
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1-27-2008

Two factor authentication and authorization in ubiquitous mobile Two factor authentication and authorization in ubiquitous mobile

computing computing

Qing Zhu
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Engineering Commons

Recommended Citation Recommended Citation
Zhu, Qing, "Two factor authentication and authorization in ubiquitous mobile computing" (2008). Theses.
348.
https://digitalcommons.njit.edu/theses/348

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.njit.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/348?utm_source=digitalcommons.njit.edu%2Ftheses%2F348&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

TWO FACTOR AUTHENTICATION AND AUTHORIZATION

IN UBIQUITOUS MOBILE COMPUTING

by

Qing Zhu

Handheld devices, such as mobile phones, PDAs and others, have become an integrated

part of our lives. They are perfectly suitable to become the first real-life platforms for

mobile computing applications. A lightweight holistic authentication and authorization

scheme is presented for this typical wireless scenario. It is shown that either SIM or

Kerberos authentication has its limitations. A two-factor authentication method

SIM-based Kerberos authentication is developed to implement the Secure Single Sign-on

function with LDAP protocol realization for authorization and mobile directory services.

Performance analysis and power consumption analyses for this protocol are presented as

well. Our results show that our SIM-Based Kerberos authentication is significantly

optimized to be suitable for mobile platforms.

TWO FACTOR AUTHENTICATION AND AUTHORIZATION

IN UBIQUITOUS MOBILE COMPUTING

by

Qing Zhu

A Thesis

Submitted to the Faculty of

New Jersey Institute of Technology

in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2008

APPROVAL PAGE

TWO FACTOR AUTHENTICATION AND AUTHORIZATION

IN UBIQUITOUS MOBILE COMPUTING

Qing Zhu

Dr. Sotirios Ziavras, Thesis Advisor	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Qing Zhu

Degree:	 Master of Science

Date:	 January 2008

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2008

• Bachelor of Science in Computer Science,
University of Science and Technology, Beijing, P. R. China, 2002

Major:	 Computer Engineering

To my beloved parents

v

ACKNOWLEDGMENT

I would like to express my sincerely appreciation to Dr. Sotirios Ziavras, who served as

my research supervisor, providing valuable and countless guidance, insight, and intuition

to me. Special thanks are given to Dr. Roberto Rojas-Cessa, Dr. Jie Hu, for actively

participating in my committee.

The paper is also in memory of Dr. Constantine Manikopoulos who unfortunately

passed away. I appreciate his guidance on choosing this topic and support for solving

problems.

Many of my fellow graduate students in the CONEX Research Laboratory and

Smartcampus Project are deserving of recognition for their support. I also wish to thank

Ke Su for her assistance over the years.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Motivation 	 1

1.2 Thesis Statement 	 2

2 BACKGROUND 	 3

2.1 SmartCampus Project 	 3

2.2 Single Sign-on Authentication 	 4

2.3 Related Work 	 6

3 KERBEROS 	 9

3.1. Introduction 	 9

3.2 Physical Architecture 	 10

3.2.1 KDC 	 10

3.2.2 Client User 	 15

3.2.3 Server with desired service 	 15

3.3 Kerberos Logical Infrastructure 	 15

3.3.1 Long-Term Symmetric Keys 	 17

3.3.2 Kerberos Ticket's 	 18

3.4 Kerberos Operation 	 22

3.4.1 Kerberos Message Exchange 	 23

3.4.2 Authentication Server (AS) Exchange 	 23

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.4.3 The Ticket-Granting Service Exchange 	 27

3.4.4 The Client/Server Exchange 	 28

3.5 Kerberos Services and Benefits 	 30

3.5.1 Kerberos Services 	 30

3.5.2 Kerberos Benefits 	 32

3.6 Limitations 	 34

4 SIM-KERBEROS 	 37

4.1 Two-Factor authentication 	 	 38

4.2 SIM Authentication 	 39

4.2.1 SIM Card Components 	 39

4.2.2 SIM Authentication Process 	 40

4.3 SIM Card and Java Card technology 	 41

4.4 SIM-Based Kerberos Design and Implementation 	 42

4.4.1 Overall Architecture 	 42

4.4.2 SIM-Kerberos Protocol 	 44

4.4.3 Key Generation 	 49

5 LDAP AND AUTHORIZATION. 	 50

5.1 Introduction to LDAP 	 50

5.2 The Structure of LDAP 	 52

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.3 Authorization 	 54

6 PERFORMANCE AND POWER CONSUMPTION 	 56

6.1 Evaluation of the phone's specifications 	 56

6.2 Performance measurement using SPB Benchmark on Pocket PC Phone 	 56

6.3 Using JBenchmark to test the Java performance 	 59

6.4 Power Consumption 	 61

7 CONCLUSION AND FUTURE REASEARCH 	 64

7.1 Conclusion 	 64

7.2 Future Research 	 64

	

APPENDIX A KERBEROS IMPLEMENTATION
65

APPENDIX B LDAP IMPLEMENTATION 	 66

REFERENCES 	 68

ix

LIST OF TABLES

Table	 Page

3.1 Kerberos Ticket Components. 	 22

6.1 Smart phone Characteristics 	 56

6.2 SPB Benchmark Indices 	 57

6.3 Main test results 	 57

6.4 JBenchmark Result 	 60

x

LIST OF FIGURES

Figure	 Page

3.1 Kerberos authentication 	 9

3.2 Basic Key Exchange using a KDC 11

3.3 Needham-Schroeder Protocol 	 12

3.4 Kerberos authentication service 	 24

3.5 Kerberos ticket-granting service 	 27

3.6 Kerberos application server 	 28

4.1 SIM Authentication 	 40

4.2 Overall Architecture 	 42

4.3 Message flows of full-authentication of SIM-Kerberos protocol 	 45

4.4 Key Generation 	 49

6.1 Battery test result 	 58

6.2 Power Consumption for one authentication in five minutes 	 62

6.3 Power Consumption for five authentications in thirty minutes 	 63

A.1 User Interface 	 65

B.1 Active Directory 	 67

xi

CHAPTER 1

INTRODUCTION

1.1 Motivation

The computing power of mobile devices increases year-by-year. A natural trend is that

more and more resource intensive services are accessed through these devices because of

the inherent advantages, and conveniences offered by portable devices. In line with these

changes, mobile devices such as mobile phones and PDAs turn into versatile all-in-one

personal service managers: They can be used for accessing contents, services, and

applications provided via the Internet, storing personal information, important data, etc.

At the New Jersey Institute of Technology, we are creating the SmartCampus

Test-Bed, a large scale mobile, wireless campus community system with a number of

mobile, locatable, online community system applications.

Many users are reluctant to use applications that send sensitive data over wireless

connections because they don't trust wireless security. Therefore, it is very important to

ensure strict access control to the transaction data between clients and servers.

Solutions are emerging. The same protocol that makes secure traditional wired

networks possible can also help make wireless transactions safe. The only one which is

providing Single Sign-On and light weight protocol is Kerberos.

1

2

1.2 Thesis Statement

The goal of this thesis is to introduce research on lightweight, cross-platform single

sign-on authentication architectures to bring mobile networks in lione with WLAN

networks. We design, implement, and analyze the SIM-Based Kerberos protocol for new

cellphones with mobile and WLAN capability.

The rest of the thesis is organized as follows. In Chapter 2, we discuss the

background of the SmartCampus project, single sign-on authentication and related works.

In Chapter 3, we introduce the Kerberos Protocol and its implementation on the phone. In

Chapter 4, we introduce mobile security and SIM-based authentication. In Chapter 5, we

present the design and implementation of the SIM-based Kerberos protocol on the phone.

In Chapter 7, we introduce the LDAP protocol, directory services and authorization for

the SmartCampus middleware. In Chapter 8, we evaluate the performance and power

consumption of our authentication architecture.

CHAPTER 2

BACKGROUND

2.1 SmartCampus Project

SmartCampus is an ongoing project at the New Jersey Institute of Technology. At the

New Jersey Institute of Technology we are creating the SmartCampus Test-Bed, a large

scale mobile network which may include hundreds to thousands of users in a wireless

campus community system that will serve as a dispersed living laboratory for the study of

location-aware community systems using People-To-People-To-Places Services. The

completion of the project would help us enhance services as the following in the campus

community: e.g., NJIT students would be able to communicate with other students having

similar interests, taking similar classes, to build social networks etc. So with the

SmartCampus project we could use a range of technologies to locate individuals as they

go about their daily activities. The availability of such technologies enables a new class of

location aware information systems that link people to people to geographical places. It

can strengthen the relationship between social networks and physical places. They can

also help individuals collect location information to make new social ties and interact with

existing ties. The main tool that is going to help us with this project would be the smart

cell phone. It would contain an implementation of the campus mesh program.

A much clearer example for the SmartCampus project would be one where a

student wants to play online computer game. Our Campus Mesh program on his smart

campus cell phone he sends out a message asking for people to play with him together.

3

4

Then someone with a similar interest in the computer game will match the request and get

his message. Now both could exchange messages and then play together online.

So the SmartCampus initiative features the development of software that, permits

access to a database of individual user interests and daily routines for all participants to

facilitate social interactions. Constructing this database of participant profiles involves

collecting data from mobile communication devices never attempted before. These

profiles will be leveraged in real time to support activities that will make life richer for all.

Mobile applications often interact with multiple backend servers, pull information from

them as needed, and assemble personalized displays for users. Each information service

provider might have its own user authentication and authorization protocols. It is a major

inconvenience for mobile users to sign on to each backend server manually.

2.2 Single Sign-on Authentication

For example, our project runs many coexisting Java applications, each requiring

authentication in order to access enterprise resources. It is best to implement single

sign-on (SSO) security functionality to make authentication less intrusive for your users.

Fundamentally, single sign-on authentication means the sharing of authentication

data. For instance, many students might need to access campus resources (database tables,

for example) in order to fulfill their requirements, with different students requiring

different resources depending on their function. Obviously, we need an authentication

mechanism in place that can determine who is trying to access a particular resource. Once

the authentication module knows the identity of the student, an authorization module

5

within the implementation can check whether the authenticated user has the necessary

privileges to access the resource. Let's suppose that students use their usernames and

passwords for authentication. The authentication module would thus have a database of

usernames and passwords. Each incoming request for authentication would be

accompanied by a username-password pair, which the authentication module would

compare against the pairs in its internal database.

Our SmartCampus project may have several applications running within its scope.

Different applications may form different modules of the same project. Each application

is complete in itself, which means that it has its own user base, as well as several different

tiers, including the back-end database, middleware, and a GUI for its users.

Before, usually people duplicate the authentication process to enable the

cross-application authentication. For example, people duplicate the username and

password databases on every application. This also means that the user will authenticate

separately on different applications -- in other words, she will enter her username and

password while accessing each of the applications, and the application will perform all the

authentication steps again. In this way, the disadvantage is not only duplicating the

username and password database but also duplicating the authentication process overhead.

The amount of redundancy should be very obvious especially in the resource restricted

mobile application.

One way to combat this problem is through the use of single sign-on service which

is sharing authentication data between different applications. If a user is authenticated at

one application, her authentication information is transferred to the second. The second

6

application accepts the authentication information without going through all the

authentication steps. There is no redundancy in this solution. The only requirement is that

the two applications trust each other so that each application accepts authentication data

coming from the other. The advantage to using SSO is that users only need to remember

one login name and password. They are less likely to complain about the necessity of it

being complex or feel the need to write it down.

Normally, SSO is implemented as a separate authentication server. All

applications that need to authenticate users rely on the SSO-based authentication server to

check the identity of their users. Single sign-on servers manage user profiles and provide

time-stamped access tokens, such as Kerberos tickets, to authenticated users. Service

providers interact with single sign-on servers to validate tokens. Based on this

authentication information, different applications then enforce their own authorization

policies.

2.3 Related Work

In this section, I will discuss the related work in the area of authentication. Authentication

is so important that many authentication solutions have been published, but at a later time

weaknesses and disadvantage were discovered in them. For examples,

PKI

A Public Key Infrastructure (PM) is the key management environment for public

key information of a public key cryptographic system. In general, there are three basic

PM architectures based on the number of Certificate Authorities (CAs) in the PM, where

7

users of the PKI place their trust (known as a user's trust point), and the trust relationships

between CAs within a multi-CA PKI. The most basic PKI architecture is one that contains

a single CA that provides the PKI services (certificates, certificate status information, etc.)

for all the users of the PKI.

Multiple CA PKIs can be constructed using one of two architectures based on the

trust relationship between the CAs. A PKI constructed with superior-subordinate CA

relationships is called a hierarchical PKI architecture. Alternatively, a PKI constructed of

peer-to-peer CA relationships is called mesh PKI architecture.

PKINIT

PKINIT is an extension of the Kerberos protocol (RFC1510), which enables use of

public key cryptography for client authentication. The PKINIT mechanism hasn't been

standardized yet and the specification is still under development directed by the IETF

Kerberos WG. Implementation of the PKINIT mechanism is intended for the Heimdal

open source implementation of Kerberos V5. It is based on the latest draft of the PKINIT

specification and was created for Heimdal v.0.5 . Please remember the implementation

published here is still under development and not intended for use in production

environments.

EAP -SIM

Extensible Authentication Protocol Method for GSM Subscriber Identity, or

EAP-SIM, is an Extensible Authentication Protocol (EAP) mechanism for authentication

and session key distribution using the Global System for Mobile Communications (GSM)

Subscriber Identity Module (SIM). EAP-SIM is described in RFC 4186. Extensible

8

Authentication Protocol (EAP) mechanism is used for authentication and session key

distribution using the Global System for Mobile Communications (GSM) Subscriber

Identity Module (SIM). GSM is a second generation mobile network standard. The

EAP-SIM mechanism specifies enhancements to GSM authentication and key agreement

whereby multiple authentication triplets can be combined to create authentication

responses and session keys of greater strength than the individual GSM triplets. The

mechanism also includes network authentication, user anonymity support, result

indications, and a fast re-authentication procedure.

CHAPTER 3

KERBEROS

3.1 Introduction

Kerberos authentication provides a mechanism for mutual authentication between a client

and a server on an open insecure network. Kerberos the name came from Greek

mythology in which it is the three-headed dog that guarded the entrance to Hades (or the

world of dead). The name seems very appropriate as this is an Authentication mechanism

first of all and by design has 3 main parts which are explained later.

Kerberos uses as its basis the Needham-Schroeder protocol. It makes use of a

trusted third party, termed a Key Distribution Center (KDC), which consists of two

logically separate parts: an Authentication Server (AS) and a Ticket Granting Server

(TGS). Kerberos works on the basis of "tickets" which serve to prove the identity of users.

The KDC maintains a database of secret keys; each entity on the network, whether a client

or a server, shares a secret key known only to itself and to the KDC. Knowledge of this

key serves to prove an entity's identity. For communication between two entities, the

KDC generates a session key which they can use to secure their interactions.

Figure 3.1 Kerberos authentication

9

10

3.2 Physical Architecture

The 3 main parts of the Kerberos Physical infrastructure are: Key Distribution Centre

(KDC), Client User, and Server with the desired service to access.

3.2.1 KDC

KDC (Key Distribution Server) is the heart of the complete Kerberos infrastructure. KDC

is the central piece which implements the concept of Mediated Authentication.

As shown above KDC shares keys with all other components, users or services.

All these are called nodes in the KDC realm. Now if a wants to talk to b, it will send a

request to the KDC which shares keys with both a and b. KDC will authenticate a and

choose a random number Rab which will be used as key between a and b. Then it will

encrypt Rab with the key that KDC shares with a and send this to a and similarly it will

encrypt Rab with the key that it shares with b and send it to b. By this exchange both a

and b now it have the key Rab that they will use for secure communication later between

them.

This is the simplest form of key exchange that KDC performs; along with the

Random number there a number of other things that KDC includes along with the

encrypted random number and this whole package are called a ticket. Various other things

like timestamp, expiry time etc are added to make the communication more secure and

robust against various replay attacks. The exchange explained above is shown in the

diagram below:

11

Figure 3.2 Basic Key Exchange using a KDC

Now this exchange has a lot of issue:

• If a immediately sends a message to b bases on the shared key, b may or may not

have received the key by then it will not know how to decrypt this message.

• In this case as a is going to talk to b then it is unnecessary for KDC to talk to b as

it is not going to communicate to b anyways after this exchange. So a lot of

resources are wasted in setting up a secure session between KDC and b just for

this one time.

Kerberos uses a different approach in dealing with the issue of exchanging keys.

This is mainly based on the Needham-Schroeder exchange.

Needham-Schroeder Protocol

In case of Needham-Schroeder Protocol the KDC has the Public Keys for all the nodes.

So this becomes the source of public keys and being a trusted third party it prevents the

impersonation attacks that may happen in case we get the public key of any service for a

non trusted source. The basic working of this protocol is as shown below:

12

Figure 3.3 Needham-Schroeder Protocol

Step1: Alice sends Bob a message that she wants to talk to him

Step2: Bob selects a nonce N B and encrypts it using his Key K Bob that it shares

with the KDC

Step3: Alice sends a message to KDC the message includes a nonce N 1, Request

to talk to Bob and the message Bob sent to Alice in step 2

Step4: KDC checks K Bob {N

B

} and if valid sends a message to Alice encrypted

with KAlice that KDC shares with Alice. The message includes a nonce N 1 , "Bob", KAB

and a ticket to Bob which is nothing but using Bob's key encrypted information K AB ,

"Alice" and nonce N

B

 that was sent by Bob to Alice in the first place. This ticket will be

used in the next step to authenticate Alice to Bob.

Step5: Alice sends a message to Bob that includes the ticket given by the KDC in

the previous step and a nonce N2 encrypted using the shared key K AB

13

Step6: Bob sends a message to Alice, in which it encrypts using the shared key

KAB , 2 -1 and another nonce N3

Step7: Alice sends Bob the nonce N3 - 1 encrypted using K AB . The last 2

exchanges are used for mutual authentication by Bob and Alice.

This protocol is secure against the replay attacks in case any attacker intercepts

some of the messages, they cannot be used for creating any new sessions.

NOTE: This protocol can be reduced from 7 to 6 messages in case Alice in step 6

sends another message i.e. KAB { KBob {NB}}. By this there is no need to send the last

message i.e. Step 7 as Bob already authenticates Alice in step 5 only.

There are several other ways in which the mediated authentication via a KDC can

be implemented like Otway-Rees, Bellovin-Merritt etc.

The main advantage of using a KDC is that it makes the key distribution much

easier. If any node wants to join the network we just need to setup a Key between the

node and the KDC and in case some node is suspected of being compromised the setup

again needs to change a just one place. The alternative of KDC will be for nodes to share

keys between themselves depending on what service they may need access to.

Although the KDC mediated authentication has its advantages, it has its own

disadvantages as well. The KDC has enough information to impersonate any one on the

network so if it is compromised all the network resources are open to attack.

14

KDC is the single point of failure. If it goes down nobody can access anything.

This can be dealt with by having High availability (HA) KDC as is done practically, but

that adds to the complexity of the already complex system.

The KDC can become a bottleneck as far as performance is considered because

everyone frequently needs to talk to it. Having multiple KDC's can alleviate this problem,

but then again the complexity may be an issue.

Moving the concept of KDC a bit further now we will look at the HDC structure

as it exists in most practical Kerberos implementations: KDC is divided into 2 parts based

on functionality. Each part provides services to the other part. The 2 parts are the

Authentication Server (AS) and Ticket Granting Server (TGS).

Authentication Server (AS)

The AS issues TGTs good for admission to the ticket-granting service in its domain.

Before network client's can get tickets for services, each client must get an initial TGT

from the authentication service in the user's account domain.

Ticket-granting service (TGS)

The TGS issues tickets good for admission to other services in the TGS's domain or to the

ticket-granting service of a trusted domain. When a client wants access to a service, it

must contact the ticket-granting service in the service's account domain, present a TGT,

and ask for a ticket. If the client does not have a TGT valid for admission to that

ticket-granting service, it must get one through a referral process that begins at the

ticket-granting service in the user account's domain and ends at the ticket-granting service

in the service account's domain.

15

3.2.2 Client User

Before explaining what a Kerberos client is we need to know principal. All entities within

Kerberos, including users, computers, and services, are known as principals. Principal

names are unique; a hierarchical naming structure ensures their uniqueness. Most KDC

implementations store the principals in a database, so you may hear the term "Kerberos

database" applied to the KDC.

"Kerberos client" is any entity that gets a service ticket for a Kerberos service. A

client is typically a user, but any principal can be a client (unless for some reason the

administrator has explicitly forbidden this principal to be a client). In the KDC

explanation Alice is a client user.

3.2.3 Server with the desired service

All users use the Kerberos tickets to access services that are located usually on a remote

server. This server needs to be a trusted one and be a part of the Kerberos realm.

3.3 Kerberos Logical Infrastructure

This section introduces the logical infrastructure, the key structure, the ticket types.

The various Physical components of Kerberos contain a number of logical

attributes which are of prime importance for Kerberos to work.

The Kerberos protocol relies heavily on an authentication technique involving

shared-secret keys. The basic shared-secret concept is quite simple: If a secret is known

by only two people, then either person can verify the identity of the other by confirming

that the other person knows the secret. For example, as explained in the

16

Needham-Schroeder protocol in the earlier session, suppose that Alice often sends

messages to Bob, and that Bob needs to ensure that a message from Alice really has come

from Alice before he acts on its information. They decide to solve their problem by

selecting a password and agreeing to share the secret password between the two of them,

but not with anyone else. If a message purported to be from Alice can somehow

demonstrate that the sender knows the password, Bob can verify that the sender is indeed

Alice.

The only question left for Alice and Bob to resolve is how Alice will show that

she knows the password. She could include it somewhere in her messages, perhaps in a

signature block at the end — Alice, Our secret. This would be simple and efficient and

would be effective if Alice and Bob could be sure that no one else is reading their mail.

Unfortunately, their messages pass over a network used by people like Carol, who uses a

network analyzer to scan traffic in hope that one day she might spot a password. Thus,

Alice must not prove that she knows the secret by including it in her message. To keep the

password secret, she must show that she knows it without revealing it.

The Kerberos protocol solves this problem with secret key cryptography. Instead

of sharing a password, communication partners share a cryptographic key, and they use

knowledge of this key to verify one another's identity. In order for the technique to work,

the shared key must be symmetric — that is, a single key must be capable of both

encryption and decryption. One party proves knowledge of the key by encrypting a piece

of information; the other proves knowledge of the key by decrypting the information.

17

Kerberos authentication relies on several keys and key types for encryption. Key

types can include long-term symmetric keys, long-term asymmetric keys, and short-term

symmetric keys. The authentication protocol was designed to use symmetric encryption,

meaning that the same shared key is used by the sender and the recipient for encryption

and decryption.

3.3.1 Long -Term Symmetric Keys

The long-term symmetric keys are derived from a password. The plaintext

password is transformed into a cryptographic key by passing the text of the password

through a cryptographic function. The result of the cryptographic function is the key.

User keys -When a user is created, the password is used to create the user key. In

the KDC domain, the user key is stored with the user's object in the KDC. At the

workstation, the user key is created when the user logs on.

System keys - When a workstation or a server joins a Kerberos domain, it receives

a password. In the same manner as a user account, the system account's password is used

to create the system key.

Service keys - Services use a key based on the account password they use to log

on. All KDC's in the same realm use the same service key.

Here a new term has been introduced and we need to define it.

Realm - Each principal is a member of a realm. By convention, a realm name is

the DNS name converted to uppercase, so that the kerbtest.njit.edu domain becomes the

KERBTEST.NJIT.EDU realm. Although uppercase realms are not obligatory, using a

different case simplifies differentiating between domain names and realms. So essentially

18

realm is just a domain or an area in which everybody trusts the KDC and has an account

with it. As of now this definition will suffice will discuss more when we move to Inter

realm communication and transitive trust relationships.

3.3.2. Kerberos Ticket's

The main component of Kerberos authentication is the ticket. The Kerberos messages are

used to request and deliver tickets. There are two types of tickets used in Kerberos

authentication, TGTs and service tickets.

Kerberos Ticket Requests

The Kerberos client sends the following ticket requests to the KDC:

TGT — Authentication Service

Service Ticket — Ticket-granting Service

Ticket-Granting Ticket's

The KDC responds to a client's authentication service request by returning a service ticket

for itself. This special service ticket is called a ticket-granting ticket (TGT). A TGT

enables the authentication service to safely transport the requester's credentials to the

ticket-granting service.

A TGT is:

• A user's initial ticket from the authentication service

• Used to request service tickets

• Meant only for use by the ticket-granting service

TGTs are encrypted with a key shared by the KDC's. The client cannot read

tickets. Only KDC server's can read TGTs to secure access to user credentials, session

19

keys, and other information. Like an ordinary service ticket, a TGT contains a copy of the

session key that the service (in this case the KDC) will use in communicating with the

client. The TGT is encrypted with the KDC's long-term key.

From the client's point of view, a TGT is just another ticket. Before it attempts to

connect to any service, the client first checks its credentials cache for a service ticket to

that service. If it does not have one, it checks the cache again for a TGT. If it finds a TGT,

the client fetches the corresponding TGS session key from the cache, uses this key to

prepare an authenticator (described later in this document), and sends both the

authenticator and the TGT to the KDC, along with a request for a service ticket for the

service. In other words, gaining admission to the KDC is no different from gaining

admission to any other service in the domain — it requires a session key, an authenticator,

and a ticket.

From the KDC's point of view, TGTs enable it to avoid the performance penalties

of looking up a user's long term key every time the user requests a service. The KDC

looks up the user's long-term key only once, when it grants an initial TGT. For all other

exchanges with this client, the KDC can decrypt the TGT with its own long-term key,

extract the session key, and use that to validate the client's authenticator.

Service tickets

A service ticket enables the ticket-granting service (TGS) to safely transport the

requester's credentials to the target server or service. The KDC responds to the client's

request to connect to a service by sending both copies of the session key to the client. The

client's copy of the session key is encrypted with the key that the KDC shares with the

20

client. The service's copy of the session key is embedded, along with information about

the client, in a data structure called a service ticket. The entire structure is then encrypted

with the key that the KDC shares with the service. The ticket — with the service's copy of

the session key safely inside — becomes the client's responsibility to manage until it

contacts the service.

A service ticket is used to authenticate with services other than the TGS and is

meant only for the target service. A service ticket is encrypted with a service key, which is

a long-term key shared by the KDC and the target service. Thus, although the client

manages the service ticket, the client cannot read it. Only the KDC and the target service

can read tickets, enabling secure access to user credentials, the session key, and other

information. One thing to note over here is that the KDC is simply providing a

ticket-granting service. It does not keep track of its messages to make sure they reach the

intended address. No harm will be done if the KDC's messages fall into the wrong hands.

Only someone who knows the client's secret key can decrypt the client's copy of the

session key. Only someone who knows the server's secret key can read what is inside the

ticket.

When the client receives the KDC's reply, it extracts the ticket and the client's

copy of the session key, putting both aside in a secure cache (located in volatile memory,

not on disk). When the client wants admission to the server, it sends the server a message

that consists of the ticket, which is still encrypted with the server's secret key, and an

authenticator, which is encrypted with the session key. The ticket and authenticator

together are the client's credentials to the server.

21

Benefits of service tickets

The server does not have to store the session key that it uses in communicating with

client's. It is the client's responsibility to hold a ticket for the server in its credentials

cache and present the ticket each time it wants access to the server. Whenever the server

receives a service ticket from a client, the server can use its secret key to decrypt the ticket

and extract the session key. When the server no longer needs the session key, it can

discard it. The client does not need to go back to the KDC each time it wants access to

this particular server. Service tickets can be reused. To guard against the possibility that

someone might steal a copy of a ticket, service tickets have an expiration time that is

specified by the KDC in the ticket's data structure.

Information client's have about tickets

A client needs to have some information about what is inside tickets and TGTs in order to

manage its credentials cache. When the KDC returns a ticket and session key as the result

of an authentication service (AS) or ticket-granting service (TGS) exchange, it packages

the client's copy of the session key in a data structure that includes the information in the

following ticket fields: Authentication Time, Start Time, End Time, and Renew Till. The

main information within a Kerberos Ticket is summarized in the table below.

In the above diagram we see that client 1 's network diagram is four octet long.

The field is fixed length. Kerberos was designed to run in the network using TCP/IP

protocol suite. This fixed length field means that this version of Kerberos cannot be used

in a network with longer addresses. Ticket life time units are 5 minutes. So the maximum

22

ticket lifetime is a little over 21 hours. Time stamp tells you the time the ticket was

created.

Table 3.1 Kerberos Ticket Components

3.4 Kerberos Operation

The basic Kerberos authentication steps are:

• A client authenticates itself to the KDC by sending the pre authentication data.

• KDC sends the TGT which can be used by the client to authenticate itself in the

following transactions.

23

• A client sends a request to the authentication server (AS) for "credentials" for a

given server.

• The AS responds with these credentials, encrypted in the client's key. The

credentials consist of a "ticket" for the server and a temporary encryption key or

a "session key".

• The client transmits the ticket (which contains the client's identity and a copy of

the session key, all encrypted in the server's key) to the server.

• The session key (now shared by the client and server) is used to authenticate the

client and may optionally be used to authenticate the server. It may also be used

to encrypt further communication between the two parties or to exchange a

separate sub-session key to be used to encrypt further communication.

3.4.1 Kerberos Message Exchange

The Basic Kerberos exchange is divided into 3 parts:

Authentication Server (AS) exchange

Ticket Granting Server (TGT) exchange

Client/ Server Exchange

3.4.2 Authentication Server (AS) Exchange

The various messages in this exchange are:

Kerberos authentication service request (KRB_AS_REQ)

The client contacts the Key Distribution Center's authentication service for a

short-lived ticket (a message containing the client's identity SIDs) called a ticket-granting

ticket (TGT). This happens at logon.

24

Figure 3.4 Kerberos authentication service

The Kerberos client on the workstation sends the message KRB_AS_REQ to the

KDC. The message includes:

• The user principal name

• The name of the account domain

• Pre-authentication data encrypted with the user's key derived from the user's

password

The KDC gets its copy of the user key from the user's record in its account

database. When it receives a request from the Kerberos client on the user's workstation,

the KDC searches its database for the user, pulls up the account record, and takes the user

key from a field in the record.

This process — computing one copy of the key from a password, fetching another

copy of the key from a database — actually takes place only once, when a user initially

logs on to the network. Immediately after accepting the user's password and deriving the

user's long-term key, the Kerberos client on the workstation requests a service ticket and

TGS session key that it can use in subsequent transactions with the KDC during this logon

session.

25

To verify the user during the complete login session the KDC decrypts the

pre-authentication data and evaluates the timestamp inside. If the timestamp passes the

test, the KDC can be assured that the pre-authentication data was encrypted with the user

key and thus verify that the user is genuine. After it has verified the user's identity, the

KDC creates credentials that the Kerberos client on the workstation can present to the

ticket-granting service.

Kerberos authentication service response (KRB_AS_REP)

The authentication service (AS) constructs the TGT and creates a session key the

client can use to encrypt communication with the ticket-granting service (TGS). The TGT

has a limited lifetime. At the point that the client has received the TGT, the client has not

been granted access to any resources, even to resources on the local computer.

The KDC replies with KRB_AS_REP containing a service ticket for itself. This

special service ticket is called a ticket-granting ticket (TGT). Like an ordinary service

ticket, a TGT contains a copy of the session key that the service (in this case the KDC)

will use in communicating with the user. The message that returns the TGT to the user

also includes a copy of the session key that the user can use in communicating with the

KDC. The TGT is encrypted in the KDC's long-term key. The user's copy of the session

key is encrypted in the user's long-term key.

The message includes:

• A TGS session key for the user to use with the TGS, encrypted with the user key

derived from the user's password.

• A TGT for the KDC encrypted with the TGS key.

26

The TGT includes:

• A TGS session key for the KDC to use with the user

• Authorization data for the user

When the client receives the KDC's reply to its initial request, the client uses its

cached copy of the user key to decrypt its copy of the session key. It can then discard the

user key derived from the user's password, for it is no longer needed. In all subsequent

exchanges with the KDC, the client uses the TGS session key. Like any other session key,

this key is temporary, valid only until the TGT expires or the user logs off. For that

reason, the TGS session key is often called a logon session key.

From the client's point of view, a TGT is just another ticket. Before the client

attempts to connect to any service, the client first checks the user credentials cache for a

service ticket to that service. If it does not have one, it checks the cache again for a TGT.

If it finds a TGT, it sends an authenticator and the TGT to the KDC, along with a request

for a service ticket for the service. In other words, gaining admission to the KDC is no

different from gaining admission to any other service in the domain — it requires a

session key, an authenticator, and a ticket (in this case, a TGT).

From the KDC's point of view, TGTs enable the KDC to avoid the performance

penalties of looking up a user's long term key every time the user requests a service. The

KDC looks up the user key only once, when it grants an initial TGT. For all other

exchanges with this user, the KDC can decrypt the TGT with its own long-term key,

extract the logon session key, and use that to validate the user's authenticator.

27

3.4.3 The Ticket-Granting Service Exchange

The various messages here are

Kerberos ticket-granting service request (KRB_TGS_REQ)

The client wants access to local and network resources. To gain access, the client

sends a request to the TGS for a ticket for the local computer or some network server or

service. This ticket is referred to as the service ticket or service ticket. To get the ticket,

the client presents the TGT, an authenticator, and the name of the target server.

Figure 3.5 Kerberos ticket-granting service

The message includes:

The name of the target computer

The name of the target computer's domain

The user's TGT

An authenticator encrypted with the session key the user shares with the KDC

Kerberos ticket-granting service response (KRB_TGS_REP)

The TGS examines the TGT and the authenticator. If these are acceptable, the

TGS creates a service ticket. The client's identity is taken from the TGT and copied to the

service ticket. Then the ticket is sent to the client.

28

The KRB_TGS_REP message includes:

• A session key for the user to share with the computer encrypted with the session

key the user shares with the KDC.

• The user's service ticket to the computer, encrypted with the computer's secret

key.

The service ticket includes:

• A session key for the computer to share with the user

• Authorization data copied from the user's TGT

3.4.4 The Client/Server Exchange:

Kerberos application server request (KRB_AP_REQ)

After the client has the service ticket, the client sends the ticket and a new

authenticator to the target server, requesting access. The server will decrypt the ticket and

validate the authenticator.

Figure 3.6 Kerberos application server

This message contains:

• An application option flag indicating whether to use session key An application

option flag indicating whether the client wants mutual authentication

29

• The service ticket obtained in the TGS exchange

• An authenticator encrypted with the session key for the service

Kerberos application server response (KRB_AP_REP)

Optionally, the client might request that the target server verify its own identity.

This is called mutual authentication. If mutual authentication is requested, the target

server will take the client computer's timestamp from the authenticator, encrypt it with the

session key the TGS provided for client-target server messages, and send it to the client.

If the authenticator passes the test, the service looks for a mutual authentication

flag in the client's request. If the flag is set, the service uses the session key to encrypt the

time from the user's authenticator and returns the result in a Kerberos application reply

(KRB_AP_REP). If the flag is not set, then no response is needed. When the client on the

user's workstation receives KRB_AP_REP, it decrypts the service's authenticator with the

session key it shares with the service and compares the time returned by the service with

the time in the client's original authenticator. If the times match, the client knows that the

service is genuine.

This is the complete flow for a Kerberos exchange in the case of a single realm.

The things become complicated when we move to multiple realms or domains. In this

case the trust needs to be between realms as well. Now in case there a number of realms

between which we may want to communicate and use services we need trust between all

of them and the number of keys increases a lot. We know that the keys are the weakest

link of the whole scenario an ideal solution will be to keep them as minimum as possible.

30

In the next section we will look at a scheme called Transitive trust that comes to our

rescue.

3.5 Kerberos Services and Benefits

Kerberos provides various services like authentication, authorization, data integrity and

confidentiality. Moreover there are many benefits of using Kerberos all of this is

discussed below.

3.5.1 Kerberos Services

Authentication

Kerberos provides this using the trusted third party concept. It also provides mutual

authentication by which the server trusts the client as well the client trusts the server. At a

very simple level, Kerberos uses encryption technology. The user's password is utilized

(while still on the user's workstation) to generate an encryption key. The key encrypts

certain pieces of information that are exchanged with the KDC. After a few exchanges,

the KDC returns information to the user that is usable only by software on the workstation

that knows the temporary encryption key derived from the password. Now when users

wish to contact a Kerberos-protected service, they first contact the Kerberos

ticket-granting service and ask for a ticket to the service. A ticket is a chunk of

information that proves the user's identity to the service; but it's encrypted in the services'

long-term key so it's unintelligible to the user.

Authorization

31

By default Kerberos does not provide any authorization services, they are usually

implemented as a separate procedure itself. Still authorization information can be

embedded within the TGS. A usual way of doing this in Kerberos is to include Access

Control Lists in the ticket that KDC sends to the client to be sent to the server. Once the

server decrypts the ticket it has a list of services that this particular client can access and

with what privilege level. The server uses these ACL's to authorize the servers future

requests for resources.

Data Integrity

Assuming that the client and service have authenticated each other using the Kerberos

handshake and now each know the key for the current interaction (or session), we have all

the pieces necessary to guarantee either data integrity. Since encryption is a costly

operation in terms of time and CPU power, and we are only looking to ensure that the

data is authentic; we need not encrypt all the data that is transmitted. Instead, an encrypted

one-way hash is computed and transmitted with the plaintext data. Kerberos encrypts the

much-shorter one-way hash, and bundles that together with the "plaintext" data, which is

the original, unmodified message. The sender can then transmit this package to the

receiver, who can look at the package, see what algorithm was used for the one-way hash

and quickly compute the hash. Then the receiver can decrypt the received encrypted

one-way hash and compare it with the hash that was just computed. If the two hashes

match, the receiver knows exactly who sent the message and knows that the message was

transmitted without modification.

Confidentiality

32

There are always occasions when it is insufficient merely to know with whom you're

talking and that no one can successfully change the conversation without being detected.

Sometimes, you need to know that the conversation is completely private. A more

technical term for privacy is "data confidentiality" and once again Kerberos addresses this

need. Kerberos provides services that encrypt the entire plaintext message and

(optionally) computes a one-way hash of the ciphertext. The sender transmits the package

to the receiver, who decrypts the ciphertext and (optionally) verifies the authenticity of the

data. Usually if we are encrypting the whole message for Confidentiality we use the Data

integrity feature as well as the cost of computing, and encrypting the one-way hash is

minor compared to the cost of encrypting the whole message.

3.5.2 Kerberos Benefits

Kerberos has a number of advantages as an authentication protocol. This section lists a

number of reasons which act as the main driving points for using Kerberos.

Faster Authentication

Kerberos protocol uses a unique ticketing protocol that provides faster authentication.

Every authenticated domain entity can request tickets from its local Kerberos KDC to

access other domain resources. The tickets are considered as access permits by the

resource servers. The ticket can be used more then once and can be cached on the client

side

The use of tickets makes the re-authentication of the client much easier. Once a

client has a Ticket from the KDC it can be used again and again for authentication.

Mutual Authentication

33

Kerberos supports Mutual authentication by which not only client authenticates itself to

the server but the server can also authenticate to the client. So there is no assumption

made that the servers are always trustworthy.

Open Source

Kerberos is an Open Source protocol so essentially free to use. Because of being open

source there is also much faster development done on all the fronts and it is being used

and tested by a much larger user base.

Support for authentication Delegation

What delegation really means is that user A can give rights to an intermediary machine B

to authenticate to an application server C as if machine B was user A. This means that

application server C will base its authorization decisions on user A's identity rather than

on machine B's account. Delegation is also known as authentication forwarding. In

Kerberos terminology this basically means that user A forwards a ticket to intermediary

machine B, and that machine B then uses user A's ticket to authenticate to application

server C. You can use delegation for authentication in multi tier applications; an example

of such an application is database access using a Web front end. In such a setup the

browser, the Web server, and the database server are all running on different machines. In

a multi tier application, authentication happens on different tiers. In such application if

you want to set authorization on the database using the user's identity, you should be

capable of using the user's identity for authentication both on the web server and the

database server.

Support for Public Key Cryptography and One time pass codes

34

Kerberos supports use of Public Key Cryptography for authentication of the client to the

KDC, this way the password guessing/stealing attacks can be minimized. Another

solution that Kerberos provides for such issues is to use One Time Passcodes or Smart

cards in which each time to authenticate the user uses a different password so a password

guessing mechanism or a Trojan horse program will never work as the password changes

at each login.

3.6 Limitations

This section introduces the limitations of the Kerberos.

Denial of Service attacks

Denial of Service attacks can occur in Kerberos, in which case the authentication service

provided by the KDC can be denied to the clients and servers. The actual reasons for the

DoS are beyond the scope of this paper as they deal with the actual Kerberos code and

buffers used in it. Most of the DoS attacks are possible by buffer overflowing attacks on

the KDC. Though this does not lead to any compromises of security of the clients and

KDC but still can lead to significant damage because of the lost time for which no one is

able to use the KDC.

Password Guessing

Password guessing attacks are not solved by Kerberos. In case the user chooses a poor

password, it can be decrypted by an attacker using an offline dictionary attack. In order to

mount an offline dictionary or brute force attack, some data that can be used to verify the

35

user's password is needed. One way to obtain this from Kerberos 5 is to capture a login

exchange by sniffing network traffic.

In Kerberos 5 a login request contains preauthentication data that is used by

Kerberos to verify the user's credentials when a TGT is issued. The basic

preauthentication scheme in most of the Kerberos implementations contains an encrypted

timestamp and a cryptographic checksum, both using a key derived from the user's

password. The timestamp in the preauthentication data is ASCII-encoded prior to

encryption and is of the form YYYYMMDDHHMMSSZ. This provides structured plain

text that can be used to verify a password attempt: if the decryption result "looks like" a

timestamp, then the password attempt is almost certainly correct. A password attempt that

recovers a plausible timestamp can also be verified by computing the cryptographic

checksum and comparing it to the one in the preauthentication data.

Time synchronization

Each host on the Kerberos network needs to have its clock "loosely synchronized" to the

KDC. This helps in reducing the book keeping overhead on the application servers, to do

replay detection. The degree of looseness can be configured on a per server basis and is

usually of the order of 5 minutes. This clock synchronization in itself needs to be secured

because an attack on this can lead to DoS for the valid clients.

Principal Identifier Recycling

The principal identifiers which identify a particular client or a server on the Kerberos

network can be re used once deleted. The issue here is that in case the same principal

name had some ACL's (Access Control Lists) associated with it which was not deleted

36

when the principal was deleted, then the new principal will inherit this ACL and will in

advertently gain access to resources.

These were the main limitations that Kerberos has of on now and but all the limitations

and Vulnerabilities have workarounds. So a carefully designed Kerberos system can

provide perfect security in a network environment.

CHAPTER 4

SIM-BASED KERBEROS

The open nature of university networks and the large amount of personal information they

store make them prime targets for identity theft and other information security threats.

Unfortunately, there are many ways for hackers to steal and misuse passwords. Our

primary SmartCampus authentication uses Kerberos, which is based on Username and

Password. Kerberos has the primary strengths and weakness of itself: Kerberos provides a

means of verifying the identities of principals on an open network. This is accomplished

without relying on authentication by the host operating system, without basing trust in the

host addresses, without requiring physical security of all the hosts on the network and

under the assumption that packets traveling along the network can be read, modified and

inserted at will.

The ability of Kerberos to function in an open hardware and network environment

is a unique strength. Kerberos suffers, however, from the same weakness that is

characteristic of all traditional authentication paradigms: the reliable identification of the

human component of the human/machine system. Kerberos requires only a single factor

for user identification: a privately owned password which is used in conjunction with the

user's public name. This password is quite susceptible to compromise and is the weakest

link in an otherwise strong chain.

Two-factor authentication technology — "something you know" and "something

you possess" — can be added to Kerberos Release 5 to provide a level of authentication

37

38

for the human component as secure as is available from Kerberos for the machine

component. Using optional fields in the initial client-to-KDC (the "AS Request")

exchange, adding a pre-authentication flag and linking with appropriate authentication

API are all required.

4.1 Two-Factor authentication

An authentication factor is a piece of information and process used to authenticate or

verify a person's identity for security purposes. Two-factor authentication is a system

wherein two different methods are used for authentication. Using two factors as opposed

to one delivers a higher level of authentication assurance.

In order to understand two-factor authentication, it is important to understand the

three methods by which people authenticate themselves to digital systems:

There are three universally recognized factors for authenticating individuals:

• 'Something you know', such as a password, or PIN.

• 'Something you have', such as a mobile phone, smart card or security token.

• 'Something you are', such as a fingerprint, DNA, or other biometric.

A system is said to leverage Two-factor authentication when it requires at least

two of the authentication factors mentioned above. This contrasts with traditional

password authentication, which requires only one authentication factor (knowledge of a

password) in order to gain access to a application.

39

Common implementations of two-factor authentication use 'something you know'

as one of the two factors, and use either 'something you have' or 'something you are' as the

other factor.

For SmartCampus, we use a SlMcard - the card itself is a physical, "something

you have" item, and the PIN is the "something you know" password that goes with it.

Using more than one factor is also called strong authentication; using just one

factor, for example just a static password, is considered as weak authentication.

4.2 SIM Authentication

A Subscriber Identity Module (SIM) card is part of a removable smart card ICC

(Integrated Circuit Card) for mobile cellular telephony devices such as mobile computers

and mobile phones. SIM cards securely store the service-subscriber key (IMSI) used to

identify a GSM subscriber.

4.2.1 SIM Card Components

SIM cards store specific information used to authenticate and identify subscribers

on the Network, the most important of these are International Mobile Subscriber Identity

(IMSI), Integrated Circuit Card ID (ICCID), Ciphering Key Generating Algorithm (A8),

Authentication Algorithm (A3), Encryption Algorithm (A5), Individual Subscriber

Authentication Key (Ki), Encryption Key (Kc).

The secret key Ki is 128 bits long and is used for two things: Generate the secret

response (SRES) to a Random challenge and Generate the 64 bit session key Kc, used for

over the air encryption.

40

A3: It is the authentication algorithm used in GSM systems. COMP128 is widely

used by GSM service providers.

A5: This is the encryption algorithm. There are different versions of this algorithm

with A5/1 being the strongest for over the air privacy. A5/x, A5/2 are weaker versions of

this algorithm. There is also another version that uses no encryption at all; it is the A5/0

algorithm.

A8: It is the key generation algorithm. Most of the service providers just like the

A3 algorithm use COMP128.

4.2.2 SIM Authentication Process:

GSM authentication is based on shared cryptographic primitives Ki on SIM and Base

Station. The authentication process is shown below:

Figure 4.1 SIM authentication

During authentication, AC generates a random number that it sends to the

mobile. Both mobile and AC use the random number, in conjunction with subscriber's

secret key and a ciphering algorithm called A3, to generate a number SRES that is sent

back to the AC. If number sent by mobile matches number calculated by AC, then

subscriber is authenticated.

41

4.3 SIM Card and Java Card technology

SIM uses operating systems which come in two main types: Native and Java Card. Native

SIMs are based on proprietary, vendor specific software whereas the Java Card SIMs are

based on standards, particularly Java Card, which are a subset of the Java programming

language specifically for embedded devices. Java Card allows the SIM to contain

programs that are hardware-independent and interoperable. I will use the Java Card's

power to build SIM-based security to the Kerberos mobile application.

All Java Cards are essentially smart cards with one extra feature. The Java Card

technology allows different people to use the Java language to develop smart card

applications that are hosted on an individual card. For example, if the SIM card in your

cell phone is a Java Card, it could contain value-added Java Card applications

Also Java Card technology offers an open architecture for smart card application

development. A Java Card contains Java Card Virtual Machine, (JCVM) and a set of APIs

(collectively known as the Java Card API). Some of the classes and interfaces in the Java

Card API are exposed for use by J2ME MIDlets and other client applications.

I will use Java Card technology with J2ME devices, although Java Card

technology is not limited to the J2ME platform. The Security and Trust Services API

(SATSA) enables the use of Java Card technology in J2ME devices. A Java Card

application could work as an authentication module in a J2ME-based SmartCampus

middleware. The SmartCampus middleware would allow users to access their accounts

using their cell phones. The Java Card application on the Java Card would contain the

42

authentication logic that ascertains who is trying to access an account. The J2ME device

would contain a MIDlet that would present an easy-to-use GUI for account access.

4.4 SIM -Based Kerberos Design and Implementation

In most cases, as was discussed before, we could see security breach occurs for either of

Kerberos or SIM authentications. We present a novel authentication solution that protects

user login by providing a double-criterion user authentication through the use of existing

mobile phones. The solution is to combine SIM-Based authentication and Kerberos

authentication to add another layer of security of our Kerberos-based J2ME mobile

application. It overcomes the security inadequacy of the single authentication method and

maximizes the security for mobile users.

4.4.1 Overall Architecture

The architecture is developed in following components:

Figure 4.2 Overall Architecture

43

The first part is the SIM Card which we will develop using a Java Card applet

called JavaCardKerberosKey. The JavaCardKerberosKey applet works as a secret key

manager. It contains the Kerberos secret keys Ki, Kc that are used to secure

communication between a J2ME cell phone and the KDC. The secret key generated with

Ki is used to decrypt the encrypted portion of a TGT. The encrypted portion contains the

session key, which an application can only extract using the Kerberos secret key.

Therefore, knowing the secret key is essential for using a TGT.

The second part is a MIDlet running on the phone which is called

KerberosSmartCampus. This MIDIet has three functions. First, it is working as a client to

communicate with the Kerberos Server. Second, it is providing a graphical user interface

to the campus mesh messenger. Third, KerberosSmartCampus MIDlet is also a client of

the JavaCardKerberosKey applet, which means that the KerberosSmartcampus MIDIet

will use the JavaCardKerberosKey applet to decrypt the encrypted portion of the TGT and

extract the session key. The KerberosSmartCampus MIDlet will request a TGT from the

SmartCampus's KDC server. On receipt of the TGT, the KerberosSmartCampus MIDIet

will extract the encrypted portion of the TGT and transfer it to the JavaCardKerberosKey

applet. The KerberosSmartCampus MIDlet will also provide the user's password to the

JavaCardKerberosKey applet. The JavaCardKerberosKey applet will use it with Ki to

decrypt the encrypted portion of the TGT, extract the session key and generate Kc. The

KerberosSmartCampus MIDlet will use the Kc to secure communication with the

SmartCampus server.

44

The third part of the application is the Key Distribution Center which will serve as

the authentication server for the mobile client. The implementation of KDC runs on a

physically secure node somewhere in the network and a library of subroutines that are

used by distributed applications which work to authenticate their users. We built it using

Active Directory.

The last one is the Application Server which integrates with SmartCampus

middleware and runs a sample application to demonstrate the user login with the

CampusMesh messenger. We build the middleware using Apache Tomcat with OSGI.

4.4.2 SIM-Kerberos Protocol

Figure 4.3 Message flows of full-authentication of SIM-Kerberos protocol

45

46

1. The J2ME mobile phone user invokes the KerberosSmartCampus MIDlet in a

J2ME cell phone and provides the username and password to the KerberosSmartCampus

MIDlet. The MIDlet sends a clear-text message along with its identity to the KDC

requesting services on behalf of the user. For Example, "User XYZ would like to request

services". Note: Neither the secret key nor the PIN is sent to the KDC.

2. The KDC checks to see if the user is in its database. If so, the KDC sends back

the TGT to the KerberosSmartCampus MIDlet. It contains following two messages:

Message A: Ticket Granting Ticket: [client, address, validity, Ksess]Ktgs.

Message B: [Ksess]Km

3. When the KerberosSmartCampus MIDlet gets the Kerberos ticket granting

ticket (TGT) from a Kerberos distribution center (KDC), the MIDlet will extract this

encrypted portion from the TGT. The KerberosSmartCampus MIDlet is going to extract

the session key from the encrypted portion. The session key will allow the

KerberosSmartCampus MIDlet to further communicate with the SmartCampus

middleware. The MIDlet will communicate with the SIM card which is implemented by a

JavaCardKerberosKey applet. The KerberosSmartCampus MIDlet will ask SATSA to

select the JavaCardKerberosKey applet. The MIDlet will provide the AID of the

JavaCardKerberosKey applet to SATSA and ask it to create a synchronous connection

with the applet.

4. The MIDlet will pass the UserPIN to the JavaCardKerberosKey applet (the SIM

card) after the connection is established. The SIM in the mobile will use the UserPin and

47

existing MobilePin(Ki) to generate the key. The applet performs a one-way function on

the entered key, and this becomes the secret key of the mobile client

5. The JavaCardKerberosKey applet sends the secret key to the MIDlet. Now that

the client has messages A and B and the secret key, it decrypts message A to obtain a key

Kt (Note: The client cannot decrypt the Message B, as it is encrypted using KDC's secret

key.) The key used to encrypt the data on the link, client/KDC session key Kc, is

generated from the Kt and Ki by running the encryption algorithm. This session key Kc is

used for further communications with KDC. At this point, the client has enough

information to authenticate itself to the KDC.

6. When requesting services on the Middleware server, the MIDlet sends the

following two messages to the KDC:

Message C: Ticket Granting Ticket: service, [client, client address, validity,

Ksess]Ktgs.

Message D: Authenticator: [client, timestamp]Kc.

7. Upon receiving messages C and D, the KDC retrieves message B from message

C. It decrypts message B using the KDC secret key, then computes the client/KDC

session key Kc. Using this key, the KDC decrypts message D (Authenticator) and sends

the following two messages to the client:

Message E: Ticket (client, service): service, [client, client address, validity,

Kcs]Ks.

Message F: [Kcs]Kc.

48

8. Upon receiving messages E and F from KDC, the client has enough information

to authenticate itself to the Middleware Server. The client connects to the Middleware

Server and sends the following two messages:

Message E from the previous step: Ticket (client, service): service, [client, client

address, validity, Kcs]Ks.

Message G: a new Authenticator: Authenticator : [client, timestamp]Kcs.

9. The Middleware on the application server decrypts the ticket using its own

secret key and sends the following message to the MIDlet to confirm its true identity and

willingness to serve the MIDlet:

Message H: the timestamp found in client's recent Authenticator plus 1, encrypted

using Kcs.

Finally, the client decrypts the confirmation using the client/server session key and

checks whether the timestamp is correctly updated. If so, then the client can trust the

server and can start issuing service requests to the middleware server. The middleware

will provide the requested services to the client.

To summarize the above steps, the first five authenticate the mobile client to the

KDC. In steps three, four and five, the MIDlet communicates with the SIM card to

generate the client/KDC session key Kc. For steps six and seven, the mobile client

receives a client/server key Ks from KDC to use with the server application. In steps eight

and nine, the mobile client exchanges the key Kc with the server application. After that,

all communications are encrypted with this key.

4.4.3 Key Generation

The detailed key generation process is shown below:

49

Ksess 	 .1	 I

Figure 4.4 Key Generation

1. The mobile obtains the IMSI from the SIM card, and passes this with username

to the KDC requesting authentication.

2. The KDC searches its database for the incoming username, IMSI and its

associated password and Ki.

3. The KDC then generates a session key Ksess and encrypts it along with TGT

using the Ki associated with the password.

4. The KDC then sends the Ksess along with the TGT to the Mobile phone, which

passes it to the SIM card. The SIM card decrypts the Ksess with its Ki, password,

producing the encryption key Kc.

5. Kc is used to encrypt all further communications between the Mobile client and

the KDC

CHAPTER 5

LDAP AND AUTHORIZATION

It is important to have the authorization policy after the user has been authenticated by the

SmartCampus middleware. We decided to use LDAP for our authorization scheme not

only for its support for group authorization but also the capacity for directory service.

Smartcampus LDAP directory service is really a database that stores information about all

objects in the network. The mobile directory service is like a phone book for the mobile

network. For example, to find a resource on the network, it will not require remembering

where it is located, but just do a search in directory to find that resource. These resources

include users, groups, activities, and interests, to name a few.

5.1 Introduction to LDAP

LDAP, or "Lightweight Directory Access Protocol", is similar to X.500 in DAP: both

have an information model and a protocol for querying and manipulating it. The major

difference is that the LDAP protocol itself is designed to run directly over the TCP/IP

stack, and it lacks some of the more esoteric DAP protocol functions. The IETF designed

and specified LDAP as a better way to make use of X.500 directories - having found the

original Directory Access Protocol (DAP) too complex for simple internet clients to use.

The common term "LDAP directory" can mislead. No specific type of directory is an

"LDAP directory". One could reasonably use the term to describe any directory accessible

using the LDAP protocol and which can identify objects in the directory with X.500

50

51

identifiers. Directories such as OpenLDAP, though primarily designed as native

repositories optimized for access by LDAP rather than as a gateway to X.500 protocols as

was provided in ISODE, are nevertheless no more "LDAP directories" than any other

directory accessible by the LDAP protocol.

An LDAP directory entry consists of a collection of attributes with a name, called

a distinguished name (DN), which refers to the entry unambiguously. Each of the entry's

attributes has a type and one or more values. The types are typically mnemonic strings,

like "cn" for common name, or "mail" for email address. The values depend on the type,

and most non-binary values in LDAPv3 use UTF-8 string syntax. For example, a mail

attribute might contain the value "user@ example.com ".

LDAP directory entries feature a hierarchical structure that reflects political,

geographic, and/or organizational boundaries. In the original X.500 model, entries

representing countries appear at the top of the tree; below them come entries representing

states or national organizations. Typical LDAP deployments use DNS names for

structuring the top levels of the hierarchy. Further below might appear entries

representing people, organizational units, printers, documents, or just about anything else.

Just as a Database Management System is used to process queries and updates for

a relational database, an LDAP server is used to process queries and updates to an LDAP

information directory. In other words, an LDAP information directory is a type of

database, but it is not a relational database. Unlike databases that are designed for

processing hundreds or thousands of changes per minute, LDAP systems are heavily

optimized for read performance.

52

So LDAP is particularly useful for storing information that needs to be read from

many locations, but updated infrequently. For example:

• The phone book, group chart and related staff

• Infrastructure services information, including NIS maps, email aliases, and so on

• Personal Information such as birthday, address, school, hobby and so on

• Public certificates and security keys

5.2 The Structure of LDAP

The protocol accesses LDAP directories follow the X.500 model:

• A directory is a tree of directory entries.

• An entry consists of a set of attributes.

• An attribute has a name (an attribute type or attribute description) and one or

more values. The attributes are defined in a schema.

• Each entry has a unique identifier: its Distinguished Name (DN). This consists of

its Relative Distinguished Name (RDN) constructed from some attribute(s) in the

entry, followed by the parent entry's DN. Think of the DN as a full filename and

the RDN as a relative filename in a folder.

LDAP uses schemas to define what attributes an object can and must have. An

entry in our LDAP implementation looks like this when represented in LDAP Data

Interchange Format (LDIF):

dn: cn= Qing Zhu,dc=smartcampus, dc=njit, dc=edu

cn: Qing Zhu

53

givenName: Qing

sn: Zhu

telephoneNumber: 973 596 5366

telephoneNumber: 973 596 5366

mail: qz22@njit.edu

advisor: cn=Sotirios Ziavras,dc=smartcampus, dc=njit, dc=edu

objectClass: inetOrgPerson

objectClass: groupPerson

objectClass: person

objectClass: top

do is the name of the entry; it's not an attribute nor part of the entry. "cn=Qing

Zhu" is the entry's RDN, and "dc=smartcampus, dc=njit, dc=edu" is the DN of the parent

entry, where dc denotes Domain Component. The other lines show the attributes in the

entry. Attribute names are typically mnemonic strings, like "cn" for common name, "dc"

for domain component, "mail" for e-mail address and "sn" for surname.

A server holds a subtree starting from a specific entry, e.g. "dc=smartcampus,

dc=njit, dc=edu" and its children. Servers may also hold references to other servers, so an

attempt to access "ou=department,dc=njit,dc=edu" could return a referral or continuation

reference to a server which holds that part of the directory tree. The client can then

contact the other server. Some servers also support chaining, which means the server

contacts the other server and returns the results to the client.

54

LDAP rarely defines any ordering: The server may return the values in an

attribute, the attributes in an entry, and the entries found by a search operation in any

order. This follows from the formal definitions - an entry is defined as a set of attributes,

and an attribute is a set of values, and sets need not be ordered.

5.3 Authorization

LDAP can securely delegate read and modification authority based on your

specific needs using ACL (Access Control List). ACLs can control access depending on

who is asking for the data, what data is being asked for, where the data is stored, and other

aspects of the record being modified. Using LDAP ACLs, we have following functions:

1. Granting users the ability to change their phone number, address and interests,

while restricting them to read-only access for other data types.

2. Granting anyone in the group "Admin" the ability to modify any user's

information for the following fields: title, name, ID number, group name, and

organization name. There would be no write permission to other fields.

3. Denying read access to anyone attempting to query LDAP for a user's password,

while still allowing a user to change his or her own password.

4. Granting Admin read-only permission for phone numbers, while denying this

privilege to anyone else.

5. Granting anyone in the group "Admin" to create, delete, and edit all aspects of

host information stored in LDAP.

55

6. Allow people to selectively grant or deny themselves read access to subsets of

the friends contact database. This would, in turn, allow these individuals to download the

friend contact information to their local laptops or to a phone.

7. Allow any group owner to add or remove any entries from groups they own. For

example, this would allow Admin to grant or remove access for people to modify Web

pages. Restrictions can also be based on phone ID or domain name.

CHAPTER 6

PERFORMANCE AND POWER CONSUMPTION

6.1 Evaluation of the phone's specifications.

In order to analyze performance and power consumption, we ran micro benchmarks to

measure the SmartCampus authentication on the phone. The experiments were performed

on Sprint 6700 Pocket PC phone.

Table 6.1 Smart phone Characteristics
CPU Class ARM9 CPU
MHz 495 MHz
Battery Type 1350 mAh Lithium Ion Polymer

rechargeable
Memory 64 MB built-in RAM, 128 MB Flash

ROM
Operating System Windows Mobile 5

6.2 Performance measurement using SPB Benchmark on Pocket PC Phone.

Developed by SPB Software House, SPB Benchmark is now the industry standard for

benchmarking PPC Phones. It combines tests of real-world functions such as Internet

access, playing videos, and editing Pocket Word files with tests of the synthetic processor,

memory and graphics, in order to establish a detailed picture of a PPC Phone's

performance.

Our experiments included tests of four of the SPB Benchmark's scores: (1) The

CPU index, which tests processor-heavy functions such as file compression and the

transfer of data to and from memory; (2) The file system index, which reports the speed of

copying and moving 10K and one-megabyte files in RAM; (3) The graphics index, which

56

57

reports the speed that 2D images are displayed on the screen and which has direct

relevance for assessing multimedia performance; and (4) the platform index, which

measures Pocket Word, Pocket Internet Explorer and File Explorer performance. Finally,

the overall index captures the results of all these tests as well as the results of a relatively

simple arcade game test. All the indices are normalized to the speed of a Compaq iPAQ

3650, which gets a 1000 on all scores. In addition to these tests of the phone's processor

performance, we also used the SPB Benchmark to test our PPC Phone's battery life.

Using SPB's typical use test, we set the backlight to 100 percent before taking the

measurements in order to make sure that the results would be consistent with its

performance in a user's daily life.

SPB Benchmark results are in the table below:

Table 6.2 SPB Benchmark Indices
Spb Benchmark index 328.94 (iPAQ 3650 scored 1000)

CPU index 1600.38 (iPAQ 3650 scored 1000)

File system index 132.25 (iPAQ 3650 scored 1000)

Graphics index 2154.11 (iPAQ 3650 scored 1000)

ActiveSync index - (iPAQ 3650 scored 1000)

Platform index 374.77 (iPAQ 3650 scored 1000)

Table 6.3 Main test results

Test Time Speed % of iPAQ 3650
speed

Write 1 MB file 1620 ms 632 KB/sec 80%

Read 1 MB file 266 ms 3.76 MB/sec 21%

Copy 1 MB file 1851 ms 553 KB/sec 70%

Write 10 KB x 100 files 4644 ms 220 KB/sec 39%
Read 10 KB x 100 files 515 ms 1.94 MB/sec 31%

Copy 10 KB x 100 files 4562 ms 224 KB/sec 47%

Directory list of 2000
files

1643 ms 1.22 thousands of
files/sec

1%

Internal database read 645 ms 1552 records/sec 368%

Graphics test: DDB
BitBlt

4.97 ms 201 frames/sec 748%

58

Graphics test: DlB 30.5 ms 32.8 frames/sec 243%
BitBlt

Graphics test: GAPI 3.8 1 ms 262 frames/sec 122%
BitBlt
PocketWord document 33579 7.76 KB/sec 25%
open ms

Pocket Internet Explorer 3292 ms 7.52 KB/sec 57%
HTML load

Pocket Internet Exp lorer 1889 ms 134 KB/sec 254%
JPEG load

File Explorer large 3489 ms 573 fil es/sec 111 %
fo lder li st

Compress I MB fi le 4989 ms 203 KB/sec 19 1%
using ZIP
Decompress 1024x768 582 ms 483 KB/sec 151 %
JPEG file

Arkaball frames per 6.4 ms 156 frames/sec 144%
second

CPU test: Whetstones 5 196 ms 0.072 Mop/sec 155%
MFLOPS

CPU test: Whetstones 1600 ms 39.4 Mop/sec 115%
MOPS

CPU test: Whetstones 10414 4.8 Mop/sec 16 1%
MWIPS ms

Memory test: copy I 10 ms 99.6 MB/sec 142%
MB using memcpy

Figure 6.1 Battery test result

59

6.3 Using JBenchmark to test the Java performance

We employed JBenchmark, which is 100% Java-based and is used to evaluate

Java ME-enabled mobile devices, to test the IBM J9 JVM system on the phone.

JBenchmark can be incorporated into the development process and can also be used

independently for testing application performance. JBenchmark has the following

features:

• Simple and user-friendly

• Quickly creates benchmark scripts

• Common Testing Constructs, HttpGet, Random or Weighted choice of tests,

ThreadGroups, and Loops

• Dynamically generates URLs; randomly sets variables based on a given list of

values or ones from JDBC Source

• Uses Jelly scripting

• Various assertions for response status, and response size, ensuring that positive

performance indicators are not the result of page errors

• Extensible Result Publishers

The table below shows the estimate of Java VM acceleration on the mobile device.

Table 6.4 JBenchmark Result
Test results
JAR reading 148
Image loading(PNG) 71
HTTP specific details
WAP Profile
HTTP User Agent MIDP-2.0 Configuration /CLDC-1.1

JVM general
Total Memory 1572864
JVM display
Color Display True
Double Buffered Screen True
Number of Colors 65536
Alpha Levels 2
Form Size 240x268
Canvas Size 240x268
Canvas Full Size 240x268
GameCanvas Size 320x320
GameCanvas Full Size 320x320
JVM configuration
ME Configuration CLDC-1.1
ME Profiles MIDP-2.0
CLDC Version 1.1

Platform Windows CE 5.1, Pocket PC, PA10A1
ME Encoding CP1252

JVM platform
MIDP Version 2.0
MSA version No
ME Locale en-US
JVM CDC
Java Installation Directory J9MIDP20
Java Class Path /My

Documents/temp/N1889033690346Vjar
Operating System Name Windows CE
Operating System Architecture arm
Operating System Version 5.1 build 195
List of Paths to Search when Loading
Libraries

J9MIDP2Obinjtwi_version=No

Default Temp File Path TEMP

60

61

6.4 Power Consumption

Battery life is extremely important for cell phone performance, especially for those users

who do not have frequent opportunities to re-charge them or to swap in fresh batteries.

For some cell phone users, every minute that can be squeezed from the battery counts.

This section presents the experimental results from tests of the phone's power

consumption, demonstrating that our authentication functionality is highly efficient and

will not affect the daily battery life. Outlined below are the three major steps of the

authentication process:

Step One: The authentication uses a key generation function to calculate the user

key and SmartCampus key.

Step Two: Next, the authentication uses key and encryption algorithms to encrypt

the message, and uses a hash function to make a MAC of the message and append it to the

packet.

Step Three: the authentication exchanges messages with the server via a WiFi

network, decrypting each message in order to securely retrieve the content.

In our experimental methodology, once the encryption is complete, the message

was sent over the network to a server as a Kerberos message. This procedure was repeated

at regular intervals, and the results indicated that the CPU and WiFi are the largest drains

on the power supply. We wanted to know how much current a PDA draws from the

battery, and to have that data in real time.

In order to find out how much power a PDA draws from the battery, we used

acbPowerMeter and acbTaskMan software to display the power consumption values.

62

acbPowerMeter is a freeware applicati on that shows the current consumption numericall y

and graphically, both in rea l time and over the course of a given amount of time.

ac bPowerMeter measures and d isplays the total and average current consum ed since the

application started or was las t reset.

For our tes ting protocols, I downloaded acbPowerMeter, installed and started it,

to order to see what would happen when I started a program in the foreground. In

particul ar, I need to make sure that the wireless tran smission was enabled on the phone,

and that it was not connected to any power source (including US B-based rec harging.)

acbPowerMeter can run in the background without any ri sk o f it interfering with our

applicati on, and causes onl y minimal overhead. After running the appli cation in question

fo r 30 to 40 seconds, I termin ated the program and returned to ac bPowerMeter in order to

evalu ate the results. The output shows the Amperage used when the tested appli cati on was

act ive.

The chart below shows the power consumption when one authenticati on was done

in fi ve minutes.

o mAL ____ ~~~
5 minutes

Now: 330 mA

A\lg: 321 rnA Total : 12 mAh

Menu ' ~' _ Pause

Figure 6.2 Power Consumption for one authenticati on in fi ve minutes

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

Most of today's technology conscious students use mobile computing devices such as

smart phones, laptops and PDAs to carry out their every day activities. Such technologies

and associated applications raise novel and significant challenges in terms of security,

privacy and trust which are of considerable importance to our student population. This

research plan designed and implemented a novel two-factor SIM-Kerberos authentication

and authorization scheme. Such systems provide a fast, lightweight, double secure, cross

platform application for solving trustworthy computing issues including software security,

reliability, mobility, and user privacy. In addition, the analysis showed this fast, less

memory and power consumed security application is ideal for daily use on the

communication restricted and computation restricted mobile equipments.

7.2 Future Research

Future work can be done in authentication and authorization two aspects. First, the

Extensible Authentication Protocol (EAP) protocol can be included in the authentication

scheme to provide an end to end secured wireless communication channel including client,

AP, and server. In other aspect, the Role Based Access Control (RBAC) model can be

involved into the authorization module which will provide a delegate control based on

user's role and even context aware control.

64

APPENDIX A

KERBEROS IMPLEMENTATION

The entire core Kerberos functi ons are written in JA V A Micro Edition (J2ME). They are

implemented under Connected Limited Device Confi gurati on (CLDC) 1. 1, Mobile

In formati on Device Profil e (MIDP) 2.0 spec ifi cation and run on the IBM J9 JVM on our

mobile phone. J2ME provide a good platform to implement mobile applicati on as well as

Java Ca rd applicaton. J2M E includes some sec urity primiti ves for code s igning and to

Support application sec urity, but it is not enough to support our complicated secure key

exc hange. In addition to 12ME, we add Bouncy Castle Library support to implement our

cryptographic APls. Bouncy Castle provides a smaller footprint for use where resources

are limited and less functionality is required as well as support to a range of well-known

cryptographic a lgorithm s. For the server side, we use Windows Server 2003 with Acti ve

Directory to host the KDC. All users' names, passwords and phone number are stored in

KDC - Acti ve Directory. The user interface is shown below:

Usemame

Password
1 *******

Message

11000

Send to "'IA=lc::." _ _____ ----'

EHlt "~gE_ Send

Figure A.I User Interface

65

APPENDIX B

LDAP IMPLEMENTATION

We created the LDAP using Active Directory in the computer with windows 2003 Server,

it worked perfectly. We were able to run it without any problems and get the expected

results. The main goal of active directory is to provide directory service and access

control to the clients. For example say in our college environment, and there are students

and teachers. There are certain groups only the teachers can access. So it's the duty of the

active directory to sort out who has the rights and who doesn't. So the active directory

when built using the windows is a perfect match of a purpose.

Active Directory objects store access control permissions in security descriptors.

A security descriptor contains two ACLs used to assign and track security information for

each object: the discretionary access control list (DACL) and the system access control

list (SACL).

DACLs identify the users and groups that are assigned or denied access

permissions on an object. If a DACL does not explicitly identify a user, or any groups that

a user is a member of, the user will be denied access to that object. By default, a DACL is

controlled by the owner of an object or the person who created the object, and it contains

access control entries (ACEs) that determine user access to the object.

SACLs identify the users and groups that you want to audit when they

successfully access or fail to access an object. Auditing is used to monitor events related

to system or network security, to identify security breaches, and to determine the extent

66

67

and locati on of any damage . By default. a SACL is controlled by the owner of an object

or the person who c reated the object. A SACL contains access control entries (ACEs) that

determine whether to record a successful or fail ed attempt by a user to access a objec t

using a given permiss ion. for example. Full Control and Read.

~
=..:.::.-...... --­:=------

Figure B.l Acti ve Directory

5ou .. ~.~ __ __ .. _
__ "Y_. _ _ _ ___.

- .. ~ ... -..apo.-. -
__ .M __ .. _1010._ -----..... _ .. -_"-_ _ <1 _ ... -- ... _--." -_ .. _ _ _ dl","_,,", _
___ -.d .. _,,-­
_.,, _ _ . __ .--'M. - .. _. __ _ - .. - -. _ -
SooI .. _ _ "-,,,"Ho_,, _ _tr _ _ _ _
_ ' __ 1.0_1. ..

-. .. - .- ----­__ .. "-"> _. _<1 ... _

REFERENCES

1 . C. Neuman, T. Yu, S. Hartman, K. Raeburn, "The Kerberos Network Authentication
Service (V5)", IETF, RFC 4120, July 2005.

2. T. van Do, et al, "Offering SIM Strong Authentication to Internet Services", White
Paper, 3GSM World Congress, Barcelona, February 2006.

3. BC Neuman and T. Ts'o. Kerberos: An authentication service for computer networks.
Communications Magazine, IEEE, 32(9):33-38, 1994.

4. Sun Developer Network. Java platform, micro edition (Java me). Retrieved November
6 from World Wide Web: http://java.sun.com/javame/.

5. B. Tung, C. Neuman, and J. Wray. Public key cryptography for initial authentication
in Kerberos. Internet Draft, April 2000.

6. Alan Harbitter Daniel A. Menascé. The Performance of Public Key-Enabled Kerberos
Authentication in Mobile Computing Applications, 2005

7. Arjun Anand, Constantine Manikopoulos, Quentin Jones, and Cristian Borcea. A
Quantitative Analysis of Power Consumption for Location-Aware Applications on
Smart Phones, IEEE International Symposium on Industrial Electronics (ISIE),
pages 1986-1991, June 2007.

8. Faheem Khan, Securing Java Card applications Retrieved November 10, 2007 from
the World Wide Web: http://www.ibm.com/developerworks/java/library/wi-satsa/

9. H. Haverinen, J. Salowey, "EAP-SIM Authentication", RFC 4186, IETF, January
2006.

10. MIT, Kerberos. Retrieved August 2, 2007 from the World Wide Web:
http://web.mit.edu/Kerberos/.

11. J. Garman, "Kerberos: The Definitive Guide", 2nd ed. California: O'Reilly, 2003.
[E-book] Available: Safari e-book.

12. C. Kaufman, R. Perlman, M. Speciner, Network Security: Private Communication in a
Public World, Second Edition, New Jersey: Prentice Hall, 2002, pp. 307-371.

13.Microsoft, How the Kerberos Version 5 Authentication Protocol Works. Retrieved
October 2, 2007 from the World Wide Web:
http://technet2.microsoft.com/WindowsServer/en/library/4a1daa3e-b45c-44ea-a0b
6-fe8910f92f281033.mspx?mfr=true.

68

69

14. Jan De Clerc, "Windows Server 2003 security infrastructures: Core Security Features
(HP Technologies)," 1st ed. Digital Press, 2004. [E-book] Available: Safari
e-book.

15. IBM, WebSphere Everyplace Micro Environment. Retrieved November 1, 2007 from
the World Wide Web: http://www-306.ibm.com/software/wireless/weme/

16. Faheem Khan, Lock down J2ME applications with Kerberos Part 1. Retrieved
November 1, 2007 from the World Wide Web:
http://www.ibm.com/developerworks/wireless/library/wi-kerberos/

17. Bouncy Castle Cryptography. Retrieved November 1, 2007 from the World Wide
Web: http://www.bouncycastle.org/

	Two factor authentication and authorization in ubiquitous mobile computing
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Kerberos
	Chapter 4: SIM-Based Kerberos
	Chapter 5: LDAP and Authorization
	Chapter 6: Performance and Power Consumption
	Chapter 7: Conclusion and Future Research
	Appendix A: Kerberos Implementation
	Appendix B: LDAP Implementation
	References

	List of Tables
	List of Figures

