Spring 2020

MECH 236-002: Engineering Mechanics: Dynamics

Rajib Moral

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Part of the Civil and Environmental Engineering Commons

Recommended Citation
https://digitalcommons.njit.edu/ce-syllabi/357

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
MECH 236 - Engineering Mechanics: Dynamics
Section: 001 & 003
Spring 2020

Text:

Instructor:
Prof. Rajib Moral, 973-596-2447, rsmoral@njit.edu

Prerequisites: MECH 234 or MECH 235 with a grade of C or better or MECH 320 and MATH 112, PHYS 111/111A. Provides an understanding of the mathematics of the motion of particles and rigid bodies, and of the relation of forces and motion of particles.

“Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

<table>
<thead>
<tr>
<th>WEEK</th>
<th>TOPIC</th>
<th>ARTICLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinematics of Particles</td>
<td>12.1 - 12.6</td>
</tr>
<tr>
<td>2</td>
<td>Kinematics of Particles</td>
<td>12.7 - 12.10</td>
</tr>
<tr>
<td>4</td>
<td>Force & Acceleration</td>
<td>13.4 - 13.5</td>
</tr>
<tr>
<td>5</td>
<td>Energy & Work</td>
<td>14.1 - 14.6</td>
</tr>
<tr>
<td>6</td>
<td>Exam-1 (tentative)</td>
<td>Confirmation on moodle</td>
</tr>
</tbody>
</table>
7 Momentum, Impact 15.1 - 15.4
8 Kinematics of Rigid Bodies 16.1 - 16.4
9 Rigid body: Relative Velocity 16.5
10 Exam-2 (tentative) Confirmation on moodle
11 Rigid body: Instant Center 16.6
12 Rigid Bodies Acceleration 16.7
13 Kinetics of a Rigid Body 17.1 - 17.5
14 Rigid body Energy, Vibrations 18.1 - 18.5, 22.1 - 22.2
15 Final Exam

TUTORIAL HELP:
Tutorial hours will be announced in class. Students with difficulties are encouraged to come during the tutorial hours.

GRADING:
The grade will be decided based on the following:
Homework 10 % (Attendance will be taken during each class.)
2 Exams 60 % (30% each)
Final Exam 30%
Total 100%

The grade scheduling:
A = 90 to 100 C = 70 to 74
B+ = 85 to 89 D = 60 to 69
B = 80 to 84 F = 59 or less
C+ = 75 to 79 W = Voluntary before deadline (school schedule)
Incomplete = given in rare instances where the student is unable to attend or otherwise do the work of the course due to illness, etc. The grade must be made up in the next semester by completing all of the missed work.

EXAMS:
Generally, calculator is need for all exams. No other electronic device, storage medium, or accessory of any kind, is allowed during any exam.

HOMEWORK:
Homework will be checked and returned the following week. To obtain full credit, you must submit the work on time and in the proper form. A minimum of 70% of the homework must be submitted to receive a passing grade in the course. Late homework will get reduced points (20% off for each collection cycle). The followings are required for homework:
1. On the very top of each page (along top edge), PRINT your name, class day and time (e.g. Wednesday 9:15 am), HW set number (e.g., HW-1), problem number (e.g. 12-3), date, and page number (1 of 7, 2 of 7, etc.).
2. The problems must be presented in numerical order as assigned. If more than one problem on the same page, a clear dividing line is required between problems. (Do not write one problem on two pages). Writings are to be neat, clear and legible.
3. Draw neat, clear free body diagrams as required. Use a straight edge if needed.
4. Box the final answer(s) with unit(s) (and direction if needed).
5. Staple the pages in proper numerical order with a single staple at the upper left corner. Loose pages will NOT be accepted.

SPECIAL NOTES:

*The University Code on Academic Integrity (NJIT Honor Code) will be upheld in this course. Any violations will be brought to the immediate attention of the Dean of Students

Outcomes Course Matrix – MECH 236 Engineering Mechanics: Dynamics

<table>
<thead>
<tr>
<th>Strategies, Actions and Assignments</th>
<th>ABET Student Outcomes (1-7)</th>
<th>Program Educational Objectives</th>
<th>Assessment Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Learning Outcome 1: Identify transition concepts from Physics (science) to Dynamics (engineering).</td>
<td>1</td>
<td>1</td>
<td>Homework, tests and success in future courses.</td>
</tr>
<tr>
<td>Present engineering approach and problem solving techniques.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Learning Outcome 2: Analyze and solve kinematics, kineties of particles and rigid bodies in engineering dynamics problems.</td>
<td>1</td>
<td>1</td>
<td>Homework, tests and success in future courses.</td>
</tr>
<tr>
<td>Discuss the underlying concepts, principals and procedures of dynamics of particles and rigid bodies.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Learning Outcome 3: Formulate, diagram and solve FBD problems.</td>
<td>1, 2</td>
<td>1</td>
<td>Homework, tests and success in future courses.</td>
</tr>
<tr>
<td>Require FBD's for all problems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Illustrate the problem solving process including FBD, equation formulation and mathematical solution.</td>
<td>1</td>
<td>1</td>
<td>Homework, tests and success in future courses.</td>
</tr>
</tbody>
</table>

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

1 – Engineering Practice: Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.

2 – Professional Growth: Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.

3 – Service: Alumni will perform service to society and the engineering profession through membership and
participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
3. an ability to communicate effectively with a range of audiences
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

Revised: 2/13/18