

x

TABLE OF CONTENTS

(Continued)

Chapter Page

5 PREDICTING WEB SEARCH HIT COUNTS ……………………………….. 88

 5.1 Introduction ……………………………………………………………… 88

 5.2 Hit Count Prediction Model ……………………………………………... 90

 5.2.1 Correlations between Term Frequencies and Page Hit Counts …. 91

 5.2.2 Evaluating the Prediction Model ………………………………… 99

6 EFFECT OF NEGATIVE AND POSITIVE WORDS IN THE SEARCH …… 106

7 CONCLUSIONS AND FUTURE WORK ……………………………………. 115

REFERENCES ……………………………………………………………………. 124

xi

LIST OF TABLES

Table Page

3.1 A Sample of YAGO to DBpedia Ontology Mappings …………………... 55

4.1 Facebook Person Categories to DBpedia Ontology Mapping …………… 83

4.2 Facebook Attributes to “Famous People” Ontology Mapping …………… 85

5.1 Number of Sample Words Used and Experiment Size for the N-word

Cases ………………………………………………………………………

97

5.2 Correlation between Word Frequencies and Hit Count Estimates ……….. 98

5.3 Correlation Summery for Thirty Cases …………………………………... 101

6.1 Results of Experiment on Effect of Negative Terms in Google Search ….. 109

xii

LIST OF FIGURES

Figure Page

1.1 Google’s suggested completions for search term “Barack Obama” ….. 3

2.1 Search screen example of previous Ontology-Supported Web Search

System …………………………………………………………………

17

2.2 Interface of the OSWS System for search term “Martina” …………… 24

2.3 Interface of the OSWS System for search term “Adam S” …………… 27

2.4 Interface of the OSWS System for search term “Michael Jackson” ….. 29

2.5 Use of negative terms in the OSWS System for search term “Michael

Jackson” …..……………………………...

32

2.6 Interface of the OSWS System with the parallel result display for

search term “Adam” …..…………………………….............................

37

2.7 Adjustable hover time of the instant feature in the OSWS System …... 40

2.8 Page options of the suggestions in the OSWS System ……………….. 41

3.1 Excerpt from the “famous people” knowledge base with homonym

example “Michael Jackson” …………………………………………..

44

3.2 Instance example of the musician ontology in Protégé ………………. 46

3.3 Google suggestions for search term “Robert” ………………………… 51

3.4 Partial “Person” hierarchy in the DBpedia ontology, in Protégé ……... 53

3.5 Flow of building the famous people ontology ………………………... 64

3.6 Flow of the expansion system ………………………………………... 67

4.1 Partial of the Facebook person categories ……………………………. 73

4.2 Top five results of Facebook pages for query “Michael Jackson” ……. 74

4.3 Partial view of the expanded “Person” hierarchy in Protégé …………. 84

xiii

LIST OF FIGURES

(Continued)

Figure Page

4.4 Distribution of the newly added famous people to the OSWS

Ontology ………………………………………………………………

87

5.1 Scatter plot of word frequencies and Google hits in log-log scale for

case of five positive words and five negative words ………………….

95

5.2 Clustering result of hit count transition within a six month period …… 104

6.1 Observed search engine behavior vs. ideal search engine behavior

(experiment 1: one positive word) ………………………………….....

110

6.2 Observed search engine behavior vs. ideal search engine behavior

(experiment 2: two positive words) ……………………………………

112

6.3 Observed search engine behavior vs. ideal search engine behavior

(experiment 3: only positive words) …………………………………..

113

1

CHAPTER 1

INTRODUCTION

1.1 Problems

Users’ information needs in the digital era can be fulfilled by keyword-based search

engines. Such search engines have become the universal catalogs for world-wide

resources. Unlike the old library catalogs that are mostly searchable by fixed fields (e.g.,

by authors, titles, and keywords predefined by authors), modern Web search engines

provide a flexible, easy way to express search terms. Users’ Web searches have never

become easier without the search engines.

However, the results returned by the search engines cannot always satisfy the

Web users. Covering world-wide resources on the Web, the search engines often return

millions of pages for one search, which may lead to information overload [1]. To

determine which documents are useful, users often have to sift through many hits to find

a few that are relevant [1], or repeatedly refine their search terms.

This dissertation work aims at providing a better, faster and easier search

experience for the users. The ideal search results would be less overwhelming, and yet

contain more relevant hits. In this dissertation, two approaches are discussed to

improving the users’ Web search experience.

2

1.1.1 Problem 1: Irrelevant Search Results (Especially for Homonyms) Returned

by the Search Engines

In what is shaping up to be the “Century of the Web” a computer literate person with an

information need is likely to eschew traditional sources of information such as libraries,

yellow pages and newspapers and turn immediately to a Web search engine. Such

information needs define the work sphere (“from where can I source this industrial part

that I need”) as much as private life (“where is a nice, affordable restaurant near my

home”) and everything in between (“I need a cheap flight for a job/private trip”). Thus,

the quality of the search experience of a user has become of major importance. A user

wants an answer, and she wants it now, and she wants it many times a day. Search

engines are expected to provide correct results quickly, and with a minimal amount of

user interaction.

To satisfy this expectation of an agreeable search experience, major efforts have

gone into improving both the backends and frontends of common search engines. For

example, Google has switched from making users type in complete search terms and

hitting return (or clicking a button) to suggesting to the user what she is mostly likely to

ask for. Such suggested completions [2] have also been introduced by other search

engines. Figure 1.1 shows Google’s suggested completions for the query term “Barack

Obama.” Google has access to the search terms entered by its millions of users, which

makes it easy for them to propose crowd-based suggested completions.

Changes to the backend are harder to discern for the user, but search results are

often long lists of snippets referring to a few relevant links among many irrelevant results

3

[1, 3]. Previous research has focused on refining the search terms and on filtering the

results, to improve the precision of the returned snippets [1, 4, 5].

Figure 1.1 Google’s suggested completions for search term “Barack Obama.”

Search engines also suffer from three common problems in Natural Language

Processing, the synonym problem, the homonym problem, and the wrong granularity

problem. The synonym problem appears in the form that the user might send a different

term to the search engine than what is contained in a document that would provide a

relevant answer. Thus, a query term “43
rd

 president of the US” might miss documents

with George Bush, even though these two terms are synonymous.

The wrong granularity problem would appear when a user performs a search with

a general or wide term, and a relevant document contains only a more specific or narrow

term (or vice versa). Thus, a search for “government officials having been impeached”

might not bring up President Clinton, who was indeed impeached.

The third problem in this category occurs when a search term is a homonym [6, 7,

8] (a term with multiple meanings or multiple referents) and the user does not know that.

For example, when using the search term “President George Bush” without any further

4

qualification, it might refer to George W. Bush or his father George H. W. Bush, the 43
rd

and 41
st
 president of the United States, respectively. If the user wants information about

the former, she would get results about both of them with this search term, which is an

unintended and misleading result.

Thus, when using a search engine to satisfy an information need about a

homonymous concept, a user is faced with two kinds of problems. She might get an

overwhelming number of responses about one homonym, especially if this meaning is

more popular, while the second homonym with a less popular meaning that she might be

really interested in is hidden in a snippet on a much later page of hits, returned by the

search engine. This is the case with lopsided preferences in meanings. For instance, the

“Michael Jackson” who is a singer is much more popular than the basketball player of the

same name. Hence many more search results contain references to the singer. In this

situation, the user is at least aware that the results she is getting are not about the

basketball player that she has been looking for. When formulating the initial query, it

escaped her attention that there are two concepts for her search term and that more

information might be available on the Web about the homonym that she is not interested

in.

The situation is even worse if the user is completely unaware of the fact that the

search term is a homonym with two (or more) references, and all results that appear on

the first few pages of hits are to the “wrong” reference. For example, a user located in the

New York area, who types “Penn Station” into Google will see many references to Penn

Station in New York City (NYC) and some references to Penn Station in Newark. These

two Penn Stations are separated by a 20 minute train ride. Unbeknownst to her, there is

5

also a Penn Station in Philadelphia, Pennsylvania. However, a reference to the latter does

not appear on the first page of search results.

1.1.2 Problem 2: Undesirable Size of Results Returned by the Search Engines

Common search engines often return too many results for an initial query, which may

lead to information overload [1, 9]. Most initial searches result in thousands or even

millions of relevant Web pages available for the given search terms. Such a result might

be perceived as overwhelming [10]. A user is not impressed by a million hits. Very often

she wants only a few hits that are all highly relevant to the search that was performed and

that address her immediate information need. While search engines have improved to the

point that the desired answer is often on the first page of results, users still may have to

sift through many hits to find a few that are relevant [1], or repeatedly refine their search

terms. In the latter case there is a danger of overspecifying the search, e.g., by using long

phrases in double quotes, with the effect that no results at all are returned.

It has been reported that search engines normally stop at about the 1000th result,

with all other matching pages remaining hidden from users [11]. Besides, research results

have shown that search engine users often give up their search after the first try,

examining no more than 10 documents or the first page of hits [12]. Eye-tracking studies

showed that we can expect clicks only for the top few results, and that the search engine

will probably receive almost no feedback about any result ranked above 100 [13]. A user

study by iProspect also showed that 62% of search engine users don’t look past the first

page of results [14]. Only 10% of users click on results beyond the third page [14]. To get

6

useful results without sifting through pages of hits, users often have to resort to a

“feedback loop” of repeated queries with increasingly refined search terms.

To provide a scenario for the problem we are addressing, if a user attempts to find

information about the US Senator Paul Simon, as opposed to the singer Paul Simon, she

will get pages of results about the singer, with the desired results about the senator hidden

among those. To find information about the senator, she will need to repeatedly refine her

search terms by adding words associated with politics. Another technique to increase the

number of useful results in the first few pages (i.e., the precision) is to include negative

search words. Thus, a negative search word of the form ‘‘–singer’’ should reduce the

number of irrelevant results.

However, this query refinement approach has its own problems. If a user specifies

too many positive or negative search words, relevant hits could be excluded, i.e., the

recall would suffer. It would be especially undesirable if no page hits at all are returned.

The interplay between the user and the browser could be described as a feedback loop.

The long range goal of this research is to automate this feedback loop in a manner that is

invisible to the user and implement it as a plug-in. The browser with this plug-in would

process the search terms of the user but would not actually show the results to her if there

are too many hits. The user would also never know when a search was attempted that

resulted in zero page hits.

7

1.2 Solutions

The goals of this research are:

 To categorize suggested completions by the different meanings of homonyms

and present them to the user in an improved way reflecting those different

meanings;

 To control the result size of the search engine results by predicting the search

hit counts and adding additional search terms.

1.2.1 Solution for Improving the Suggested Search Completions

The goal in this part of research is to improve the user search experience with suggested

search completions in three ways. First, the display of suggested search term completions

should be categorized visually to make it clear that homonymous terms exist. For this,

knowledge of the classes that terms belong to is necessary. This is the kind of knowledge

normally contained in ontologies.

Secondly, the knowledge in the ontologies should be used to increase the

precision of results, by making the suggested completions as discriminating as possible.

One tool for making Web searches more focused is to use negative search terms in

addition to the normal “positive” search terms. Naturally, the suggested search

completions should not be over-specified to the point that the search engine would not

return any results. As the public does not have access to the “most common search terms”

collected by commercial search engines, they cannot be used to generate suggested

completions. Instead ontologies are used both for creating the suggested completions and

for providing the knowledge needed to visually categorize them.

8

Including negative search terms in the search queries is a powerful tool for

discriminating between wanted and unwanted results. In the past, negative search terms

have not been used in suggested completions. This dissertation discusses the generation

of suggested completions with negative search terms and hint at the problems that arise

out of this pursuit.

The ontology has been extended to enrich the information provided for the search

terms (see Chapter 3).

Thirdly, combining support for the homonymous search terms, a Web search

mechanism is developed and implemented with an improved search experience for the

user that minimizes the necessity for input actions. This dissertation presents the “vertical

view” mechanism (see Section 2.3.1) and discusses the new instant feature incorporated

into the Web search system (see Section 2.3.2).

1.2.2 Solution for Building the Ontology for the Suggested Completions

 As discussed in Section 1.2.1, the goal of this work is to provide better suggested

completions to users, by disambiguating homonyms and appending suggested terms from

a robust ontology. Ontologies were chosen to serve this purpose, because they are well

suited for defining the important notions (classes, relations, objects) of a domain, using

concepts, roles, and instances (individuals), as they are known in Description Logics [15].

An ontology was developed, containing basic knowledge of more than 5000

musicians and more than 3000 basketball players, whose information is extracted from

Wikipedia. The ontology has been submitted to the Ontology Design Patterns (ODP) as

an exemplary ontology.

9

 This dissertation addressed the crucial question of how to enhance the system’s

ontology. The goal is to improve the ontology in four ways. Firstly, a method is presented

to mine the suggested completions from a search engine. Secondly additional information

is extracted from DBpedia [16] (see Chapter 3). Thirdly, this dissertation describes the

process of expanding the ontology dynamically during the normal operation of the OSWS

System. Finally, it discusses the process of enhancing the ontology by mining Facebook

as a secondary resource (see Chapter 4).

1.2.3 Solution for Predicting the Search Hit Counts

As addressed in Section 1.1.2, the users often need to repeatedly refine their search terms

in the query to get more relevant results from the search engines, which results in a

feedback loop. One approach is a query rewriting method (also query expansion) that the

browser would utilize to reduce the number of hits by appending additional words to the

search that are in line with the interests of the user. The previous research used an

approach similar to relevance feedback, however based on an ontology, to provide

additional search words [17, 18]. Fu et al. [19], Navigli and Velardi [20] and Andreou [21]

have presented various methods and algorithms to expand queries by applying ontologies.

The query rewriting mechanism augments user search terms with positive words from an

ontology. The specific model of query rewriting consists of adding additional terms to the

user query. For example, the query ‘‘Michael Jackson’’ can be augmented by additional

terms such as ‘‘singer,’’ ‘‘king of pop,’’ ‘‘thriller,’’ etc. More details about the query

rewriting method can be found in [17, 18, 22]. This model has been extended to negative

search words.

10

Negative search words can be derived, e.g., from a user model of an individual

user. This user model would contain subjects and their associated terms that the user is

definitely not interested in. However, the expanded search criteria can result in a list of

alternative search strings that need to be processed, one after another, by the user, until

the result is satisfactory. To automate this manual feedback loop, the output of the query

expansion approach can be processed by a browser plug-in ‘in the background’ and only

results that would not overwhelm the user should be reported to her. The idea of running

queries in the background is inspired by [23]. As part of a feedback loop, many such

searches would have to be executed, which would result in an unacceptable waiting time.

Thus, running several or many queries in the background is not practical.

Instead of executing searches in the background, this dissertation is therefore

attempting to predict the hit count estimates that will be returned for different expanded

search terms. Only a search for which the plug-in predicts a number of hits between pre-

specified limits will be executed. The output will only be presented to the user if the

prediction was correct, i.e., the number of results is between the pre-specified limits.

These limits could, for example, be 10 and 100, with a certain error range permitted.

Thus, one focus of this paper is on the prediction mechanism for alternative expanded

search terms. Such a mechanism helps users to avoid ‘zero results’ as well as information

overload from too many low precision results.

The major search engines return a list of hits, preceded by a number of

approximately how many hits should be expected. This number has been referred to as

‘hit count estimate’. It has been observed that the quality of hit count estimates goes

down considerably when transitioning from one search word to two search words [24].

11

The hit count estimates of the search engines were used in this research, because real hit

counts are difficult to obtain by manual counting, whenever there are many hits.

This dissertation presents an approach to developing a model for predicting the

number of hits for different combinations of search words. To develop the hit count

prediction model, a series of searches were conducted with search terms ranging from 1 –

5 words, correlation models were built between the search term frequencies and hit count

estimates returned by the search engines. Different prediction models have been

developed, based on the number of search words, allowing for up to five positive and up

to five negative search words.

To validate the prediction model, a series of searches were conducted. Their hit

count estimates reported by three commonly-used search engines, Google, Yahoo! and

Bing were compared with the hit counts reported by the prediction model.

During these experiments, it is observed that the hit count estimates for many

search words do not observe the monotonicity requirements expected as a minimal

constraint; that is, whenever a positive or negative search word is added to a prior search,

the number of hits should go down (monotonicity). Thus, the second part of this work

analyzes this (mis)behavior for positive and negative search words. A failure of a

negative search word to reduce the number of results should be considered more serious

than a failure of a positive search word. The results indicate that monotonicity often does

not hold, and that there are wide differences between search engines.

12

1.3 Related Work

This dissertation work aims at improving the suggested completions for homonymous

names of famous people. There is other research trying to solve the problem of personal

name disambiguation, but mostly in the context of clustering techniques [25, 26, 27].

Semantic search on the Web, which aims at enabling more intelligent Web

searches, has become one of the hottest Semantic Web research topics [28]. Keyword-

based approaches have been studied by many researchers in the field to improve the

search process [28]. For example, [29] improves the traditional search method by

augmenting the search results with relevant data aggregated from the Semantic Web.

Falcons is a keyword-based search engine for concepts and objects on the Semantic Web

[30]. SWSE [31] and Sig.Ma [32] allow users to locate RDF entities via keyword search

[28]. Some of the mentioned studies have also addressed the problem of query

disambiguation, considering user preferences or heuristics [28]. Chapter 2 discusses the

approach to improving the query disambiguation, in order to improve the search

experience.

Ontologies were used to provide the suggested completions in the search system.

In order to build such ontologies, search engine knowledge is mined. Yossef et al. [33]

have used the public interface to mine and sample the search engines’ query logs for

other research purposes. The ontology consists of the search engine knowledge as well as

the data extracted from DBpedia [34]. DBpedia is a large multi-domain ontology, which

has been commonly used for ontology building [35].

Besides DBpedia, Facebook was used as a secondary resource to mine knowledge

about famous people. Over the past few years, Facebook has become the largest social

13

networking site. Millions of users have integrated Facebook into their daily practices [36].

Research has been done on mining data from social networks. For example, Thelwall et

al. have mined MySpace comments to detect the emotion among them and to examine

how they differ among users with different age and gender [37]. Chu et al. have mined

Facebook live data concerning social networking forensics [38]. Xu et al. studied mining

user opinions in social network services [39]. Numerous tools have been developed to

mine social networks. For example, SONAR is an API for gathering and sharing social

network information [40]. POLYPHONET was built as a social network extraction

system [41].

This dissertation also discusses the approach to hit count prediction modelling.

Adding words from an ontology to a user’s search terms was demonstrated in the

previous ontology-based search system [6] as a method for improving the precision of

Web search results. Thelwall observed that search engine results are now widely used for

measurement purposes by researchers in Webometrics [42], and for commercial activities

such as Web analytics and search engine optimization. Cilibrasi and Vitanyi used search

engine hit counts to measure word similarity [43]. Similar work in the Semantic Web

community, using hit count estimates to calculate similarities between resources in a

semantic network, can be found in [44, 45, 46]. Search engine hit counts were used to

measure the popularity of a famous person [6] (see Chapter 3). Thus, there is a need for

research into the reliability of the results of search engines [11]. Other research has

focused on the consistency of the results of search engines. The hit count estimates that

they report for queries are interesting for at least two reasons. Webometric research has

used these hit counts as input for many studies of Web information, e.g., to determine

14

how many pages in one country link to another [11]. Secondly, it is useful to know how

reliable the estimates reported by search engines are [11].

Due to their great commercial and technological success, search engines have

been studied by many researchers. Yossef and Gurevich used random samples from a

search engine’s index to measure the size of the search engine [47]. However, the hit

count estimates are not utilized in their work and there is no research on predicting the

search engine hit count estimates. The query pool in [47] is built by crawling the ODB

directory, while this dissertation research is based on the British National Corpus (BNC)

[48], a 100 million word collection of samples of written and spoken British English.

Moreover, word frequencies are not considered in [47]. Matsuo et al. have done

researches to estimate the Google hit counts [49]. However, their method requires many

actual Google queries to be sent to evaluate the co-occurrence of terms. (See Section 4.2

for the method of utilizing the co-occurrence of search terms). Thus, in order to estimate

the hit count for one query, several other Google queries have to be made in Matsuo’s

method. Obviously, if this dissertation uses prediction in order to avoid spending time

making the actual Google queries, Matsuo’s method would not be suitable for the

purpose of predicting hit counts in real time.

1.4 Structure of the Dissertation

Chapter 2 describes the approach to improving Web search experience for

homonyms by suggesting completions from an ontology and enhancing the search

interface. Chapter 3 presents the ontology used in Chapter 2 and the methodology to

dynamically build and expand the ontology. Chapter 4 describes the approach to improve

15

the ontology presented in Chapter 3 by mining Facebook [50] as a secondary resource.

Chapter 5 presents the approach to hit count prediction modeling. Chapter 6 is devoted to

problems of search engines’ handling of negative and positive search words. Chapter 7

concludes the dissertation work.

16

CHAPTER 2

IMPROVING WEB SEARCH RESULTS FOR HOMONYMS BY SUGGESTING

COMPLETIONS FROM AN ONTOLOGY

2.1 Introduction

This chapter is based on work published in [6] and [51]. As mentioned in Section 1.1.1,

current browsers don’t deal well with search requests when the search terms are

homonyms. To improve the users’ search experience with the homonymous terms, this

chapter describes the approach to improving the search results for homonyms by

suggesting completions from an ontology.

In the previous research on an ontology-supported Web search system, the user

was presented with a number of choices of additional search terms for her input. She

could mark such terms as positive, i.e., they should be included in the Web search results,

by clicking on associated check boxes (see Figure 2.1 and 17]). One problem with this

approach was that users do not want to be bothered by (too many) questions. A more

benign approach to eliciting additional information from a user can be seen in the use of

suggested completions. While a user types in the first (few) word(s) of her search, the

search engine displays up to ten suggested search completions, which will possibly

describe the search that the user had in mind. These completions are presumably based on

the observed frequencies of many searches of other search engine users [2]. While the

user continues to type, the suggested completions change rapidly and are often limited to

fewer than ten. Most major search engines have such a mechanism. Google calls them

8
7

Figure 4.4 Distribution of the newly added famous people to the OSWS Ontology.

88

CHAPTER 5

PREDICTING WEB SEARCH HIT COUNTS

5.1 Introduction

This chapter is done based on work published in [5] and [77]. As mentioned in Section

1.2.3, it was suggested to add additional terms automatically to the user search terms to

get reasonably sized result sets. The additional search terms are retrieved from the same

ontology used for disambiguation of homonyms (see Chapter 2). To avoid unacceptable

running times by trying too many combinations with additional search terms, the system

predicts the number of results returned and only runs searches with expected reasonable

result numbers.

Search engines do not guarantee exact numbers of page hits; the total count of

results is a rounded estimate of the actual number of results for the search request [78].

Google estimates are sometimes rounded to multiples of 10, 100, or even 1000 [79]. They

provide exact numbers of page hits only in cases where these numbers are relatively

small [78]. This rounding is probably done because computing exact predictions is

expensive if the index is distributed and continually changing, as is the case for large data

sets [78]. In Uyar’s investigation, compared to other search engines, Google provides the

most accurate estimates for document counting. It provides less than a 10% error in 78%

of queries for a single-term query experiment [24]. Yahoo provides very accurate

estimates for almost half of the queries, but it gives very inaccurate results for the rest

[24]. Bing (previously called Live Search) provides a smaller number of accurate

89

estimates than Google and Yahoo, but the degree of estimate inaccuracy is smaller

compared to Yahoo [24]. Bing (Live Search) gives reasonably accurate estimates of the

total number of matching URLs with high initial page count estimates (over 8000) [11].

Another potential problem is instability of hit count estimates. The indexes

themselves are too big to be stored on one machine and are spread across multiple ones

[80]. For availability and efficiency reasons, multiple copies of the same part of the index

are kept, which are not always synchronized, since the different copies are updated at

different times [78]. As a result, it is possible to connect to different physical machines

and get different results for the same query [78]. This is known as search engine

“dancing” [78,81]. Uyar has studied the consistency of search engine estimates by

observing the fluctuations in estimates over time [24]. Among the three search engines,

Google results have the least amount of fluctuations [24]. [82] [83]

It would be difficult to have a human experimenter send thousands of interactive

queries to Google (Google.com), thus we are using the Google Ajax Search API
2
 instead.

This API is the substitute for the previous Google API, after Google partially

discontinued supporting it [84]. The estimated hit count of a Google query can be

retrieved using the Google Ajax Search API. We are not aware of a study about the

accuracy of the hit count estimates of the Google Ajax Search API, but there are many

documents describing investigations of the “old” Google API. The Google API and the

standard interface Google.com (the one used by humans) vary in range, structure and

availability [85]. Because Google Standard performs searches in a much larger and

2 Unfortunately, the Google Ajax Search API has been deprecated since November 2010 [82]. It will continue to

work as per their deprecation policy, but the number of requests one may make per day will be limited [82]. The
Google Custom Search API [83] is the new substituted search API.

90

 2
9

different index than the Google API [85], the Google API gives much lower hit counts

than interactive queries. Kilgarriff reports that a substantial number of API results were

one-eighteenth as large as comparable interface results [86].

Google is not always computing estimates using the actual words specified in the

query [78]. Yet another problem of Google is that it often exhibits non-monotonic

behavior, i.e., adding more words in the search query may increase the number of hits

instead of decreasing it [87]. This study quantifies the monotonicity problems caused by

negative and positive search words (see Chapter 5). Yahoo and Bing have similar

problems [79].

5.2 Hit Count Prediction Model

The basic idea for predicting the number of search results is based on the assumption that

there is a measurable correlation between the frequency of a word in the English

language and the number of Web pages returned by the common search engines. Keller

& Lapata have demonstrated a high correlation between page hits and corpus bigram

frequencies [88]. Many experiments have been performed on obtaining the frequencies

for phrases using the search engine’s hit counts. Keller & Lapata used the Web to retrieve

frequencies for bigrams. Nakov & Hearst [78] studied the use of search engine page hits

as a proxy for n-gram frequencies. Yet, it is not known of research predicting the hit

count estimates based on word frequencies. Thus, if a mechanism can be found

expressing the correlation between hit count estimates and word frequencies, it can be

used to predict the hit count estimates of a search engine. A regression–model was used

for this purpose.

91

 2
9

The approach for deriving the regression-based prediction model is based on a

series of experiments that associate commonly used words, passed them as keywords to a

search engine. The correlation analysis was performed between the frequency of the

search words and the hit count estimates returned from the search engine(s).

For this purpose the 5000 most frequent English words were chose from the

Brown Corpus [89].
3
 Stop words [90], bigrams and contractions, such as I’d were

removed, leaving 4632 words. The study sampled the most frequent English words,

because the public does not have access to the frequency distribution of the whole BNC.

The program queried the BNC to determine the frequencies of the words from the Brown

Corpus.
4
 Automated hit count extraction programs was developed to send the query and

extract hit count estimates from search results, using the Google Ajax API, Yahoo! API

and Bing API. The decision to use the most common words was made because the

observed frequencies decrease dramatically for infrequent words, even when using a

large corpus.

5.2.1 Correlations between Term Frequencies and Page Hit Counts

To derive the prediction model for one-word search terms, the hit count estimates were

extracted for many one-word search terms of different frequencies. The hit count

extraction program was used to send one search term at a time as input to the Google

Ajax API, Yahoo! API and Bing API. The returned page hit estimates were recorded.

Zipf observed [91, 92, 93] that given some corpus of natural language utterances, the

3 The Brown Corpus was used to extract the 5000 most common words because BNC does not provide a word

ranking list.
4 The BNC was chosen as the frequency source because after comparing the results using the Brown Corpus

frequencies and the BNC frequencies, it was found that the latter gave much better results.

95

 2
9

Figure 5.1 Scatter plot of word frequencies and Google hits in log-log scale for case of

one positive word.

The program generated 30 second degree polynomial equations based on the

logarithmic values of the frequencies and the Google hit counts. For example, for the case

with one positive term, the corresponding equation would be as shown in Formula (5.3).

H = 0.226 * F
2
 + 2.672 * F + 14.415 (5.3)

In Formula (5.3), H is the logarithmic value of the estimated Google hit count and

F is the logarithmic value of the combined word frequency. The equation in Figure 5.1

uses the coefficient values before applying the log operator.

96

 2
9

All the 4632 words were used for learning the correlations between the term

frequencies and the hit count estimates. Constructing all pairs of words, or worse, all n-

tuples, from words in this list would put considerable stress on the computational

resources and would be impossible for larger values of n. Therefore, samples were

selected as follows.

For example, the program selected 250 sample words that are evenly distributed,

for 2-word samples. This covers two learning conditions (1) two positive words and (2)

one positive and one negative word, with the positive word always coming first in the

term passed to the search engine. In the same manner, 60 words were used for 3-word

learning conditions. Next, 30 words were selected for 4-word cases. Table 5.1 shows the

number of words used and the experiment size for each case. Except for the experiment

using one word, the size of the rest of the experiments is maintained to be close to

30,000. With the selected sample words, search terms consisting of different

combinations of positive and negative words were generated.

97

 2
9

Table 5.1 Number of Sample Words Used and Experiment Size for the N-word Cases

No. of Terms (N-term) No. of Sample Words Used Experiment Size

1 4632 4632

2 250 29587

3 60 32529

4 30 26051

5 23 31987

6 20 36845

7 18 30252

8 17 23109

9 17 23109

10 18 41596

Table 5.2 shows the values of Spearman’s correlation (C) between the term

frequencies and the hit count estimates returned by the search engines for all the thirty

cases. The cases are named in the format of aPbN, where aP represents the number of

positive terms and bN represents the number of negative ones (1 a5, 0b5). Thus

2P3N stands for the case with two positive and three negative search terms. Here

Spearman’s correlation was used because the data is sorted in descending order as ranked

data. The results of Table 5.2 verify the initial assumption, that is, for most cases there is

a positive correlation between the term frequencies and the hit count estimates returned

by major search engines. The p values for all experiments were < 0.001.

98

 2
9

Table 5.2 Correlation between Word Frequencies and Hit Count Estimates

 Google’s

Correlation

(C)

Yahoo’s

Correlation

(C)

Bing’s

Correlation

(C)

1P 0.706 0.684 0.572

2P 0.674 0.680 0.577

1P1N 0.699 0.657 0.636

3P 0.737 0.863 0.814

2P1N 0.701 0.725 0.734

1P2N 0.616 0.626 0.385

4P 0.639 0.863 0.783

3P1N 0.615 0.826 0.839

2P2N 0.550 0.554 0.506

1P3N 0.302 0.348 -0.195

5P 0.594 0.654 0.684

4P1N 0.595 0.663 0.801

3P2N 0.253 0.696 0.801

2P3N 0.508 0.678 0.557

1P4N -0.042 -0.324 -0.299

5P1N 0.553 0.762 0.718

4P2N 0.294 0.740 0.567

3P3N 0.646 0.635 0.375

2P4N 0.357 0.680 0.408

1P5N 0.435 0.580 0.625

99

 2
9

Table 5.3 Correlation between Word Frequencies and Hit Count Estimates (Continued)

 Google’s

Correlation

(C)

Yahoo’s

Correlation

(C)

Bing’s

Correlation

(C)

5P2N 0.732 0.260 0.465

4P3N 0.488 0.446 0.500

3P4N 0.391 0.469 0.505

2P5N 0.777 0.631 0.556

5P3N 0.770 0.787 0.769

4P4N 0.696 0.773 0.709

3P5N 0.233 0.604 0.534

5P4N 0.631 0.804 0.779

4P5N 0.719 0.739 0.643

5P5N 0.768 0.825 0.800

Mean 0.555 0.631 0.572

5.2.2 Evaluating the Prediction Model

In the experiments, the 10-fold cross-validation method [101] was used to evaluate the

prediction module. That means, the data were split into ten “folds” of equal size. Then the

data was “trained” with nine folds and its success was evaluated with the tenth fold. This

process is repeated ten times, such that every fold is used one time for testing. During

“training” a regression line is derived. During testing this regression line is used to

predict hit count estimates for terms which were not used during training. The predicted

hit count estimates are compared with the hit count estimates reported by the search

100

 2
9

engines, one at a time. Ideally, the two numbers should be equal. The same experiments

were performed for evaluating the three search engines.

To evaluate the effectiveness of these prediction models, we used the following

measures. Ei, the percentage of difference between the predicted hit count estimate and

the search engine hit count estimate, is calculated by Formula (5.4), where Pri stands for

the predicted hit count estimate and Hci represents the real search engine hit count

estimate:

Ei =
Pri i

i

Hc

Hc


100 (%)

(5.4)

E, the average percentage of error on the test set, is the average value of all Ei’s

from Formula (5.4), where n is the size of the test set:

E =
n

E
n

i

i
1

(5.5)

To analyze the accuracy of the predictions, we also used coefficient of variation

(CV), a normalized measure of dispersion, which is calculated by Formula (5.6) where

SD is the standard deviation of the Ei values. The smaller CV is, the better is the

prediction.

CV =

average

eviationstandard d
*100 (%) =

E

SD
 *100 (%) (5.6)

101

 2
9

Table 5.4 Correlation Summary for Thirty Cases

% G’s

E

G’s

SD

G’s

CV

Y’s

E

Y’s

SD

Y’s

CV

B’s

E

B’s

SD

B’s

CV

1P 75.0 54.3 87.1 88.4 61.2 85.1 113.0 69.6 76.0

2P 199.5 188.9 120.2 130.3 110.3 89.1 134.3 97.6 89.9

1P1N 94.8 70.6 67.3 110.5 84.1 68.7 103.4 59.9 72.1

3P 235.4 254.0 100.1 378.8 584.4 126.7 144.5 162.2 102.6

2P1N 275.8 279.3 93.1 132.0 126.6 79.0 119.9 121.0 81.9

1P2N 76.3 33.4 56.4 100.6 41.1 55.6 103.4 49.7 48.1

4P 156.7 127.7 80.6 145.7 198.4 114.6 141.2 100.7 82.4

3P1N 272.5 185.4 66.2 127.7 156.8 98.9 143.6 178.1 112.0

2P2N 987.5 1163.1 67.8 248.7 221.3 65.0 242.4 224.7 72.0

1P3N 81.1 45.0 57.9 92.9 60.2 49.1 84.6 18.3 26.1

5P 162.6 166.5 105.3 340.9 743.0 89.5 68.2 45.6 72.9

4P1N 146.6 108.5 74.6 140.1 156.2 82.5 63.3 54.7 89.6

3P2N 188.3 76.8 39.9 86.3 58.3 77.6 70.5 61.7 88.2

2P3N 140.0 86.2 51.6 59.2 39.5 69.5 75.2 48.8 62.3

1P4N 39.8 7.4 18.9 47.5 22.6 52.3 42.8 13.9 51.2

5P1N 125.7 98.5 86.4 189.7 167.1 86.8 120.0 86.7 75.4

4P2N 174.4 124.1 76.9 88.6 68.6 83.3 94.9 60.9 74.4

3P3N 274.6 164.0 76.1 95.0 57.7 65.4 139.2 62.7 56.5

2P4N 387.0 177.4 48.8 79.3 42.4 52.6 131.1 64.7 61.1

102

 2
9

Table 5.5 Correlation Summary for Thirty Cases (Continued)

% G’s

E

G’s

SD

G’s

CV

Y’s

E

Y’s

SD

Y’s

CV

B’s

E

B’s

SD

B’s

CV

1P5N 92.0 40.6 27.4 51.9 24.3 38.3 76.0 32.6 57.4

5P2N 86.6 28.8 44.0 203.5 93.5 51.6 82.4 41.5 61.7

4P3N 116.1 51.4 59.8 167.6 100.5 63.5 95.0 48.2 66.1

3P4N 172.0 93.4 63.8 141.6 68.4 58.8 114.3 57.2 60.0

2P5N 174.6 77.3 54.5 93.6 33.3 45.9 70.3 23.4 43.1

5P3N 88.2 56.5 68.4 137.3 131.0 104.1 79.2 60.4 79.7

4P4N 64.0 51.7 83.5 122.4 102.4 85.7 89.0 50.9 65.0

3P5N 57.0 35.6 72.1 140.8 88.6 70.1 97.2 81.0 65.1

5P4N 66.4 46.9 75.4 122.9 114.4 103.8 80.7 59.0 75.9

4P5N 62.9 49.6 79.8 132.8 98.9 81.5 104.6 60.6 60.4

5P5N 56.5 40.8 77.4 115.6 105.5 100.9 80.3 48.8 71.0

Mean 171.0 132.8 69.4 137.1 132.0 76.5 103.5 71.5 70.0

Table 5.3 shows the average results after applying the 10-fold cross-validation

method for all thirty cases. The cases are named in the same format as in Table 5.2. The

average error (E in equation (6)), standard deviation (SD) and coefficient of variation

(CV in equation (7)) of the three search engines are reported in this table. Due to space

limitation, we used the abbreviations in the table header. G, in Table 5.3, stands for

Google, while Y stands for Yahoo! and B represents Bing. To be consistent with the

variables used in the equations, we chose E to represent the average error, SD for the

standard deviation and CV for the coefficient of variation.

103

 2
9

Note that the coefficient of variation in Table 5.3 is not simply the result of the

corresponding standard deviation divided by the average error in the same row. For

example, in the case with one positive term only (1P), the coefficient of variation of

Google is 87.1 percent, which is not the value computed from the standard deviation

(54.3% in this case) divided by the average error (75.0%). Instead, it is the average of the

ten different observed coefficients of variation, since the 10-fold cross-validation method

was used during the evaluation. Similarly, the standard deviations and the average errors

in the table are the average values of ten sets of validation results.

From Table 5.3, one can see that the statistical results (E, SD and CV) measuring

the errors of predictions are in most cases relatively small. These results support the

assumption that there is a measurable positive correlation between the frequencies of

English words and the hit count estimates returned by three major search engines. Among

the three search engines in these experiments, Bing behaved better than both Google and

Yahoo! Search, producing error statistics around 100 percent or even smaller. While this

might appear as a large number, in the context of the goals of this study, 100 percent is

still acceptable. Practically speaking, if the system presents a user with at least 10 and at

most 100 Web page hits for a search term, a 100 percent error would imply that there

might be 200 hits instead, which is still a manageable number compared to the typical

results in the thousands to millions.

The hit count estimates of the three search engines were initially fetched in

February 2010 [5]. Considering the possibility of the search engines’ dancing [81], that is

the same search results in different reported hit count numbers, the reliability of the

results was tested by comparing the ones retrieved in February 2010 with the August

104

 2
9

2010 hit counts returned by the three search engines. For each of the 4632 queries in one

positive (1P) case, the two hit counts fetched in February and August were compared by

calculating their difference ratio DR, as shown in Formula (5.8). If the search engines

were stable during the six month interval, the difference ratio should be around 1 for most

of the queries.

DR =
)2010,(

)2010,(

FebruaryHc

AugustHc (5.8)

Figure 5.2 shows the scatter plot of difference ratios for all the queries in the 1P

case for Google, Yahoo! and Bing.

Figure 5.2 Clustering result of hit count transition within a six month period.

One can see that the major portions of Google’s and Bing’s clusters are around 1.

(According to the experiments in this study, the knee in Google’s cluster is observed to

be normal during Google’s stable period.) Thus, it is confirmed that the hit count

105

 2
9

estimates by Google and Bing were fetched during the stable period of the search

engines. However, Yahoo!’s cluster shows great dancing in this observation. It is

presumed that this was the case because Yahoo updated their indexes in March 2010.

Thus, Yahoo!’s results in Table 5.3 were replaced by their stable hit counts. To retrieve

more reliable hit counts, the program used the hit count estimates appearing on the later

search result pages of Yahoo! [81].
5

The Google Ajax Search API, Yahoo! Boss API and Bing API were used

throughout this research. Unfortunately, however, the new Google Custom Search API

provides only up to 100 free queries per day [83]. This change of Google has caused

great obstacle in continuation of this study.

5 The offset of 900 was used for Yahoo!’s hit count estimates. It was not possible to retrieve more precise counts

from Google because Google provides up to the top 64 results in its API. Bing adjusts its hit counts to very small
numbers at different offsets for different queries.

106

CHAPTER 6

EFFECT OF NEGATIVE AND POSITIVE WORDS IN THE SEARCH

One of the observations made in the study in Section 5.2 was that negative search terms

change the hit count estimates in quite an unpredictable way, which has caused practical

problems when implementing the prediction model (Section 5.2). This dissertation has

investigated this problem with the search engines’ behaviors. This chapter is presenting

the results from this investigation.

It is assumed to be obvious, that when a negative search word is added to a

previous positive search term, then this would exclude some of the results of the positive

search term. Thus, the hit count estimates should always decrease when adding a negative

search word to a search term. This kind of behavior has been referred to as

“monotonicity.” However, the experiments in this part of study indicated that all three

search engines show non-monotonic behavior for negative terms.

The problem of non-monotonicity is especially vexing because (1) numbers are

not just wrong in a quantitative sense, they are qualitatively wrong, increasing instead of

decreasing; (2) non-monotonicity contradicts claims made by the major search engine

companies, i.e., in Google’s, Yahoo’s and Bing’s documentations [102, 103, 104].

To investigate the scope of this problem, another series of experiments were

performed, exclusively focusing on the question whether negative search terms reduce or

increase the hit count estimates reported by the search engines. A sample of 12,000 cases

was used, which were constructed as follows. Suppose there are random words w1, w2,

107

w3, w4, w5, and w6 from the sample word list. Then a series of six queries (marked as

queryi, where 1 i6) is constructed as follows:

w1 query1

w1 –w2 query2

w1 –w2 –w3 query3

w1 –w2 –w3 –w4 query4

w1 –w2 –w3 –w4 –w5 query5

w1 –w2 –w3 –w4 –w5 –w6 query6

Each series starts with the positive word w1 in query1 and is added one more

negative term in each query. Moreover, all the possible sequences of combinations of the

five negative words were considered. For example, two possible series of queries could

be as follows:

w1 query1

w1 –w2 query2

w1 –w2 –w3 query3

w1 –w2 –w3 –w4 query4

w1 –w2 –w3 –w4 –w5 query5

w1 –w2 –w3 –w4 –w5 –w6 query6

108

 2
9

and

w1 query1

w1 –w2 query2

w1 –w2 –w4 query3

w1 –w2 –w4 –w3 query4

w1 –w2 –w4 –w3 –w5 query5

w1 –w2 –w4 –w3 –w5 –w6 query6

In total there are 5!=120 possible series of queries considering all sequences of

combination constructed by the five negative words.

According to the major search engines’ documentations [102, 103,104], the query

“w1 –w2” returns the Web pages which exclude the term “w2” from the pages returned by

querying “w1.” The same analysis applies when moving from queryi to queryi+1, queryi+2,

etc. In other words, the hit count estimate of query should never be greater than the hit

count estimate of queryj, when i is greater than j. However, the experimental results in

this research show that this is not true for many cases.

These results were encoded as follows. Whenever adding a negative search word

decreased the hit count estimate, this was coded with a 1. In other words, whenever the

search engines behaved correctly, ‘monotonically’ and decreased the hit count estimate

after adding a negative word, this was coded with 1 (true). When an additional negative

search word increased the hit count estimate, this was represented as 0 (false). For

example, it is coded by 1 when the hit count of query4 is no greater than the hit counts

returned by query1, query2 and query3.

109

 2
9

Table 6.1 shows the results of analyzing the Google behavior. The results in Step

1 (from query1 to query2) reflect the correctness of adding one negative search word to

one positive search word. Similarly, results in Step 2 show the effect of adding two

negative search words to one positive word, and so on. In this case the comparison is

made between the new case (one positive and two negative words) with both previous

cases, i.e., with one positive word only as well as with one positive and one negative

word. Similarly, for later steps, the comparison is made with all previous queries.

Table 6.1 Results of Experiment on Effect of Negative Terms in Google Search

 Correct Incorrect

Step 1 (query1 to query2) 1645 (13.7%) 10355 (86.3%)

Step 2 (query2 to query3) 1749 (14.6%) 10251 (85.4%)

Step 3 (query3 to query4) 1903 (15.9%) 10097 (84.1%)

Step 4 (query4 to query5) 2055 (17.1%) 9945 (82.9%)

Step 5 (query5 to query6) 2192 (18.3%) 9808 (81.7%)

As can be seen in Table 6.1, 86.3% of the cases resulted in incorrect behavior

when adding one negative word to one positive word. As a result, among the 12,000

sample cases in the experiment, only 1,051 cases (8.8%) can be described to be totally

correct. Thus, it can be concluded that Google rarely behaves in the announced way for

cases with negative search words.

Figure 6.1 shows the results of this experiment by encoding the strings of 1s and

0s in the following way. Each string of 1s and 0s was interpreted as a binary number.

110

 2
9

Then the program computed the corresponding decimal number for each such five-digit

string. Next it sorted the resulting decimal numbers in descending order and plot them

over the number of cases (12000) of the experiment. If a 0 appears at the left-most

position, that means that a single negative term already leads to non-monotonic behavior

of the search engine, which is much more serious than if a 0 appears in the right-most

position. Therefore, a 0 in the leftmost position should reduce the “correctness” of this

case much more than a 0 in the rightmost position.

Figure 6.1 Observed search engine behavior vs. ideal search engine behavior

(experiment 1: one positive word).

This behavior of giving more weight to the left-most position is exactly the effect

of the binary encoding. A 0 in the left-most position will reduce the decimal value by 16,

111

 2
9

i.e., to less than half of the possible maximum. In the graph, the horizontal line at level

y=31 indicates the ideal case of a search engine behaving correctly for all experiments

(11111). Thus, the distance of the jagged line from the horizontal line indicates for every

case how far off it is from the correct behavior.

As can be seen in Figure 6.1, Google very rarely behaves in the announced way

for cases with negative search words. Yahoo! Search and Bing behave much better than

Google with respect to monotonicity. In this experiment, Yahoo! Search behaves the best

among the three search engines. Only 1.3% queries showed the monotonicity problem.

An additional experiment was also performed with the three search engines of the

effect of negative words on two positive terms. 12000 cases were constructed as follows.

Assume that there is another word w7. Thus, the six queries in one case are:

w1 w2 query1

w1 w2 –w3 query2

w1 w2 –w3 –w4 query3

w1 w2 –w3 –w4 –w5 query4

w1 w2 –w3 –w4 –w5 –w6 query5

w1 w2 –w3 –w4 –w5 –w6 –w7 query6

While non-monotonicity is obviously a serious logical problem with negative

search words, it cannot be neglected for positive search words either. Users intuitively

expect “AND semantics” when adding more words. Thus the number of search results for

a one word query should be reduced when adding a second positive search word.

112

 2
9

Unfortunately, it appears that Google is trying to ‘outsmart’ the user by making it hard to

reach single digit hit counts even when accumulating rare words from different domains.

Therefore, an investigation of this behavior is warranted.

Figure 6.2 Observed search engine behavior vs. ideal search engine behavior

(experiment 2: two positive words).

The following experiment studied the monotonicity of appending additional

positive search words at the end of a query. That is, taking six random words w1, w2, w3,

w4, w5, and w6 from the sample word list, a series of six queries was constructed by

appending one additional word to w1 each time. Similar to the previous experiments, the

113

 2
9

six queries are constructed as w1, w1 w2, w1 w2 w3, w1 w2 w3 w4, w1 w2 w3 w4 w5, and w1 w2

w3 w4 w5 w6.

With the same encoding method used as in Figure 6.1 and Figure 6.2, it is

possible to summarize the monotonicity results of adding positive search words for the

three search engines. As can be seen in Figure 6.3, Yahoo! and Bing behave much better

than Google with respect to monotonicity of positive search words.

Figure 6.3 Observed search engine behavior vs. ideal search engine behavior

(experiment 3: only positive words).

While considering these results as interesting in their own right, this study is part

of a larger project of building a browser (plug-in) that controls Web search in a manner

that avoids overwhelming users with too many search results but is not so restrictive as to

114

 2
9

return no results at all (Chapter 5). To control search results, negative terms are used.

However, if search engines exhibit non-monotonicity, the predictability of the results is

greatly reduced.

115

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation aims at providing a better search experience for Web users. Problems

arise with the weaknesses of the current keyword-based search engines. The major search

engines do not disambiguate homonymous search terms. The returned results contain

mingled information of all homonyms and typically contain long list of pages of hits. To

improve the Web search process with homonymous terms, the Ontology-Supported Web

Search (OSWS) System was developed. The system clearly categorizes and

disambiguates homonymous searches. The ontology used in the system was built from

DBpedia and Facebook, in addition to using the suggested completions mined from

Google.

To control the size of the returned Web results, to be neither too overwhelming

nor too limited, a prediction mechanism has been developed. The prediction model was

built based on the frequency of the search terms supplied to three common search engines,

Google, Yahoo! Search and Bing. The study also evaluated how well the mechanism

predicted the performance of the three search engines. During the study, it was found that

all three search engines show non-monotonic behavior for negative search terms.

Research results were presented, concerning the non-monotonicity of the three search

engines for both positive and negative search terms.

Chapter 2 described an algorithm and its implementation in the OSWS System

that improves previous work [17] on ontology-supported Web search. OSWS provides a

method that generates better (than existing search engines) suggested completions of user

116

search terms when those search terms refer to homonyms. The interface clearly separates

between suggested completions for homonymous concepts that fit the partial search term

that a user has already typed in. OSWS uses an ontology to derive the disambiguated

search terms and suggested search completions based on the knowledge about famous

people in the ontology. Furthermore, suggested completions in the OSWS interface may

contain positive and negative search words. OSWS allows users to include “negative

search terms” in suggested completions, which further refine searches by negating search

queries with information known not to apply to a given instance.

In order to improve the search experience of Web users, while discriminating

between different senses of a homonymous term, a new interface has been developed for

the OSWS System improving it in two ways. In the first stage, the system divides the

snippet display into vertical panels to visually separate the results for the different

homonyms. When the user moves the mouse down to one of the suggested completions

and hovers there, the processing enters the second stage. For every suggested completion

the user points to, the system instantly shows the result snippets of the suggestion he is

hovering over. This improves the Google Instant feature. Currently Google shows instant

results only for the first suggested completion. These two new features help the user

acquire a deeper understanding of the suggested terms and to enjoy a better search

experience than provided by today’s search engines, while minimizing the number of

actions she has to perform.

The current ontology is queried using special-purpose Java code. SPARQL is

considered to be used in the future, as the ontology grows in size and complexity.

117

 2
9

In future work, it is also planned to collect user feedback and to perform a formal

evaluation study of the new features, e.g., using a tool such as Morae™. In order to test

the usability of the OSWS System in improving the user search experience, future work

will include conducting a user study to compare the OSWS System with the major search

engines, such as Google, Yahoo and Bing, in aspects of usability and user satisfaction.

In [105], an evaluation study was conducted in an undergraduate course [105]. It

is planned to involve 20 to 30 university students and scholars to participate in the user

study. Each participant will be asked to perform Web searches using the same sets of

queries on the OSWS System and on one of the major commercial search engines,

depending on the user’s preference.

Each participant will perform a set of 20 queries of his or her choice. Each query

should consist of the name of a famous person. Based on such experiments, a post task

questionnaire will be filled out by all users. It will focus on the usability and user

satisfaction with the new features incorporated into the OSWS System, including the

search continuation interface for disambiguating the homonymous search terms, user

control of searching with negative terms, parallel result display and the instant feature.

Participant preferences will be obtained via questionnaires using Likert scales

[106]. Most Likert scales have either 5, 7, or 9 degrees to choose among; odd numbers

make it clear what the central or neutral choice is [107]. If comparing a new interface

against one that is known already to have strong positive reactions, a wider scale allows

for participants to clearly indicate a preference above and beyond what is already familiar

and available [107].

118

 2
9

The questionnaire will be designed based on a usability testing tool called

Questionnaire for User Interaction Satisfaction (QUIS) [108]. QUIS is a measurement

tool for evaluating computer users' subjective satisfaction with the human-computer

interface [108]. Most QUIS-based questionnaires are arranged in a hierarchical layout:

they start with a demographic questionnaire, which aims to determine user background

information such as level of computer literacy. This is followed by measures of overall

reaction towards the system. Finally, there are several specific interface sections.

The questionnaire will be adapted from QUIS and it will consist of:

(1) A background information section with questions relating to experience of

using search engines;

(2) An overall-reaction section with different measures, such as level of

satisfaction of using the OSWS System and the usability of disambiguating homonymous

search terms.

(3) A section on the measurement of user satisfaction with the key features in the

OSWS System; and

(4) A comments section which allows participants to provide comments and

feedback that are related to possible areas of improvement of the OSWS System.

In part (2) above, participants will be asked to give their responses for both the

OSWS System and the preferred commercial search engine, for each question being

asked, so that the answers can be compared.

Chapter 3 reviewed the old knowledge base used in the OSWS System and

described a new method for building an ontology of famous people by using search

suggestions retrieved from Google, together with information extracted from DBpedia

and YAGO. DBpedia is a huge public resource, but suffers from inconsistencies. The

DBpedia ontology contains well-structured and consistent data but is very limited and

119

 2
9

covers only a small portion of the domain. Thus, the person hierarchy was kept from the

DBpedia ontology and information about the famous people was extracted from DBpedia.

The A-List of famous people was mined from Google’s suggested completions.

Various methods have been applied to clean the extracted DBpedia information, in order

to consistently integrate the new knowledge into the ontology. This ontology was

integrated into the Ontology-Supported Web Search System, which provides

disambiguated search suggestions based on the ontology. A prototype expansion system

was also developed for dynamically expanding the content of the ontology at run time,

based on user-input queries, resulting in the D-OSWS System.

For the current version of this new ontology, the DBpedia person hierarchy was

used, which is shallow but provides reasonable granularity for search suggestions.

However, while comparing YAGO types to DBpedia ontology classes, it was found that

there were quite a few missing classes in the DBpedia person hierarchy. For example,

movie directors are grouped into the Actor class. Martin Scorsese is classified as an actor

instead of a director.

Future work involves further refining the class hierarchy to provide better search

results and exploring the use of new sources of data to include within the ontology. By

further analyzing class names from other sources, it will be possible to provide better

search suggestions in a number of cases. Additionally, research will continue on

improving the domain coverage.

One problem has been recognized, that DBpedia is a (largely) static data source,

when the goal is to keep up with a dynamically changing search environment. While

DBpedia is working on a live extraction system [34, 109], the DBpedia ontology is

120

 2
9

presently updated only twice per year. If the research relies solely on DBpedia as a data

source, it may be not possible to find up-to-date information on certain instances in the

ontology, and it is likely that some new instances will be missed entirely. It is planned to

use new, more frequently updated, data sources to augment the OSWS ontology with

fresh data, such as online news-feeds. By including new sources it will be possible to

provide up-to-date and relevant search results to the end-users. Future work may also

include expanding the OSWS System to perform what is called “Search What I Mean”

(SWIM) queries, which will return results for what the system believes the user intends to

search for. Lastly, work will continue with the B-List and possibly parts of the C-List.

Chapter 4 has presented the process of mining Facebook as a secondary resource

to enhance the OSWS ontology. The study focused on the 2,564 names that exist in the

A-List but could not be found in DBpedia, which were referred as the “reduced-A-List.”

Passing them to Facebook, it was possible to find 954 names that have a Facebook public

page and are classified as person. Since the OSWS System is about famous people, the

pages that have fewer than 300 fans were disregarded. A series of data extraction and

data cleaning steps were done to mine the Facebook public pages of the selected people.

The standardized data was then mapped to the OSWS ontology described in Chapter 3.

The process discussed in Chapter 4 involves data analysis and manual checking in

specific steps. Having the “reduced-A-List” analyzed and successfully mapped to the

ontology, mapping the people in the B-List and C-List would be a mostly automatic

process. Future work involves enhancing the OSWS ontology by adding the people in the

B-List and the C-List, who do not exist in DBpedia.

121

 2
9

 Chapter 5 has motivated and described a method for predicting hit count

estimates based on the frequency of the search terms supplied to three common search

engines, Google, Yahoo! Search and Bing. Frequencies were taken from a corpus of the

English language. Second degree correlation functions were derived, based on random

samples taken from the corpus. The derived regression functions were then used for the

purpose of predicting the hit count estimates. Due to the varying behavior of the search

engines, depending on the number of search terms passed to them, the study has derived

separate correlation functions for 30 different cases of search terms of varying length,

with and without negative terms. The experiments indicated that the predictions made for

the samples were sufficiently close to the hit count estimates returned by the search

engines to make them useful. Among the three search engines, Bing gives better results

(closer correlation between the term frequencies and the numbers of hits) than Google

and Yahoo! Search.

The Google Ajax Search API, Yahoo! Boss API and Bing API were used to fetch

the hit count estimates of the three search engines. The Google Custom Search API is the

substitute of the Google Ajax Search API. However, it provides only up to 100 free

queries per day [83], which has caused great inconvenience in continuation of this study.

Future research includes extending work on hit count estimates in several

directions. For common phrases, the frequency (co-occurrence) of a multi-word term is

often not the same as what would be predicted by the component word frequencies. Thus,

one can expect more Michael Jackson hits than predicted by Michael and Jackson

separately, in contrast to Alfred Jackson hits. In the future, the frequency of the

dependent terms will be updated using knowledge retrieved from relevant ontologies.

122

 2
9

Secondly, future research involves adding specialized word frequency lists to the

database, such as US Census first name and last name frequency information. This will

reduce the number of words for which the prediction model currently does not have any

frequency estimates. Besides, additional data sources will be looked into that cover

newly-coined, commonly-used words, e.g., ‘facebooking’.

The search engine hit count estimates are computed using sampling algorithms,

and thus are expected to vary significantly. Rather than choosing the 5000 most frequent

words, a random sample may be more interesting in terms of results.

The future study will also consider the Corpus of the American Contemporary

English (COCA) [110] as a data set. Most importantly, it is considered to integrate the

thirty prediction models into fewer, ideally one for each search engine, to simplify the

modeling and increase the usability of the prediction model. Moreover, since the Web is

constantly growing, the prediction models should be updated periodically. Another

possible extension of this part of the work could be to expose a REST API that provides

the predicted hit count estimates for given search queries.

One interesting research topic would be to analyze the correlation between the

popularity of a Wikipedia page and the search engines’ hit counts for this page.

Wikipedia has the advantage of multi-domain and multi-language coverage. Thus, it

would be interesting to investigate the correlation between page popularity and search

engine results.

Chapter 6 studied the effect of adding negative and positive search words to

existing queries. It was shown that when between one and five negative search words

were added to a single positive search word, the observed hit count estimates did not

123

 2
9

behave monotonically for many cases. For example, for one positive search word, Google

rarely behaves correctly when a sequence of negative search words is appended.

Compared to Google, Yahoo! Search and Bing behave much better in following the

announced behavior for adding negative terms. In this study, Yahoo! Search shows the

best behavior, with 98.8% of the experiments exhibiting the correct monotonic behavior.

The research also investigated the effect of adding negative search words after two

positive words and adding only positive search words in the queries. The three search

engines show better monotonicity results in those cases, but still do not conform to the

documented behavior.

Future work continues on investigating the monotonic behavior of the popular

search engines. For example, Google ignores common words and characters such as

where, the, how, and includes synonyms automatically in its processing. However,

adding a plus operator (+) in front of a word would indicate to Google that it should

search with the exact word the user included in his query [111]. In the future, it is

planned to analyze and compare the monotonicity of the search engines with and without

using the plus operator.

 124

REFERENCES

[1] D.R. Radev, W. Fan, and Z. Zhang, “WebInEssence: A Personalized Web-Based

Multi-Document Summarization and Recommendation Syatem”, NAACL

Workshop on Automatic Summarization, Pittsburgh, PA, 2001.

[2] Google Query Suggestion, http://www.google.com/support/websearch/bin/

answer.py?hl =en&answer=106230, retrieved 12/01/2011.

[3] E. Al-Masri, Q.H. Mahmoud, “Discovering Web Services in Search Engines,” IEEE

Internet Computing, issue 3, pp. 74-77, 2008.

[4] S.R. Lawrence, “Personalization of Web Search Results Using Term, Category, and

Link-Based User Profiles,” United States Patent Appl. 20100228715. Kind Code:

A1, 2010.

[5] T. Tian, J. Geller, S.A. Chun, “Predicting Web Search Hit Counts,” 2010

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology, pp. 162-166, Toronto, Canada, 2010.

[6] T. Tian, J. Geller, S.A. Chun, “Improving Web Search Results for Homonyms by

Suggesting Completions from an Ontology,” 2nd International Workshop on

Semantic Web Information Management (SWIM). Lecture Notes in Computer

Science, pp. 175-186. Vienna, Austria, 2010.

[7] F. Radlinski, M. Szummer, N. Craswell, “Inferring Query Intent from

Reformulations and Clicks,” WWW 2010, Raleigh, North Carolina, USA, 2010.

[8] M. Henzinger, “Search Technologies for the Internet,” Science, vol. 317, no. 5837,

pp. 468-471, 2007.

[9] R. Capra, G. Marchionini, J. Velasco-Martin and K. Muller, “Tools-at-hand and

Learning in Multi-session, Collaborative Search,”: 28th International Conference on

Human Factors in Computer Systems (CHI’10) Atlanta, Georgia, 2010.

[10] L. Yuen, M. Chang, Y.K. Lai, C.K. Pool, “Excalibur: A Personalized Meta Search

Engine,” 28th Annual International Computer Science Software and Applications

Conference (COMPSAC’04), vol. 2, pp. 49-50, September 2004.

[11] M. Thelwall, “Extracting Accurate and Complete Results from Search Engines: Case

Study Windows Live,” Journal of the American Society for Information Science

and Technology, vol. 59, issue 1, pp. 38-50, 2007.

[12] E.T. Jepsen, P. Seiden, P. Ingwersen, L. Björneborn, P. Borlund, “Characteristics of

Scientific Web Publications: Preliminary Data Gathering and Analysis,” Journal of

the American Society for Information Science and Technology, vol. 55, issue 14,

pp. 1239-1249, 2004.

125

 2
9

[13] T. Joachims and F. Radlinski, “Search Engines that learn from Implicit Feedback”,

IEEE Computer, IEEE Computer Society, vol. 40, issue 8, pp. 34-40, 2007.

[14] iProspect Search Engine User Behavior Study, http://www.iprospect.com/

premiumPDFs/WhitePaper_2006_SearchEngineUserBehavior.pdf, 2006, retrieved

12/01/2011.

[15] F. Baader, “Description Logics,” Reasoning Web: Semantic Technologies for

Information Systems, 5th International Summer School, vol. 5689, pp. 1–39,

Lecture Notes in Computer Science,. Springer Verlag, 2009.

[16] DBpedia, http://dbpedia.org/About, retrieved 12/01/2011.

[17] Y. An, S. Chun, K. Huang, J. Geller, “ Enriching Ontology for Deep Web Search,”

DEXA, Lecture Notes in Computer Science, pp. 73-80, Turin, Italy, 2008.

[18] Y. An, J. Geller, Y. Wu, S.A. Chun, “Semantic Deep Web: Automatic Attribute

Extraction from the Deep Web Data Sources,” 2007 ACM Symposium on Applied

computing (ACM-SAC), pp. 1667-1672, Seoul, Korea, 2007.

[19] G. Fu, C.H. Jones, A.I. Abdelmoty, “Ontology-based Spatial Query Expansion in

Information Retrieval,” ODBASE: OTM Confederated International Conferences,

Agia Napa, Cyprus, 2005.

[20] R. Navigli R, P. Velardi, “An Analysis of Ontology-based Query Expansion

Strategies,” Workshop on Adaptive Text Extraction and Mining (ATEM 2003),

14th European Conference on Machine Learning (ECML 2003), Cavtat- Dubrovnik,

Croatia, 2003.

[21] A. Andreou, “Ontologies and Query Expansion,” M.S. thesis, School of Informatics,

Edinburgh Univ., Edinburgh, UK, 2005.

[22] Y. An, S.A. Chun, K. Huang, J. Geller, “Assessment for Ontology-Supported Deep

Web Search,” 10th IEEE Conference on E-Commerce Technology and the Fifth

IEEE Conference on Enterprise Computing, E-Commerce and Eservices, IEEE

Computer Society, pp. 382-388, Washington D.C, 2008.

[23] D.L. McGuinness, “Ontologies Come of Age,” In D. Fensel, J. Hendler,

H. Lieberman, W. Wahlster (eds) Spinning the Semantic Web: Bringing the World

Wide Web to Its Full Potential, MIT Press, 2003.

[24] A. Uyar, “Investigation of the Accuracy of Search Engine Hit Counts,”

Journal of Information Science , vol. 35, issue 4, pp. 469-480, 2009.

[25] K. Sugiyama, M. Okumura, “Personal Name Disambiguation in Web Search Results
Based on a Semi-supervised Clustering Approach”, Lecture Notes in Computer

Science, vol. 4822, pp. 250-256, 2007.

[26] C. Chen, J. Hu, H. Wang, “Clustering Technique in Multi-Document Personal

Name Disambiguation”, ACL-IJCNLP 2009 Student Research Workshop, Suntec,

Singapore, August 2009.

126

 2
9

[27] D. Rao, J. Garera, D. Yarowsky, “JHU1: An Unsupervised Approach to Person

Name Disambiguation using Web Snippets”, 4
th

 International Workshop on

Semantic Evaluations, Prague, June 2007.

[28] B. Fazzinga, T. Lukasiewicz, “Semantic Search on the Web,” Semantic Web –

Interoperability, Usability, Applicability, vol. 1, pp. 1-7, 2010.

[29] R.V. Guha, R. McCool, E. Miller, “Semantic Search,” WWW’03, pp. 700-709,

Budapest, Hungary, 2003.

[30] G. Cheng, W. Ge, Y. Qu, “Falcons: Searching and Browsing Entities on the

Semantic Web,” WWW’08, pp. 1101-1102, Beijing, China, 2008.

[31] A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, S. Decker, “SWSE: Answer

before Links!,” Semantic Web Challenge, CEUR Workshop, 2007.

[32] G. Tummarello, R. Cyganiak, M. Ctasta, S. Danielczyk, R. Delbru, S. Decker,

“Sig.Ma: Live Views on the Web of Data,” WWW 2010, pp. 1301-1304, Raleigh,

NC, USA, 2010.

[33] Z. B. Yossef, M. Gurevich, “Mining search engine query logs via suggestion

sampling,” VLDB Endowment, Auckland, New Zealand, vol. 1, issue 1, pp. 54-65,

2008.

[34] C. Bizer et al., “DBpedia - a Crystallization Point for the Web of Data,” Web

Semantics: Science, Services and Agents on the World Wide Web, vol. 7, issue 3,

pp. 154-165, 2009.

[35] M. Kalender, J. Dang, S. Uskudarli, UNIpedia: “A Unified Ontological Knowledge

Platform for Semantic Content Tagging and Search,” ICSC '10 2010 IEEE Fourth

International Conference on Semantic Computing, Washington DC, pp. 293-298,

2010.

[36] D.M. Boyd, N.B. Ellison, “Social Network Sites: Definition, History, and

Scholarship,” Journal of Computer-Mediated Communication, vol. 13, issue 1, pp.

210-230, 2007.

[37] M. Thelwall, D. Wilkinson, S. Uppal, “Data Mining Emotion in Social Network

Communication: Gender Differences in MySpace,” Journal of the American Society

for Information Science and Technology, vol. 61, issue 1, pp. 190-199, 2010.

[38] H. Chu, D. Deng, J.H. Park, “Live Data Mining Concerning Social Networking

Forensics Based on a Facebook Session Through Aggregation of Social Data,”

IEEE Journal of Selected Areas in Communications, vol. 29, issue 7, pp. 1368-1376,
2011.

[39] K. Xu, S.S. Liao, Y. Song, L. Liu, “Mining User Opinions in Social Network

Webs,” The Fourth China Summer Workshop on Information Management, Wuhan,

China, 2010.

127

 2
9

[40] I. Guy, M. Jacovi, E. Shahar, N. Meshulam, V. Soroka, “Harvesting with SONAR -

The Value of Aggregating Social Network Information,” CHI, Florence, Italy, 2008.

[41] Y. Matsuo, J. Mori, M. Hamasaki, “POLYPHONET: An Advanced Social Network

Extraction System from the Web,” International World Wide Web Conference

(WWW), Edinburgh, Scotland, 2006.

[42] M. Thelwall, “Introduction to Webometrics: Quantitative Web Research for the

Social Sciences”, Synthesis Lectures on Information Concepts, Retrieval, and

Services, vol. 1, no. 1, pp. 1-116, 2009,

[44] R. Cilibrasi, P. Vitanyi, “The Google Similarity Distance”, IEEE Trans. Knowledge

and Data Engineering, vol. 19, issue 3, pp. 370-383, 2007.

[44] D. Sánchez, M. Batet M, A. Valls, “Web-Based Semantic Similarity: An Evaluation

in the Biomedical Domain,” International Journal of Software and Informatics, vol.

4, issue 1, pp. 39-52, 2010.

[45] R. Mirizzi, A. Ragone, T. Noia, E. Sciascio, “Semantic Tags Generation and

Retrieval for Online Advertising,” 19th ACM International Conference on

Information and Knowledge Management (CIKM), pp. 1089-1098, Toronto,

Canada, 2010.

[46] R. Mirizzi, A. Ragone, T. Noia, E. Sciascio, “Ranking the Linked Data: the Case of

DBpedia,” 10th International Conference on Web Engineering (ICWE), pp. 337-

354,Vienna, Austria, 2010.

[47] Z.B. Yossef, M. Gurevich, “Random Sampling from a Search Engine’s Index”, 15
th

International World Wide Web Conference (WWW), Edinburgh, Scotland, 2006.

[48] British National Corpus, http://www.natcorp.ox.ac.uk/, retrieved 12/01/2011.

[49] Y. Matsuo, H. Tomobe, T. Nishimura, “Robust Estimation of Google Counts for

Social Network Extraction”, WWW 2007, Banff, Canada, May 2007.

[50] Facebook, www.facebook.com, retrieved 12/01/2011.

[51] T. Tian, J. Geller, S.A. Chun, “Enhancing the Interface for Ontology-Supported

Homonym Search,” CAiSe’11 Workshop: 1st International Workshop on Semantic

Web Search (SSW), Lecture Notes in Computer Science, London, UK, 2011.

[52] Yahoo Search Assistant, http://tools.search.yahoo.com/newsearch/searchassist.html,

retrieved 12/01/2011.

[53] Bing Search Suggestions, http://onlinehelp.microsoft.com/en-us/bing/

ff808490.aspx, retrieved 12/01/2011.

[54] Y. Ke, L. Deng, W. Ng, D. Lee, “Web Dynamics and their Ramifications for the

Development of Web Search Engines,” Computer Networks: The International

Journal of Computer and Telecommunications Networking – Web Dynamics, vol.

50, issue 10, pp. 1430-1447, 2006.

128

 2
9

[55] Google Instant, http://www.google.com/instant/, retrieved 12/01/2011.

[56] T.B. Lee, J. Hendler, O. Lassila, “The Semantic Web”, Scientific American

Magazine, May 2001.

[57] L. Ding, T. Finin, A. Joshi, R. Pan, R.S. Cost, “Swoogle: A Search and Metadata

Engine for the Semantic Web”, thirteenth ACM international conference on

Information and knowledge management, pp. 652-659, ACM Press, 2004.

[58] Ontology Design Patterns (ODP), http://ontologydesignpatterns.org/wiki/

Main_Page, retrieved 10/15/2010.

[59] Open Biological and Biomedical Ontologies (OBO), http://www.obofoundry.org/,

retrieved 12/01/2011.

[60] L. Niles, A. Pease, “Towards a standard upper ontology,” International Conference

on Formal Ontology in Information System, pp. 2-9, ACM, New York, 2001.

[61] J.F. Sowa, “Knowledge Representation: Logical, Philosophical, and Computational

Foundations,” Brooks Cole Publishing Co., Pacific Grove, CA, 2000.

[62] C. Ochs, T. Tian, J. Geller S.A. Chun, “Google Knows Who is Famous Today:

Building an Ontology from Search Engine Knowledge and DBpedia,” 5th IEEE

International Conference on Semantic Computing (ICSC), Palo Alto, CA, 2011.

[63] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z. Ives, “DBpedia: a

Nucleus for a Web of Open Data,” ISWC'07/ASWC'07 6th International Semantic

Web and 2nd Asian Conference on Asian Semantic Web, Busan, Korea, pp. 722-

735, 2007.

[64] DBpedia Disadvantage, http://wiki.dbpedia.org/UseCases, retrieved 12/01/2012.

[65] DBpedia SPARQL, http://dbpedia.org/sparql, retrieved 12/01/2012.

[66] Google Autocomplete SOAP API, http://docs.jquery.com/UI/Autocomplete,

retrieved 12/01/2012.

[67] Government Census Data, http://www.census.gov/, retrieved 12/01/2012.

[68] WordNet, http://wordnet.princeton.edu/, retrieved 12/01/2012.

[69] F. M. Suchanek, G. Kasneci, G. Weikum, “YAGO: a Core of Semantic

Knowledge,” WWW '07 16th International Conference on WWW, pp. 697-706,

Banff, Alberta, Canada, 2007.

[70] J. Euzenat, P. Shvaiko, “Ontology Matching,” Springer-Verlag, Berlin, Heidelberg,

2007.

[71] About Facebook Pages, http://www.facebook.com/help/pages/admin, retrieved
12/01/2011.

[72] Facebook Graph API, http://developers.facebook.com/docs/reference/api/, retrieved

12/01/2011.

129

 2
9

[73] Inside Facebook Pages, http://www.sysomos.com/insidefacebook/, retrieved

12/01/2011.

[74] T. McCorkindale, “Can You See the Writing on My Wall? A Content Analysis of

the Fortune 50’s Facebook Social Networking Sites,” Public Relations Journal, vol.

4, no. 3, pp. 1-10, 2010.

[75] Facebook Pages, http://developers.facebook.com/docs/reference/api/page/, retrieved

12/01/2011.

[76] Stands4 API, http://www.abbreviations.com/api.asp, retrieved 12/01/2011.

[77] T. Tian, S.A. Chun, J. Geller, “A Prediction Model for Web Search Hit Counts

Using Word Frequencies,” Journal of Information Science, vol. 37, issue 5, pp. 462-

475, Sage Publishing Co., 2011.

[78] P. Nakov, M. Hearst, “A study of Using Search Engine Page Hits as a Proxy for n-

gram Frequencies”, Recent Advances in Natural Language Processing, Borovets,

Bulgaria, September 2005.

[79] J. Pollard, “Google result counts are a meaningless metric”,

http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/google-result-counts-

are-a-meaningless-metric.html, retrieved 12/01/2011.

[80] S. Brin, L. Page, “The Anatomy of a Large-scale Hypertextual Web Search

Engine”, Computer Networks, vol. 30, issue 1-7, pp. 107-117,1998.

[81] T. Funahashi, H. Yamana, “Reliability Verification of Search Engines’ Hit Counts”,

1
st
 International Workshop on Quality in Web Engineering, Vienna, Austria, July

2010.

[82] Google Search API, http://code.google.com/apis/websearch/, retrieved 12/01/2012.

[83] Google Custom Search API, http://code.google.com/apis/websearch/, retrieved

12/01/2012.

[84] Google SOAP Search API, http://code.google.com/apis/soapsearch/, retrieved

12/01/2012.

[85] P. Mayr, F. Tosques, “Google Web APIs: An Instrument for Webometric

Analyses”, ISSI 2005 Conference, Stockholm, Sweden, July 2005.

[86] A. Kilgarriff, “Googleology is Bad Science”, Computational Linguistics, vol. 33,

issue 1, pp. 147-151, 2007.

[87] R. Gligorov, W.T. Kate, Z. Aleksovski, F. V Harmelen, “Using Google Distance to

Weight Approximate Ontology Matches”, 16th International World Wide
WebConference, pp. 767-776, Banff, Alberta Canada, May 2007.

[88] F. Keller, M. Lapata, “Using the Web to Obtain Frequencies for Unseen Bigrams”,

Computational Linguistics, vol. 29, issue 3, pp. 459-484, 2003.

130

 2
9

[89] Brown Corpus, http://www.edict.com.hk/lexiconindex/frequencylists/words2000.

htm, http://www.edict.com.hk/lexiconindex/frequencylists/words2-5k.htm, retrieved

03/21/2010.

[90] Stop words, http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words, retrieved

12/01/2012.

[91] G. Zipf, Selective Studies and the Principle of Relative Frequency in Language,

Cambridge Press, Cambridge, Mass, 1932.

[92] G. Zipf, Human Behavior and the Principle of Least-Effort, Cambridge Press,

Cambridge, Mass, 1949, Addison-Wesley, 1965.

[93] G. Zipf, The Psycho-biology of Language: An Introduction to Dynamic Philology,

Houghton-Mifflin Company, 1935, MIT Press, 1965.

[94] P. Pantel, D. Lin, “A Statistical Corpus-Based Term Extractor”, 14th Biennial

Conference of the Canadian Society on Computational Studies of Intelligence:

Advances in Artificial Intelligence, LNCS, vol. 2056, pp. 36-46, 2001.

[95] M. Srikanth, “Exploiting Query Features in Language Modeling Approach for

Information Retrieval”, PhD thesis, State University of New York at Buffalo, 2004.

[96] W. Szpankowski, “Digital Data Structures and Order Statistics,” LNCS:

Proceedings of Workshop WADS’89, pp. 206-217, Ottawa, Canada, 1989.

[97] S. Goldwater, T.L. Griffiths, M. Johnson, “Distributional Cues to Word Boundaries:

Context is Important,” 31st Annual Boston University Conference on Language

Development, Cascadilla Press, Somerville, MA, 2007.

[98] D. Miller, T. Leek, R.M. Schwartz, “A Hidden Markov Model Information

Retrieval System,” SIGIR’99, pp. 214-221, Berkley, California, 1999.

[99] F. Song F, W.B. Croft, “A General Language Model for Information Retrieval,”

SIGIR’99, pp. 316-321, Berkeley, California, 1999.

[100] R.R. Wilcox, Trimmed Means, In B.S. Everitt, D.C. Howell, Encyclopedia of

Statistics in Behavioral Science, Wiley, Chichester, England, 2005.

[101] I.H. Witten, E. Frank, Data mining: Practical machine learning tools and

techniques (second edition), Morgan Kaufmann, San Francisco, CA, 2005.

[102]Google Search Basics: Basic Search Help, http://www.google.com/support/

websearch/bin/answer.py?hl=en&answer=134479, retrieved 12/01/2012.

[103]Yahoo Help: Search Tips, http://help.yahoo.com/l/us/yahoo/search/

narrowyoursearch/basics-04.html;_ylt=AggxCl0pmWi9tjzBuKskoYh6YXhG,
retrieved 12/01/2012.

[104]Bing Help: Search Tips, http://onlinehelp.microsoft.com/en-us/bing/ff808438.aspx,

retrieved 12/01/2012.

131

 2
9

[105]M. Chau, C.H. Wong, “Designing the User Interface and Functions of a Search

Engine Development Tool,” Decision Support Systems, vol. 28, issue 2, pp. 369-

382, 2010.

[106]R. Likert: “A Technique for the Measurement of Attitudes,” Archives of

Psychology, vol. 22, no. 140, pp. 1-55, 1932.

[107]M. Hearst: Search User Interfaces, Cambridge University Press, 2009.

[108]J. Chin, V. Diehl, K. Norman: “Development of an Instrument Measuring User

Satisfaction of the Human–Computer Interface,” Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, Washington, D.C., USA,

1988, pp. 213–218.

[109]DBpedia Next Step, http://wiki.dbpedia.org/NextSteps, retrieved 12/01/2012.

[110]Corpus of the American Contemporary English (COCA), http://corpus.byu.edu/

coca/.

[111]Google Plus Operator, http://www.google.com/support/websearch/bin/answer.py?

answer=136861, retrieved 12/01/2012.

