New Jersey Institute of Technology ## Digital Commons @ NJIT Chemistry, Environmental and Forensic Science Syllabi **NJIT Syllabi** Spring 2022 ## CHEM 361-002: Environmental Chemistry II Alexei Khalizov Follow this and additional works at: https://digitalcommons.njit.edu/chem-syllabi ## **Recommended Citation** Khalizov, Alexei, "CHEM 361-002: Environmental Chemistry II" (2022). *Chemistry, Environmental and Forensic Science Syllabi*. 409. https://digitalcommons.njit.edu/chem-syllabi/409 This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Chemistry, Environmental and Forensic Science Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu. ### THE DEPARTMENT OF CHEMISTRY AND ENVIRONMENTAL SCIENCE ## CHEM 361, Environmental Chemistry of Water and Soil Pollution Spring 2022 Course Syllabus MW, 11:30 AM - 12:50 PM, TIER 111 (online via WebEx until January 31st) Instructor: Dr. Alexei Khalizov Office: Tiernan 356 (or Webex) Phone: 973-596-3583 Email: khalizov@njit.edu Office hours: Tuesday 1:00 pm – 2:00 pm or by appointment NJIT Academic Integrity Code: All Students should be aware that the Department of Chemistry & Environmental Science (CES) takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor. The shift to remote and converged teaching due to the COVID-19 pandemic has required that both instructors and students make changes to their normal working protocols for courses. Students are asked to pay extra attention concerning academic honesty, with the understanding that all cases of plagiarism, cheating, multiple submission, and unauthorized collaboration are subject to penalty. Students must properly cite and attribute all sources used for papers and assignments. Students may not collaborate on exams or assignments, directly or through virtual consultation, unless the instructor gives specific permission to do so. Posting an exam, assignment, or answers to them on an online forum (before, during, or after the due date), in addition to consulting posted materials, constitutes a violation of the university's honesty policy. Likewise, unauthorized use of live assistance websites, including seeking "expert" help for specific questions during an exam, can be construed as a violation of the honesty policy. ## **COURSE INFORMATION** **Course Description:** Chemistry of the environment, including the hydrosphere and geosphere. Principles of physical, inorganic, and organic chemistry are applied to understand the origins of environmental pollutants, their transport, distribution, and decomposition pathways in water and soil environments. Number of Credits: 3 **Prerequisites:** CHEM 360 or one of the following courses (CHEM 222, CHEM 231, CHEM 236, CHEM 243, CHEM 245) with a grade of C or better. #### Course-Section and Instructors | Course-Section | Instructor | |----------------|-----------------| | 002 | Alexei Khalizov | ### Required Textbook: | Title | Environmental Chemistry: A global perspective | | |-----------|---|--| | Author | Gary W. vanLoon and Stephen J. Duffy | | | Edition | 3 rd or 2 nd | | | Publisher | Oxford | | | ISBN # | 978-0199228867 or 0199228868 | | Supplementary textbook (not required, but highly recommended): Elements of Environmental Chemistry by Ronald A. Hites, 2nd Edition. The book is available electronically via NJIT library website at https://primo.njit.edu/permalink/01NJIT_INST/32cv1j/alma995065053705196 General Chemistry reference materials (not required): (a) ACS General Chemistry Study Guide (http://uwm.edu/acs-exams/instructors/ordering-information/); (b) a good freshman General Chemistry textbook, such as Chemistry: a Molecular Approach by N.J. Tro (any edition) **Calculator requirements:** bring to every class scientific or engineering calculator. Advanced graphing calculators are NOT allowed during exams and quizzes (e.g., TI-30 or TI-34 are permitted, but not TI-84 or TI-Nspire) **University-wide withdrawal date**: The last day to withdraw with a **W** is Monday, April 4, 2022. It will be strictly enforced. ## Learning Outcomes: by the end of this course, students will be able to - List major environmental compartments - · Identify factors that control the speciation of chemicals in different environments - Distinguish cases where pollutant concentrations are controlled by transport or chemical transformations - Solve problems involving flows, fluxes, and residence times of pollutants - Present a written summary and an oral overview of an original scientific article - calculate concentrations and mixing ratios of pollutants using different units - describe the concepts of global cycles, sources and sinks, and lifetimes of pollutants - · calculate lifetimes and removal rates of pollutants - identify primary and secondary pollutants - calculate pH of rainwater under natural and polluted conditions - describe pollution control methods, regulations, and policies - assess impacts of air, water, and soil pollution on the environment and human health - describe the water pollution by heavy toxic metals and their bio-geochemical cycles - explain the phenomena behind the formation of acid rain - identify the various types of biological and chemical water pollutants and explain their effects - describe the water and sewage treatment process and explain the rational for each step ## **POLICIES** All CES students must familiarize themselves with, and adhere to, all official university-wide student policies. CES takes these policies very seriously and enforces them strictly. Grading Policy: The final grade in this course will be determined as follows: | In-class participation | 5% | |--|-----| | In-class quizzes | 10% | | Homework | 10% | | Home quizzes on pre-requisite material | 10% | | Class project | 10% | | Midterm exam | 25% | | Final exam | 30% | |------------|-----| |------------|-----| Your final letter grade in this course will be based on the following tentative curve: | A | 90+ | С | 70+ | |----|-----|---|-----| | B+ | 85+ | D | 60+ | | В | 80+ | F | | | C+ | 75+ | | | **Attendance Policy**: Attendance at classes will be recorded and is **mandatory**. Each class is a learning experience that cannot be replicated through simply "getting the notes". Brief in-class participation assignments will be given and graded. **Quiz Policy**: Nearly each homework assignment is followed by a quiz. The quiz with the lowest grade will not be counted towards total. **Home quizzes** are to help refresh knowledge of pre-requisite freshman chemistry. The entire set must be completed by the given deadline. The problems are accessed via Canvas and graded **automatically**. Details are provided on CHEM361 Canvas page. **Exams:** There will be one midterm exam held in class during the semester and one comprehensive final exam. The following exam periods are tentative and therefore possibly subject to change: | Midterm Exam | Mid-March | |-------------------|------------------| | Final Exam Period | May 6 - 12, 2022 | The final exam will test your knowledge of all the course material taught in the entire course. Makeup Exam Policy: There will normally be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event that a student has a legitimate reason for missing a quiz or exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the CES Department Office/Instructor that the exam will be missed so that appropriate steps can be taken to make up the grade. **Cellular Phones:** All cellular phones and other electronic devices must be switched off during all class times, unless permitted by the instructor during certain in-class work. Such devices must be stowed in bags during exams or quizzes. Class project: This will be a team project. We will discuss a range of topics in class and students will vote select one topic. Students will formulate project focus areas, using a template outlined in class, and will form groups, each with its own focus. Each group will formulate question(s) and then work to address those questions with support from peer-review articles (at least one journal article per student). The findings will be reflected in a 2-page summary (singly spaced, one summary per student) and presented in class (each student presents individually). It is suggested to delegate one student to guide the entire project. **Extra credits:** Under no circumstances will students be given the opportunity to complete extra-credit assignments to bolster their final grades. **Note:** You are encouraged to discuss with me any difficulties you may encounter during the course. Please do not let the problem linger, contact me as early as possible! ### ADDITIONAL RESOURCES **Chemistry Tutoring Center:** Located in the Central King Building, Lower Level, Rm. G12. For hours of operation and further information please click here. Accommodation of Disabilities: Office of Accessibility Resources and Services (formerly known as Disability Support Services) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT. If you are in need of accommodations due to a disability please contact Chantonette Lyles, Associate Director at the Office of Accessibility Resources and Services at 973-596-5417 or via email at lyles@njit.edu. The office is located in Fenster Hall Room 260. A Letter of Accommodation Eligibility from the Office of Accessibility Resources Services office authorizing your accommodations will be required. For further information regarding self-identification, the submission of medical documentation and additional support services provided please visit the Accessibility Resources and Services (OARS) website at: http://www5.njit.edu/studentsuccess/disability-support-services/ Important Dates (See: Spring 2021 Academic Calendar, Registrar) | Date | • | Day | Event | |----------|----|-----------|---| | January | 17 | Monday | Martin Luther King, Jr. Day | | January | 18 | Tuesday | First Day of Classes | | January | 22 | Saturday | Saturday Classes Begin | | January | 24 | Monday | Last Day to Add/Drop a Class | | January | 24 | Monday | Last Day for 100% Refund, Full or Partial Withdrawal | | January | 25 | Tuesday | W Grades Posted for Course Withdrawals | | January | 31 | Monday | Last Day for 90% Refund, Full or Partial Withdrawal, No Refund for Partial Withdrawal after this date | | February | 14 | Monday | Last Day for 50% Refund, Full Withdrawal | | March | 7 | Monday | Last Day for 25% Refund, Full Withdrawal | | March | 14 | Monday | Spring Recess Begins - No Classes Scheduled - University Open | | March | 19 | Saturday | Spring Recess Ends | | April | 4 | Monday | Last Day to Withdraw | | April | 15 | Friday | Good Friday - No Classes Scheduled - University Closed | | April | 17 | Saturday | Easter Sunday - No Classes Scheduled - University Closed | | May | 3 | Tuesday | Friday Classes Meet | | May | 3 | Tuesday | Last Day of Classes | | May | 4 | Wednesday | Reading Day 1 | | May | 5 | Thursday | Reading Day 2 | | May | 6 | Friday | Final Exams Begin | | May | 12 | Thursday | Final Exams End | | May | 14 | Saturday | Final Grades Due | # **Course Outline** | Lecture | Topic | Assignment | |---------|---|----------------------------------| | 1 | Introduction: environment; Earth as a closed system (lithosphere, atmosphere, and hydrosphere); life and ecosystem; global biogeochemical cycles | Reading: vL&D* 1 | | 2 | Brief review of fundamental concepts: concentration units for gas mixtures and aqueous solutions; unit conversions; reaction rates and equilibria; pH of strong and weak acids | Reading: vL&D 2.3, 9.2, 9.3, H 1 | | 3 | Sources, sinks, and mass balance: residence time, rate constant, adding flows, steady-state and non-steady state mass balance, up and down going curves, fluxes, chemical and physical lifetimes | Reading: H* 2
HW 1&2 | | 4 | Hydrosphere: water cycle; properties of water; distribution of chemical species in aquatic systems | Reading: vL&D 9, 10
HW 3 | | 5 | Chemicals in water: gases, organic chemicals, and metals; colloids and surfaces; microbiological processes | Reading: vL&D 11-15
HW 4-8 | | 6 | Water pollution and treatment: definition; water quality; primary, secondary, and tertiary methods; advanced microbiological processes | Reading: vL&D 16 | | 7 | The terrestrial environment: soil formation and properties | Reading: vL&D 17, 18 | | 8 | Soil contamination: solid, organic, and mixed urban wastes; synthetic organic chemicals | Reading: vL&D 19, 20 | ^{*} textbook by van Loon and Daffy **textbook by Hites Updated by Alexei Khalizov - 2022 Department of Chemistry & Environmental Science Course Syllabus, Spring 2022