New Jersey Institute of Technology

Digital Commons @ NJIT

Mechanical and Industrial Engineering Syllabi

NJIT Syllabi

Fall 2023

ME 343-005: Mechanical Lab I

Chao Zhu

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

Zhu, Chao, "ME 343-005: Mechanical Lab I" (2023). *Mechanical and Industrial Engineering Syllabi*. 437. https://digitalcommons.njit.edu/mie-syllabi/437

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

ME 343-003 Mechanical Laboratory I (Fall 2023)

Instructor: Prof. Chao Zhu; e-mail: chao.zhu@njit.edu; Office: MEC204

Teaching Assistant: Mohammad Moghanjooghi; e-mail: mm422@njit.edu, Office: MEC104

Class Notes: to be sent after each class Office hours: Wednesdays: 4:00-5:00 pm

Textbook: J. P. Holman, <u>Experimental Methods for Engineers</u>, 8th Edition, McGraw Hill, 2011

Course Content

Topic	Reading Assignment	Key concepts	
Introduction;	2.7, 3.2-3.9, 3.11-3.14, Notes	Random and precision errors; Least square method;	
Data analysis	1, 4	Uncertainty analysis	
Linear and Rotation Speed	Note 3	Cross-correlation theory; Oscilloscope applications	
Measurements		Lab abstract writing	
Temperature measurements	8.5,8.6, 8.8, 8.9, 2.7	Thermocouple; thermo-resistance; pyrometers	
	Notes 3; 5	Full lab report writing	
Force and Torque	10.3-10.8	Strain-stress relationship; strain gage; Wheatstone bridge;	
Measurements (Strain gage)	Notes 6-7; supplements	Force and deformation of elastic collisions	
Flowrate & Velocity	7.3, 7.4, 7.6, 7.13	Venturi, orifice & rotameter; Pitot tube, LDV and PIV; Flow	
Measurements	Note 8; supplements	visualization	
Programmable Logic Control	Note 9; supplements	PLC, Ladder logic diagram	
Acoustics	11.5; Note 10	Sound pressure level (dB); Attenuation	
Signal Conditioning	4.12, 14.3	RC filtration; Power spectrum; Digital filtration	

Course Arrangement

Week	Lecture/Lab: Wednesdays: 10:00 am-2:20 pm (Lectures and/or Labs)				
	Topic	HW/Lab	Topic	Due noon of Fridays	
1	Introduction; Chap 3 Random data statistics; regression method; Linear and rotation speed measurements	HW#1	Random error; least square regression	-	
2	Lab abstract requirement of rotation speed	Lab-1	Rotation speed	HW#1	
3	HW#1 Solution; Thermometry: Chap 8, Chap 2; Uncertainty analysis; Chap 3; Signal response & sensitivity	HW#2	System uncertainty; Temperature	Rotation (abstract)	
4	Lab report requirement of temperature	Lab-2	Temperature & signal response time	HW#2	
5	HW#2 Solution; Stress & strain; strain gage: Chap 10; Strain gage rosette & dynamic force	HW#3	Stress & dynamic force (Strain Gages)	Temperature (full)	
6	Lab abstract requirement of force	Lab-3	Force	HW#3	
7	Mid-term	-	Lect/HW/Lab: 1&2	-	
8	Mid-term solution; Control Theory (PLC)	-	PLC	-	
9	HW#3 Solution; Lab abstract requirement of PLC	Lab-4	PLC	Force (extend abstract)	
10	Flow visualization, Flow rate: Chap 7; Flow velocity; frictional pressure loss	HW#4	Flowrate	Control (abstract)	
11	Lab abstract requirement of flowrate	Lab-5	Flow	HW#4	
12	HW#4 Solution; Acoustics: Chap 11	HW#5	Acoustics	Flow (extend abstract)	
13	Signal Conditioning; Abstract requirement of Lab-6	Lab-6	Acoustics	HW#5	
14	HW#5 Solution; Review for Final	-	-	Acoustics (abstract) Report resubmissions	

Week	Wednesday	Due noon of Friday			
1	9/6	-			
2	9/13 (lab-1)	HW-1			
3	9/20	Lab-1			
4	9/27 (lab-2)	HW-2			
5	10/4	Lab-2			
6	10/11 (lab-3)	HW-3			
7	10/18 (MT)	-			
8	10/25	Lab-3			
9	11/1 (lab-4)	-			
10	11/8	Lab-4			
11	11/15 (lab-5)	HW-4			
11/22 follows Friday's class schedule					
12	11/29	Lab-5			
13	12/6 (lab-6)	HW-5			
14	12/13 (review)	Lab-6 & all re-sub			

----- Class Rules & Grading Policy -----

(1) Grade Calculations

45% Full Lab Reports or Extended Abstracts (3; 10% each) and Lab Abstracts (3; 5% each)

15% Homework Assignments (6; 3% each)

15% Mid-term Examination (1)

25% Final Examination (1)

Bonus points (about 10%) are given to some lab assignments and exams.

Final Grade is based on the total grade.

In general, above 90% guarantees an "A" grade and below 60% will result in an "F" grade.

No make-up exams.

(2) Lab Report/Abstract Requirement

All reports should be individually completed and submitted before due. Group discussion is encouraged but not for "Group Report". For identical reports or very similar reports, the grade is divided by the number of students involved (such incidence will be reported to the department for record keeping).

- Lab report must follow the formal report or abstract format (see lecture notes).
- Lab grade will be given based on the grading guideline (grading criteria of individual lab contents will be discussed in class ad distributed before reports due).

(3) Homework Requirements

- (a) Assignments are due on **noon of Friday** of the due week; with no late or resubmission.
 - Homework should be submitted directly to my office (MEC204) or in class; **<u>DO NOT leave</u>** it to my mailbox in <u>ME department office.</u>
- (b) Homework grade is based on "completeness" and "reasonableness", not necessarily on "correctness".
 - Completeness: answer all questions asked in the problems;
 - Reasonableness: solution of reasonable application approaches to the questions asked.
- (c) Homework solutions will be explained in class, typically in the following week of due.

(4) Late Submission and Resubmission of Reports

- Late or resubmission will be accepted, with a 50% grade deduction.
- The final grade will be the average with the original grade.

- Only one late or resubmission is allowed for each assignment.
- No resubmission of lab report 6

(5) Mid-term/Final Exam Requirement

- (a) A 1.5 hour mid-term exam will be given, mainly covering topics of Data Analysis and Theories for Speed and Temperature Measurements.
- **(b)** A 2.5-hour final exam will be given, mainly covering topics of Strain-gage Theory, Theory of Flow Measurement, PLC, Theory of Acoustics Measurement, and Signal Conditioning.
- (c) All exams are open book and notes (hard copies only!). No computer/iPad/iPhone/any internet-connectable device!