

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

13

specific model is a view of a system from the platform specific viewpoint. A

PSM combines the specifications in the PIM with the details that specify how

those systems use a particular type of platform. A platform model provides a set

of technical concepts, representing the different kinds of parts that make up a

platform and the services provided by that platform. It also provides, for use in a

platform specific model, concepts representing the different kinds of elements to

be used in specifying the use of the platform by an application. [12]

Three important benefits of abstracting out the fundamental precise structure and

behavior of a system in the PIM from implementation specific concerns in PMS are

• Simpler and more uniform models in PIM make it easier to validate the

correctness of the model uncluttered by platform-specific semantics.

• In platform- independent terms integration and interoperability across systems

can be defined more clearly then mapped down to platform specific mechanism.

• Defining business goals and policies in a computation independent manner make

it easier to produce implementations on different platforms while conforming to

the same essential and precise structure and behavior of the system.

OMG support different modeling standards for generating PIM and PSM models.

The most commonly used standard is Unified Modeling Language (UML). Three keys

OMG modeling technologies, based on UML, are MOF, CWM and XMI. In the next

sections we will explore the above-mentioned key OMG modeling technologies.

14

1.7 Metamodels

Metamodels are the models of modeling language. They specify the concept of modeling

languages that are used to create models. Metamodels simplifies the communication

about models. We can view metamodels as the model whose instances are the types in

other models or as mapping of meta-models elements to the modeling language's

elements. This allows us to capture the other model and manipulate it. A well known

meta-model is the specification for UML, which captures the classes in a developer's

model. Metamodels may themselves be captured in meta-Metamodels. Metamodels

facilitates the mapping and transformation between models.

1.8 UML — Unified Modeling Language

The Unified Modeling Language (UML) is a family of design notations that is rapidly

becoming a de facto standard as software design language. OMG specification defines

UML as "a graphical language for visualizing, specifying, constructing, and documenting

the software intensive system. UML provides a variety of useful capabilities to the

software designer, including multiple, interrelated design views, a semiformal semantics

expressed as a UML metamodel, and an associated language for expressing formal logic

constraints on design elements.

OMG's UML is based on common UML metamodel. Metamodel is in fact a class

diagram and a set of semantics and syntactic rules that defines the core elements and

relationship used in UML. In addition to core symbols, the metamodel contains

supplementary symbols, called extensions.

15

UML Extensions are predefined set of Stereotypes, Tagged Values, Constraints,

and notation icons that collectively extend and tailor the UML for a specific domain or

process. An extensive package of stereotypes is referred to as a UML Profile. To specify

the constraints on any diagram OMG has selected the Object Constraint Language (OCL)

1.8.1 Brief History

Back in late 80's there were different modeling methodology. Number of competing

methodology appeared (Booch Rumbaugh, Shlaer-Mellor...). These approaches share

many common features and also have arbitrary differences. The problem was that if

different people were using different notations, somewhere along the line somebody had

to do a translation. A lot of times, one symbol meant one thing in one notation, and

something totally different in another notation. In 1991, everybody started coming out

with books. Grady Booch came out with his first edition. Ivar Jacobson came out with

his, and Jim Rumbaugh came out with his OMT methodology. Each book had its

strengths as well as its weaknesses. OMT was really strong in analysis, but weaker in

design. The Booch methodology was stronger in design and weaker in analysis. And Ivar

Jacobson's Objectory was really good with user experience, which neither Booch nor

OMT really took into consideration back then. [7]

In 1996 OMG announced it was interested in creating an open, standard object-

oriented notation and called for proposals. Rational software submitted UML version 1.0

which had been developed by Booch, Rumbaugh, and Jacobson. Ultimately 21 other

companies sent proposals. The OMG board approved the UML Version 1.1 specification

resulted by blending the proposals of different companies like Hewlett Packard, IBM,

Microsoft, Brest, France etc. and that covered most user and vendor needs. Since then,

OMG has managed UML as an open standard. An OMG task force gathers information

about problems and improvements, and also schedule revisions. [6] OMG revision task

force schedule minor changes frequently and major changes only at intervals that would

enable developers and tool vendors to keep up with the changes and would also guarantee

that the language evolved systematically.

Figure 1.3 Evolution of UML

1.8.2 Goals of the UML

The primary goals in the design of the UML were as follows:

• Provide users with a ready-to-use, expressive visual modeling language so they

can develop and exchange meaningful models.

• Provide extensibility and specialization mechanisms to extend the core concepts.

• Be independent of particular programming languages and development

processes.

• Provide a formal basis for understanding the modeling language.

• Encourage the growth of the 00 tools market.

• Support higher-level development concepts such as collaborations, frameworks,

patterns and components.

17

• Integrate best practices.

1.9 Meta Object Facility (MOF)

Meta Object Facility (MOF), OMG standard, is a model for specifying, constructing,

managing, interchanging and integrating metadata in software system [8]. Interoperability

of Metamodels across domains is required for integrating tools and applications across a

development lifecycle using common semantics [9]. The main of aim of MOF is to

provide a framework that support any kind of metadata and that allows the new kinds to

be added as required. In order to achieve this goal MOF uses layered metadata

architecture. The key feature of this architecture is the meta-meta-modeling layer that ties

together the Metamodels and models. The four layers of metamodels architecture are

• MO Layer — Information Layer defines the data of the application.

• Ml Layer — Model Layer contains the metadata that describes the data in

information layer. This is the layer at which application modeling takes place.

• M2 Layer — Meta-Model Layer contains the meta-metadata that describes the

structure and semantics of metadata. This is the layer at which CASE tools

operate.

• M3 Layer — Meta-metamodel Layer comprised of description that defines the

structure and semantics of meta-metadata.

Figure 1.4 MOF Metadata Architecture 181

The Key features of MOF are

• The MOF Model (the MOF's core meta-metamodels) is object-oriented, with

meta-modeling constructs that are aligned with UML's object modeling

constructs. [8]

• The MOF Model is self-describing. In other words, the MOF Model is formally

defined using its own meta-modeling constructs.[8]

• The meta- levels in the MOF metadata architecture are not fixed. While there are

typically 4 meta- levels, there could be more or less than this, depending on how

MOF is deployed. [8]

18

19

1.10 XML Metadata Interchange (XMI)

XMI is a protocol that defines rules for deriving an XML Document Type Definition

(DTD) from a MOF-compliant modeling language as well as rules for rendering a

compliant model into a compliant XML document [9]. In short, XMI is mapping that

expresses UML models into XML document. These XMI DTD rules that do the

transformation are used like syntax for the construction of document. These rules are

corresponds to metamodels of Layer M2 in MOF Metamodel architecture and the

XML/XMI documents that are produce by the transformation corresponds to the Layerl

data. It is a standard interchange mechanism used between various tools, repositories and

middleware [5]. XMI allows system developers to share models and metamodels over

Internet on HTTP, IIOP or other wire protocols. XMI has the advantage of enabling

exchange of models and metadata as files or as standard format based XML documents.

UML visual modeling tools are currently adding XMI capabilities so that they can pass

UML models from one tool to another [6].

1.11 Common Warehouse Metamodel (CWM)

CWM is the OMG defined standard language for data modeling, data warehousing, data

transformation, and data analysis. It defines how the different data warehouse models

relate to each other and enables exchange of data models, data transformation rule and

data specification between tools from different vendors. CWM models are defined in

terms of UML and their metamodels are defined in terms of MOF. Vendors like IBM,

Oracle, Unisys Corp, Blue Bell, etc have already release their CWM complaint

20

warehouse. CWM database users can pass information between CWM complaint

databases via XML because CWM is MOF complaint.

1.12 Summary

In this chapter we have explored the history and the current trends of software

development. We established the benefits of standardization of the software development

by using models. The contribution of Object Management Group is quite evident in

establishing the modeling languages like UML that is generally used and accepted by

software community. We also discussed the Model Driven Architecture and established

its advantages. In the next chapter we will explore the software development process

using Model Driven Architecture.

CHAPTER 2

MODEL DRIVEN ARCHITECTURE IN ACTION

2.1 Introduction

The software life cycle following the concepts of MDA consists of the following steps:

• Capturing requirements in a Computational Independent Model (CIM).

• Creation of Platform Independent Model (PIM) that represents the functional

model of the system independent of specific technology.

• Mapping of PIM to one or more Platform Specific Models (PSM) by adding

platform specific rules and code.

• Transforming the PSM to code

• Deploying the system in a specific environment

2.2 Capturing Requirements in CIM

Computational Independent Model (CIM) is used to model the requirements of a system.

CIM captures the environment in which the system is actually going to working. This

model is not concerned about the implementation details. It can be seen as a business

model. It helps in setting the correct expectations of an enterprise system. It gives a

common shared vocabulary to be used across the complete software development life

cycle.

Capturing of requirements is the most fundamental aspect of the project design.

The PSM model's foundation is laid on CIM. We do not need an expert in UML

modeling. This can be documented with average skill programmer. The requirements

21

22

capture the general business process flow of the system along with the specific needs of

the business.

2.3 Creation of Platform Independent Model

The next step is to create a model from the requirements. Platform independent model

describes the system without showing its details of its use on a platform. This model

presents the complete system without looking into its implementation details. It gives

business functions a name and separates them as class in a model. We can use any kind of

development environment like the ones that support complete MDA process or a visual

modeling tool that does not support transformation but allows us to export the PIM model

to a standard tool. An example from MDA guide illustrates the concept further:

A PIM is prepared using a platform independent modeling language. The architect

chooses model elements of that language to build the PIM, according to the requirements

of the application. These mappings may also specify mapping rules in terms of the

instance values to be found in models expressed in the PIM language. Examples

• If the attribute "sharable" of class "entity" is true for a particular PIM model

instance of type entity, then map to an EJB Entity, otherwise map to a Java

Class. These kinds of rules may also map things according to patterns of type

usages in the PIM.

• If pattern exists where an instance of class "entity" has a "manages" association

to an instance of class "document", whose attribute "persistent" is set, then map

the "entity" instance to an EJB Entity that manages whatever is mapped from

the "document" instance identified by the pattern.

23

The system architects then chooses a platform for which the system will be

modeled. The tools are used with the chosen platforms templates to generate the PIM

models. We can capture PIM model by using UML, a graphical tool or also by OMG's

XMI that is a text-based tool. Also they use different methods they capture the same

model semantics.

2.4 Mapping of PIM to PSM

This intermediate layer is introduced by MDA to separate the decisions related to choice

of deployment technology, programming language, protocols and operating system from

code generation. Tools are used to distinguish and apply patterns to convert PIM to PSM.

We need to give these tools a platform target and then they use the templates for the said

target to develop a PSM.

One such tool, which can be used for conversion, is "Optima1J". PSM can include

database specific attributes and relationships and lists specifics about data types for each

entity.

Mapping is the key issue in converting PIM to PSM. The choice of the platform

decides which transformation maps should be used to convert platform independent

model to the platform specific model. The architect of the system has documented many

types of mapping whose choice depends on the type of platform chosen. Two examples,

taken from MDA guide illustrate different approaches:

A platform model for EJB includes the Home and Remote Interface as well as Bean

classes and Container Managed Persistence.

24

• Example: A UML PIM to EJB mapping provides marks to be used to guide the

PIM to PSM transformation. It may also include templates or patterns for code

generation and for configuration of a server. Marking a UML class with the

Session mark results in the transformation of that class according to the mapping

into a session bean and other supporting classes.

2.5 PSM to Code and Deployment:

The next step in the development life cycle of MDA project is to generate the code

implementation from PSM and then the deployment of the generated code. The PSM to

code generation is analogous to PIM to PSM generation. Again we can use tools to do the

process. Here we may want to support different environments like development, test,

staging and production. Each environment will have its own specifications and database

connectivity's. Using the tool the team can then deploy the code in the application server.

2.6 Roles Defined in MDA Process

In a MDA process development lifecycle the roles of the people can be defined as under:

• Architects concentrate towards validating models and on create transformations

to convert one model into another. They are also responsible for maintaining a

health of the models. .

• Developers study the requirements and then crate Platform Independent models

for the same. They then use these PIM's to crate PSM's by choose appropriate

transformation.

25

• Programmers implement platform specific code for business rules that a PIM

cannot express or a PIM generated by a transformation

2.7 Summary

In this chapter we discussed the development of software by using the approaches as

laid down by MDA. We learned the system design guidelines as established by the

MDA framework. MDA is slowly being widely accepted in the software development

world. In the next chapter we will explore the industry support, which is being offered

in favor of adoption of MDA as a standard framework.

CHAPTER 3

INDUSTRY SUPPORT AND FUTURE COURSE OF MDA

3.1 Industry Views about MDA

MDA gives the option of code reuse and this is a very attractive proposition for the

companies. They will not be wasting their resources in re-engineering the code whenever

there is a hard ware shift or there are changes to business. MDA gives the ability to work

at the model level and generating code automatically, software teams will be able to keep

the model in step with the debugging process. "You won't see the tendency to toss the

model away in the middle stages of the project" said Cris Kobryn, co-chairman of the

OMG's analysis and design task force and chief technologies at tools supplier Telelogic.

The above advantages have eluded many companies to adopt the OMG standards and

follow the software development guide lines as laid in MDA development.

Sam Greenblatt, Senior Vice President, Systems Strategy, Computer Associates

says that "OMG's new Model Driven Architecture fits our needs, integrating with our

software that manages e-business, and Computer Associates sees this as key to its

infrastructure that will enable our clients over the next several years." Many "gurus" of

the industry have raised similar opinions about MDA.

Software development productivity is the main essence of using new technologies

to implement a solution. The determinants of productivity can be broadly classified as

framework, tools and development methodologies. To this end MDA's emphasis on

modeling provides acknowledged benefits, including long term flexibility to incorporate

changes to a PIM, update or create new PSM's and deploy to multiple platforms without

requiring substantial code rewrites. MDA also have its critics who are concerned about its

26

27

impact on the software development process as well as its reliance on UML for automatic

code generation. Mr. Michael Jesse Chonoles the Chief of Methodology of Lockheed

Martin Advanced Concepts Center says "By taking a modeling-centric approach, MDA

gets us much closer to that ultimate goal of platform independent development and

transparent reuse -- and it finally looks feasible and soon."

MDA supports the full life cycle by not only generating code from the initial

model but also by allowing changes and regenerating code. The models and

transformation languages used by MDA meet the open standards. Use of open standards

allows the organizations to customize these languages to suit their environment.

One of the offspring benefits of MDA is that it allows the merging of work from

related fields because it uses higher level of abstraction. In its current state MDA may not

be the golden bird but there its definitely is a silver lining in the horizon of software

development which can make the software development task much more streamlined and

aliened as a manufacturing assembly.

Development of tools that enable automatic code generation from UML models in

the next step of this paradigm shift of software development. The standardization teams

will have to tighten up the semantics of UML to achieve consistent code across different

tool suppliers. UML 2 was a major project of OMG in this direction. The development of

tools that support MDA is also essential to generate a repository of models that will

further reduce the development time of the new systems as they can leverage from the

previously developed system.

28

3.2 Tools Supporting MDA Modeling

Over the past year or so, a number of tool vendors and service providers have extended

their support to MDA. There are at least 40 tools that incorporate at least one of the major

aspects of MDA: UML-based modeling; transformation between the app's overall design

models and the models that are specific to the underlying computing architecture (.NET,

EJB and so on); and the generation of code in a specific language.

Iona, InferData, Codagen Technologies, Eltegra, Hewlett-Packard and IBM are

just a few of the companies that are either developing MDA tools or adopting and

promoting the use of MDA. While evaluating or selecting MDA complaint tools, it has

been found that tools are still not matured enough to support the complete MDA process.

In most cases, it would be necessary to modify the generated source code or to write the

code manually. Fortunately as more companies are supporting MDA, specifications will

evolve and the tools will mature.

Some commonly used tools and their features are described below

3.2.1 IBM Rational Rose

IBM Rational® Software Architect is an integrated design and development tool that

leverages model-driven development with the UML for creating well-architected

applications and services. With Rational Software Architect, unify all aspects of software

design and development.

Main Features:

• UML 2.0 modelling support for analysis and design using Use Case, Class,

Sequence, Activity, Composite Structure, State Machine, Communication,

Component, and Deployment diagrams.

29

• Support for the visual modelling with content-assist.

• Apply and author patterns and transforms.

• UML Class diagram editing for Java, Enterprise Java Beans, and Database

objects.

• Support for the UML Sequence diagram editing for Java.

• Java method body visualization using UML 2.0 Sequence diagrams.

• UML Class diagram editing for C++.

• Uses transformations to generate Java, C++, or EJB code.

• Asset Browser for accessing reusable assets.

• Establish Traceability links from requirements through implementation.

• Automatically detect patterns and anti-patterns (ex: design, 00, structural, and

system) in Java code.

• Template based rules for monitoring and enforcing application structure.

• Enterprise class IDE powered by Eclipse technology.

• WS-I compliant Web services and service oriented architectures.

• Rapid application development tools and wizards.

• Drag-and-drop UI components, point-and-click database connectivity.

• Automated tools for coding standards enforcement; component testing of Java,

EJB, Web services; and multi-tier runtime analysis.

• Built-in Crystal Reports tools.

• C/C++ development environment with syntax highlighting editor and

customisable build and debugger framework.

30

• Requirements perspective for browsing requirements in Requisite Pro and

creating links to model elements.

• RUP configuration for Software Architects with context-sensitive and dynamic

process guidance.

• Open API to support customizing and extending the modelling environment.

UML profile creation and editing to customize the properties stored in UML

models.

• Generate HTML, PDF, and XML reports from UML designs.

• Generate Javadoc with detailed design diagrams.

• Scripting support with Java.

• Team support with multi-model support, compare merge, and SCM integrations.

3.2.2 IBM Rose RT

Rational Rose Real Time is a comprehensive visual development environment that

delivers a powerful combination of notation, processes, and tools to meet these real-time

challenges. Through the industry standard UML, real-time design constructs, code

generation, and model execution, Rational Rose Real Time addresses the complete

lifecycle of a project; from early use case analysis, through to design, implementation,

and testing.

Main features of Rose RT are:

• UNIFY your teams by describing your real-time embedded systems using the

Unified Modeling Language, the industry standard notation championed by

Rational Software

31

• Optimize your software development by generating complete, high-performance

executables directly from UML design models -targeted to real-time operating

systems

• Simplify tool-chain complexity by providing seamless integration to leading

real-time operating systems, compilers, symbolic debuggers, and other market-

leading Rational Software products.

• Executable models let you compile and observe simulations of your UML

designs

• Model execution encourages early design refinement and continuous validation.

• Complete, deployable executables can be generated directly from UML design

models - targeted to real-time operating systems.

• Automated generation of complete C++ applications eliminates the need for

manual translation and avoids costly design interpretation errors.

• Improve communication between all members of your team through the power

of the UML.

• Capture your architecture more effectively and make it part of the

implementation.

• Software Configuration Management end Version Control tool integration

allows you to use products like Rational Clear Case to even more effectively

manage your UML application development.

3.2.3 I-Logix Rhapsody

Rhapsody is the industry's leading Model-Driven Development environment based on

UML 2.0 and SysML for systems, software, and test, and has the unique ability to extend

32

its modeling environment to allow both functional and object oriented design

methodologies in one environment.

Model-Driven Development (MDD) technology enables you to achieve

unparalleled gains in productivity over traditional document driven approaches by

enabling you to specify your systems and software design graphically, simulate and

automatically validate the system as you build it, and ultimately produce full production

code from the model for the embedded system.

• Seamless Environment for Systems and Software Development

• Advanced Graphics Engine to allow Domain Specific Modelling

• White Boarding (free sketch)

• Custom Bitmaps

• Advanced Layout and Ergonomics

• Profile Formatting "skins"

• Requirements Modelling and Traceability

• Full Behavioural Model Simulation

• Model Driven Test Generation

• Requirements Based Testing

• Automatic and Customizable document generation

• Model Execution on Embedded Target

• Directly Deployable C, C++, Java, and Ada Code Generation

• Code Visualization and Reverse Engineering

33

3.3 Summary

This chapter emphasizes the importance of MDA in current software industry by showing

the industry support for MDA. We have also explained the various tools available for the

designer to develop the software systems using MDA. A brief description of the common

tools was also characterised. All the above discussion in the previous chapters is to

design a software system. In next chapter we will discuss the Enterprise Architecture in

the light of MDA.

CHAPTER 4

ENTERPRISE ARCHITECTURE AND MDA

4.1 Overview

Enterprise is defined or viewed as a complex system with a defined boundary and

consists of differentiated and interdependent components. It is surrounded by an external

environment which influences the enterprise operations and provides the various inputs

that are transformed by the enterprise components to produce the output in the form of

products and services that are returned to the external environment. [35]

Enterprise Architecture is a framework or "blueprint" which describes the linkage

between the components of an enterprise and defines how an enterprise achieves the

current and future business objectives. It analyzes the key business, information,

application, and technology strategies and their impact on business functions. Each of

these strategies is a separate architectural discipline and Enterprise Architecture is the

glue that integrates each of these disciplines into a cohesive framework as shown in Fig.

4.1.

Figure 4.1 Enterprise Architectural Relationships

34

