst</etitle>

</employee_tuple>
<!-- !!! Snip !!! -->
<employee_tuple>

<eno>E6</eno>
<ename>H. Dobbs</ename>
<etitle>Electrical Engineer</etitle>

26

</employe e_tuple>
</employee>

3.4.4.2 Replace Budget for Project Name "Database Development" with Budget

for Project Number "Pl" in project.xml.

Source Expression:

src_expr := doc("proj ect.xml")/proj ect/proj ect_tuple [pno="P 11/budget

Target Expression:

trg_expr := doc ("proj ect.xml")/proj ect/project_tuple[pname="Database

Development"]/budget

Update Expression:

r src_expr (project.xml) trg_expr

Expected resulting content of employee.xml:

<proj ect>
<proj ect_tuple>

<pno>P 1 </pno>
<pname>Data Quality Management</pname>
<start_date>05/0 1 /2004</start_date>
<budget>500000</budget>

</project_tuple>
<!-- ! ! ! Snip ! ! ! -->
<project_tuple>

<pno>P4</pno>
<pname>Database Development</pname>
<start_date>07/1 2/2005</start_date>
<budget>500000</budget>

</project_tuple>
<!-- ! ! ! Snip ! ! ! -->

27

3.4.5 Algebraic Laws

ArB=BIA

(A r B) r c =A r (B r C)

Replace operation is both commutative and associative. It is assumed that A, B and C

have distinct target expressions.

CHAPTER 4
ADVANCED RECOMPOSITION OPERATIONS ON DOCUMENTS

4.1 Project Operation

4.1.1 Definition and Symbolic Notation

Definition: Project operation projects on nodes of a document. It retrieves a node or a

subtree to form a new document having the root element of the source document. The

resulting document contains the nodes in order they are specified in the expression list.

Symbolic Notation: fl

4.1.2 Usage

n <expression list> (D)

Where 'D' is the name of source document.

4.1.3 General Constraints

The <expression list> is a list of expressions that must be evaluated to get the list of

nodes to be projected. If a condition is specified in the expression then the nodes must be

filtered according to the condition. In case no predicate is specified and there exists more

than one node with the same name then all nodes along with their corresponding subtree

must be included in the result document.

4.1.4 Use Case

All use cases in this chapter are based on three xml documents named bookl.xml,

book2.xml and book3.xml shown in Figures 4.1, 4.2 and 4.3 respectively the schema is

given in Figure 4.4.

28

29

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2004</year>
<price>105.95</price>
<overview>Radio Frequency Identification (RFID) is rapidly changing the way

businesses track inventory and assets. From Wal-Mart and Tesco to the tment of Defense,
early efforts are already showing benefits, but software, integration, and data processing
for RFID still present a challenge.</overview>

<chapter_1>
<title>An Introdution to RFID</title>
<content>RFID technologies offer practical benefits to almost anyone

who needs to keep track of physical assets. Manufacturers improve supply-chain planning
and execution by incorporating RFID technologies. Retailers use RFID to control theft,
increase efficiency in their supply chains, and improve demand planning.</content>

</chapter_1>
<chapter_2>

<title>RFID Architecture</title>
<content>For our purposes, an architecture may be defined as a

decomposition of a particular computer system into individual components to show how
the components work together to meet the requirements for the entire system. With this
definition in mind, we can confidently say that there is no such thing as a single,
universal RFID architecture that fits all requirements for all systems.</content>

</chapter_2>
<chapter_3>

<title>RFID Information Service</title>
<content>One of the promises of RFID is that business partners will be

able to automatically collect and share up-to-the-minute tracking information about items
in their supply chains. To realize this benefit, businesses need to agree on what
information will be collected (and its semantics), when and how this information will be
collected, where and how it will be stored, and, finally, where and how to access
it.</content>

</chapter_3>
<conclusion>This is conclusion to the RFID book.</conclusion>

</ebook>

Figure 4.1 XML document - Bookl.xml.

30

<ebook>
<title>Leo Laporte PC Help Desk</title>
<author>Leo Laporte</author>
<publisher>Que</publisher>
<year>2005</year>
<price>65</price>
<overview>Nurse your PC back to health with a little help from Leo Laporte. Leo

Laporte PC Help Desk in a Book uses a unique, medical dictionary approach, complete
with symptoms, diagnosis, and treatment for all of your common and not-so-common PC
maladies.</overview>

<chapter_1>
<title>PC Anatomy</title>
<content>This chapter introduces you to the major components you will

find in typical computers, including those prone to being a "point of failure." Think of
this as an anatomy lesson, but without the formaldehyde and nasty smells.</content>

</chapter_1>
<chapter_2>

<title>Troubleshooting Storage Devices</title>
<content>If you are reading this book after your old hard disk has been

packed off to the manufacturer for replacement, we can still help. You have got to get the
new one installed, so let us help you with that process, too.</content>

</chapter_2>
<chapter_3>

<title>Troubleshooting Your Printer</title>
<content>The troubleshooting tips and methods in this chapter apply

equally well to standalone printers and the printer portion of an all-in-one (multifunction)
device.</content>

</chapter_3>
<conclusion>This is conclusion to the PC Help Desk book.</conclusion>

</ebook>

Figure 4.2 XML document — Book2.xml.

31

<ebook>
<title>Digital Photography</title>
<author>Derrick Story</author>
<publisher>Thompson Press</publisher>
<year>2003</year>
<price>75.95</price>
<overview>Going beyond the standard fare of most digital photography books,

this shares the knowledge that professional photographers have learned through
thousands of shots worth of experience and years of experimentation.</overview>

<chapter_1>
<title>Digital Camera Attachments</title>
<content>Digicams are good for more than just hanging around your neck.

You have a wealth of accessories available to expand their capability. The threaded
socket on the bottom enables you to secure your camera to a variety of unique stabilizing
devices.</content>

</chapter_1>
<chapter_2>

<title>Daytime Photo Secrets</title>
<content>Photography requires daytime light. And the best place to find

light is outdoors. It is cheap, abundant, and, at times, stunningly beautiful. Indeed, this is
the appropriate place for us to begin the hacks on shooting technique.</content>

</chapter_2>
<chapter_3>

<title>The Computer Connection</title>
<content>To really appreciate the power of your digital camera, you have

to plug it into a computer. This is where you turn average photos into a great ones, create
glorious prints that used to take days to return from the photo lab, make digital
slideshows that rival professional presentations, paste together video snippets into short
movies, and even add voice and music to your images.</content>

</chapter_3>
<conclusion>This is conclusion to Digital Photography.</conclusion>

</ebook>

Figure 4.3 XML document - Book3.xml.

4.1.4.1 Project on Title, Author and Publisher from bookl.xml

Target Expression:

trg_expr 1 F doc("book 1 .xml")/ebookititle

trg_expr 2 <- doc("bookl.xml")/ebook/author

trg_expr 3 <- doc("book 1 .xml")/ebook/publisher

32

Recomposition Operation:

n {trg_expr 1, trg_expr 2, trg_expr (bookl.xml)

Expected result of query:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>

</ebook>

4.1.5 Derivability

This operation can also be implemented by copying target nodes from the source

document and then inserting them as last in the new document.

4.1.6 Algebraic Laws

Commutativity:
Project(Project(Doc, A), B) Project(Project(Doc, B), A)

Associativity:
Project(Project(Project(Doc, A), B), C) # Project(Project(Project(Doc, B), C), A)

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema "
elementFormDefault="qualified">

<xs:element name="content" type="xs:string"/>
<xs:element name="ebook">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element name="author" type="xs:string"/>
<xs:element name="publisher" type="xs:string"/>
<xs:element name="year" type="xs:string"/>
<xs:element name="price" type="xs:string"/>
<xs:element name="overview" type="xs:string"/>
<xs:element name="chapter_1">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element ref="content"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="chapter_2">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element ref="content"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="chapter_3">

<xs:complexType>
<xs:sequence>

<xs:element ref="title"/>
<xs:element ref="content"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="conclusion" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="title" type="xs:string"/>

</xs:schema>

Figure 4.4 XML schema for Bookl.xml, Book2.xml and Book3.xml.

33

34

4.2 Merge Operation

4.2.1 Definition and Symbolic Notation

Definition: Merge operation merges the contents of two documents and returns a new

document. The order of nodes in the new document is determined by the order in

expression list. The root element of the result document is specified in the operation.

Symbolic Notation: U

4.2.2 Usage

U <expression list 1><expression list 2> (D 1 , D2)<root tag>

Where D i and D2 are source documents.

4.2.3 General Constraints

The <expression list 1> and <expression list 2> are lists of expressions that must be

evaluated to get the list of nodes to be merged. If a condition is specified in the

expression then nodes must be filtered according to the condition. In case no predicate is

specified and there exists more than one node with the same name then all nodes along

with their corresponding subtree must be included in the result document. The <root

tag> is the name of the root node for new document. In case any of the expression list is

empty then all nodes in the document are merged.

4.2.4 Use Case

4.2.4.1 Merge Title, Author, Publisher from bookl.xml, and Price and Overview

from book2.xml.

Target Expression:

trg_expr 1 F doc("book 1 .xml")/ebookititle

35

trg_expr 2 F doc("book 1 .xml")/ebook/author

trg_expr 3 <— doc("book 1 .xml")/ebook/publisher

trg_expr 4 F doc("book2.xml")/ebook/price

trg_expr 5 E- doc("book2.xml")/ebooldoverview

Recomposition Operation:

U {trg_expr 1, trg_expr 2, trg_expr 3} {trg_expr 4, trg_expr 5) (book 1 .xml, book2.xml) ("ebook")

Expected result of query:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>

</ebook>

4.2.5 Derivability

This operation can also be implemented by creation of an empty document, then insertion

of root element followed by copy of nodes from the two source document and then

insertion as last in the new document.

4.2.6 Algebraic Laws

Commutativity: Merge(Docl, Doc2) Merge(Doc2, Doc 1)

Associativity: Merge(Merge(Docl, Doc2), Doc3) Merge(Docl, Merge(Doc2, Doc3))

36

4.3 Move Operation

4.3.1 Definition and Symbolic Notation

Definition: Move operation moves nodes or subtrees from the source document to the

target document. The source nodes are appended at the end of the target document as

children of the root node.

Symbolic Notation: p

4.3.2 Usage

P <source expression lisl> (D1 , D2)

Where D 1 is the source document and D2 is the target document.

4.3.3 General Constraints

The <source expression list> is a list of expressions that must be evaluated to get the list

of nodes to be moved. The source nodes are removed from the source document.

4.3.4 Use Case

4.3.4.1 Move chapter_3 from book2.xml to book3.xml, Rename it to chapter_4.

Target Expression:

trg_expr E- doc("book2.xml")/ebook/chapter_3

Recomposition Operation:

N {trg_expr} (book2.xml, book3.xml)

Expected resulting content of book2.xml:

<ebook>
<title>Leo Laporte PC Help Desk</title>
<author>Leo Laporte</author>
<publisher>Que</publisher>
<year>2005</year>

37

<price>65</price>
<overview>Nurse your PC back to health with a little help from Leo Laporte. Leo

Laporte PC Help Desk in a Book uses a unique, medical dictionary approach, complete
with symptoms, diagnosis, and treatment for all of your common and not-so-common PC
maladies.</overview>

<chapter_1>
<title>PC Anatomy</title>
<content>This chapter introduces you to the major components you will

find in typical computers, including those prone to being a "point of failure." Think of
this as an anatomy lesson, but without the formaldehyde and nasty smells.</content>

</chapter_1>
<chapter_2>

<title>Troubleshooting Storage Devices</title>
<content>If you are reading this book after your old hard disk has been

packed off to the manufacturer for replacement, we can still help. You have got to get the
new one installed, so let us help you with that process, too.</content>

</chapter_2>
<conclusion>This is conclusion to the PC Help Desk book.</conclusion>

</ebook>

Expected resulting content of book3.xml:

<ebook>
<title>Digital Photography</title>
<author>Derrick Story</author>
<publisher>Thompson Press</publisher>
<year>2003</year>
<price>75.95</price>
<overview>Going beyond the standard fare of most digital photography books,

this shares the knowledge that professional photographers have learned through
thousands of shots worth of experience and years of experimentation.</overview>

<chapter_1>
<title>Digital Camera Attachments</title>
<content>Digicams are good for more than just hanging around your neck.

You have a wealth of accessories available to expand their capability. The threaded
socket on the bottom enables you to secure your camera to a variety of unique stabilizing
devices.</content>

</chapter_1>
<chapter_2>

<title>Daytime Photo Secrets</title>
<content>Photography requires daytime light. And the best place to find

light is outdoors. It is cheap, abundant, and, at times, stunningly beautiful. Indeed, this is
the appropriate place for us to begin the hacks on shooting technique.</content>

</chapter_2>

38

<chapter_3>
<title>The Computer Connection</title>
<content>To really appreciate the power of your digital camera, you have

to plug it into a computer. This is where you turn average photos into a great ones, create
glorious prints that used to take days to return from the photo lab, make digital
slideshows that rival professional presentations, paste together video snippets into short
movies, and even add voice and music to your images.</content>

</chapter_3>
<chapter_4>

<title>Troubleshooting Your Printer</title>
<content>The troubleshooting tips and methods in this chapter apply

equally well to standalone printers and the printer portion of an all-in-one (multifunction)
device.</content>

</chapter_4>
<conclusion>This is conclusion to Digital Photography.</conclusion>

</ebook>

4.3.5 Derivability

This operation can also be implemented by copying the nodes from the source document,

inserting them into the target document followed by deletion of nodes from the source

document.

4.3.6 Algebraic Laws

Commutativity:

Move(Move(A, Doc 1, Doc2), B, Doc 1, Doc2) Move(Move(B, Doc 1, Doc2), A, Doc 1,
Doc2)

Associativity:

Move(Move(Move(A, Doc 1, Doc2), B, Doc 1, Doc2), C, Doc 1, Doc2) Move(A, Doc 1,
Doc2(Move(Move(B, Doc 1, Doc2), C, Doc 1, Doc2))

39

4.4 Extract Operation

4.4.1 Definition and Symbolic Notation

Definition: Extract operation extracts nodes or a subtree from a document. It retrieves a

node or a subtree to form a new document having the root element of the source

document. The resulting document contains the nodes in order they are specified in the

expression list.

Symbolic Notation: 0

4.4.2 Usage

CD <expression list>(D)

Where D is the source document.

4.4.3 General Constraints

The <expression list> is a list of expressions that must be evaluated to get the list of

nodes to be extracted. If a condition is specified in the expression then the nodes must be

filtered according to the condition. In case no predicate is specified and there exists more

than one node with the same name then all nodes along with their corresponding subtree

must be included in the result document. Extracted nodes are removed from the source

document.

4.4.4 Use Case

4.4.4.1 Extract Overview, chapter_1 and Conclusion from book3.xml.

Target Expression:

trg_expr 1 (-- doc("book3.xml")/ebook/overview

trg_expr 2 F doc("book3.xml")/ebookichapter_l

40

trg_expr 3 4- doc("book3.xml")/ebook/conclusion

Recomposition Operation:

0 (trg_expr 1, trg_expr 2, trg_expr 3) (book3.xml)

Expected resulting content of new document:

<ebook>
<overview>Going beyond the standard fare of most digital photography books,

this shares the knowledge that professional photographers have learned through
thousands of shots worth of experience and years of experimentation.</overview>

<chapter_1>
<title>Digital Camera Attachments</title>
<content>Digicams are good for more than just hanging around your neck.

You have a wealth of accessories available to expand their capability. The threaded
socket on the bottom enables you to secure your camera to a variety of unique stabilizing
device s . </content>

</chapter_1>
<conclusion>This is conclusion to Digital Photography.</conclusion>

</ebook>

Expected resulting content of book3.xml:

<ebook>
<title>Digital Photography</title>
<author>Derrick Story</author>
<publisher>Thompson Press</publisher>
<year>2003</year>
<price>75.95</price>
<chapter_2>

<title>Daytime Photo Secrets</title>
<content>Photography requires daytime light. And the best place to find

light is outdoors. It is cheap, abundant, and, at times, stunningly beautiful. Indeed, this is
the appropriate place for us to begin the hacks on shooting technique.</content>

</chapter_2>
<chapter_3>

<title>The Computer Connection</title>
<content>To really appreciate the power of your digital camera, you have

to plug it into a computer. This is where you turn average photos into a great ones, create
glorious prints that used to take days to return from the photo lab, make digital
slideshows that rival professional presentations, paste together video snippets into short
movies, and even add voice and music to your images.</content>

</chapter_3>

41

</ebook>

4.4.5 Derivability

This operation can also be implemented by copying the nodes from the source document,

inserting them into the target document followed by deletion of nodes from the source

document.

4.4.6 Algebraic Laws

Commutativity:
Extract(Extract(Doc, A), B) 0 Extract(Extract(Doc, B), A)

Associativity:
Extract(Extract(Extract(Doc, A), B), C) 0 Extract(Extract(Extract (Doc, B), C), A)

CHAPTER 5
IMPLEMENTATION

5.1 Insert Operation

Query: Insert new element 'preface' before element 'overview' in bookl.xml.

Solution:

src_expr E.- {<preface>This is a preface to the RFID book...</preface>}

trg_expr doc("book I .xml")/ebook/overview

Insert Operation: IB src_expr (book 1 .xml) trg_expr

Algorithm:

//L and R point to leftmost and rightmost node in doubly linked list, new node is to be
//inserted before M, LPTR and RPTR are the left and right links respectively, new is the
new node

(Insertion into an empty list)
If R = Null
Then LPTR(new) <-- RPTR(new) <- Null

L R (-- new
Return

(Left-most insertion)
If M = L
Then LPTR(new) <- Null

RPTR(new) (-- M
LPTR(M) E- new
Return

(insert in middle)
LPTR(new) (-- LPTR(M)
RPTR(new) E- M
LPTR(M) E- new
RPTR(LPTR(new)) new
Return

The insert before on average takes 0(n/2) for inserting an element in a doubly linked list.

42

43

Expected resulting content of bookl.xml:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2004</year>
<price>105.95</price>
<preface>This is a preface to the RFID book...</preface>
<overview>

Radio Frequency Identification (RFID) is rapidly changing the way
businesses track inventory and assets. From Wal-Mart and Tesco to the Department of
Defense, early efforts are already showing benefits, but software, integration, and data
processing for RFID still present a challenge.

</overview>
<!-- !!! Snip !!! -->

5.2 Delete Operation

Query: Delete from book 1 .xml (Figure 4.1) element `chapter_1' and all its sub-elements.

Solution:

trg_expr := doc("bookl.xml")/ebook/chapter_l

Delete Operation: X— <trg_expr> (bookl.xml)

Algorithm:

//L and R point to leftmost and rightmost node in doubly linked list, old is to be deleted
//LPTR and RPTR are the left and right links respectively

function delete(Node L, Node R, Node old)
If L = R (Single node in list)
Then L F R k- Null
Else If old = L (Left-most node being deleted)

Then L F RPTR(L)
LPTR(L) <— Null

Else if old = R (Right-most node being deleted)
Then R LPTR(R)

RPTR(R) F Null
Else RPTR(LPTR(old)) F RPTR(old)

LPTR(RPTR(old)) F LPTR(old)
Return(old)

44

The delete on average takes 0(n/2) for deleting an element from a linked list.

Expected resulting content of bookl.xml:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2004</year>
<price> 105.95</price>
<overview>

Radio Frequency Identification (RFID) is rapidly changing the way
businesses track inventory and assets. From Wal-Mart and Tesco to the tment of Defense,
early efforts are already showing benefits, but software, integration, and data processing
for RFID still present a challenge.

</overview>
<chapter_2>

<title>RFID Architecture</title>
<content>

For our purposes, an architecture may be defined as a
decomposition of a particular computer system into individual components to show how
the components work together to meet the requirements for the entire system. With this
definition in mind, we can confidently say that there is no such thing as a single,
universal RFID architecture that fits all requirements for all systems.

</content>
</chapter_2>

<!-- !!! Snip !!! -->

5.3 Replace Operation

Query: Update price to $90.95 in book 1 .xml.

Solution:

trg_expr := doc("bookl.xml")/ebook/price

Replace Operation: r "90.95" (bookl.xml) value_of(trg_expr)

Algorithm:

//L and R point to leftmost and rightmost node in doubly linked list, old is to be replaced
//LPTR and RPTR are the left and right links respectively, new is the new node

function replace(Node L, Node R, Node old, Node new)

45

If old = L (Left-most node being replaced)
Then L F RPTR(new)
Else if old = R (Right-most node being replaced)

Then R LPTR(new)
Else RPTR(LPTR(old)) F RPTR(new)

LPTR(RPTR(old)) LPTR(new)
Return(old)

The replace on average takes 0(n/2) for replacing an element from a linked list.

Expected resulting content of bookl.xml:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2004</year>
<price>90.95</price>

<!-- !!! Snip !!! -->

5.4 Rename Operation

Query: Rename element tag 'conclusion' as 'final_chapter' in bookl.xml.

Solution:

trg_expr doc("book 1 .xml")/ebook/conclusion

Rename Operation: P "final_chapter" (D) trg_expr

Algorithm:

//L and R point to leftmost and rightmost node in doubly linked list, old is to be renamed
//LPTR and RPTR are the left and right links respectively, new is the new node

function replace(Node L, Node R, Node old, Node new)
If old = L (Left-most node being renamed)
Then L F RPTR(new)
Else if old = R (Right-most node being renamed)

Then R F LPTR(new)
Else RPTR(LPTR(old)) RPTR(new)

LPTR(RPTR(old)) LPTR(new)
Return(old)

46

The rename on average takes 0(n/2) for renaming an element from a linked list.

Expected resulting content of bookl.xml:

<ebook>
<title>RFID Essentials</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2004</year>

<!-- !!! Snip !!! -->
<chapter_3>

<title>RFID Information Service</title>
<content>One of the promises of RFID is that business partners will be

able to automatically collect and share up-to-the-minute tracking information about items
in their supply chains. To realize this benefit, businesses need to agree on what
information will be collected (and its semantics), when and how this information will be
collected, where and how it will be stored, and, finally, where and how to access
it.</content>

</chapter_3>
<final chapter>This is conclusion to the RFID book.</final chapter>

</ebook>

5.5 Project Operation

Query: Project on title, author and price from book2.xml.

Solution:

trg_expr 1 <- doc("book2.xml")/ebook/title

trg_expr 2 E. doc("book2.xml")/ebook/author

trg_expr 3 ÷. doc("book2.xml")/ebook/price

Recomposition Operation:

n {trg_expr 1, trg_expr 2, trg_expr 3 } (book2.xml)

Implementing Projection:

1. Create an empty document.

2. Insert a root node, the node should have the tag name of the root in source

47

document, use insert operation.

3. Traverse to the element node.

4. Copy element node and all its children one at a time into a document fragment.

5. Insert the fragment in the new document by using the insert operation as a child of
root node.

6. If there is more than one subtree to project then insert each subtree at the end of
the new document by following steps 3 to 5.

Expected result of query:

<ebook>
<title>Leo Laporte PC Help Desk</title>
<author>Leo Laporte</author>
<price>65</price>

</ebook>

5.6 Merge Operation

Query: Merge book2.xml and book3.xml to form a new document New_Book.xml.

New_Book.xml should contain from book2.xml: title, author, publisher, year and price;

from book3.xml: overview, all chapters and conclusion. The root node tag should be

ebook.

Solution:

trg_expr 1 F doc("book2.xml")/ebooldtitle

trg_expr 2 doc("book2.xml")/ebook/author

trg_expr 3 (-- doc("book2.xml")/ebooldpublisher

trg_expr 4 (-- doc("book2.xml")/ebook/year

trg_expr 5 (-- doc("book2.xml")/ebook/price

trg_expr 6 (-- doc("book3.xml")/ebooldoverview

48

trg_expr 7 F doc("book3.xml")/ebook/chapter_l

trg_expr 8 F doc("book3.xml")/ebook/ chapter_2

trg_expr 9 E- doc("book3.xml")/eboold chapter_3

trg_expr 10 E.-- doc("book3.xml")/ebook/conclusion

Merge Operation:

U {trg_expr I, , trg_expr 5) {trg_expr 6, .. , trg_expr 10) (book2.xml, book3.xml) ("ebook")

Implementing Merge:

1. Create an empty document.

2. Insert a root node in the empty document as specified by user.

3. Copy each node or subtree one at a time from first source document and insert
into the document fragment.

4. Insert the fragment in the new document by using the insert operation as a child of
root node.

5. Copy each node or subtree one at a time from second source document and insert
into the new document.

6. Insert the fragment in the new document by using the insert operation as a child of
root node.

7. Return the new document.

Expected result of operation:

<ebook>
<title>Leo Laporte PC Help Desk</title>
<author>Leo Laporte</author>
<publisher>Que</publisher>
<year>2005</year>
<price>65</price>

<overview>Going beyond the standard fare of most digital photography books, this
shares the knowledge that professional photographers have learned through thousands of
shots worth of experience and years of experimentation.</overview>

<chapter_1>
<title>Digital Camera Attachments</title>
<content>Digicams are good for more than just hanging around your neck.

49

You have a wealth of accessories available to expand their capability. The threaded
socket on the bottom enables you to secure your camera to a variety of unique stabilizing
devices.</content>

</chapter_1>
<chapter_2>

<title>Daytime Photo Secrets</title>
<content>Photography requires daytime light. And the best place to find

light is outdoors. It is cheap, abundant, and, at times, stunningly beautiful. Indeed, this is
the appropriate place for us to begin the hacks on shooting technique.</content>

</chapter_2>
<chapter_3>

<title>The Computer Connection</title>
<content>To really appreciate the power of your digital camera, you have

to plug it into a computer. This is where you turn average photos into a great ones, create
glorious prints that used to take days to return from the photo lab, make digital
slideshows that rival professional presentations, paste together video snippets into short
movies, and even add voice and music to your images.</content>

</chapter_3>
<conclusion>This is conclusion to Digital Photography.</conclusion>

</ebook>

5.7 Move Operation

Query: Move 'chapter_3' from book 1 .xml to book2.xml.

Solution:

trg_expr ÷. doc("bookl.xml")/ebook/chapter_3

Move Operation:

11 {trg_expr} (book1.xml, book2.xml)

Implementing Move:

1. Traverse to the node in source document.

2. Copy node and all its children one at a time into a document fragment.

3. Delete node and all its children from the source document.

4. Insert the fragment in the target document by using the insert operation, the node
will be appended to the document.

50

5. If a sibling with the same name already exists then rename the inserted node.

6. If there is more than one node or subtree to move then insert each subtree at the
end of the target document by following steps 1 to 5.

Expected resulting content of bookl.xml:

<ebook>
<!-- !!! Snip !!! -->
<chapter_ 1 >

<title>An Introdution to RFID</title>
<content>RFID technologies offer practical benefits to almost anyone

who needs to keep track of physical assets. Manufacturers improve supply-chain planning
and execution by incorporating RFID technologies. Retailers use RFID to control theft,
increase efficiency in their supply chains, and improve demand planning.</content>

</chapter_l >
<chapter_2>

<title>RFID Architecture</title>
<content>For our purposes, an architecture may be defined as a

decomposition of a particular computer system into individual components to show how
the components work together to meet the requirements for the entire system. With this
definition in mind, we can confidently say that there is no such thing as a single,
universal RFID architecture that fits all requirements for all systems.</content>

</chapter_2>
<conclusion>This is conclusion to the RFID book.</conclusion>

</ebook>

Expected resulting content of book2.xml:

<ebook>
<!-- !!! Snip !!! -->
<chapter_2>

<title>Troubleshooting Storage Devices</title>
<content>If you are reading this book after your old hard disk has been

packed off to the manufacturer for replacement, we can still help. You have got to get the
new one installed, so let us help you with that process, too.</content>

</chapter_2>
<chapter_3>

<title>Troubleshooting Your Printer</title>
<content>The troubleshooting tips and methods in this chapter apply

equally well to standalone printers and the printer portion of an all-in-one (multifunction)
device.</content>

</chapter_3>
<conclusion>This is conclusion to the PC Help Desk book.</conclusion>

<chapter_3>

51

<title>RFID Information Service</title>
<content>One of the promises of RFID is that business partners will be

able to automatically collect and share up-to-the-minute tracking information about items
in their supply chains. To realize this benefit, businesses need to agree on what
information will be collected (and its semantics), when and how this information will be
collected, where and how it will be stored, and, finally, where and how to access
it.</content>

</chapter_3>
</ebook>

5.8 Extract Operation

Query: Extract title, author, publisher, year and price from book3.xml.

Solution:

trg_expr 1 F doc("book3.xml")/ebook/title

trg_expr 2 (-- doc("book3.xml")/ebook/author

trg_expr 3 (-- doc("book3.xml")/ebooldpublisher

trg_expr 3 F doc("book3.xml")/ebook/year

trg_expr 3 E doc("book3.xml")/ebook/price

Extract Operation:

0 { trg_expr 1, trg_expr 2, trg_expr 3) (book3.xml)

Implementing Extract:

1. Create an empty document.

2. Insert a root node, the node should have the tag name of the root in source
document, use insert operation.

3. Traverse to the element node.

4. Copy element node and all its children one at a time into a document fragment.

5. Delete the node or the subtree in source document.

52

6. Insert the fragment in the new document by using the insert operation as a child of
root node.

7. If there is more than one subtree to extract then insert each subtree at the end of
the new document by following steps 3 to 6.

Expected result of operation:

<ebook>
<title>Digital Photography</title>
<author>Derrick Story</author>
<publisher>Thompson Press</publisher>
<year>2003</year>
<price>75.95</price>

</ebook>'

5.9 Multiple Operations on Distributed Documents

Query: Project on title, author, publisher from Bookl .xml
Project on year, price, overview from Book2.xml
Project on chapters from Book3.xml
Merge the projections into NewBook.xml
Replace contents of title by 'This is a Mixture of Three Books!'
Insert <language>English</language> before overview

Solution:

trg_expr 1 k- doc("book 1 .xml")/ebook/title

trg_expr 2 F doc("bookl.xml")/ebook/author

trg_expr 3	 doc("book 1 .xml")/ebook/publisher

Project Operation: prj_l .xml	 ri— {trg_expr 1, trg_expr 2, trg_expr 3} (bookl.xml)

trg_expr 4 E- doc("book2.xml")/ebook/year

trg_expr 5	 doc("book2.xml")/ebook/price

trg_expr 6 doc("book2.xml")/ebooldoverview

Project Operation: prj_2.xml E- n— {trg_expr 4, trg_expr 5, trg_expr 6} (book2.xml)

53

trg_expr 7 F doc("book3.xml")/ebook/chapter_l

trg_expr 8 ÷. doc("book3.xml")/ebook/chapter_2

trg_expr 9 E- doc("book3.xml")/ebook/chapter_3

Project Operation: prj_3.xml F n {trg_expr 7, trg_expr 8, trg_expr 9} (book3.xml)

Merge Operation: new_doc.xml	 U (prj_l .xml, prj_2.xml, prj_3.xml) ("ebook")

trg_expr F doc("new_doc.xml")/ebook/title

Replace Operation: I "This is a Mixture of Three Books!" (new_doc.xml) value_ogtrg_expr)

src_expr {<language>English</language>}

trg_expr 10F doc("new_doc.xml")/ebooldoverview

Insert Operation: Is src_expr (new_doc.xml) {trg_expr 10}

Expected result:

<ebook>
<title>This is a Mixture of Three Books!</title>
<author>George Prescott</author>
<publisher>O Really</publisher>
<year>2005</year>
<price>65</price>
<language>English</language>
<overview>Nurse your PC back to health with a little help from Leo Laporte. Leo

Laporte PC Help Desk in a Book uses a unique, medical dictionary approach, complete
with symptoms, diagnosis, and treatment for all of your common and not-so-common PC
maladies.</overview>

<chapter_1>
<title>Digital Camera Attachments</title>
<content>Digicams are good for more than just hanging around your neck. You have

a wealth of accessories available to expand their capability. The threaded socket on the
bottom enables you to secure your camera to a variety of unique stabilizing
devices.</content>

</chapter_1>
<chapter_2>

<title>Daytime Photo Secrets</title>
<content>Photography requires daytime light. And the best place to find light is

outdoors. It is cheap, abundant, and, at times, stunningly beautiful. Indeed, this is the
appropriate place for us to begin the hacks on shooting technique.</content>

</chapter_2>

54

<chapter_3>
<title>The Computer Connection</title>
<content>To really appreciate the power of your digital camera, you have to plug it

into a computer. This is where you turn average photos into a great ones, create glorious
prints that used to take days to return from the photo lab, make digital slideshows that
rival professional presentation
s, paste together video snippets into short movies, and even add voice and music to your
images.</content>

</chapter_3>
</ebook>

CHAPTER 6
CONCLUSION

In this thesis a set of operations for dynamic recomposition of documents is proposed.

The source documents can be stored at distributed data sites and the process of dynamic

recomposition can create the target document on-the-fly. The source documents are

queried and results can be obtained as instances of XML document. The resultant

document can then be stored statically or in form of a command, which can be invoked

later to recompose this document dynamically. A solution for update and recomposition

is proposed at the level of algebra. The issue of representation of a document by a

command, i.e., a composition operator and/or an editing command along with one or

more path expressions has also been studied in this research.

While it is felt that a fairly comprehensive study of document recomposition has

been made, there are several potential areas for future work. The topic of optimization of

operations is an important one. Also, development of a query parser will greatly ease the

process of posing update and recomposition queries through an interactive user interface.

55

REFERENCES

1. Crowston, K., & Williams M. (1999). The Effects of Linking on Genres of Web
Documents. Proceedings of the Thirty-Second Annual Hawaii International
Conference on System Sciences. Maui, Hawaii.

2. Wafters, C. (1999). Information Retrieval and the Virtual Document. Journal of the
American Society for Information.

3. Zhang, L., Bieber, M., Millard, D., & Oria, V. (2004). Supporting Virtual
Documents in Just-in-Time Hypermedia Systems. Proceedings of the 2004
ACM symposium on Document engineering.

4. Geneves, P., & Vion-Dury, J. (2004). Logic-Based XPath Optimization. Proceedings
of the 2004 ACM symposium on Document engineering.

5. Caumanns, J. (1999). A Modular Framework for the Creation of Dynamic
Documents. Workshop on "Virtual Documents Hypertext Functionality and the
Web" of the 8th Intl World-Wide Web Conference. Toronto, Canada.

6. Chamberlin, D., Florescu, D., & Robie, J. (2006). XQuery Update Facility, W3C
Working Draft 27 January 2006. Retrieved May 15, 2006, from
http://www.w3.org/TR/2006/WD-xqupdate-20060127

7. Chamberlin, D., & Robie, J. (2006). XQuery Update Facility Requirements. W3C
Working Draft 3 June 2005. Retrieved May 15, 2006, from
http://www.w3.org/TR/xquery-update-requirements

8. Manolescu, I., & Robie (2006). XQuery Update Facility Use Cases. W3C Working
Draft 27 January 2006. Retrieved May 15, 2006, from
http://www.w3.org/TR/2006/WD-xqupdateusecases-20060127

9. Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D., & Naughton, J.
(1999). Relational Databases for Querying XML Documents: Limitations and
Opportunities. Proceedings of the International Conference on Very Large
Databases. (pp. 302-314)

10. Ranwez, S., & Crampes, M. Conceptual Documents and Hypertext Documents are
two Different Forms of Virtual Document.

11. Tatarinov, I., Ives, Z., Halevy, A., & Weld, D. (2001). Updating XML. Proceedings
of the 2001 ACM SIGMOD International Conference on Management of Data.

12. Muench, S. (2000). Building Oracle XML Applications. O'Reilly & Associates, Inc.

13. Sunderraman, R. (2004). Oracle9i Programming A Primer. Pearson Education, Inc.

56

57
14. XML Path Language (XPath). Retrieved May 15, 2006, from

http://www.w3.org/xpath

15. XML Pointer Language (XPointer). Retrieved May 15, 2006, from
http://www.w3.org/xptr

16. EL-Sayed, M., Wang, L., Ding, L., & Rundensteiner, E. (2002). An Algebraic
Approach for Incremental Maintenance of Materialized XQuery Views.
Proceedings of the 4th International Workshop on Web Information and Data
Management.

17. Schmidt, A., Mangold, S., & Kersten, M. (2003). Integrated Querying of XML Data
in RDBMSs. Proceedings of the 2003 ACM Symposium on Applied Computing.

18. Bruno, E., Maitre, J., & Murisasco, E. (2003). Extending XQuery with
Transformation Operators. Proceedings of the 2003 ACM Symposium on
Document Engineering.

19. W3C XML Query (XQuery). Retrieved May 15, 2006, from
http://www.w3.org/XML/Query

20. Document Object Model (DOM). Retrieved May 15, 2006, from
http://www.w3.org/DOM

	Dynamic recomposition of documents from distributed data sources
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment Page
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Background Work
	Chapter 3: Basic Update Operations On A Document
	Chapter 4: Advanced Recomposition Operations On Documents
	Chapter 5: Implementation
	Chapter 6: Conclusion
	References

	List of Tables
	List of Figures

