New Jersey Institute of Technology Digital Commons @ NJIT

Mathematical Sciences Syllabi

NJIT Syllabi

Spring 2024

MATH 768-002: Probability Theory

S. Subramanian

Follow this and additional works at: https://digitalcommons.njit.edu/math-syllabi

Recommended Citation

Subramanian, S., "MATH 768-002: Probability Theory" (2024). *Mathematical Sciences Syllabi*. 350. https://digitalcommons.njit.edu/math-syllabi/350

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mathematical Sciences Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

THE DEPARTMENT OF MATHEMATICAL SCIENCES

MATH 768: Probability Theory Spring 2024 Course Syllabus

NJIT Academic Integrity Code: All Students should be aware that the Department of Mathematical Sciences takes the University Code on Academic Integrity at NJIT very seriously and enforces it strictly. This means that there must not be any forms of plagiarism, i.e., copying of homework, class projects, or lab assignments, or any form of cheating in quizzes and exams. Under the University Code on Academic Integrity, students are obligated to report any such activities to the Instructor.

Please be sure you read and fully understand our DMS Online Exam Policy.

COURSE INFORMATION

Course Description: Measure theoretic introduction to axiomatic probability. Probability measures on abstract spaces and integration. Random variables and distribution functions, independence, 0-1 laws, basic inequalities, modes of convergence and their interrelationships, Laplace-Stieltjes transforms and characteristic functions, weak and strong laws of large numbers, conditional expectation, discrete time martingales. Effective From: Spring 2009.

Number of Credits: 3

Prerequisites: Math 645 or departmental approval.

Course-Section and Instructors:

Course-Section	Instructor
Math 768	Professor S. Subramanian

Office Hours for All Math Instructors: Spring 2024 Office Hours and Emails

Required Textbook:

Title	A Course in Probability Theory
Author	Kai Lai Chung
Edition	2nd
Publisher	Academic Press
ISBN #	978-0121741518

COURSE GOALS

Course Objectives

This course will focus the first seven chapters of Kai Lai Chung's Probability Theory. Topics include probability measures on abstract spaces, random variables and distribution functions, independence, basic probability inequalities, various modes of convergence and their interrelationships, characteristic functions, weak and strong laws of large numbers, and the central limit theorem.

Course Outcomes

On successful completion, students will be able to demonstrate understanding of the following topics:

- Probability measures on abstract spaces
- Random variables as measurable mappings and their induced distributions
- Independence
- Various modes of convergence especially the fundamental vague/weak convergence
- Weak and strong laws of large numbers; convergence of random series
- Characteristic functions and their application in advanced probability
- Central limit theorems

Course Assessment: Will be based on regular homework, one midterm exam, and one final exam.

POLICIES

DMS Course Policies: All DMS students must familiarize themselves with, and adhere to, the Department of Mathematical Sciences Course Policies, in addition to official university-wide policies. DMS takes these policies very seriously and enforces them strictly.

Grading Policy: The final grade in this course will be determined as follows:

Homework	25%
Midterm	40%
Final exam	35%

Your final letter grade will be based on the following tentative curve. Note: The grading scale is tentative and serves only as a guide. The actual grades will be based on curved scores.

Α	86 - 100	C+	71 - 75
B+	81 - 85	С	66 - 70
В	76 - 80	F	0 - 65

Attendance Policy: Attendance at all classes will be recorded and is mandatory. Please make sure you read and fully understand the Math Department's Attendance Policy. This policy will be strictly enforced.

Homework: Homework assignments are due within a week unless announced otherwise by instructor. Late

homework will not be accepted.

Exams: There will be one midterm exam held in class during the semester and one comprehensive final exam. Exams are held on the following days:

Midterm Exam	ТВА
Final Exam Period	May 3 - May 9, 2024

Make sure you read and fully understand the Math Department's Examination Policy. This policy will be strictly enforced.

Makeup Exam Policy: There will be NO MAKE-UP QUIZZES OR EXAMS during the semester. In the event an exam is not taken under rare circumstances where the student has a legitimate reason for missing the exam, the student should contact the Dean of Students office and present written verifiable proof of the reason for missing the exam, e.g., a doctor's note, police report, court notice, etc. clearly stating the date AND time of the mitigating problem. The student must also notify the Math Department Office/Instructor that the exam will be missed.

Cellular Phones: All cellular phones and other electronic devices must be switched off during all class times.

ADDITIONAL RESOURCES

Further Assistance: For further questions, students should contact their instructor. All instructors have regular office hours during the week. These office hours are listed on the Math Department's webpage for Instructor Office Hours and Emails.

Accommodation of Disabilities: The Office of Accessibility Resources and Services (OARS) offers long term and temporary accommodations for undergraduate, graduate and visiting students at NJIT.

If you are in need of accommodations due to a disability please If you need an accommodation due to a disability please contact the Office of Accessibility Resources and Services at oars@njit.edu. The office is located in Kupfrian Hall, Room 201. A Letter of Accommodation Eligibility from the Office of Accessibility Resources and Services office authorizing your accommodations will be required.

For further information regarding self identification, the submission of medical documentation and additional support services provided please visit the Office of Accessibility Resources and Services (OARS) website at:

https://www.njit.edu/accessibility/

Important Dates (See: Spring 2024 Academic Calendar, Registrar)

Date	Day	Event
January 16, 2024	Tuesday	First Day of Classes
January 22, 2024	Monday	Last Day to Add/Drop Classes
March 10, 2024	Sunday	Spring Recess Begins
March 16, 2024	Saturday	Spring Recess Ends

March 29, 2024	Friday	Good Friday - No Classes
April 1, 2024	Monday	Last Day to Withdraw
April 30, 2024	Tuesday	Friday Classes Meet
April 30, 2024	Tuesday	Last Day of Classes
May 1, 2024	Wednesday	Reading Day 1
May 2, 2024	Thursday	Reading Day 2
May 3 - May 9, 2024	Friday to Thursday	Final Exam Period

Course Outline

Weeks	Section	Subject Topic
Week 1	Chapter 2	Probability measures and their distributions
Week 2	Chapter 3	Random variables, Expectation, Independence
Week 3	Chapter 3	Random variables, Expectation, Independence (continued)
Week 4	Chapter 4	Various modes of stochastic convergence
Week 5	Chapter 4	The Borel—Cantelli lemma
Week 6	Chapter 4	Vague convergence
Week 7	Chapter 4	Vague convergence and uniform integrability
	Spring Recess (No Class)	
Week 9	Chapter 5	Convergence of series
Week 10	Chapter 5	Laws of large numbers
Week 11	Chapter 6	Characteristic functions
Week 12	Chapter 6	Characteristic functions
Week 13	Chapter 6	Characteristic functions
Week 14	Chapter 7	Liapounov's central limit theorem
Week 15	Chapter 7	Lindeberg-Feller central limit theorem

Updated by Professor S. Subramanian - 12/27/2023 Department of Mathematical Sciences Course Syllabus, Spring 2024