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CHAPTER 1  

INTRODUCTION 

 

1.1  Problems 

Users’ information needs in the digital era can be fulfilled by keyword-based search 

engines. Such search engines have become the universal catalogs for world-wide 

resources. Unlike the old library catalogs that are mostly searchable by fixed fields (e.g., 

by authors, titles, and keywords predefined by authors), modern Web search engines 

provide a flexible, easy way to express search terms. Users’ Web searches have never 

become easier without the search engines.  

However, the results returned by the search engines cannot always satisfy the 

Web users. Covering world-wide resources on the Web, the search engines often return 

millions of pages for one search, which may lead to information overload [1 ]. To 

determine which documents are useful, users often have to sift through many hits to find 

a few that are relevant [1], or repeatedly refine their search terms. 

This dissertation work aims at providing a better, faster and easier search 

experience for the users. The ideal search results would be less overwhelming, and yet 

contain more relevant hits. In this dissertation, two approaches are discussed to 

improving the users’ Web search experience. 
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1.1.1 Problem 1: Irrelevant Search Results (Especially for Homonyms) Returned 

by the Search Engines    

In what is shaping up to be the “Century of the Web” a computer literate person with an 

information need is likely to eschew traditional sources of information such as libraries, 

yellow pages and newspapers and turn immediately to a Web search engine. Such 

information needs define the work sphere (“from where can I source this industrial part 

that I need”) as much as private life (“where is a nice, affordable restaurant near my 

home”) and everything in between (“I need a cheap flight for a job/private trip”). Thus, 

the quality of the search experience of a user has become of major importance. A user 

wants an answer, and she wants it now, and she wants it many times a day. Search 

engines are expected to provide correct results quickly, and with a minimal amount of 

user interaction. 

To satisfy this expectation of an agreeable search experience, major efforts have 

gone into improving both the backends and frontends of common search engines. For 

example, Google has switched from making users type in complete search terms and 

hitting return (or clicking a button) to suggesting to the user what she is mostly likely to 

ask for. Such suggested completions [2] have also been introduced by other search 

engines. Figure 1.1 shows Google’s suggested completions for the query term “Barack 

Obama.” Google has access to the search terms entered by its millions of users, which 

makes it easy for them to propose crowd-based suggested completions. 

Changes to the backend are harder to discern for the user, but search results are 

often long lists of snippets referring to a few relevant links among many irrelevant results 
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[1, 3]. Previous research has focused on refining the search terms and on filtering the 

results, to improve the precision of the returned snippets [1, 4, 5].  

 

Figure 1.1 Google’s suggested completions for search term “Barack Obama.” 

Search engines also suffer from three common problems in Natural Language 

Processing, the synonym problem, the homonym problem, and the wrong granularity 

problem. The synonym problem appears in the form that the user might send a different 

term to the search engine than what is contained in a document that would provide a 

relevant answer. Thus, a query term “43
rd

 president of the US” might miss documents 

with George Bush, even though these two terms are synonymous.  

The wrong granularity problem would appear when a user performs a search with 

a general or wide term, and a relevant document contains only a more specific or narrow 

term (or vice versa). Thus, a search for “government officials having been impeached” 

might not bring up President Clinton, who was indeed impeached.  

The third problem in this category occurs when a search term is a homonym [6, 7, 

8] (a term with multiple meanings or multiple referents) and the user does not know that. 

For example, when using the search term “President George Bush” without any further 
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qualification, it might refer to George W. Bush or his father George H. W. Bush, the 43
rd

 

and 41
st
 president of the United States, respectively. If the user wants information about 

the former, she would get results about both of them with this search term, which is an 

unintended and misleading result. 

Thus, when using a search engine to satisfy an information need about a 

homonymous concept, a user is faced with two kinds of problems. She might get an 

overwhelming number of responses about one homonym, especially if this meaning is 

more popular, while the second homonym with a less popular meaning that she might be 

really interested in is hidden in a snippet on a much later page of hits, returned by the 

search engine. This is the case with lopsided preferences in meanings. For instance, the 

“Michael Jackson” who is a singer is much more popular than the basketball player of the 

same name. Hence many more search results contain references to the singer. In this 

situation, the user is at least aware that the results she is getting are not about the 

basketball player that she has been looking for. When formulating the initial query, it 

escaped her attention that there are two concepts for her search term and that more 

information might be available on the Web about the homonym that she is not interested 

in.   

The situation is even worse if the user is completely unaware of the fact that the 

search term is a homonym with two (or more) references, and all results that appear on 

the first few pages of hits are to the “wrong” reference. For example, a user located in the 

New York area, who types “Penn Station” into Google will see many references to Penn 

Station in New York City (NYC) and some references to Penn Station in Newark. These 

two Penn Stations are separated by a 20 minute train ride.  Unbeknownst to her, there is 
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also a Penn Station in Philadelphia, Pennsylvania. However, a reference to the latter does 

not appear on the first page of search results.   

1.1.2 Problem 2: Undesirable Size of Results Returned by the Search Engines 

Common search engines often return too many results for an initial query, which may 

lead to information overload [1, 9]. Most initial searches result in thousands or even 

millions of relevant Web pages available for the given search terms. Such a result might 

be perceived as overwhelming [10]. A user is not impressed by a million hits. Very often 

she wants only a few hits that are all highly relevant to the search that was performed and 

that address her immediate information need. While search engines have improved to the 

point that the desired answer is often on the first page of results, users still may have to 

sift through many hits to find a few that are relevant [1], or repeatedly refine their search 

terms. In the latter case there is a danger of overspecifying the search, e.g., by using long 

phrases in double quotes, with the effect that no results at all are returned. 

It has been reported that search engines normally stop at about the 1000th result, 

with all other matching pages remaining hidden from users [11]. Besides, research results 

have shown that search engine users often give up their search after the first try, 

examining no more than 10 documents or the first page of hits [12]. Eye-tracking studies 

showed that we can expect clicks only for the top few results, and that the search engine 

will probably receive almost no feedback about any result ranked above 100 [13]. A user 

study by iProspect also showed that 62% of search engine users don’t look past the first 

page of results [14]. Only 10% of users click on results beyond the third page [14]. To get 



6 

 

 

useful results without sifting through pages of hits, users often have to resort to a 

“feedback loop” of repeated queries with increasingly refined search terms. 

To provide a scenario for the problem we are addressing, if a user attempts to find 

information about the US Senator Paul Simon, as opposed to the singer Paul Simon, she 

will get pages of results about the singer, with the desired results about the senator hidden 

among those. To find information about the senator, she will need to repeatedly refine her 

search terms by adding words associated with politics. Another technique to increase the 

number of useful results in the first few pages (i.e., the precision) is to include negative 

search words. Thus, a negative search word of the form ‘‘–singer’’ should reduce the 

number of irrelevant results. 

However, this query refinement approach has its own problems. If a user specifies 

too many positive or negative search words, relevant hits could be excluded, i.e., the 

recall would suffer. It would be especially undesirable if no page hits at all are returned. 

The interplay between the user and the browser could be described as a feedback loop. 

The long range goal of this research is to automate this feedback loop in a manner that is 

invisible to the user and implement it as a plug-in. The browser with this plug-in would 

process the search terms of the user but would not actually show the results to her if there 

are too many hits. The user would also never know when a search was attempted that 

resulted in zero page hits. 
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1.2 Solutions 

The goals of this research are: 

 To categorize suggested completions by the different meanings of homonyms 

and present them to the user in an improved way reflecting those different 

meanings; 

 To control the result size of the search engine results by predicting the search 

hit counts and adding additional search terms. 

1.2.1 Solution for Improving the Suggested Search Completions 

The goal in this part of research is to improve the user search experience with suggested 

search completions in three ways. First, the display of suggested search term completions 

should be categorized visually to make it clear that homonymous terms exist. For this, 

knowledge of the classes that terms belong to is necessary.  This is the kind of knowledge 

normally contained in ontologies.  

Secondly, the knowledge in the ontologies should be used to increase the 

precision of results, by making the suggested completions as discriminating as possible. 

One tool for making Web searches more focused is to use negative search terms in 

addition to the normal “positive” search terms. Naturally, the suggested search 

completions should not be over-specified to the point that the search engine would not 

return any results. As the public does not have access to the “most common search terms” 

collected by commercial search engines, they cannot be used to generate suggested 

completions. Instead ontologies are used both for creating the suggested completions and 

for providing the knowledge needed to visually categorize them.   
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Including negative search terms in the search queries is a powerful tool for 

discriminating between wanted and unwanted results. In the past, negative search terms 

have not been used in suggested completions. This dissertation discusses the generation 

of suggested completions with negative search terms and hint at the problems that arise 

out of this pursuit. 

The ontology has been extended to enrich the information provided for the search 

terms (see Chapter 3). 

Thirdly, combining support for the homonymous search terms, a Web search 

mechanism is developed and implemented with an improved search experience for the 

user that minimizes the necessity for input actions. This dissertation presents the “vertical 

view” mechanism (see Section 2.3.1) and discusses the new instant feature incorporated 

into the Web search system (see Section 2.3.2). 

1.2.2 Solution for Building the Ontology for the Suggested Completions 

 As discussed in Section 1.2.1, the goal of this work is to provide better suggested 

completions to users, by disambiguating homonyms and appending suggested terms from 

a robust ontology. Ontologies were chosen to serve this purpose, because they are well 

suited for defining the important notions (classes, relations, objects) of a domain, using 

concepts, roles, and instances (individuals), as they are known in Description Logics [15]. 

An ontology was developed, containing basic knowledge of more than 5000 

musicians and more than 3000 basketball players, whose information is extracted from 

Wikipedia. The ontology has been submitted to the Ontology Design Patterns (ODP) as 

an exemplary ontology.  
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 This dissertation addressed the crucial question of how to enhance the system’s 

ontology. The goal is to improve the ontology in four ways. Firstly, a method is presented 

to mine the suggested completions from a search engine. Secondly additional information 

is extracted from DBpedia [16] (see Chapter 3). Thirdly, this dissertation describes the 

process of expanding the ontology dynamically during the normal operation of the OSWS 

System. Finally, it discusses the process of enhancing the ontology by mining Facebook 

as a secondary resource (see Chapter 4). 

1.2.3 Solution for Predicting the Search Hit Counts 

As addressed in Section 1.1.2, the users often need to repeatedly refine their search terms 

in the query to get more relevant results from the search engines, which results in a 

feedback loop. One approach is a query rewriting method (also query expansion) that the 

browser would utilize to reduce the number of hits by appending additional words to the 

search that are in line with the interests of the user. The previous research used an 

approach similar to relevance feedback, however based on an ontology, to provide 

additional search words [17, 18]. Fu et al. [19], Navigli and Velardi [20] and Andreou [21] 

have presented various methods and algorithms to expand queries by applying ontologies. 

The query rewriting mechanism augments user search terms with positive words from an 

ontology. The specific model of query rewriting consists of adding additional terms to the 

user query. For example, the query ‘‘Michael Jackson’’ can be augmented by additional 

terms such as ‘‘singer,’’ ‘‘king of pop,’’ ‘‘thriller,’’ etc. More details about the query 

rewriting method can be found in [17, 18, 22]. This model has been extended to negative 

search words. 
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Negative search words can be derived, e.g., from a user model of an individual 

user. This user model would contain subjects and their associated terms that the user is 

definitely not interested in. However, the expanded search criteria can result in a list of 

alternative search strings that need to be processed, one after another, by the user, until 

the result is satisfactory. To automate this manual feedback loop, the output of the query 

expansion approach can be processed by a browser plug-in ‘in the background’ and only 

results that would not overwhelm the user should be reported to her. The idea of running 

queries in the background is inspired by [23]. As part of a feedback loop, many such 

searches would have to be executed, which would result in an unacceptable waiting time. 

Thus, running several or many queries in the background is not practical. 

Instead of executing searches in the background, this dissertation is therefore 

attempting to predict the hit count estimates that will be returned for different expanded 

search terms. Only a search for which the plug-in predicts a number of hits between pre-

specified limits will be executed. The output will only be presented to the user if the 

prediction was correct, i.e., the number of results is between the pre-specified limits. 

These limits could, for example, be 10 and 100, with a certain error range permitted. 

Thus, one focus of this paper is on the prediction mechanism for alternative expanded 

search terms. Such a mechanism helps users to avoid ‘zero results’ as well as information 

overload from too many low precision results. 

The major search engines return a list of hits, preceded by a number of 

approximately how many hits should be expected. This number has been referred to as 

‘hit count estimate’. It has been observed that the quality of hit count estimates goes 

down considerably when transitioning from one search word to two search words [24]. 



11 

 

 

The hit count estimates of the search engines were used in this research, because real hit 

counts are difficult to obtain by manual counting, whenever there are many hits. 

This dissertation presents an approach to developing a model for predicting the 

number of hits for different combinations of search words. To develop the hit count 

prediction model, a series of searches were conducted with search terms ranging from 1 – 

5 words, correlation models were built between the search term frequencies and hit count 

estimates returned by the search engines. Different prediction models have been 

developed, based on the number of search words, allowing for up to five positive and up 

to five negative search words. 

To validate the prediction model, a series of searches were conducted. Their hit 

count estimates reported by three commonly-used search engines, Google, Yahoo! and 

Bing were compared with the hit counts reported by the prediction model. 

During these experiments, it is observed that the hit count estimates for many 

search words do not observe the monotonicity requirements expected as a minimal 

constraint; that is, whenever a positive or negative search word is added to a prior search, 

the number of hits should go down (monotonicity). Thus, the second part of this work 

analyzes this (mis)behavior for positive and negative search words. A failure of a 

negative search word to reduce the number of results should be considered more serious 

than a failure of a positive search word. The results indicate that monotonicity often does 

not hold, and that there are wide differences between search engines. 
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1.3  Related Work 

This dissertation work aims at improving the suggested completions for homonymous 

names of famous people. There is other research trying to solve the problem of personal 

name disambiguation, but mostly in the context of clustering techniques [25, 26, 27].  

Semantic search on the Web, which aims at enabling more intelligent Web 

searches, has become one of the hottest Semantic Web research topics [28]. Keyword-

based approaches have been studied by many researchers in the field to improve the 

search process [28]. For example, [ 29 ] improves the traditional search method by 

augmenting the search results with relevant data aggregated from the Semantic Web. 

Falcons is a keyword-based search engine for concepts and objects on the Semantic Web 

[30]. SWSE [31] and Sig.Ma [32] allow users to locate RDF entities via keyword search 

[28]. Some of the mentioned studies have also addressed the problem of query 

disambiguation, considering user preferences or heuristics [28].  Chapter 2 discusses the 

approach to improving the query disambiguation, in order to improve the search 

experience. 

Ontologies were used to provide the suggested completions in the search system. 

In order to build such ontologies, search engine knowledge is mined. Yossef et al. [33] 

have used the public interface to mine and sample the search engines’ query logs for 

other research purposes. The ontology consists of the search engine knowledge as well as 

the data extracted from DBpedia [34]. DBpedia is a large multi-domain ontology, which 

has been commonly used for ontology building [35]. 

Besides DBpedia, Facebook was used as a secondary resource to mine knowledge 

about famous people. Over the past few years, Facebook has become the largest social 
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networking site. Millions of users have integrated Facebook into their daily practices [36]. 

Research has been done on mining data from social networks. For example, Thelwall et 

al. have mined MySpace comments to detect the emotion among them and to examine 

how they differ among users with different age and gender [37]. Chu et al. have mined 

Facebook live data concerning social networking forensics [38]. Xu et al. studied mining 

user opinions in social network services [39]. Numerous tools have been developed to 

mine social networks. For example, SONAR is an API for gathering and sharing social 

network information [40]. POLYPHONET was built as a social network extraction 

system [41]. 

This dissertation also discusses the approach to hit count prediction modelling. 

Adding words from an ontology to a user’s search terms was demonstrated in the 

previous ontology-based search system [6] as a method for improving the precision of 

Web search results. Thelwall observed that search engine results are now widely used for 

measurement purposes by researchers in Webometrics [42], and for commercial activities 

such as Web analytics and search engine optimization. Cilibrasi and Vitanyi used search 

engine hit counts to measure word similarity [43]. Similar work in the Semantic Web 

community, using hit count estimates to calculate similarities between resources in a 

semantic network, can be found in [44, 45, 46]. Search engine hit counts were used to 

measure the popularity of a famous person [6] (see Chapter 3). Thus, there is a need for 

research into the reliability of the results of search engines [11]. Other research has 

focused on the consistency of the results of search engines. The hit count estimates that 

they report for queries are interesting for at least two reasons. Webometric research has 

used these hit counts as input for many studies of Web information, e.g., to determine 
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how many pages in one country link to another [11]. Secondly, it is useful to know how 

reliable the estimates reported by search engines are [11]. 

Due to their great commercial and technological success, search engines have 

been studied by many researchers. Yossef and Gurevich used random samples from a 

search engine’s index to measure the size of the search engine [47]. However, the hit 

count estimates are not utilized in their work and there is no research on predicting the 

search engine hit count estimates. The query pool in [47] is built by crawling the ODB 

directory, while this dissertation research is based on the British National Corpus (BNC) 

[48], a 100 million word collection of samples of written and spoken British English. 

Moreover, word frequencies are not considered in [47]. Matsuo et al. have done 

researches to estimate the Google hit counts [49]. However, their method requires many 

actual Google queries to be sent to evaluate the co-occurrence of terms. (See Section 4.2 

for the method of utilizing the co-occurrence of search terms). Thus, in order to estimate 

the hit count for one query, several other Google queries have to be made in Matsuo’s 

method. Obviously, if this dissertation uses prediction in order to avoid spending time 

making the actual Google queries, Matsuo’s method would not be suitable for the 

purpose of predicting hit counts in real time. 

 

1.4 Structure of the Dissertation 

Chapter 2 describes the approach to improving Web search experience for 

homonyms by suggesting completions from an ontology and enhancing the search 

interface. Chapter 3 presents the ontology used in Chapter 2 and the methodology to 

dynamically build and expand the ontology. Chapter 4 describes the approach to improve 
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the ontology presented in Chapter 3 by mining Facebook [50] as a secondary resource. 

Chapter 5 presents the approach to hit count prediction modeling. Chapter 6 is devoted to 

problems of search engines’ handling of negative and positive search words. Chapter 7 

concludes the dissertation work. 
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CHAPTER 2  

IMPROVING WEB SEARCH RESULTS FOR HOMONYMS BY SUGGESTING 

COMPLETIONS FROM AN ONTOLOGY 

 

2.1 Introduction 

This chapter is based on work published in [6] and [51]. As mentioned in Section 1.1.1, 

current browsers don’t deal well with search requests when the search terms are 

homonyms. To improve the users’ search experience with the homonymous terms, this 

chapter describes the approach to improving the search results for homonyms by 

suggesting completions from an ontology. 

In the previous research on an ontology-supported Web search system, the user 

was presented with a number of choices of additional search terms for her input. She 

could mark such terms as positive, i.e., they should be included in the Web search results, 

by clicking on associated check boxes (see Figure 2.1 and 17]). One problem with this 

approach was that users do not want to be bothered by (too many) questions. A more 

benign approach to eliciting additional information from a user can be seen in the use of 

suggested completions. While a user types in the first (few) word(s) of her search, the 

search engine displays up to ten suggested search completions, which will possibly 

describe the search that the user had in mind. These completions are presumably based on 

the observed frequencies of many searches of other search engine users [2]. While the 

user continues to type, the suggested completions change rapidly and are often limited to 

fewer than ten. Most major search engines have such a mechanism. Google calls them 
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Figure 4.4 Distribution of the newly added famous people to the OSWS Ontology. 
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CHAPTER 5  

PREDICTING WEB SEARCH HIT COUNTS 

 

5.1 Introduction 

This chapter is done based on work published in [5] and [77]. As mentioned in Section 

1.2.3, it was suggested to add additional terms automatically to the user search terms to 

get reasonably sized result sets. The additional search terms are retrieved from the same 

ontology used for disambiguation of homonyms (see Chapter 2). To avoid unacceptable 

running times by trying too many combinations with additional search terms, the system 

predicts the number of results returned and only runs searches with expected reasonable 

result numbers. 

Search engines do not guarantee exact numbers of page hits; the total count of 

results is a rounded estimate of the actual number of results for the search request [78]. 

Google estimates are sometimes rounded to multiples of 10, 100, or even 1000 [79]. They 

provide exact numbers of page hits only in cases where these numbers are relatively 

small [78]. This rounding is probably done because computing exact predictions is 

expensive if the index is distributed and continually changing, as is the case for large data 

sets [78]. In Uyar’s investigation, compared to other search engines, Google provides the 

most accurate estimates for document counting. It provides less than a 10% error in 78% 

of queries for a single-term query experiment [24]. Yahoo provides very accurate 

estimates for almost half of the queries, but it gives very inaccurate results for the rest 

[24]. Bing (previously called Live Search) provides a smaller number of accurate
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estimates than Google and Yahoo, but the degree of estimate inaccuracy is smaller 

compared to Yahoo [24]. Bing (Live Search) gives reasonably accurate estimates of the 

total number of matching URLs with high initial page count estimates (over 8000) [11].   

Another potential problem is instability of hit count estimates. The indexes 

themselves are too big to be stored on one machine and are spread across multiple ones 

[80]. For availability and efficiency reasons, multiple copies of the same part of the index 

are kept, which are not always synchronized, since the different copies are updated at 

different times [78]. As a result, it is possible to connect to different physical machines 

and get different results for the same query [78]. This is known as search engine 

“dancing” [78,81]. Uyar has studied the consistency of search engine estimates by 

observing the fluctuations in estimates over time [24]. Among the three search engines, 

Google results have the least amount of fluctuations [24].  [82] [83] 

It would be difficult to have a human experimenter send thousands of interactive 

queries to Google (Google.com), thus we are using the Google Ajax Search API
2
 instead. 

This API is the substitute for the previous Google API, after Google partially 

discontinued supporting it [84].  The estimated hit count of a Google query can be 

retrieved using the Google Ajax Search API. We are not aware of a study about the 

accuracy of the hit count estimates of the Google Ajax Search API, but there are many 

documents describing investigations of the “old” Google API. The Google API and the 

standard interface Google.com (the one used by humans) vary in range, structure and 

availability [85]. Because Google Standard performs searches in a much larger and 

                                                             
2 Unfortunately, the Google Ajax Search API has been deprecated since November 2010 [82]. It will continue to 

work as per their deprecation policy, but the number of requests one may make per day will be limited [82]. The 
Google Custom Search API [83] is the new substituted search API. 
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different index than the Google API [85], the Google API gives much lower hit counts 

than interactive queries. Kilgarriff reports that a substantial number of API results were 

one-eighteenth as large as comparable interface results [86]. 

Google is not always computing estimates using the actual words specified in the 

query [78]. Yet another problem of Google is that it often exhibits non-monotonic 

behavior, i.e., adding more words in the search query may increase the number of hits 

instead of decreasing it [87]. This study quantifies the monotonicity problems caused by 

negative and positive search words (see Chapter 5). Yahoo and Bing have similar 

problems [79]. 

 

5.2  Hit Count Prediction Model 

The basic idea for predicting the number of search results is based on the assumption that 

there is a measurable correlation between the frequency of a word in the English 

language and the number of Web pages returned by the common search engines. Keller 

& Lapata have demonstrated a high correlation between page hits and corpus bigram 

frequencies [88]. Many experiments have been performed on obtaining the frequencies 

for phrases using the search engine’s hit counts. Keller & Lapata used the Web to retrieve 

frequencies for bigrams. Nakov & Hearst [78] studied the use of search engine page hits 

as a proxy for n-gram frequencies. Yet, it is not known of research predicting the hit 

count estimates based on word frequencies. Thus, if a mechanism can be found 

expressing the correlation between hit count estimates and word frequencies, it can be 

used to predict the hit count estimates of a search engine. A regression–model was used 

for this purpose. 
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The approach for deriving the regression-based prediction model is based on a 

series of experiments that associate commonly used words, passed them as keywords to a 

search engine. The correlation analysis was performed between the frequency of the 

search words and the hit count estimates returned from the search engine(s). 

For this purpose the 5000 most frequent English words were chose from the 

Brown Corpus [89].
3
 Stop words [90], bigrams and contractions, such as I’d were 

removed, leaving 4632 words. The study sampled the most frequent English words, 

because the public does not have access to the frequency distribution of the whole BNC. 

The program queried the BNC to determine the frequencies of the words from the Brown 

Corpus.
4
 Automated hit count extraction programs was developed to send the query and 

extract hit count estimates from search results, using the Google Ajax API, Yahoo! API 

and Bing API. The decision to use the most common words was made because the 

observed frequencies decrease dramatically for infrequent words, even when using a 

large corpus. 

5.2.1 Correlations between Term Frequencies and Page Hit Counts 

To derive the prediction model for one-word search terms, the hit count estimates were 

extracted for many one-word search terms of different frequencies. The hit count 

extraction program was used to send one search term at a time as input to the Google 

Ajax API, Yahoo! API and Bing API. The returned page hit estimates were recorded. 

Zipf observed [91, 92, 93] that given some corpus of natural language utterances, the 

                                                             
3 The Brown Corpus was used to extract the 5000 most common words because BNC does not provide a word 

ranking list.  
4 The BNC was chosen as the frequency source because after comparing the results using the Brown Corpus 

frequencies and the BNC frequencies, it was found that the latter gave much better results.  
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Figure 5.1 Scatter plot of word frequencies and Google hits in log-log scale for case of 

one positive word. 

The program generated 30 second degree polynomial equations based on the 

logarithmic values of the frequencies and the Google hit counts. For example, for the case 

with one positive term, the corresponding equation would be as shown in Formula (5.3). 

 

H = 0.226 * F
2
 + 2.672 * F + 14.415 (5.3) 

 

In Formula (5.3), H is the logarithmic value of the estimated Google hit count and 

F is the logarithmic value of the combined word frequency. The equation in Figure 5.1 

uses the coefficient values before applying the log operator. 
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All the 4632 words were used for learning the correlations between the term 

frequencies and the hit count estimates. Constructing all pairs of words, or worse, all n-

tuples, from words in this list would put considerable stress on the computational 

resources and would be impossible for larger values of n. Therefore, samples were 

selected as follows. 

For example, the program selected 250 sample words that are evenly distributed, 

for 2-word samples. This covers two learning conditions (1) two positive words and (2) 

one positive and one negative word, with the positive word always coming first in the 

term passed to the search engine. In the same manner, 60 words were used for 3-word 

learning conditions. Next, 30 words were selected for 4-word cases. Table 5.1 shows the 

number of words used and the experiment size for each case. Except for the experiment 

using one word, the size of the rest of the experiments is maintained to be close to 

30,000. With the selected sample words, search terms consisting of different 

combinations of positive and negative words were generated. 
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Table 5.1 Number of Sample Words Used and Experiment Size for the N-word Cases 

No. of Terms (N-term) No. of Sample Words Used Experiment Size 

1 4632 4632 

2 250 29587 

3 60 32529 

4 30 26051 

5 23 31987 

6 20 36845 

7 18 30252 

8 17 23109 

9 17 23109 

10 18 41596 

 

 

Table 5.2 shows the values of Spearman’s correlation (C) between the term 

frequencies and the hit count estimates returned by the search engines for all the thirty 

cases. The cases are named in the format of aPbN, where aP represents the number of 

positive terms and bN represents the number of negative ones (1 a5, 0b5). Thus 

2P3N stands for the case with two positive and three negative search terms. Here 

Spearman’s correlation was used because the data is sorted in descending order as ranked 

data. The results of Table 5.2 verify the initial assumption, that is, for most cases there is 

a positive correlation between the term frequencies and the hit count estimates returned 

by major search engines. The p values for all experiments were < 0.001. 
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Table 5.2 Correlation between Word Frequencies and Hit Count Estimates 

 Google’s 

Correlation 

(C) 

Yahoo’s 

Correlation 

(C) 

Bing’s 

Correlation 

(C) 

1P 0.706 0.684 0.572 

2P 0.674 0.680 0.577 

1P1N 0.699 0.657 0.636 

3P 0.737 0.863 0.814 

2P1N 0.701 0.725 0.734 

1P2N 0.616 0.626 0.385 

4P 0.639 0.863 0.783 

3P1N 0.615 0.826 0.839 

2P2N 0.550 0.554 0.506 

1P3N 0.302 0.348 -0.195 

5P 0.594 0.654 0.684 

4P1N 0.595 0.663 0.801 

3P2N 0.253 0.696 0.801 

2P3N 0.508 0.678 0.557 

1P4N -0.042 -0.324 -0.299 

5P1N 0.553 0.762 0.718 

4P2N 0.294 0.740 0.567 

3P3N 0.646 0.635 0.375 

2P4N 0.357 0.680 0.408 

1P5N 0.435 0.580 0.625 

 



99 

 

  2
9

 

Table 5.3 Correlation between Word Frequencies and Hit Count Estimates (Continued) 

 Google’s 

Correlation 

(C) 

Yahoo’s 

Correlation 

(C) 

Bing’s 

Correlation 

(C) 

5P2N 0.732 0.260 0.465 

4P3N 0.488 0.446 0.500 

3P4N 0.391 0.469 0.505 

2P5N 0.777 0.631 0.556 

5P3N 0.770 0.787 0.769 

4P4N 0.696 0.773 0.709 

3P5N 0.233 0.604 0.534 

5P4N 0.631 0.804 0.779 

4P5N 0.719 0.739 0.643 

5P5N 0.768 0.825 0.800 

Mean 0.555 0.631 0.572 

 

5.2.2 Evaluating the Prediction Model 

In the experiments, the 10-fold cross-validation method [101] was used to evaluate the 

prediction module. That means, the data were split into ten “folds” of equal size. Then the 

data was “trained” with nine folds and its success was evaluated with the tenth fold. This 

process is repeated ten times, such that every fold is used one time for testing. During 

“training” a regression line is derived. During testing this regression line is used to 

predict hit count estimates for terms which were not used during training. The predicted 

hit count estimates are compared with the hit count estimates reported by the search 
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engines, one at a time. Ideally, the two numbers should be equal. The same experiments 

were performed for evaluating the three search engines. 

To evaluate the effectiveness of these prediction models, we used the following 

measures. Ei, the percentage of difference between the predicted hit count estimate and 

the search engine hit count estimate, is calculated by Formula (5.4), where Pri stands for 

the predicted hit count estimate and Hci represents the real search engine hit count 

estimate:  

 

Ei = 
Pri i

i

Hc

Hc


100 (%)  

(5.4) 

 

E, the average percentage of error on the test set, is the average value of all Ei’s 

from Formula (5.4), where n is the size of the test set:   

 

E = 
n

E
n

i

i
1  

 

(5.5) 

 

To analyze the accuracy of the predictions, we also used coefficient of variation 

(CV), a normalized measure of dispersion, which is calculated by Formula (5.6) where 

SD is the standard deviation of the Ei values. The smaller CV is, the better is the 

prediction. 

 

CV =  
  

average

eviationstandard d
*100 (%) =  

E

SD
 *100 (%) (5.6) 
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Table 5.4 Correlation Summary for Thirty Cases 

% G’s  

E 

G’s 

SD 

G’s 

CV 

Y’s  

E 

Y’s 

SD 

Y’s 

CV 

B’s  

E 

B’s 

SD 

B’s 

CV 

1P 75.0 54.3 87.1 88.4 61.2 85.1 113.0 69.6 76.0 

2P 199.5 188.9 120.2 130.3 110.3 89.1 134.3 97.6 89.9 

1P1N 94.8 70.6 67.3 110.5 84.1 68.7 103.4 59.9 72.1 

3P 235.4 254.0 100.1 378.8 584.4 126.7 144.5 162.2 102.6 

2P1N 275.8 279.3 93.1 132.0 126.6 79.0 119.9 121.0 81.9 

1P2N 76.3 33.4 56.4 100.6 41.1 55.6 103.4 49.7 48.1 

4P 156.7 127.7 80.6 145.7 198.4 114.6 141.2 100.7 82.4 

3P1N 272.5 185.4 66.2 127.7 156.8 98.9 143.6 178.1 112.0 

2P2N 987.5 1163.1 67.8 248.7 221.3 65.0 242.4 224.7 72.0 

1P3N 81.1 45.0 57.9 92.9 60.2 49.1 84.6 18.3 26.1 

5P 162.6 166.5 105.3 340.9 743.0 89.5 68.2 45.6 72.9 

4P1N 146.6 108.5 74.6 140.1 156.2 82.5 63.3 54.7 89.6 

3P2N 188.3 76.8 39.9 86.3 58.3 77.6 70.5 61.7 88.2 

2P3N 140.0 86.2 51.6 59.2 39.5 69.5 75.2 48.8 62.3 

1P4N 39.8 7.4 18.9 47.5 22.6 52.3 42.8 13.9 51.2 

5P1N 125.7 98.5 86.4 189.7 167.1 86.8 120.0 86.7 75.4 

4P2N 174.4 124.1 76.9 88.6 68.6 83.3 94.9 60.9 74.4 

3P3N 274.6 164.0 76.1 95.0 57.7 65.4 139.2 62.7 56.5 

2P4N 387.0 177.4 48.8 79.3 42.4 52.6 131.1 64.7 61.1 
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Table 5.5 Correlation Summary for Thirty Cases (Continued) 

% G’s  

E 

G’s 

SD 

G’s 

CV 

Y’s  

E 

Y’s 

SD 

Y’s 

CV 

B’s  

E 

B’s 

SD 

B’s 

CV 

1P5N 92.0 40.6 27.4 51.9 24.3 38.3 76.0 32.6 57.4 

5P2N 86.6 28.8 44.0 203.5 93.5 51.6 82.4 41.5 61.7 

4P3N 116.1 51.4 59.8 167.6 100.5 63.5 95.0 48.2 66.1 

3P4N 172.0 93.4 63.8 141.6 68.4 58.8 114.3 57.2 60.0 

2P5N 174.6 77.3 54.5 93.6 33.3 45.9 70.3 23.4 43.1 

5P3N 88.2 56.5 68.4 137.3 131.0 104.1 79.2 60.4 79.7 

4P4N 64.0 51.7 83.5 122.4 102.4 85.7 89.0 50.9 65.0 

3P5N 57.0 35.6 72.1 140.8 88.6 70.1 97.2 81.0 65.1 

5P4N 66.4 46.9 75.4 122.9 114.4 103.8 80.7 59.0 75.9 

4P5N 62.9 49.6 79.8 132.8 98.9 81.5 104.6 60.6 60.4 

5P5N 56.5 40.8 77.4 115.6 105.5 100.9 80.3 48.8 71.0 

Mean 171.0 132.8 69.4 137.1 132.0 76.5 103.5 71.5 70.0 

 

Table 5.3 shows the average results after applying the 10-fold cross-validation 

method for all thirty cases. The cases are named in the same format as in Table 5.2. The 

average error (E in equation (6)), standard deviation (SD) and coefficient of variation 

(CV in equation (7)) of the three search engines are reported in this table. Due to space 

limitation, we used the abbreviations in the table header. G, in Table 5.3, stands for 

Google, while Y stands for Yahoo! and B represents Bing. To be consistent with the 

variables used in the equations, we chose E to represent the average error, SD for the 

standard deviation and CV for the coefficient of variation. 
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Note that the coefficient of variation in Table 5.3 is not simply the result of the 

corresponding standard deviation divided by the average error in the same row. For 

example, in the case with one positive term only (1P), the coefficient of variation of 

Google is 87.1 percent, which is not the value computed from the standard deviation 

(54.3% in this case) divided by the average error (75.0%). Instead, it is the average of the 

ten different observed coefficients of variation, since the 10-fold cross-validation method 

was used during the evaluation. Similarly, the standard deviations and the average errors 

in the table are the average values of ten sets of validation results. 

From Table 5.3, one can see that the statistical results (E, SD and CV) measuring 

the errors of predictions are in most cases relatively small. These results support the 

assumption that there is a measurable positive correlation between the frequencies of 

English words and the hit count estimates returned by three major search engines. Among 

the three search engines in these experiments, Bing behaved better than both Google and 

Yahoo! Search, producing error statistics around 100 percent or even smaller. While this 

might appear as a large number, in the context of the goals of this study, 100 percent is 

still acceptable. Practically speaking, if the system presents a user with at least 10 and at 

most 100 Web page hits for a search term, a 100 percent error would imply that there 

might be 200 hits instead, which is still a manageable number compared to the typical 

results in the thousands to millions. 

The hit count estimates of the three search engines were initially fetched in 

February 2010 [5]. Considering the possibility of the search engines’ dancing [81], that is 

the same search results in different reported hit count numbers, the reliability of the 

results was tested by comparing the ones retrieved in February 2010 with the August 
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2010 hit counts returned by the three search engines. For each of the 4632 queries in one 

positive (1P) case, the two hit counts fetched in February and August were compared by 

calculating their difference ratio DR, as shown in Formula (5.8). If the search engines 

were stable during the six month interval, the difference ratio should be around 1 for most 

of the queries.    

 

DR = 
)2010,(

)2010,(

FebruaryHc

AugustHc  (5.8) 

 

Figure 5.2 shows the scatter plot of difference ratios for all the queries in the 1P 

case for Google, Yahoo! and Bing. 

 

Figure 5.2 Clustering result of hit count transition within a six month period. 

One can see that the major portions of Google’s and Bing’s clusters are around 1. 

(According to the experiments in this study, the knee in Google’s cluster is observed to 

be normal during Google’s stable period.) Thus, it is confirmed that the hit count 
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estimates by Google and Bing were fetched during the stable period of the search 

engines. However, Yahoo!’s cluster shows great dancing in this observation. It is 

presumed that this was the case because Yahoo updated their indexes in March 2010. 

Thus, Yahoo!’s results in Table 5.3 were replaced by their stable hit counts. To retrieve 

more reliable hit counts, the program used the hit count estimates appearing on the later 

search result pages of Yahoo! [81].
5
 

The Google Ajax Search API, Yahoo! Boss API and Bing API were used 

throughout this research. Unfortunately, however, the new Google Custom Search API 

provides only up to 100 free queries per day [83]. This change of Google has caused 

great obstacle in continuation of this study. 

 

                                                             
5 The offset of 900 was used for Yahoo!’s hit count estimates. It was not possible to retrieve more precise counts 

from Google because Google provides up to the top 64 results in its API. Bing adjusts its hit counts to very small 
numbers at different offsets for different queries. 



 

106 

 

CHAPTER 6  

EFFECT OF NEGATIVE AND POSITIVE WORDS IN THE SEARCH 

 

One of the observations made in the study in Section 5.2 was that negative search terms 

change the hit count estimates in quite an unpredictable way, which has caused practical 

problems when implementing the prediction model (Section 5.2). This dissertation has 

investigated this problem with the search engines’ behaviors. This chapter is presenting 

the results from this investigation. 

It is assumed to be obvious, that when a negative search word is added to a 

previous positive search term, then this would exclude some of the results of the positive 

search term. Thus, the hit count estimates should always decrease when adding a negative 

search word to a search term. This kind of behavior has been referred to as 

“monotonicity.” However, the experiments in this part of study indicated that all three 

search engines show non-monotonic behavior for negative terms. 

The problem of non-monotonicity is especially vexing because (1) numbers are 

not just wrong in a quantitative sense, they are qualitatively wrong, increasing instead of 

decreasing; (2) non-monotonicity contradicts claims made by the major search engine 

companies, i.e., in Google’s, Yahoo’s and Bing’s documentations [102, 103, 104]. 

To investigate the scope of this problem, another series of experiments were 

performed, exclusively focusing on the question whether negative search terms reduce or 

increase the hit count estimates reported by the search engines. A sample of 12,000 cases 

was used, which were constructed as follows. Suppose there are random words w1, w2, 
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w3, w4, w5, and w6 from the sample word list. Then a series of six queries (marked as 

queryi, where 1 i6) is constructed as follows: 

w1   query1 

w1  –w2 query2 

w1  –w2  –w3 query3 

w1  –w2  –w3  –w4 query4 

w1  –w2  –w3  –w4  –w5 query5 

w1  –w2  –w3  –w4  –w5  –w6 query6 

 

Each series starts with the positive word w1 in query1 and is added one more 

negative term in each query. Moreover, all the possible sequences of combinations of the 

five negative words were considered. For example, two possible series of queries could 

be as follows: 

 

w1   query1 

w1  –w2 query2 

w1  –w2  –w3 query3 

w1  –w2  –w3  –w4 query4 

w1  –w2  –w3  –w4  –w5 query5 

w1  –w2  –w3  –w4  –w5  –w6 query6 
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and 

w1   query1 

w1  –w2 query2 

w1  –w2  –w4 query3 

w1  –w2  –w4  –w3 query4 

w1  –w2  –w4  –w3  –w5 query5 

w1  –w2  –w4  –w3  –w5  –w6 query6 

 

In total there are 5!=120 possible series of queries considering all sequences of 

combination constructed by the five negative words. 

According to the major search engines’ documentations [102, 103,104], the query 

“w1  –w2” returns the Web pages which exclude the term “w2” from the pages returned by 

querying “w1.” The same analysis applies when moving from queryi to queryi+1, queryi+2, 

etc. In other words, the hit count estimate of query should never be greater than the hit 

count estimate of queryj, when i is greater than j. However, the experimental results in 

this research show that this is not true for many cases. 

These results were encoded as follows. Whenever adding a negative search word 

decreased the hit count estimate, this was coded with a 1. In other words, whenever the 

search engines behaved correctly, ‘monotonically’ and decreased the hit count estimate 

after adding a negative word, this was coded with 1 (true). When an additional negative 

search word increased the hit count estimate, this was represented as 0 (false). For 

example, it is coded by 1 when the hit count of query4 is no greater than the hit counts 

returned by query1, query2 and query3. 
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Table 6.1 shows the results of analyzing the Google behavior. The results in Step 

1 (from query1 to query2) reflect the correctness of adding one negative search word to 

one positive search word. Similarly, results in Step 2 show the effect of adding two 

negative search words to one positive word, and so on. In this case the comparison is 

made between the new case (one positive and two negative words) with both previous 

cases, i.e., with one positive word only as well as with one positive and one negative 

word. Similarly, for later steps, the comparison is made with all previous queries. 

 

Table 6.1 Results of Experiment on Effect of Negative Terms in Google Search 

 Correct Incorrect 

Step 1 (query1 to query2) 1645 (13.7%) 10355 (86.3%) 

Step 2 (query2 to query3) 1749 (14.6%) 10251 (85.4%) 

Step 3 (query3 to query4) 1903 (15.9%) 10097 (84.1%) 

Step 4 (query4 to query5) 2055 (17.1%) 9945 (82.9%) 

Step 5 (query5 to query6) 2192 (18.3%) 9808 (81.7%) 

 

As can be seen in Table 6.1, 86.3% of the cases resulted in incorrect behavior 

when adding one negative word to one positive word. As a result, among the 12,000 

sample cases in the experiment, only 1,051 cases (8.8%) can be described to be totally 

correct. Thus, it can be concluded that Google rarely behaves in the announced way for 

cases with negative search words. 

Figure 6.1 shows the results of this experiment by encoding the strings of 1s and 

0s in the following way. Each string of 1s and 0s was interpreted as a binary number. 
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Then the program computed the corresponding decimal number for each such five-digit 

string. Next it sorted the resulting decimal numbers in descending order and plot them 

over the number of cases (12000) of the experiment. If a 0 appears at the left-most 

position, that means that a single negative term already leads to non-monotonic behavior 

of the search engine, which is much more serious than if a 0 appears in the right-most 

position. Therefore, a 0 in the leftmost position should reduce the “correctness” of this 

case much more than a 0 in the rightmost position.  

 

Figure 6.1 Observed search engine behavior vs. ideal search engine behavior 

(experiment 1: one positive word). 

This behavior of giving more weight to the left-most position is exactly the effect 

of the binary encoding. A 0 in the left-most position will reduce the decimal value by 16, 
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i.e., to less than half of the possible maximum. In the graph, the horizontal line at level 

y=31 indicates the ideal case of a search engine behaving correctly for all experiments 

(11111). Thus, the distance of the jagged line from the horizontal line indicates for every 

case how far off it is from the correct behavior.  

As can be seen in Figure 6.1, Google very rarely behaves in the announced way 

for cases with negative search words. Yahoo! Search and Bing behave much better than 

Google with respect to monotonicity. In this experiment, Yahoo! Search behaves the best 

among the three search engines. Only 1.3% queries showed the monotonicity problem. 

An additional experiment was also performed with the three search engines of the 

effect of negative words on two positive terms. 12000 cases were constructed as follows. 

Assume that there is another word w7. Thus, the six queries in one case are:  

 

w1  w2 query1 

w1  w2  –w3 query2 

w1  w2  –w3  –w4 query3 

w1  w2  –w3  –w4  –w5 query4 

w1  w2  –w3  –w4  –w5  –w6 query5 

w1  w2  –w3  –w4  –w5  –w6  –w7 query6 

 

While non-monotonicity is obviously a serious logical problem with negative 

search words, it cannot be neglected for positive search words either. Users intuitively 

expect “AND semantics” when adding more words. Thus the number of search results for 

a one word query should be reduced when adding a second positive search word. 
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Unfortunately, it appears that Google is trying to ‘outsmart’ the user by making it hard to 

reach single digit hit counts even when accumulating rare words from different domains. 

Therefore, an investigation of this behavior is warranted. 

 

Figure 6.2 Observed search engine behavior vs. ideal search engine behavior 

(experiment 2: two positive words). 

The following experiment studied the monotonicity of appending additional 

positive search words at the end of a query. That is, taking six random words w1, w2, w3, 

w4, w5, and w6 from the sample word list, a series of six queries was constructed by 

appending one additional word to w1 each time. Similar to the previous experiments, the 
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six queries are constructed as w1, w1 w2, w1 w2 w3, w1 w2 w3 w4, w1 w2 w3 w4 w5, and w1 w2 

w3 w4 w5 w6. 

With the same encoding method used as in Figure 6.1 and Figure 6.2, it is 

possible to summarize the monotonicity results of adding positive search words for the 

three search engines. As can be seen in Figure 6.3, Yahoo! and Bing behave much better 

than Google with respect to monotonicity of positive search words. 

 

Figure 6.3 Observed search engine behavior vs. ideal search engine behavior 

(experiment 3: only positive words). 

While considering these results as interesting in their own right, this study is part 

of a larger project of building a browser (plug-in) that controls Web search in a manner 

that avoids overwhelming users with too many search results but is not so restrictive as to 
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return no results at all (Chapter 5). To control search results, negative terms are used. 

However, if search engines exhibit non-monotonicity, the predictability of the results is 

greatly reduced. 
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 

This dissertation aims at providing a better search experience for Web users. Problems 

arise with the weaknesses of the current keyword-based search engines. The major search 

engines do not disambiguate homonymous search terms. The returned results contain 

mingled information of all homonyms and typically contain long list of pages of hits. To 

improve the Web search process with homonymous terms, the Ontology-Supported Web 

Search (OSWS) System was developed. The system clearly categorizes and 

disambiguates homonymous searches. The ontology used in the system was built from 

DBpedia and Facebook, in addition to using the suggested completions mined from 

Google.  

To control the size of the returned Web results, to be neither too overwhelming 

nor too limited, a prediction mechanism has been developed. The prediction model was 

built based on the frequency of the search terms supplied to three common search engines, 

Google, Yahoo! Search and Bing. The study also evaluated how well the mechanism 

predicted the performance of the three search engines. During the study, it was found that 

all three search engines show non-monotonic behavior for negative search terms. 

Research results were presented, concerning the non-monotonicity of the three search 

engines for both positive and negative search terms.  

Chapter 2 described an algorithm and its implementation in the OSWS System 

that improves previous work [17] on ontology-supported Web search. OSWS provides a 

method that generates better (than existing search engines) suggested completions of user 
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search terms when those search terms refer to homonyms. The interface clearly separates 

between suggested completions for homonymous concepts that fit the partial search term 

that a user has already typed in. OSWS uses an ontology to derive the disambiguated 

search terms and suggested search completions based on the knowledge about famous 

people in the ontology. Furthermore, suggested completions in the OSWS interface may 

contain positive and negative search words. OSWS allows users to include “negative 

search terms” in suggested completions, which further refine searches by negating search 

queries with information known not to apply to a given instance.  

In order to improve the search experience of Web users, while discriminating 

between different senses of a homonymous term, a new interface has been developed for 

the OSWS System improving it in two ways. In the first stage, the system divides the 

snippet display into vertical panels to visually separate the results for the different 

homonyms. When the user moves the mouse down to one of the suggested completions 

and hovers there, the processing enters the second stage. For every suggested completion 

the user points to, the system instantly shows the result snippets of the suggestion he is 

hovering over. This improves the Google Instant feature. Currently Google shows instant 

results only for the first suggested completion. These two new features help the user 

acquire a deeper understanding of the suggested terms and to enjoy a better search 

experience than provided by today’s search engines, while minimizing the number of 

actions she has to perform.  

The current ontology is queried using special-purpose Java code. SPARQL is 

considered to be used in the future, as the ontology grows in size and complexity.  
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In future work, it is also planned to collect user feedback and to perform a formal 

evaluation study of the new features, e.g., using a tool such as Morae™. In order to test 

the usability of the OSWS System in improving the user search experience, future work 

will include conducting a user study to compare the OSWS System with the major search 

engines, such as Google, Yahoo and Bing, in aspects of usability and user satisfaction.  

In [105], an evaluation study was conducted in an undergraduate course [105]. It 

is planned to involve 20 to 30 university students and scholars to participate in the user 

study. Each participant will be asked to perform Web searches using the same sets of 

queries on the OSWS System and on one of the major commercial search engines, 

depending on the user’s preference. 

Each participant will perform a set of 20 queries of his or her choice. Each query 

should consist of the name of a famous person. Based on such experiments, a post task 

questionnaire will be filled out by all users. It will focus on the usability and user 

satisfaction with the new features incorporated into the OSWS System, including the 

search continuation interface for disambiguating the homonymous search terms, user 

control of searching with negative terms, parallel result display and the instant feature.  

Participant preferences will be obtained via questionnaires using Likert scales 

[106]. Most Likert scales have either 5, 7, or 9 degrees to choose among; odd numbers 

make it clear what the central or neutral choice is [107]. If comparing a new interface 

against one that is known already to have strong positive reactions, a wider scale allows 

for participants to clearly indicate a preference above and beyond what is already familiar 

and available [107].  
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The questionnaire will be designed based on a usability testing tool called 

Questionnaire for User Interaction Satisfaction (QUIS) [108]. QUIS is a measurement 

tool for evaluating computer users' subjective satisfaction with the human-computer 

interface [108]. Most QUIS-based questionnaires are arranged in a hierarchical layout: 

they start with a demographic questionnaire, which aims to determine user background 

information such as level of computer literacy. This is followed by measures of overall 

reaction towards the system. Finally, there are several specific interface sections. 

The questionnaire will be adapted from QUIS and it will consist of: 

(1) A background information section with questions relating to experience of 

using search engines; 

(2) An overall-reaction section with different measures, such as level of 

satisfaction of using the OSWS System and the usability of disambiguating homonymous 

search terms. 

(3) A section on the measurement of user satisfaction with the key features in the 

OSWS System; and 

(4) A comments section which allows participants to provide comments and 

feedback that are related to possible areas of improvement of the OSWS System.   

In part (2) above, participants will be asked to give their responses for both the 

OSWS System and the preferred commercial search engine, for each question being 

asked, so that the answers can be compared. 

Chapter 3 reviewed the old knowledge base used in the OSWS System and 

described a new method for building an ontology of famous people by using search 

suggestions retrieved from Google, together with information extracted from DBpedia 

and YAGO. DBpedia is a huge public resource, but suffers from inconsistencies. The 

DBpedia ontology contains well-structured and consistent data but is very limited and 
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covers only a small portion of the domain. Thus, the person hierarchy was kept from the 

DBpedia ontology and information about the famous people was extracted from DBpedia.  

The A-List of famous people was mined from Google’s suggested completions. 

Various methods have been applied to clean the extracted DBpedia information, in order 

to consistently integrate the new knowledge into the ontology. This ontology was 

integrated into the Ontology-Supported Web Search System, which provides 

disambiguated search suggestions based on the ontology. A prototype expansion system 

was also developed for dynamically expanding the content of the ontology at run time, 

based on user-input queries, resulting in the D-OSWS System.  

For the current version of this new ontology, the DBpedia person hierarchy was 

used, which is shallow but provides reasonable granularity for search suggestions. 

However, while comparing YAGO types to DBpedia ontology classes, it was found that 

there were quite a few missing classes in the DBpedia person hierarchy. For example, 

movie directors are grouped into the Actor class. Martin Scorsese is classified as an actor 

instead of a director.  

Future work involves further refining the class hierarchy to provide better search 

results and exploring the use of new sources of data to include within the ontology. By 

further analyzing class names from other sources, it will be possible to provide better 

search suggestions in a number of cases. Additionally, research will continue on 

improving the domain coverage. 

One problem has been recognized, that DBpedia is a (largely) static data source, 

when the goal is to keep up with a dynamically changing search environment. While 

DBpedia is working on a live extraction system [34, 109], the DBpedia ontology is 
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presently updated only twice per year. If the research relies solely on DBpedia as a data 

source, it may be not possible to find up-to-date information on certain instances in the 

ontology, and it is likely that some new instances will be missed entirely. It is planned to 

use new, more frequently updated, data sources to augment the OSWS ontology with 

fresh data, such as online news-feeds. By including new sources it will be possible to 

provide up-to-date and relevant search results to the end-users. Future work may also 

include expanding the OSWS System to perform what is called “Search What I Mean” 

(SWIM) queries, which will return results for what the system believes the user intends to 

search for. Lastly, work will continue with the B-List and possibly parts of the C-List. 

Chapter 4 has presented the process of mining Facebook as a secondary resource 

to enhance the OSWS ontology. The study focused on the 2,564 names that exist in the 

A-List but could not be found in DBpedia, which were referred as the “reduced-A-List.” 

Passing them to Facebook, it was possible to find 954 names that have a Facebook public 

page and are classified as person. Since the OSWS System is about famous people, the 

pages that have fewer than 300 fans were disregarded. A series of data extraction and 

data cleaning steps were done to mine the Facebook public pages of the selected people. 

The standardized data was then mapped to the OSWS ontology described in Chapter 3.   

The process discussed in Chapter 4 involves data analysis and manual checking in 

specific steps. Having the “reduced-A-List” analyzed and successfully mapped to the 

ontology, mapping the people in the B-List and C-List would be a mostly automatic 

process. Future work involves enhancing the OSWS ontology by adding the people in the 

B-List and the C-List, who do not exist in DBpedia.  
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 Chapter 5 has motivated and described a method for predicting hit count 

estimates based on the frequency of the search terms supplied to three common search 

engines, Google, Yahoo! Search and Bing. Frequencies were taken from a corpus of the 

English language. Second degree correlation functions were derived, based on random 

samples taken from the corpus. The derived regression functions were then used for the 

purpose of predicting the hit count estimates. Due to the varying behavior of the search 

engines, depending on the number of search terms passed to them, the study has derived 

separate correlation functions for 30 different cases of search terms of varying length, 

with and without negative terms. The experiments indicated that the predictions made for 

the samples were sufficiently close to the hit count estimates returned by the search 

engines to make them useful. Among the three search engines, Bing gives better results 

(closer correlation between the term frequencies and the numbers of hits) than Google 

and Yahoo! Search.  

The Google Ajax Search API, Yahoo! Boss API and Bing API were used to fetch 

the hit count estimates of the three search engines. The Google Custom Search API is the 

substitute of the Google Ajax Search API. However, it provides only up to 100 free 

queries per day [83], which has caused great inconvenience in continuation of this study. 

Future research includes extending work on hit count estimates in several 

directions. For common phrases, the frequency (co-occurrence) of a multi-word term is 

often not the same as what would be predicted by the component word frequencies. Thus, 

one can expect more Michael Jackson hits than predicted by Michael and Jackson 

separately, in contrast to Alfred Jackson hits. In the future, the frequency of the 

dependent terms will be updated using knowledge retrieved from relevant ontologies. 
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Secondly, future research involves adding specialized word frequency lists to the 

database, such as US Census first name and last name frequency information. This will 

reduce the number of words for which the prediction model currently does not have any 

frequency estimates. Besides, additional data sources will be looked into that cover 

newly-coined, commonly-used words, e.g., ‘facebooking’. 

The search engine hit count estimates are computed using sampling algorithms, 

and thus are expected to vary significantly. Rather than choosing the 5000 most frequent 

words, a random sample may be more interesting in terms of results.  

The future study will also consider the Corpus of the American Contemporary 

English (COCA) [110] as a data set. Most importantly, it is considered to integrate the 

thirty prediction models into fewer, ideally one for each search engine, to simplify the 

modeling and increase the usability of the prediction model. Moreover, since the Web is 

constantly growing, the prediction models should be updated periodically. Another 

possible extension of this part of the work could be to expose a REST API that provides 

the predicted hit count estimates for given search queries. 

One interesting research topic would be to analyze the correlation between the 

popularity of a Wikipedia page and the search engines’ hit counts for this page. 

Wikipedia has the advantage of multi-domain and multi-language coverage. Thus, it 

would be interesting to investigate the correlation between page popularity and search 

engine results. 

Chapter 6 studied the effect of adding negative and positive search words to 

existing queries. It was shown that when between one and five negative search words 

were added to a single positive search word, the observed hit count estimates did not 
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behave monotonically for many cases. For example, for one positive search word, Google 

rarely behaves correctly when a sequence of negative search words is appended. 

Compared to Google, Yahoo! Search and Bing behave much better in following the 

announced behavior for adding negative terms. In this study, Yahoo! Search shows the 

best behavior, with 98.8% of the experiments exhibiting the correct monotonic behavior. 

The research also investigated the effect of adding negative search words after two 

positive words and adding only positive search words in the queries. The three search 

engines show better monotonicity results in those cases, but still do not conform to the 

documented behavior. 

Future work continues on investigating the monotonic behavior of the popular 

search engines. For example, Google ignores common words and characters such as 

where, the, how, and includes synonyms automatically in its processing. However, 

adding a plus operator (+) in front of a word would indicate to Google that it should 

search with the exact word the user included in his query [111]. In the future, it is 

planned to analyze and compare the monotonicity of the search engines with and without 

using the plus operator. 
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