
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-31-2006

Direct application of the least action principle to solve (human) Direct application of the least action principle to solve (human)

movement dynamics without using differential equations of movement dynamics without using differential equations of

motion motion

Amitha Kumar
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Biomedical Engineering and Bioengineering Commons

Recommended Citation Recommended Citation
Kumar, Amitha, "Direct application of the least action principle to solve (human) movement dynamics
without using differential equations of motion" (2006). Theses. 427.
https://digitalcommons.njit.edu/theses/427

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/229?utm_source=digitalcommons.njit.edu%2Ftheses%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/427?utm_source=digitalcommons.njit.edu%2Ftheses%2F427&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

DIRECT APPLICATION OF THE LEAST ACTION PRINCIPLE TO
SOLVE (HUMAN) MOVEMENT DYNAMICS

WITHOUT USING DIFFERENTIAL EQUATIONS OF MOTION

by
Amitha Kumar

This thesis explores the numerical feasibility of solving motion 2-point boundary value

problems (BVPs) by direct numerical minimization of the action without using the

equations of motion (EOM) as an intermediate step. The proposed direct least action

(DLA) approach using the downhill simplex method (DSM) is applied to both the single

and double pendulum systems as beginning test problems. The solutions so obtained are

compared to numerical solutions of the corresponding Lagrange EOM solved using a

first order Euler algorithm for the same mechanical problems. The output path obtained

by both of the methods essentially superimpose on each other.

Future steps will be to apply DLA to more complicated multi-branched pendulum

systems that are used to model the human body and to apply more efficient numerical

methods than the DSM algorithm to DLA. Eventually if numerical algorithms can be

developed that make the DLA approach as efficient or more efficient than using

Lagrange's differential EOM to solve 2-point BVPs for multi-branched pendulum

systems then such algorithms will be embedded in the software that we have developed

and use in the human motion analysis and performance laboratory at NJIT to solve for

human motion problems. The software employs a new method called the Boundary

Method® a new mathematical technique developed in our laboratory. This method solves

simultaneously for both new motions that can accomplish a given motor task and the net

muscular joint forces required to produce those new motions.

DIRECT APPLICATION OF THE LEAST ACTION PRINCIPLE TO
SOLVE (HUMAN) MOVEMENT DYNAMICS

WITHOUT USING DIFFERENTIAL EQUATIONS OF MOTION

by
Amitha Kumar

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

January 2006

APPROVAL PAGE

DIRECT APPLICATION OF THE LEAST ACTION PRINCIPLE TO
SOLVE (HUMAN) MOVEMENT DYNAMICS

WITHOUT USING DIFFERENTIAL EQUATIONS OF MOTION

Amitha Kumar

Dr. H. M. Lacker, Thesis Advisor 	 Date
Professor of Biomedical Engineering, NJIT

Dr. Richard A. Foulds, Committee Member 	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. Sergei Adamovich, Committee Member 	 Date
Assistant Professor of Biomedical Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Amitha Kumar

Degree:	 Master of Science

Date:	 January 2006

Undergraduate and Graduate Education:

• Master of Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2006

• Bachelor of Science in Mechanical Engineering,
MV IT, Bangalore, India, 2000

This thesis is dedicated to
my parents, Dr. Anand Kumar and Dr.Vijaya,

my husband Sachin Dev,
and

my daughter, Tanya

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. H. M. Lacker, who not only served

as my research supervisor, providing valuable and countless resources, insight, and

intuition, but also constantly gave me support, encouragement, and reassurance. Special

thanks are given to Dr Richard A. Foulds and Dr. Sergei Adamovich for actively

participating in my committee.

I would also like to thank my parents, Dr. Anand Kumar and Dr. Vijaya and my

husband, Sachin Dev for providing constant support and encouragement.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

2 THE LAGRANGIAN METHOD 	 6

2.1 Introduction 	 6

2.2 The Principle of Least Action 	 6

2.3 Derivation of Lagrange Equation of Motion (EOM) for a Single Particle from
the Principle of Least Action (PLA) 	 9

2.4 The Lagrangian, Action and EOM for Some Simple Physical Examples 	 13

2.4.1 Single Particle Moving Vertically in a Constant Gravitational Field 	 13

2.4.2 Unconstrained Single Pendulum Moving in a Constant Vertical
Gravitational field 	 14

2.4.3 Unconstrained Double Pendulum Moving in a Constant Vertical
Gravitational Field 	 19

3 TWO SOLUTION METHODS FOR MECHANICAL SYSTEMS 	 23

3.1 The Direct Least Action (DLA) Approach for Solving Mechanical 2-Point
Boundary Value Dynamics Problems 	 23

3.2 Multidimensional Minimization of a Function 	 25

3.3 Euler's Method for Solving the IVP 	 30

3.4 Results 	 33

3.4.1 Single Pendulum 	 33

3.4.2 Double Pendulum 	 35

3.5 Conclusion 	 39

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX A
C PROGRAM TO GENERATE LEAST ACTION PATH USING DOWNHILL
SIMPLEX METHOD FOR DOUBLE PENDULUM MODEL 	 40

APPENDIX B
C PROGRAM TO SOLVE EOM FOR A DOUBLE PENDULUM USING EULER
ALGORITHM 	 44

APPENDIX C

C PROGRAM TO GENERATE LEAST ACTION PATH USING DSM FOR A
SINGLE PENDULUM MODEL 	 46

APPENDIX D

C PROGRAM TO SOLVE EOM USING INITIAL VALUE METHOD FOR A
SINGLE PENDULUM SYSTEM 	 49

REFERENCES 	 50

viii

LIST OF FIGURES

Figure	 Page

2.1	 Sketch of the graph of the actual motion path x(t) followed by a particle
in a conservative force field 	 7

2.2	 Sketch of a graph of the Lagrangian function and Action value
associated with the physical particle path (t) moving in a conservative
force field 	 8

2.3	 Sketch of a graph of the path x(t)(solid curve) and the actual particle
path x(t) (dashed curve). Both curves satisfy the same boundary
positions at t=0 and t=T 	 8

2.4	 Sketch of a graph of a test function η(t) used to obtain a path x(t) near to
the physical motion path x(t) such that both paths satisfy the same
positions at the boundary points 	 9

2.5	 Single pendulum model 	 14

2.6	 Double pendulum model 	 19

3.1	 Comparison of a real valued function of multiple variables to a real
valued functional. The Domain of the function is a set of vectors and the
domain of a functional is a set of functions (paths x(t)) 	 24

3.2	 Shows the starting and possible outcomes in the DSM 	 28

3.3	 Flow chart indicating the sequence of steps to get least action path using
simplex method 	 29

3.4	 The graph shows the theta values (angle with respect to vertical) of the
input paths and DSM output for the single pendulum model 	 33

3.5	 The graph shows the action values for the initial input paths (simplex
vertices) and output paths generated by the DSM 	 34

3.6	 The graph shows the theta values (angle with respect to vertical) of the
IVP numerical solution and DLA numerical solution using DSM 	 34

3.7	 The graph shows the action values of the IVP numerical solution and
DLA numerical solution using DSM 	 35

ix

LIST OF FIGURES
(Continued)

Figure	 Page

3.8	 The graph shows the theta 1 values (angle with respect to vertical) of
the input paths and DSM output for a double pendulum model 	 36

3.9	 The graph shows the theta 2 values (angle with respect to vertical) of
the input paths and DSM output 	 36

3.10	 The graph shows the action values for input paths and DSM out put
for a double pendulum model 	 37

3.11	 The graph shows the thetal values of the IVP numerical solution and
DLA numerical solution using DSM 	 37

3.12	 The graph shows the theta 2 values (angle with respect to vertical) of
the IVP numerical solution and DLA numerical solution using
DSM 	 38

3.13	 The graph shows the action values of the IVP numerical solution and
DLA numerical solution using DSM. 	 38

CHAPTER 1

INTRODUCTION

Finding the motion from a mathematical model of a mechanical system usually involves

solving a system of differential equations, often referred to as equations of motion

(EOM). There are a number of methods that can be used to obtain the EOM. For

example, free body diagrams for the forces acting on the system can be constructed and

then Newton's Second Law (F=Ma) can be employed to write a system of second order

differential equations for each of independent vector components of the system. Another

approach for a conservative system is to construct the Lagrangian function (Kinetic

Energy — Potential Energy) or the Hamiltonian function (Kinetic Energy + Potential

Energy) and write the EOM after taking suitable derivatives of these functions according

to the differential equations of Lagrange (second order) or Hamilton (first order),

respectively.

Even for a system with many independent moving parts (degrees of mechanical

freedom) it is often relatively easy to write the single function that represents the total

kinetic energy of the system or the total potential energy of the system as the scalar sum

of the kinetic or potential energy of each of its parts. Therefore, to obtain the system

Lagrangian or Hamiltonian function even for large systems is quite practical. Although

in principle, it is a rather straightforward procedure to obtain the system of differential

equations from the Lagrangian or Hamiltonian,as a practical matter it can be a dauntingly

long and tedious process when there are many mechanical degrees of freedom in the

system (Ref # 1).In this case the Lagrangian has many terms and there are a very large

number of partial derivatives that need to be computed for each mechanical degree of

1

2

freedom making the procedure quite difficult and often impractical to carry out for

mechanical systems with a large number of moving parts.

It can be shown that Newton's, Lagrange's, and Hamilton's EOM can be derived

from a single unifying principle called the Principle of Least Action. The Action is

obtained by integrating the Lagrangian function over time. For each possible motion x(t)

of a system that starts from a given configuration x 0 = x(0) and ends after a given

duration T at a given target configuration xT = x(T) the Action will take on a definite

value A[x(t)]. The problem of solving for the actual path x(t) of the mechanical system

given the two boundary points x 0 = x(0) and xT = x(T) is called a 2-point boundary

value problem (BVP). The Principle of Least Action states that the Action for the actual

physical motion will always be a critical value (almost always a minimum of the Action)

of the set of all the possible paths that satisfy the 2 boundary points and any constraints

that may be acting on the system during its motion. Using the Calculus of Variations to

find when the Action is critical leads to a derivation of Newton's, Lagrange's and

Hamilton's general differential equations. It is these equations that are then implemented

to obtain the EOM for any particular conservative mechanical system.

This thesis begins to explore the computational feasibility of solving the 2-point BVP of a

model physical system from the Lagrangian function using the Principle of Least Action

directly without using any EOM that may be derived from it and therefore avoiding the

difficulties mentioned above.

Given the EOM for a particular mechanical system it is usually much more

difficult to use them computationally to solve a 2-point BVP than to use the EOM to

solve an initial value problem (IVP). In an IVP the starting configuration x 0 = x(0) and

3

the starting system velocity v 0 = x(0) are given and the EOM are often used iteratively to

find the system configuration and velocity at successive time increments until a desired

time T is reached. Finding the solution to a given human motor task by applying the

EOM to an IVP is often not practical because it usually is not known what initial velocity

to give each body segment so that the system will arrive at a desired target position from

a given starting configuration. Therefore for many human motion problems the 2-point

BVP is a more practical and natural formulation of the motor task to be accomplished. A

new mathematical technique developed in our laboratory called the Boundary Method

solves human motion problems as a concatenation of independent 2-point BVPs. This

method also avoids the difficulty of requiring a priori knowledge of muscle force terms in

the EOM. The Boundary Method solves simultaneously for both motions that can

accomplish a given motor task and the net muscular joint forces required to produce

those motions.

One technique called the shooting method solves the 2-point BVP by successive

iteration of IVP solutions. The shooting method starts with a guess for v 0 = i(0) and the

EOM are solved as an IVP up to time T. The error of this solution at time T when

compared to the target configuration xT is calculated as e = x(T) - xT . This error together

with similar error vectors obtained from IVP solutions from a finite and usually small

number of nearby velocity guesses is used to generate a linear best guess for v0 = i(0)

that will solve the 2-point BVP as an IVP. This process continues iteratively until e

achieves an acceptably small magnitude. Therefore using the EOM in the shooting

method to solve a 2-point BVP usually involves solving the EOM many times and this

can be computationally expensive.

4

The Principle of Least Action naturally poses the motion problem as a 2-point

BVP and therefore for the reasons described in the paragraphs above its application to

solving human motion problems is more direct than using EOM and in particular for

applications that use the new Boundary Method developed in our laboratory. In this

thesis we will begin to explore the numerical feasibility of solving motion 2-point BVPs

by direct numerical minimization of the action without using the EOM as an intermediate

step. In this approach we start with a guess xg (t), 0≤≤t≤Tor a finite number of

guesses of the mechanical solution path. Each guess of the given 2-point BVP to be

solved starts at the known starting configuration x 0 = x(0) and ends at the known final

target configuration xT = x(T) and is represented numerically by a vector of points

(x0 , x1 , • • • , xN , xi) where xi = xg (ti),i=1,•••,N .	 For each guessed solution the

Lagrangian is calculated and integrated over the given time interval T to obtain the

Action value associated with that solution guess A(xo ,x1 ,• • • , x N , xT) . The action values

for nearby guesses are then used to generate new solution paths with lower action values

that also satisfy the boundary conditions. Continuing in this systematic iterative fashion

paths are generated that converge towards a minimum or least action solution path. As

shown by Lagrange (see Chapter 2) this solution is a critical point of the Action and

therefore satisfies the Lagrange EOM and consequently represents a 2-point BVP

solution of the mechanical system that starts at x 0 and ends after a time interval of T at

the target xT .

Many numerical techniques are available that can be used to minimize a

multidimensional function f (x1 , • • • ,xN) . The chosen method in this thesis the downhill

5

simplex method (DSM) (Ref # 2). Although there are many faster minimization methods

than the DSM, this algorithm was chosen because it is very simple to implement

numerically requiring only a minimum of code lines (less than 100 lines of C code) and

also because it has proved to be a very stable minimization method for a robust set of

functions in part because it does not require derivative evaluation.

In this thesis the proposed direct least action (DLA) approach using the DSM is

applied to both the single and double pendulum systems as beginning test problems. The

solutions so obtained are compared to numerical solutions of the corresponding Lagrange

EOM for the same mechanical problems. The Lagrange EOM are solved using an

explicit first order (Euler) algorithm.

CHAPTER 2

LAGRNAGIAN METHOD

2.1 Introduction

In this chapter we will define the Lagrangian function, the Action functional, and show

how the Lagrange EOM are generated from the principle of least action (PLA). A

solution that satisfies Lagrange EOM will have an action value that is extreme (minimal)

relative to all other possible nearby paths that satisfy both the boundary conditions and

any other constraints on the dynamic variables that are used to describe a mechanical

system. More precisely, in Section 2.3 we will show that the Lagrange EOM emerge

when the functional derivative of the action at the critical physical path is set to 0. In

Section 2.4 the theory and equations developed in Section 2.3 are applied to determine

the Lagrangian, Action and EOM for some simple examples including the single and

double pendulum that will be used in Chapter 3 as beginning tests for the DLA approach

proposed in this thesis.

2.2 The Principle Of Least Action (PLA)

Consider a simple particle moving in a one-dimensional space and acted upon by a single

conservative force field. A concrete example would be a particle moving up or down in a

single vertical line where the only force that acts upon it is gravity. Suppose also that it

starts at a given position x0 and arrives at time T at given target position xT . Let the

actual physical motion path taken by the particle that solves this 2-point BVP be x(t). For

the concrete example of a particle moving vertically in a constant gravitational field x(t)

will be parabolic.

6

7

Figure 2.1 Sketch of the graph of the actual motion path .7(0 followed by a particle in a
conservative force field.

At each time t along the path the particle has a potential energy P(x(t)) and a

kinetic energy K = 1/2 mx-2(t) where m is the particle mass and x (t) is the slope

(velocity) of the path at t. The Lagrangian for the particle is defined as L ≡K - Pand its

value at each time t depends upon both the particles position and velocity at t,

For a particle moving in a constant gravitational field with constant acceleration g,

P(x(t)) = mgx(t) and,

The action A for the actual physical particle path is defined as the integral or area under

the L (t) curve between 0 and T,

8

Figure 2.2 Sketch of a graph of the Lagrangian function and Action value associated
with the physical particle path x(t) moving in a conservative force field.

Consider a path x(t) other than the actual physical particle path but which also

satisfies the two boundary positions at 0 and 7'.

Figure 2.3 Sketch of a graph of the path x(t)(solid curve) and the actual particle
path x(t) (dashed curve). Both curves satisfy the same boundary positions at t=0 and
t=T.

For this different (non-physical) path x(t) the particle would have a different a potential

energy P(x(t)) and a kinetic energy K = 1/2mx2(t)than for the actual pathx(t)and

therefore the Lagrangian for the different path L(t) = L(x(t),

x(t)) = 1/2 mx2(t)- P(x(t))

will be different than the L (t) associated with the actual path x(t) . Consequently the area

under the L(t) curve and the L(t) curve will differ and therefore the action values

9

A[x(t)] and fri-(t)1 associated with the two paths will also not be the same. The

Principle of Least Action states that the action for the actual physical motion (path) will

always be a critical value (almost always a minimum) of the set of all the possible nearby

paths that satisfy the 2 given boundary positions and any constraints that may be acting

on the dynamic variable of the mechanical system during its motion (Ref # 3).

2.3 Derivation of Lagrange Equation of Motion (EOM) for a Single
Particle from the Principle of Least Action (PLA)

Consider any smooth test function 17(t) defined on the interval t E [0,T] and taking on the

value of 0 = /AO) = 77(T) at the end points.

Figure 2.4 Sketch of a graph of a test function 17(t) used to obtain a path x(t) near to the
physical motion path .7(t) such that both paths satisfy the same positions at the boundary
points.

Note that if we add any such 17(t) to the actual particle path .7(t) we will obtain

another path x(t) = .7(t)+ 17(t) that satisfies the given boundary points x0 = x(0) and

xT = x(T). A new path x(t) = .7(t) + E 17(t) can be made arbitrarily close to .7(t) if the

scaling factor E is a number sufficiently close to 0. The action associated with x(t) is

given by

Expanding L(x + εη, x +ε η) in a Taylor series about L(x,x) gives,

Substitution of (2.3d) back into (2.3c) yields,

The change in the action between the nearby path and the actual path is

We define the rate of change of the action at x(t) in the η(t) direction by

10

Defining u(t) ≡ δL/δx

and dv ≡ ηdt and using integration by parts gives,

11

Since 0 = η (0) = η (T) equation (2.3h) simplifies to,

Substituting equation (2.3i) into equation (2.3g) results in,

Define w(t) = δL/δx - d/dt(δL/δx) then equation (2.3j) defines a (Hilbert) vector function dot

product between the two functions w and η ,

According to PLA the actual physical path will the one which will be critical for

A and therefore the derivative δA/δx |η = w • η must be 0 for all possible smooth choices of

17 functions (that satisfy 0 = η (0) = η (T)) and that would be used to define any nearby

path to x(t) satisfying the 2 boundary point conditions. If w • η= 0 for all possible

choices of η(t) then the only vector function w(t) in the (Hilbert) vector space that is

orthogonal to all other vector functions η (t) in the space is the 0 function that takes on

the value 0 for all t E [0,T] . Therefore,

Equation (2.31) is equivalent to the Lagrange EOM for a single particle, which is usually

written as.

12

A similar argument can be made to show when a system consists of many moving parts

with N degrees of freedom in a conservative force field then the PLA yields the Lagrange

EOM for the system.

In this case the motion of the system will be described by the vector

x(t)= (x1(t),•••, xN(t))and the Lagrangian of the systemL(x,x) = K - Pis a scalar

function of 2N-unconstrained variables.

13

2.4 The Lagrangian, Action and EOM for
Some Simple Physical Examples

2.4.1 Single Particle Moving Vertically in a Constant Gravitational Field

As shown in Equation (2.2.1b) the Lagrangian for a free particle of mass m moving freely

up and down in a constant gravitational field with gravitation constant g is given by,

L(x,x) = K - P = 1/2mx2 - mgx, where x(t) denotes the height of the particle above the
2

ground (x= 0). For such a system the partial and Eulerian derivatives are,

Applying the results of Equation (2.4.1a) above to the Lagrange EOM for a single

particle Equation (2.3m) derived in the previous section yields the familiar Newtonian

equation for vertical motion in a constant gravitational field,

Integrating Equation (2.4.1b) twice gives the familiar Galilean solution for the IVP,

Where x0 and v0 are the initial height and velocity of the particle. The solution of the 2-

point BVP is Equation (2.4.1c) but v 0 is now a variable to be determined from the starting

height, x0 , target height, xT and time to target, T, and is given by,

The value of the action for the physical path is given by,

14

2.4.2 Unconstrained Single Pendulum Moving in a Constant Vertical
Gravitational Field

Figure 2.5 Single Pendulum Model.

Consider a simple pendulum freely moving in a constant vertical gravitational field

consisting of a single mass point with mass m and weight mg attached to the end of a

weightless rod of fixed length / pivoting about the origin (see Fig 2.5). Denote the

counterclockwise angle that the pendulum makes with respect to the vertical at time t

by 9(t) . The coordinates of the mass point and its velocity components are,

The kinetic energy of the pendulum is,

15

The Potential Energy of the pendulum is given by, P = mgh where h denotes the height of

the pendulum above its vertical equilibrium position (0 = 0) . Since h=1(1— cos 0) ,

Therefore the Lagrangian of the pendulum system expressed in terms of the dynamic

angle 0 is given by,

Differentiating Equation (2.4.2d) we obtain,

Substituting Equations (2.4.2e) into Lagrange's EOM (Equation 2.3m) gives,

Equation (2.4.20 is the same as would be derived from Newton's Second Law, applying

the usual free body diagram approach and considering the components of the force in the

tangential and radial directions. Equation (2.4.20 is Newton's force law applied to the

tangential direction since,

16

is the component of the weight in the tangential direction, and the acceleration in that

direction is s = d2s/dt2 = d2(lθ)/dt2 = l * θ where s is arc length. There are no dynamics

associated with the radial direction since the mass is constrained in the radial direction to

be a fixed length 1 from the stationary central pivot point. Motion only occurs in the

tangential direction. As in the case of the free particle moving in a constant gravitational

field the motion path is independent of the mass of the pendulum since m is on both sides

of Equation (2.4.20 and can be cancelled out yielding the EOM for the simple pendulum

without friction.

Note that for small oscillations sin θ≈θand Equation (2.4.3h) formally approaches the

linear equation that describes the simple harmonic oscillator (SHO) modeled by a linear

spring- mass system without friction,

The solution to Equation (2.4.3h) is sinusoidal,

Where the oscillation frequency,

and the constants a and b are determined from the initial or boundary conditions. If θ(0) = θ0andθ(0) = 0 then a =θ0and b = 0. For smallθ, the Taylor expansion

17

of cos θ 	 ≈1-θ 2/2. Thus, for small enough oscillations the pendulum Lagrangian function

of Equation (2.4.2d) approaches,

Substituting x =lθ (arc length) into Equation (2.4.2k) formally yields the Lagrangian for

the SHO,

Where x is the displacement of the spring from its equilibrium position and the spring

stiffness constant is k = mg/l which is consistent with ω2 = k/m(SHO) = g/l(Equation

2.4.2j). Since the restoring force of the spring is F=-kx , its potential energy (negative

work integral) will be given by,

The restoring force for a pendulum in small oscillation is,

which approximates the tangential force component of the pendulum's weight (Equation

2.4.2f*) for small θ .

The Action A for the true pendulum motion is given by,

18

For a pendulum in small oscillation A can be directly calculated by integrating Equation

(2.4.2k) using the SHO solution for 9(t) (Equation 2.4.2i). The result is,

In particular, for a pendulum that starts from rest at small angle 90 (a = 90 and b = 0),

a swings for half a period (from 00 to - 90) then T = —11- and,
co

19

2.4.3 Unconstrained Double Pendulum Moving in a Constant Vertical
Gravitational Field

Figure 2.6 Double Pendulum Model.

Consider a double pendulum system with masses m 1 and m 2 attached to rigid rods of

length 11 and 12 as shown in the above figure .Let the two pendulums make angle 0 1 and

02 with the vertical respectively (Figure 2.6). The x and y coordinates of the two point

masses are given by

x 1=11 sin 01 (2..4.3a)

y 1 =-1 1 cos 91 (2..4.3b)

x 2=1 1 sin 01 + 1 2 sin 02 (2..4.3c)

y2= 42 sin 01 - 12 cos 02 (2..4.3d)

20

The total potential energy of a system can be calculated by adding up potential energies

of both of the point masses of the system,

The total kinetic energy of the system can be calculated by adding up kinetic energies of

both point masses of the system.

Differentiating Equations (2.4.3a-b) with respect to time and using the fact that

Similarly,

Substitution into Equation (2.4.30 yields,

The kinetic energy Equation (2.4.3i) can be written more compactly in a form similar to

that of a single particle as,

where,

is a generalized mass matrix and ,

21

are respectively the generalized position and velocity vectors. Note that M is not a

constant matrix but is a function of the generalized position. It is not a function of the

generalized velocity. It is also symmetric and positive definite; (kinetic energy is never

negative). The Action for the double pendulum system is,

where,

is the Lagrangian for the double pendulum.

Because the double pendulum is an N=2 degree of freedom system, the Lagrange

EOM will be a system of two differential equations; one obtained by taking partial

derivatives of the Lagrangian Equation (2..4.3n) with respect to θ1 and θ1 and the other

differential equation by taking partial derivatives of the Lagrangian with respect to the

second dynamic variable θ2 and θ2 . Applying the general Lagrange EOM (2.3n) that

were developed in the previous section for an N-degree of freedom system with θ1 = x 1

and the L of Equation (2.4.3n) results in,

22

Applying Equation (2.3n) with the L of Equation (2.4.3n) and with 62 = x2 gives,

Equations (2.4.3o and 2.4.3p) can be arranged as a system in a more compact form that

looks formally similar to Newton's Second Law :

where M is the generalized mass matrix of Equation (2.4.3k) and where

The generalized force terms in (2.4.3r) are,

which is a generalized gravitational force vector obtained from the gradient of the

potential energy and

Like the generalized M matrix, the S matrix is a function of position but not of velocity

and although it is not symmetric it is skew-symmetric. In fact, both matrices can be

shown to be closely related to the following non-dynamic symmetric matrix,

in that Mij = Cij cos(θi - θj) and Sij = Cij sin(θi - θj) i = 1, 2 j =1, 2

CHAPTER 3

TWO SOLUTION METHODS FOR MECHANICAL SYSTEMS

In this chapter we describe two approaches to numerically determine the motion of a

mechanical system: (1) the Direct Least Action (DLA) approach proposed in this thesis

and (2) numerical integration of the differential EOM. The DLA approach is explained

in Section 3.1 and its implementation by the downhill simplex method is described in

Section 3.2. In Section 3.3 Eulers method is described to solve the EOM for IVPs. In

section 3.4 the solutions to the same single and double pendulum problems by the two

approaches are obtained and compared. Concluding remarks are made in Section 3.5.

3.1 The Direct Least Action (DLA) Approach for Solving Mechanical 2-Point
Boundary Value Dynamics Problems

In the previous chapter, it was shown that the Action integral assigns a scalar to any

possible motion path that satisfies boundary or other constraints on the dynamic

variables. This mathematically defines the Action as a scalar functional rather than a

scalar function. More precisely, a scalar function of multiple variables

f(x) = f(x1,•••,xN) acts upon a domain set that consists of vectors x = (x 1 , • • • , xN) and

assigns only one scalar value to any given member of the domain set. This is also true of

a scalar functional except that the domain set is not a collection finite dimensional vectors

but rather a set of functions.

23

24

E Domain Set (a subset of 91N) x()e Domain Set (a subset of functions (paths))

Figure 3.1 Comparison of a real valued function of multiple variables to a real valued
functional. The Domain of the function is a set of vectors and the domain of a functional
is a set of functions (paths x(t)).

The numerical application of the DLA principle requires that the action functional

be approximated by scalar function of multiple variables. This can be accomplished by

suitably approximating a function x(t) by a finite dimensional vector that also satisfies

the boundary and other constraints on dynamic variables of the system. This can be

accomplished as follows. Let x(t) represent any such function and consider the vector,

x =(x0, x1, • • • ,xN,xT) whose components are defined by ,xi=x(ti), i=1, • • • ,Nso that

they agree with the function at each of the times ti , i = 1,• • • ,N as well as at the

boundaries x0 = x(0) and xT = x(T). For example the times of agreement can be chosen

to be equally spaced at intervals of Δt = T/Nbetween the [0,T] ifti=iΔt,i= 1, • • •,N.In

the limit as N → ∞ x = x(t) and therefore a function can be regarded as a vector in an

infinite dimensional vector space and the scalar functional can formally to be considered

a scalar function with an infinite number of arguments. A(x 1 , x2 ,• • • , x∞) .

25

For large enough N , A [x(t)] = A(x = (x1, •• • xN)). The vector x can be obtained

from by numerical differentiation. For example a centered difference method can be

employed, 	 xi = xi+1-xi-1 /2Δt = x(ti) i = 1, • • • , N . The problem of finding an actual motion

that solves the 2-point BVP for the mechanical system has been transformed into finding

the local extreme of the scalar multivariable function defined on a domain that is a subset

of a finite dimensional vector space that satisfies the mechanical constraints of the

system. This defines the DLA approach of this thesis and any multivariable minimization

algorithm may be applied to implement it. In the next section we will describe the

downhill simplex method (DSM) that is used in this thesis. For the double pendulum

problem in which the Lagrangian is a function of 2 dynamic variables, two finite vectors

θ1 and θ2 are used in the Lagrangian to approximate the functions θ1(t) and θ2(t).

3.2 Multidimensional Minimization of a Function

Multidimensional minimization function finds the minimum of a function of more than

one independent variable. There are several different methods to minimize a function `1"

that has "N" independent variables like Downhill simplex method, Powell's method,

Conjugate gradient method and Quasi—Newton method.

There are several factors that play key role in selecting the suitable minimization

function for particular usage. Some methods need only evaluation of the functions to be

minimized and other methods require evaluations of the derivative of that function. The

amount of storage required and conciseness of the program are also important.

26

Downhill simplex method (DSM) is an N dimensional geometrical figure with N+1

points (or vertices). In two dimensions, a simplex is a triangle and in three dimensions it

is a tetrahedron (Ref # 1). Nedler and Mead developed this method. The simplex method

is an algorithm which makes its way downhill through an N-dimensional topography,

until it encounters a (local, at least) minimum. The method is concise, completely self-

contained and evaluates only the function and not derivatives. A general N-dimensional

minimization program is less than 100 lines and the storage requirement is of the order

N 2 .

In multidimensional minimization, the input is a starting guess, which is an N-

vector of independent variables as the first point. Then DSM must be started with N+1

points, defining an initial simplex. If k 0 is the initial starting point then you can take the

other N points to be

Where i is N unit vectors and 6 is a constant, which is a guess of the problem's

characteristics length scale. The downhill simplex method takes a series of steps, moving

the point of the simplex where the function is largest (highest point) through the opposite

face of the simplex to a lower point. These steps are called reflections and are constructed

to conserve the volume of the simplex to maintain its non-degeneracy. When it can do so,

the method expands the simplex in one or another direction to take larger steps. When it

reaches the valley floor the method contracts itself in the transverse direction. If there is a

27

situation where the simplex is trying to pass through the eye of a needle, it contracts itself

in all direction, pulling itself in around its lowest/best point .The routine name amoeba is

used to describe this behavior. The basic steps are summarized in the figure below. The

simplex at the beginning of a step is a tetrahedron.

At the end the simplex can be one of following. An appropriate sequence of such step

will always converge to a minimum of the function.

A reflection away from the high point or

A reflection and expansion away from the highest point or

A contraction along one dimension from the high point, or

A contraction along all the dimensions towards the low point.

Figure 3.2 Shows the starting and possible outcomes in the DSM.

The termination criterion for the simplex method is when the vector distance moved in a

step is fractionally smaller than a some tolerance " tol ". Alternatively, the function can

be terminated when the terminating step is fractionally smaller than some tolerance

"ftol".

28

29

The flow chart below indicated the sequence of steps to achieve the least action path

using simplex method

Figure 3.3 Flow chart indicating the sequence of steps to get least action path using
simplex method.

3.3 Euler's Method for Solving the IVP

Euler's method is an iterative algorithm in time that approximates the pair,

from the similar pair at the previous time step,

The EOM can often be written in matrix vector form as a generalized

Newton's 2nd Law:

combining this with z = v yields the following system:

where I is the identity matrix and M and F are the generalized mass matrix and force

vectors respectively.

For example, for the single pendulum

30

For the double pendulum

and

(see Section 2.4.3)

If x(t) and v(t) are known at any time t, (for the IVP they are given at t=0 to start

the iterative algorithm) then their substitution into Equation (3.3c) yields the linear

algebra problem for the system,

31

are known and therefore the inverse A -1 can be computed at that time t. The inverse

matrix A -1 can be used to solve for

32

The first iteration of this equation in the algorithm would give,

y(0) = (x(0)v(0)) = A-1 b|t=0 . The vector y(t) is used to estimate the air at the next time ste

p from the approximation, y(t ++ Δt) = (x(t+Δt) v(t+Δt)) = y(t)+Δ

twhich is first orderaccurate in Δt . In the first iteration Equation (3.3i) would be used to obtain

(x(Δt) v(Δt)) from (x0 v0).The next iteration would yield (x(2Δt) v(2Δt)) from (x(Δt) v(Δt)) and so on. In this way

the solution to the IVP is approximated for ((x(t i = iΔt) v(ti = iΔt)) i = 0,1,2... and converges to

the exact solution of the IVP as Δt → 0 .

For the single pendulum,

For the double pendulum,

where

3.4.1 Single Pendulum

The boundary

3.4 Results

conditions are

33

at (= 0 , Bo = " radians and
2

at 1= T = 2.2 seconds ,Bf = - " radians . Time interval /';I = 0.022 sec onds and
2

number of data points = 100.

7

~ 6 iii
u 5 t:
Q)

4 >
1::

3 ;: II>
c:

~ ., 2 '" .-c:" ., f!
'iii
Q)

° ::J
iii -1 -> - .llJ1J ___ -----'-l'0 ., - -2 Q)
.s::
I- -3

Data point number(i)

-+- Path 1

___ Path 2

~Crtical path -DSM
output

Figure 3.4 The graph shows the theta values (angle with respect to vertical) of the
input paths and DSM output for the single pendu lum model.

The above graph shows some of the input path that was generated by adding a random

value to the guess path and the final output path given by simplex. All the paths have

same initial and final position.

1400

.s: ... ,.1 .. 1 1111111 • - 1200 ..
Co
.s: 1000 • Input action values
0 .. .,

800 ~ • IVM-action value 0 -., 600 :>
Cij Crit ical action value-
> 400 c: -.~ ~.-,.~. DSM
0 .;::

200 0 .T <C .-- • o _
0 50 100 150

Path numbe r

Figure 3.5 The graph shows the action values for the initial input paths (simplex
vertices) and output paths generated by the DSM.

34

The above graph shows the action values for all input paths and the fin al action value

generated by simplex. The final output path generated by simplex has the least action

value.

2 ~--------------------~
.5

IVP-out put

~Crtical path -DSM
v ___ ~~~ __ ~~~~ _____ 1~. 0

45 ~ ~p~

-1 +---~k-----,~--------~

.. -1 .5 +-------' Qj
.s:
~ -2 ~------~=-------------~

Data point number(i)

Figure 3.6 The graph shows the theta values (angle with respect to verti cal) of the IVP
numerica.l so lution and DLA numerical solution using DSM .

35

The graph (Figure 3.6) shows the least action path generated by the DSM and numeri cal

solutions of the corresponding Lagrange EOM solved using a first order Euler algorithm.

Both solutions essentially superimpose on each other.

12

10

.,
::J 8 • IVM-action value iii
>
c: 6
.2 Critical action value-
0 4 DSM
<t

2

•
0

0 0.5 1 1.5

Path Number

Figure 3.7 The graph shows the action values of the lVP numerical so lution and DLA
numerical solution using DSM.

The above graph shows the action value generated by simplex and numerical solution of

the corresponding Lagrange EOM solved using first order Eulers algorithm.

3.4.2 Double Pendulum

Boundary conditions are 1 = 0,8;(0) = n radians ,82 (0) = n radians and at
2 2

I = T ,8,(0) = -0.625 1 radians ,82(0) = - 1.l49radians.

Time interval t"t=0.022seconds and number of data points = 1 00.

36

7
c:
~ 6
m
" 5 .,
~
Q)
> 4 0 '"

__ Path 1 - c: -~ co 3 _____ Path 2
~'S
Q) co DSM-Output - ~ 2 '" c:
~

: I I 1 ~

co -Q) ,
.t:
l- so 10

Data point number(i)

Figure 3.8 The graph shows the theta 1 values (angle with respect to vertical) of the
input paths and DSM output for a double pendulum model.

7

.!: 6
~

m
" 5 .;::;
~

Q)
4 >

0 '" - c: 3 -~ co
~ 'S 2
.!! co

~

'" c:
~

'" 0
co - -1 Q)
.t:
I-

-2

~
"'-.'-
,~

"'
50 1cb

Data point number (i)

1 ' o

__ Path 1

_____ Path 2

DSM-Output

Figure 3.9 The graph shows the theta 2 values (angle with respect to vertica l) of the
input paths and DSM output.

The above graphs (Figure 3.8 and 3.9) show 8, and 82 values for some of the input paths

generated by adding a random value to the guess path and the final output path given by

simplex. AU the input path and the final output path have same initial and final pos ition.

37

14000 -
~ •. 1. II - 12000 co
a.

'" ., 10000 .=:
Cl
co 8000 • Input Action values -0

• DSM-Output - 6000 .,
:::l

~ iO
> 4000 •• 4f').~-:... ..
'" ~ !. 0 ., 2000 .~.,T. •
(J ~ «

0
0 50 100 150 200 250

Path number

Figure 3.10 The graph shows the action values for input paths and DSM out put for a
double pendu lum model.

The above graph shows the action values for all input paths and the fina l action value

generated by simplex . The out path generated by simplex has the least action value.

2 .--------------------------,

1.5 ~ ... :-----------------------j

0.5 t-------'

0 +--------,---"'111
1 0

-0.5 t---------' ._-------1

-1 ~-------------~

Data points number(i)

-+- IVM-Output

___ DSM-Output

Figure 3.11 The graph shows the theta I values of the IVP numerical solution and DLA
numerical so lution using DSM.

.!:

"iii
u
"f
" >

2 .-----------------------~

1.5 - c--------1

B '" 1:: " 0.5 +------------'
:::5
".. 0 +---.--~--
c;,~

" ~ -0.5 +--___ .:.c:.._--' 1 · 0

-1 +-------~

-1.5 -'----------------------'

Data point number(i)

__ IVM-Output

...... DSM-Output

38

Figure 3.12 The graph shows the theta 2 values (angle with respect to vertical) of the
IVP numerical solution and DLA numerical so lu tion using DSM.

The above graphs (Figure 3. 11 and 3. 12) show the least action path generated by simplex

and by so lving EOM by Eulers algori thm using initial value method. Both the path

superimposes .

., 33.73 ,-------------------------.,----,

"[33.72 +----- --- ---- --.----j

'[33.71 +-----------------j
g 33.7 +-----------------j
.. 33.69 +-------------------j
.E 33.68 +------------------j
" ~ 33.67 +----------------1
~ 33.66 1------------.----1
,g 33.65 +------------ - ---1._- --1
u
« 33.64 +----c--~--.__-~--,_---1

o 0.2 0.4 0.6 0.8 1.2

Path number

I. IVM Output

I_ DSM Output

Figure 3.13 The graph shows the action values of the fVP numerica l so lution and DLA
numerical solution using DSM .

The graph (Figure 3.13) shows the action va lue generated by simplex and numerica l

so lution of the corresponding Lagrange EOM solved using first order Eulers a lgorithm.

39

3.5 Conclusion

The numerical feasibility of solving motion 2-point BVPs by direct numerical

minimization of the action without using the EOM as an intermediate step has been

tested. The results obtained from the proposed DLA approach using the DSM for both the

single and double pendulum systems are compared to numerical solutions of the

corresponding Lagrange EOM for the same mechanical problems and the results are

shown in section 3.4.

The two solutions are relatively close but may not be exact. The numerical

accuracy of the results in both methods of solution can be improved by decreasing the

size of the numerical time increment & (increasing the number of points N used to

approximate a path in the DLA). Higher order algorithms like Runga-Kutta (fourth order)

to solve EOM can be used to yield more accurate results. Also more accurate and more

efficient numerical multivariable minimization algorithms methods than DSM can be

used to implement the DLA approach.

Future steps will be to apply DLA to more complicated multi branched pendulum

systems that are used to model the human body. Eventually if numerical algorithms can

be developed that make the DLA approach as efficient or more efficient than using

Lagrange's differential EOM to solve 2-point BVPs for multi branched pendulum

systems then such algorithms will be embedded in the software that has been developed

in the human motion analysis and performance laboratory at NJIT to solve human motion

problems by the boundary method.

APPENDIX A

C PROGRAM TOGENERATE LEAST ACTION PATH USING DOWNHILL
SIMPLEX METHOD FOR DOUBLE PENDULUM MODEL

#include <time.h>
#include <fstream.h>
#include <string.h>
#include "nr.h"
#include "nrutil.h"
int main(void)
{

//Initializing values
int i,nfunc,j,no_of points, MP, NP, count,countl = 0;
double *x,*y,**p,*input_points,*input_points_p2;

//No of data point excluding initial &final points
printf ("\nEnter the number of data points: ");
scanf ("%d", &no_of points);

// Print output
FILE *output;
output = fopen("output.txt","w");
fprintf(output,"No of Points");
fprintf(output,"\tNo of Evan;
fprintf(output,"\t\tAction Value\n");

//Initialize variables
t=0;initial_time=0; NP = no_of points; MP = no_of points + 1;
input_points=vector(1 ,no_of points);
input_points_p2 = vector(1,no_of points)
char word[100];
char *myword = "void";
char *pl;
FILE *fptr; /* declare a FILE pointer */

/* open a text file for reading theta values*/
fptr = fopen("inputvalues.txt", "r");
if(fptr==NULL) {
printf("Error: can't open file.\n");
/* fclose(file); DON'T PASS A NULL POINTER TO fclose !! */
return 1;
}

else {
printf("File opened successfully. Contents:\n\n");

40

count1=1; count=0;
while(fscanf(fptr, "%s", word) >

input_points[countl] = strtod(word,&p1);
count1++;

printf("\n\nNow closing file...\n");
fclose(fptr);

//initializing the space
x=vector(1,NP);
y=vector(1,MP);
p=matrix(1 ,MP, 1 ,NP);

//Generating N+1 paths consisting of N data points
for (i=1;i<=MP,i++) {
srand((i*time(NULL))%i);
x_increment = rand();
)(increment = log(x_increment);

printf("random number is %2.8f\n", x_increment);
for (j=1;j<=NP;j++)

igi==.01
x[j] = 'JUJU] = input_points[j]+xincrement;

else{
x[j] = p[i][j] = input_points[j]+xincrement,

}

if(i==MP) {
x[j] = p[i][j] = input_points[j];

y[i]=func(x, NP);

//Printing initial values
FILE *abc;
abc = fopen("results.txt","w");
fprintf(abc,"Vertices of final 3-d simplex and\n");
fprintf(abc,"function values at the vertices:\n\n");
//printf("%3s % 10s %12s % 12s %14s\n\n","i","x[i]","y[i]","z[i]","function");

for (i=1;i<=MP,i++) {
fprintf(abc,"%9d ",i);
for (j=1;j<=NP,j++)

41

42

fprintf(abc,"%12.9f ",p[i][j]);
fprintf(abc,"%12.9f\n",y[i]);

}
fprintf(abc,"\n\n\n\n\n\n");

//Calling the minimization function ameoba
amoeba(p,y,NP,FTOL,func,&nfunc);

// printing the final values
fprintf(abc,"\nNumber of function evaluations: %3d\n",nfunc);
fprintf(abc,"Vertices of final 3-d simplex and\n");
fprintf(abc,"function values at the vertices:\n\n");

for (i=1;i<=MP;i++) {
fprintf(abc,"%6d ",i);
for (j=1;j<=NP;j++)
fprintf(abc,"%12.6f ",p[i][j]);

fprintf(abc,"%12.9f\n",y[i]);
1

fprintf(output,"%d",no_of points);
fprintf(output,"\t%3d",nfunc);
fprintf(output,"\t\t%12.9f\n",y[i-1]);
free_matrix(p,1,MP,1,NP);
free_vector(y, 1,MP);
free_vector(x,1,NP);
return 0;

1

// Sub Function "Action Calculator"

#include "nr.h"
#include "nrutil.h"

double func(double theta[], int no_of pts)
{

double pi_radians,theta_final,theta_initial,delta_time,Action_Sum,theta_finalp2;
double *theta_dot,*theta_dot_p2,*KE,*PE,*L,*A;
int NP, MP;

NP = no_of_pts;
MP = no_of pts + 1;
Action_Sum = 0.0;
delta_time=0.001;

43

//Allocating space
theta_dot = vector(1,NP/2);
theta_dot_p2 = vector(1,NP/2);
KE = vector(1,NP/2);
PE = vector(1,NP/2);
L = vector(1,NP/2);
A = vector(1,NP/2);

//Calculating Velocity Component
for(int incr=1; incr<=NP/2;incr++){

if(incr==1){
theta_initial= 1.570796327;
theta_dot[incr] = (theta[incr+1] - theta_initial) / (2 * delta_time);
theta_dot_p2[incr] = (theta[NP/2+incr+1] - theta_initial) / (2 *

delta_time);
1
else if(incr==NP/2){

theta_final = 1.5212518;
thetafinalp2=1.570812;
theta_dot[incr] = (theta_final - theta [incr-1]) / (2 * delta_time);
theta_dot_p2[incr] = (theta_finalp2 - theta[(NP/2 + incr)-1]) / (2 *

delta_time);

else{
theta_dot[incr] = (theta[incr+1] - theta[incr-1])/(2 * delta_time);
theta_dot_p2[incr] = (theta[NP/2+incr+1] - theta[NP/2+incr-

1])/(2*delta_time);

PE[incr] = -(2*9.81*1*cos(theta[incr])) - (1*9.81*1*cos(theta[NP/2+incr]));

KE[incr] = (0.5*mass*length*length*theta_dot[incr]*theta_dot[incr]) + (0.5*mass
* ((length*length*theta_dot[incr]*theta_dot[incr]) +
(length*length*theta_dot_p2[incr]*theta_dot_p2 [incr]) +
(2*length*length*theta_dot[incr]*theta_dot_p2[incr]*cos(theta[incr]-theta[NP/2+incr])))
);

L[incr] = KE[incr] - PE[incr] ;
A[incr] = L[incr] * delta_time;
Action_Sum = Action_Sum + A[incr];

return Action_Sum;

APPENDIX B

C PROGRAM TO SOLVE EOM USING INITIAL VALUE METHOD

#include <stdio.h>
#include <math.h>

II Main Program
int main(void)
{

double thetal_initial, theta2_initial, velocity Unitial, velocity2_initial,
velocity_initial;

double delta_t, gravity, length, length), length2,m1,m2, pi_radians;
double theta [102], velocity[102], velocity_dot [102], velocity_dot 1 [102],

velocity_dot2[102], thetal[102], theta2 [102], velocity 1 [102], velocity2 [102] ;
double numerator)!, numeratorl2, numerator22, numerator2l, denominatorl 1,

denominator21;

delta_t = 0.001; velocity_initial = 0.0; velocity Unitial = 0;
velocity2_initial = 0;
pi_radians = 4 * atanf(1); theta 1 initial=pi_radians/2; theta2_initial=pi_radians/2;
gravity = 9.81; lengthl = 1; length2 = 1; ml =m2=1;

for (int count=0;count<=101;count++) {

if (count==0){
thetal[count]=thetal_initial;
velocityl[count]=velocityl_initial;
theta2 [count]=theta2_initi al ;
velocity2[count]=velocity2_initial;
velocity_dotl [count]=0;
velocity_dot2[count]=0;

}
else{

thetal[count]=thetal[count-1] + (velocity 1 [count-1] * delta_t);
numeratorll = (-(ml + m2)*gravity*sin(thetal[count-1])) +

(length2*m2*sin(thetal [count-1]-theta2 [count-1])*powf(velocity2 [count-1],2));
denominator 11 = length 1 * ((m 1 +m2) - (m2 *

powf(cos(thetal [count-1]-theta2 [count-1]),2)));
numerator12 = cos(thetal [count-1]-theta2 [count-

1])*((m2*gravity*sin(theta2[count-1])) + (length1*m2*sin(thetal [count-1]-theta2 [count-
1])*powf(velocityl [count-!],2)));

velocity_dotl[count]=(numeratorll+numeratorl 2)/denominatorl 1 ;
velocityl [count] = velocityl [count-1] + velocity_dotl [count] * delta_t;
theta2[count]=theta2[count-1] + (velocity2[count-1] * delta_t);

44

45

numerator21 = - cos(thetal[count-1]-theta2[count-1]) * (-
(ml+m2)*gravity*sin(thetal[count-1])+(length2*m2*sin(thetal[count-1]-theta2[count-
1])*powf(velocity2[count-1],2)));
numerator22 = (ml+m2)*(-gravity*sin(theta2[count-1])-(lengthl*sin(thetal[count-1]-
denominator21 = length2 * ((ml +m2) - (m2 * powf(cos(thetal[count-1]-theta2 [count-
1]),2)));

theta2[count-1])*powf(velocityl[count-1],2)));
velocity_dot2[count]=(numerator21+numerator22)/denominator11;

velocity2[count] = velocity2[count-1] + velocity_dot2[count] * delta_t;
}

FILE *output;
output = fopen("output.txt","w");
for (count=0;count<=101;count++){

fprintf(output,"%3.7f\t",thetal[count]);
fprintf(output," %3.7t\n",theta2 [count]);
//fprintf(output,"%3.7t\n",velocity[count]);

printf("Generated values. Please enter a character to exit");
getcharO;

return 0;

APPENDIX C

C PROGRMA TO GENERATE LEAST ACTION PATH USING DSM FOR A
SINGLE PENDULUM MODEL

#include <time.h>
#include "nr.h"
#include "nrutil.h"

int main(void)

int i,nfunc,j,no_of points = 0, MP,NP,loop,increment, count,countl;
double *x,*y,**p,*input_points,x_increment=0,t;
printf ("\nEnter the number of data points: ");
scanf ("%d", &no_of points);

printf ("\nEnter the number of cycles: ");
scanf ("%d", &loop);
printf ("\nEnter the increment for the cycle: "
scanf ("%d", &increment);

//Initialize variables
t=0;initial_time=0; NP no_of points; MP = no_of points + 1;
input_points=vector(1 ,no_of points);

char word[100]; char *pl;
char *myword = "void";
FILE *fptr; /* declare a FILE pointer */

/* open a text file for reading input theta values */
fptr fopen("input.txt", "r");
if (fptr==NULL) {
printf("Error: can't open file.\n");
/* fclose(file); DON'T PASS A NULL POINTER TO fclose !! */
return 1;

else {
printf("File opened successfully. Contents:\n\n");
count1=1; count=0;
while(fscanf(fptr, "%s", word) > 0) {

input_points[countl] = strtod(word,&p1);
count l ++;

printf("\n\nNow closing file...\n");
fclose(fptr);

46

//initializing the space
x=vector(1,NP);
y=vector(1 ,MP);
p=matrix(1,MP,1,NP);

//Inputing the different coordinates for starting simplex
for (i=1;i<=MP;i++) {
srand((i*time(NULL))%i);
x_increment = rand(); x_increment = log(x_increment);
printf("random number is %2.8t\n", x_increment);

for (j=1;j<=NP;j++) {
if(i==i){

x[j] = p[i][j] = input_points[j]+x_increment;
}
else{

x[j] = p[i][j] = input_points[j]+kincrement,
1
if(i==MP) {

x[j] = p[i][j] = input_points[j];
1

y[i]=func(x, no_of points);

//printing initial values
FILE *abc;
abc = fopen("results.txt","w");
fprintf(abc,"Vertices of final 3-d simplex and\n");
fprintf(abc,"function values at the vertices:\n\n");

for (i=1;i<=MP;i++) {
fprintf(abc,"%6d ",i);
for (j=1;j<=NP;j++)
fprintf(abc,"%12.6f ",p[i][j]);
fprintf(abc,"%12.9t\n",y[i]);

fprintf(abc,"\n\n\n\n\n\n");

//calling the minimization function ameoba
amoeba(p,y,NP,FTOL,func,&nfunc);

/1 Printing the final values
fprintf(abc,"\nNumber of function evaluations: %3d\n",nfunc);
fprintf(abc,"Vertices of final 3-d simplex and\n");
fprintf(abc,"function values at the vertices:\n\n");

47

for (i=1;i<=MP;i++) {
fprintf(abc,"%6d ",i);
for (j=1;j<=NP,j++)
fprintf(abc,"%12.6f ",p[i][j]);
fprintf(abc,"%12.9f\n",y[i]); }

no_of points = no_of points + increment;
free_matrix(p,1,MP,1,NP); 	 free_vector(y,l,MP);
free_vector(x,1,NP);
return 0;

1

// Action calculator
#include "nr.h"
#include "nrutil.h"
#define MIDDLE 2
double func(double theta[], int no_of pts)
{

Doubletime_final,pi_radians,time_initial,thetafinal,theta_initial,delta_time,
Action_Sum, *theta_dot,*KE,*PE,*L,*A,theta_max;
int NP, MP; NP = no_of pts; MP = no_of_pts + 1; delta_time =0.022;
//Allocating space
theta_dot = vector(1,NP);	 KE = vector(1,NP);
PE = vector(1,NP); 	 L = vector(1,NP);
A = vector(1,NP);
for(int incr=1; incr<=NP;incr++){

if(method == MIDDLE){
if(incr==1){

theta_initial= 1.570796327;
theta_dot[incr] = (theta[incr+1] -1.570796327)/ (2 * delta_time);
}
else if(incr==NP) {
theta_dot[incr] = (1.4799464- theta[incr-1]) / (2 * delta_time);
}else{
theta_dot[incr] = (theta [incr+1]-theta[incr-1])/(2 * delta_time);
}

1
else{ }

PE[incr] =mass*gravity*length*(1- theta[incr]);
KE[incr] = 0.5* mass*theta_dot[incr]*theta_dot[incr];
L[incr] = KE[incr] - PE[incr];
A[incr] = L[incr] * delta_time;
Action_Sum = Action_Sum + A[incr];
1
return Action_Sum;

1

48

APPENDIX D

C PROGRAM TO SOLVE EOM USING INITIAL VALUE METHOD FOR A
SINGLE PENDULUM SYSTEM

#include <stdio.h>
#include <math.h>

// Main Program

int main(void)

double delta_t, velocity_initial, theta_initial, gravity, length, pi_radians;
double theta[102], velocity[102];
delta_t = 0.022;
velocity_initial = 0.0;
pi_radians = 4 * atanf(1);
theta_initial = pi_radians/2;
gravity = 9.81;
length = 1;

for (int count=0;count<=101;count++) {

if (count==0){
theta[count]=theta_initial;
velocity[count]=velocity_initial;

1
else{

theta[count]=theta[count-1] + (velocity[count-1] * delta_t);
velocity[count] = velocity[count-1] - (gravity * sin(theta[count-1]) * delta_t /length) ;

1

FILE *output;
output = fopen("output.txt","w");
for (count=0;count<100;count++){

fprintf(output,"%3.7f\n",theta[count]);
//fprintf(output,"%3.7f\n",velocity[count]);

1
printf("Generated values. Please enter a character to exit");
getchar();

return 0;
1

49

REFERENCES

1. Kane, T.R., Levinson, D.A. and David, A. Formulation of Equation of Motion for a
Complex Spacecraft: J of Guidance and Control. Article No.80-4014 pp.103-105,
1980.

2. Teukolsky, W. H., Vetterling, S.A. and Flannery, B. P. Numerical Recipes in C: The
Art of Scientific Computing: Cambridge University Press: Ch. 10, pp. 394-397,
1993.

3. Feynman,R., Sands. and Leighton. The Feynman Lectures on Physics: Addison
Wesley Publications Company, NY. Ch. 19, pp. 1-14, 1964.

50

	Direct application of the least action principle to solve (human) movement dynamics without using differential equations of motion
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Lagrnagian Method
	Chapter 3: Two Solution Methods for Mechanical Systems
	Appendix A: C Program to Generate Least Action Path Using Downhill Simplex Method for Double Pendulum Model
	Appendix B: C Program to Solve EOM Using Initial Value Method
	Appendix C: C Program to Generate Least Action Path Using DSM for a Single Pendulum Model
	Appendix D: C Program to Solve EOM Using Initial Value Method for a Single Pendulum System
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

