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2.4 The Lagrangian, Action and EOM for
Some Simple Physical Examples

2.4.1 Single Particle Moving Vertically in a Constant Gravitational Field

As shown in Equation (2.2.1b) the Lagrangian for a free particle of mass m moving freely

up and down in a constant gravitational field with gravitation constant g is given by,

L(x,x) = K - P = 1/2mx2 - mgx, where x(t) denotes the height of the particle above the
2

ground (x= 0). For such a system the partial and Eulerian derivatives are,

Applying the results of Equation (2.4.1a) above to the Lagrange EOM for a single

particle Equation (2.3m) derived in the previous section yields the familiar Newtonian

equation for vertical motion in a constant gravitational field,

Integrating Equation (2.4.1b) twice gives the familiar Galilean solution for the IVP,

Where x0 and v0 are the initial height and velocity of the particle. The solution of the 2-

point BVP is Equation (2.4.1c) but v 0 is now a variable to be determined from the starting

height, x0 , target height, xT and time to target, T, and is given by,

The value of the action for the physical path is given by,
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2.4.2 Unconstrained Single Pendulum Moving in a Constant Vertical
Gravitational Field

Figure 2.5 Single Pendulum Model.

Consider a simple pendulum freely moving in a constant vertical gravitational field

consisting of a single mass point with mass m and weight mg attached to the end of a

weightless rod of fixed length / pivoting about the origin (see Fig 2.5). Denote the

counterclockwise angle that the pendulum makes with respect to the vertical at time t

by 9(t) . The coordinates of the mass point and its velocity components are,

The kinetic energy of the pendulum is,
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The Potential Energy of the pendulum is given by, P = mgh where h denotes the height of

the pendulum above its vertical equilibrium position ( 0 = 0) . Since h=1(1— cos 0) ,

Therefore the Lagrangian of the pendulum system expressed in terms of the dynamic

angle 0 is given by,

Differentiating Equation (2.4.2d) we obtain,

Substituting Equations (2.4.2e) into Lagrange's EOM (Equation 2.3m) gives,

Equation (2.4.20 is the same as would be derived from Newton's Second Law, applying

the usual free body diagram approach and considering the components of the force in the

tangential and radial directions. Equation (2.4.20 is Newton's force law applied to the

tangential direction since,
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is the component of the weight in the tangential direction, and the acceleration in that

direction is s = d2s/dt2 = d2(lθ)/dt2 = l * θ where s is arc length. There are no dynamics

associated with the radial direction since the mass is constrained in the radial direction to

be a fixed length 1 from the stationary central pivot point. Motion only occurs in the

tangential direction. As in the case of the free particle moving in a constant gravitational

field the motion path is independent of the mass of the pendulum since m is on both sides

of Equation (2.4.20 and can be cancelled out yielding the EOM for the simple pendulum

without friction.

Note that for small oscillations sin θ≈θand Equation (2.4.3h) formally approaches the

linear equation that describes the simple harmonic oscillator (SHO) modeled by a linear

spring- mass system without friction,

The solution to Equation (2.4.3h) is sinusoidal,

Where the oscillation frequency,

and the constants a and b are determined from the initial or boundary conditions. If θ(0) = θ0andθ(0) = 0 then a =θ0and b = 0.  For smallθ, the Taylor expansion
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of cos θ 	 ≈1-θ 2/2. Thus, for small enough oscillations the pendulum Lagrangian function

of Equation (2.4.2d) approaches,

Substituting x =lθ  (arc length) into Equation (2.4.2k) formally yields the Lagrangian for

the SHO,

Where x is the displacement of the spring from its equilibrium position and the spring

stiffness constant is k = mg/l which is consistent with ω2 = k/m(SHO) = g/l(Equation

2.4.2j). Since the restoring force of the spring is F=-kx , its potential energy (negative

work integral) will be given by,

The restoring force for a pendulum in small oscillation is,

which approximates the tangential force component of the pendulum's weight (Equation

2.4.2f*) for small θ .

The Action A for the true pendulum motion is given by,
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For a pendulum in small oscillation A can be directly calculated by integrating Equation

(2.4.2k) using the SHO solution for 9(t) (Equation 2.4.2i). The result is,

In particular, for a pendulum that starts from rest at small angle 90 ( a = 90 and b = 0 ),

a swings for half a period (from 00 to - 90 ) then T = —11- and,
co
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2.4.3 Unconstrained Double Pendulum Moving in a Constant Vertical
Gravitational Field

Figure 2.6 Double Pendulum Model.

Consider a double pendulum system with masses m 1 and m 2 attached to rigid rods of

length 11 and 12 as shown in the above figure .Let the two pendulums make angle 0 1 and

02 with the vertical respectively (Figure 2.6). The x and y coordinates of the two point

masses are given by

x 1=11 sin 01 (2..4.3a)

y 1 =-1 1 cos 91 (2..4.3b)

x 2=1 1 sin 01 + 1 2 sin 02 (2..4.3c)

y2= 42 sin 01 - 12 cos 02 (2..4.3d)
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The total potential energy of a system can be calculated by adding up potential energies

of both of the point masses of the system,

The total kinetic energy of the system can be calculated by adding up kinetic energies of

both point masses of the system.

Differentiating Equations (2.4.3a-b) with respect to time and using the fact that

Similarly,

Substitution into Equation (2.4.30 yields,

The kinetic energy Equation (2.4.3i) can be written more compactly in a form similar to

that of a single particle as,

where,

is a generalized mass matrix and ,
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are respectively the generalized position and velocity vectors. Note that M is not a

constant matrix but is a function of the generalized position. It is not a function of the

generalized velocity. It is also symmetric and positive definite; (kinetic energy is never

negative). The Action for the double pendulum system is,

where,

is the Lagrangian for the double pendulum.

Because the double pendulum is an N=2 degree of freedom system, the Lagrange

EOM will be a system of two differential equations; one obtained by taking partial

derivatives of the Lagrangian Equation (2..4.3n) with respect to θ1 and θ1 and the other

differential equation by taking partial derivatives of the Lagrangian with respect to the

second dynamic variable θ2 and θ2 . Applying the general Lagrange EOM (2.3n) that

were developed in the previous section for an N-degree of freedom system with θ1 = x 1

and the L of Equation (2.4.3n) results in,
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Applying Equation (2.3n) with the L of Equation (2.4.3n) and with 62 = x2 gives,

Equations (2.4.3o and 2.4.3p) can be arranged as a system in a more compact form that

looks formally similar to Newton's Second Law :

where M is the generalized mass matrix of Equation (2.4.3k) and where

The generalized force terms in (2.4.3r) are,

which is a generalized gravitational force vector obtained from the gradient of the

potential energy and

Like the generalized M matrix, the S matrix is a function of position but not of velocity

and although it is not symmetric it is skew-symmetric. In fact, both matrices can be

shown to be closely related to the following non-dynamic symmetric matrix,

in that Mij = Cij cos( θi - θj) and Sij = Cij sin(θi - θj) i = 1, 2 j =1, 2



CHAPTER 3

TWO SOLUTION METHODS FOR MECHANICAL SYSTEMS

In this chapter we describe two approaches to numerically determine the motion of a

mechanical system: (1) the Direct Least Action (DLA) approach proposed in this thesis

and (2) numerical integration of the differential EOM. The DLA approach is explained

in Section 3.1 and its implementation by the downhill simplex method is described in

Section 3.2. In Section 3.3 Eulers method is described to solve the EOM for IVPs. In

section 3.4 the solutions to the same single and double pendulum problems by the two

approaches are obtained and compared. Concluding remarks are made in Section 3.5.

3.1 The Direct Least Action (DLA) Approach for Solving Mechanical 2-Point
Boundary Value Dynamics Problems

In the previous chapter, it was shown that the Action integral assigns a scalar to any

possible motion path that satisfies boundary or other constraints on the dynamic

variables. This mathematically defines the Action as a scalar functional rather than a

scalar function. More precisely, a scalar function of multiple variables

f(x) = f(x1,•••,xN ) acts upon a domain set that consists of vectors x = (x 1 , • • • , xN ) and

assigns only one scalar value to any given member of the domain set. This is also true of

a scalar functional except that the domain set is not a collection finite dimensional vectors

but rather a set of functions.
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E Domain Set (a subset of 91N) x()e Domain Set (a subset of functions (paths))

Figure 3.1 Comparison of a real valued function of multiple variables to a real valued
functional. The Domain of the function is a set of vectors and the domain of a functional
is a set of functions (paths x(t)).

The numerical application of the DLA principle requires that the action functional

be approximated by scalar function of multiple variables. This can be accomplished by

suitably approximating a function x(t) by a finite dimensional vector that also satisfies

the boundary and other constraints on dynamic variables of the system. This can be

accomplished as follows. Let x(t) represent any such function and consider the vector,

x =(x0, x1, • • • ,xN,xT) whose components are defined by ,xi=x(ti), i=1, • • • ,Nso that

they agree with the function at each of the times ti , i = 1,• • • ,N as well as at the

boundaries x0 = x(0) and xT = x(T). For example the times of agreement can be chosen

to be equally spaced at intervals of Δt = T/Nbetween the [0,T] ifti=iΔt,i= 1, • • •,N.In

the limit as N → ∞ x = x(t) and therefore a function can be regarded as a vector in an

infinite dimensional vector space and the scalar functional can formally to be considered

a scalar function with an infinite number of arguments. A(x 1 , x2 ,• • • , x∞ ) .
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For large enough N , A [x(t)] = A(x = (x1, •• • xN  )). The vector x can be obtained

from by numerical differentiation. For example a centered difference method can be

employed, 	 xi = xi+1-xi-1 /2Δt = x(ti) i = 1, • • • , N . The problem of finding an actual motion

that solves the 2-point BVP for the mechanical system has been transformed into finding

the local extreme of the scalar multivariable function defined on a domain that is a subset

of a finite dimensional vector space that satisfies the mechanical constraints of the

system. This defines the DLA approach of this thesis and any multivariable minimization

algorithm may be applied to implement it. In the next section we will describe the

downhill simplex method (DSM) that is used in this thesis. For the double pendulum

problem in which the Lagrangian is a function of 2 dynamic variables, two finite vectors

θ1 and θ2 are used in the Lagrangian to approximate the functions θ1(t) and θ2(t).

3.2 Multidimensional Minimization of a Function

Multidimensional minimization function finds the minimum of a function of more than

one independent variable. There are several different methods to minimize a function `1"

that has "N" independent variables like Downhill simplex method, Powell's method,

Conjugate gradient method and Quasi—Newton method.

There are several factors that play key role in selecting the suitable minimization

function for particular usage. Some methods need only evaluation of the functions to be

minimized and other methods require evaluations of the derivative of that function. The

amount of storage required and conciseness of the program are also important.


