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ABSTRACT

ENERGY PROPAGATION IN JAMMED GRANULAR MATTER

by
Xiaoni Fang

The systems built from dense granular materials are very important due to their

relevance to a number of technological and other fields. However, they are difficult

to study in particular due to a lack of accurate continuum description. In this work,

studies on these systems are presented using discrete element simulations that model

the granular particles as soft, elastic, and frictional disks which interact when in

contact. These simulations are used for the purpose of analyzing a few granular

systems with the main emphasis on understanding phenomena of energy and force

propagation.

Analysis of energy propagation in a two-dimensional disordered system is carried

out by considering the propagation of information away from an oscillating boundary

which is characterized by both temporal and spatial structure. This spatial structure,

in particular, is important since it makes comparison to any continuum model more

challenging and insightful. The results are compared to a simple linear wave equation

with damping, and a very good agreement is found. This result suggests, that at least

for the dense, compressed, jammed systems considered here, mathematical description

of energy propagation based on a simple continuum model is possible.

The simulation is then extended to consider the process of impact of a large-

scale intruder on a granular system. In this problem, a detailed investigation is

considered on the manner in which energies and forces propagate, and in particular a

concentration on the influence of material parameters, such as inter-particle friction,

is studied . This analysis has led to better understanding of the scaling relations

connecting the intruder’s speed and its depth of penetration.



Finally, the dynamics of dense granular flow in a hopper geometry is modeled

and studied, where the flow is sensitive to jamming. Extensive analysis of this problem

have been carried out, including large scale statistical analysis of data in order to

understand the influence of statistical fluctuations on the results.
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CHAPTER 1

INTRODUCTION

1.1 Granular Materials

Granular materials are large conglomerations of discrete macroscopic particles [38],

such as sand in an hourglass or beans in a container. Two important aspects of

granular materials are that temperature plays no major role, and the interactions

between grains are dissipative. Granular materials are ‘non-thermal’, i.e., thermal

energy (kT) has no significant effect compared to the gravitational energy experienced

by the grains. To see why this is the case, we do a rough estimate. For a typical

velocity of the order of 1 cm/s and a typical mass of order 10−8 kg, we find that

the kinetic energy Ek = 1
2
mv2 ≈ 10−12 Joule. If this kinetic energy were caused

by thermal agitation, it would correspond to a temperature of 1011 K. The loss of

potential energy experienced by such a particle as it drops by a height of its own

diameter d, is given by 4Ep = mgd, which is roughly equal to Ek, i.e., Ek = 4Ep

[21]. Thus, kT is insignificant and thermodynamics does not apply to macroscopic

granular materials. The interactions between grains are basically through collisions,

which are typically inelastic. Thus there is always energy loss due to inelastic collisions

and friction.

1.2 Dense Jammed Granular Systems

Granular materials are different from solids, liquids, and gases. Imagine a handful

of sand being poured on the floor, it flows like a liquid; while the pile on which it is

poured behaves solid-like. If wind blows through the sand, it can become suspended

in the air like a gas. Depending on the situation, granular materials can behave like

one of those states. Thus a granular material is often referred to as ‘the 5th state

1
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of matter’ (the 4th state is plasma). If particles are densely packed, they are able

to resist external applied stress like a solid. If they are loosely assembled, they may

not sustain the stress and will flow instead. This transition between the solid-like

phase and fluid-like phase makes granular materials unique. We usually call granular

materials in the solid-like regime ‘jammed granular materials’. Particles in a jammed

granular material are typically in contact with a number of their immediate neighbors.

The forces between the particles in jammed granular materials do not propagate

isotropically, but instead are more likely to be distributed in certain directions than

others [3, 13]. These preferred directions are referred to as ‘force chains’ - chains of

contacts along which the forces are stronger than the mean inter-particle force. Many

beautiful pictures, Figure 1.1 is one example, have been taken showing the existence

of these force chains, whose length is much larger than a typical particle size. Due

to this heterogeneity in stress distribution, describing force or energy propagation

through jammed granular materials is a difficult task. In particular, it is unclear

whether and how continuum models can be used for this purpose.

Figure 1.1 Experiment result of 3-D force chains from [3]. The bright color shows
the force chains.
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1.3 Literature

Sound waves have been used to study the properties of granular materials for a long

time, since sound is transmitted in a media by actual contacts. In a dry granular

material, sound propagates from one grain to its neighbors only through their mutual

contacts and the contact law has a strong influence on sound propagation. As

indicated by Hertz’s law [20], which is suitable for the calculation of perfectly spherical

particle collisions, the sound velocity c should vary as p1/6, where p is the isotropic

pressure applied to the granular material. Experimental results show that at low

pressures, c follows a p1/4 non-Hertzian power law [26, 27, 34]. The effect of the

nonlinear contact law was also studied by Nesterenko and collaborators [57, 58, 60]

from a different point of view. They considered a one-dimensional monodispersive

granular chain, where all grains are in contact initially, and have shown analytically

that the propagation of a weakly compressed pulse initiated in the chain can be

described by the Korteweg-de Vries (KdV) equation giving solutions of a solitary

wave type. When a strong pulse is applied, one also finds solitary wave solutions, but

of a different kind. The solitary waves observed in this case have a finite width that

is independent of the solitary wave amplitude. The existence of these solitary waves

was later confirmed experimentally in [14, 45]. Since then, a number of studies has

focused on the nonlinear dynamics in granular systems [14, 16, 33, 77]. Moreover,

there have been recent studies on the propagation of solitary waves in the applications

of detecting impurities and of energy trapping and absorption [17, 19, 32, 74].

When extending to two-dimensional or three-dimensional granular systems, the

disorder in the packing of the granular materials becomes very important. Since

the force chains in a disordered system through which the sound travels can be very

sensitive to the local structure, even a very small change in the grain placement can

cause a completely different force network. Small amplitude waves have been used to

examine the structure and the nonlinear properties of this force network [40]. It is
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found that at low frequencies, such that the wavelengths are very long compared to

the mean length of the force chains, the materials can be regarded as a homogeneous

medium. When the wavelength is comparable to the particle size, scattering effects

dominate, the homogeneous description is not adequate, and the waves are determined

by the exact structure of the force chains.

There has also been extensive discussion in the literature regarding continuum

descriptions of stress propagation through dense jammed granular materials [25, 28,

29, 49, 53, 54, 63, 76, 81]. Some works claim that the propagation is wave-like and

it should be described by a hyperbolic equation [25, 53, 54, 76, 81]. In other works,

evidence of an elliptic description of stress structure is reported [28]. It has been

recently revealed that these approaches may both be valid, but on different length

scales [29, 49, 63]. For small systems, it is found that a hyperbolic description is valid,

while for larger systems, elastic description is more appropriate.

1.4 Overview

In this work, a few different granular systems are considered and the issues of granular

flow and associated energy propagation are discussed. The considered systems are

all characterized by large volume fraction - they are jammed, or close to jamming.

We start by considering one-dimensional model-systems in Chapter 2, which already

in this simple one-dimensional geometry shows a variety of interesting features, as

discussed briefly above. Two-dimensional systems are then investigated in Chapter 3

using discrete element method (DEM) simulations and the results are compared to a

relatively simple continuum model.

In Chapter 4, we study on force and energy propagation in a system exposed to

impact of a large scale intruder. This problem is of interest in a number of different

settings, starting from astrophysical applications to various types of impact processes

relevant in technological applications. Again using DEM simulations, the response
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of a granular system to impact and the processes which govern this response are

discussed.

The final part of this work discusses a slightly different problem of a hopper

flow in Chapter 5. Hopper geometries are heavily used in a variety of technological

applications, and it is of interest to understand the mechanisms determining the main

aspects of the flow.



CHAPTER 2

1-D GRANULAR SYSTEMS

2.1 One-Dimensional Hertzian Chains

A significant amount of work on energy propagation mechanisms in one-dimensional

particle chains was done by Nesterenko and collaborators [57, 58, 60]. In this section,

we briefly summarize the analysis presented in these works.

For a one-dimensional granular chain under the Hertzian law, the force between

two adjoining particles is determined by

F =
2E

3(1− σ2)
(
R1R2

R1 +R2

)1/2[(R1 +R2)− (x2 − x1)]3/2 (2.1)

where R1 and R2 are the granules’radii, E is Young’s modulus, σ is the Poisson

coefficient, and x1 and x2 are the coordinates of the spherical particles’ centers (x2 >

x1). Assume that the particles are uniformly precompressed with the overlap δ0, see

Figure 2.1 1-D granular chain of identical grains under a uniform precompression.
The initial disturbance is given to the first particle on the left to the right as the
arrow indicates.

Figure 2.1. The equation of motion of a particle in a chain of N identical particles is

given by

üi = A(δ0 − ui + ui−1)3/2 − A(δ0 − ui+1 + ui)
3/2, 2 ≤ i ≤ N − 1, (2.2)

m =
4

3
πR3ρ , A =

E(2R)1/2

3(1− σ2)m
,

6
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where ui is the displacement of the ith granule from its initial position, and m, ρ

and R are the mass, density and the radius of a particle, respectively. We consider

now a chain with imposed perturbation on one side of the chain, and discuss how

this perturbation propagates through the chain. Depending on the relative size of the

perturbation and precompression, we find two cases.

2.1.1 Strongly Compressed Chains |ui−1 − ui| � δ0

Under the assumption |ui−1 − ui| � δ0, we can expand the first two terms on the

right hand side of Eq. (2.2) into power series using the expansion

(1 + z)n = 1 + nz +
n(n− 1)

2!
z2 + · · · , |z| < 1, (2.3)

with z being |ui−1 − ui|/δ0 and n = 3/2. Neglecting higher order terms, the new

equation of motion becomes

üi = α(ui+1 − 2ui + ui−1) + β(ui+1 − 2ui + ui−1)(ui−1 − ui+1), 2 ≤ i ≤ N − 1, (2.4)

α =
3

2
Aδ

1/2
0 , β =

3

8
Aδ
−1/2
0 .

Expanding the neighboring points about a central point, ui = u, in power series in

terms of a small parameter ε = 2R/L up to the fourth order where L is a characteristic

spatial size of the perturbation propagation through the chain,

ui−1 = u− ux(2R) +
1

2
uxx(2R)2 − 1

6
uxxx(2R)3 +

1

24
uxxxx(2R)4 + ... , (2.5)

ui+1 = u+ ux(2R) +
1

2
uxx(2R)2 +

1

6
uxxx(2R)3 +

1

24
uxxxx(2R)4 + ... (2.6)

Using the above replacement, Eq. (2.4) becomes

utt = c2
0uxx + 2c0γuxxxx − νuxuxx, (2.7)
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c2
0 = Aδ

1/2
0 6R2 , γ =

c0R
2

6
, ν =

c2
0R

δ0

.

Assuming u has the form u = u(x− c0t) and letting ux = −ξ, Eq. (2.7) then can be

transformed into the KdV equation

ξt + c0ξx + γξxxx +
ν

2c0

ξξx = 0, ξ = −ux. (2.8)

Start with a trial solution

ξ(x, t) = z(x− βt) ≡ z(u).

Substituting the trial solution into Eq. (2.8), we are led to the ordinary differential

equation

−β dz
du

+ (c0
dz

du
+

ν

2c0

z
dz

du
) + γ

d3z

du3
= 0.

Integration can be done directly. It follows that

−βz + (c0z +
ν

2c0

1

2
z2) + γ

dz2

du2
= c1

where c1 is the constant of integration. A multiplication with dz/du yields

−βz dz
du

+ (c0z
dz

du
+

ν

2c0

1

2
z2 dz

du
) + γ

dz2

du2

dz

du
= c1

dz

du
.

Integration of both sides again with c2 as the constant of integration leads to

−β 1

2
z2 + (c0

1

2
z2 +

ν

2c0

1

6
z3) + γ

1

2
(
dz

du
)2 = c1z + c2. (2.9)

It is required that in case x→ ±∞ we should have z → 0,
dz

du
→ 0,

d2z

du2
→ 0. From

these requirements it follows that c1 = c2 = 0.

With c1 = c2 = 0 Eq. (2.9) can be written as∫ z

0

dζ

ζ
√

β−c0
γ
− ν

6c0γ
ζ

=

∫ u

0

dη. (2.10)
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Using the transformation

ζ =
1
ν

6c0γ

β − c0

γ
sech2ω = 6c0

β − c0

ν
sech2ω, (2.11)

we obtain

β − c0

γ
− ν

6c0γ
ζ =

β − c0

γ
− β − c0

γ
sech2ω =

β − c0

γ
tanh2ω. (2.12)

Furthermore we have

− ν

6c0γ

dζ

dω
= 2

β − c0

γ
tanh2ωsech2ω,

or

dζ

dω
= −12c0

β − c0

ν

sinhω

cosh3ω
. (2.13)

The upper integration limit of the left side integral in Eq. (2.10) due to Eq. (2.11) is

transformed to

w = sech−1

√
1

6c0
β−c0
ν

z. (2.14)

Substituting Eq. (2.12), Eq. (2.13), and Eq. (2.14) into Eq. (2.10), we get

u =

∫ ω

0

−12c0
β−c0
ν

sinhω
cosh3ω

dω

6c0
β−c0
ν
sech2ω ·

√
β−c0
γ
tanhω

= − 2√
β−c0
γ

∫ ω

0

dω

= − 2√
β−c0
γ

ω

= − 2√
β−c0
γ

sech−1

√
1

6c0
β−c0
ν

z,

or

z(u) = 6c0
β − c0

ν
sech2(

√
β−c0
γ

2
u).
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Now we finally get

ξ(x, t) = 6c0
β − c0

ν
sech2

[
1

2

√
β − c0

γ
(x− βt)

]
.

We put

ξ(x, t) = 24c0
γ

ν
W 2sech2 [W (x− βt)] ,

W =
1

2

√
β − c0

γ

where W is the width of the wave and β is the wave velocity.

2.1.2 Weakly Compressed Chains |ui−1 − ui| � δ0

Suppose the difference of displacement change between two adjacent particles is much

larger than their initial compression, δ0, so particles are weakly compressed initially,

then δ0 can be neglected in Eq. (2.2) to give

üi = A(ui−1 − ui)3/2 − A(ui − ui+1)3/2 (2.15)

In the same way as Eq. (2.5) and Eq. (2.6),

ui−1−ui = −ux(2R) +
1

2
uxx(2R)2− 1

6
uxxx(2R)3 +

1

24
uxxxx(2R)4 + · · · = N(x) +φ(x),

ui−ui+1 = −ux(2R)− 1

2
uxx(2R)2− 1

6
uxxx(2R)3− 1

24
uxxxx(2R)4−· · · = N(x) +ψ(x),

N(x) = −ux(2R),

φ(x) = +
1

2
uxx(2R)2 − 1

6
uxxx(2R)3 +

1

24
uxxxx(2R)4 − · · · , (2.16)

ψ(x) = −1

2
uxx(2R)2 − 1

6
uxxx(2R)3 − 1

24
uxxxx(2R)4 − · · · (2.17)
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Now Eq. (2.15) can be written as

ü = A(N(x) + φ(x))3/2 − A(N(x) + ψ(x))3/2. (2.18)

Since Eq. (2.5) and Eq. (2.6) are expanded in power series of the small parameter

ε =
2R

L
, one finds

φ(x)

N(x)
∼ ψ(x)

N(x)
∼ ε,

Using Eq. (2.3), one obtains

(N(x) + φ(x))3/2

= (N(x))3/2 + 3
2
(N(x))

1
2φ(x) + 3

8
(N(x))−

1
2 (φ(x))2 − 1

16
(N(x))−

3
2 (φ(x))3 + · · · ,

(N(x) + ψ(x))3/2

= (N(x))3/2 + 3
2
(N(x))

1
2ψ(x) + 3

8
(N(x))−

1
2 (ψ(x))2 − 1

16
(N(x))−

3
2 (ψ(x))3 + · · ·

where N(x) = −2Rux > 0. Using the above equations, Eq. (2.18) becomes

ü ≈ A

[
3

2
(N(x))

1
2 (ψ(x)− φ(x)) +

3

8
(N(x))−

1
2 (ψ(x)2 − φ(x)2)− 1

16
(N(x))−

3
2 (ψ(x)3 − φ(x)3)

]
.

(2.19)

From the expressions for φ(x) and ψ(x) (Eq. (2.16) and Eq. (2.17)), the following

approximate expressions can be found:

φ− ψ ≈ (2R)2uxx +
1

12
(2R)4uxxxx +©(ε6),

φ2 − ψ2 ≈ −1

5
(2R)5uxxuxxx +©(ε7),

φ3 − ψ3 ≈ 1

4
(2R)6u3

xx +©(ε7).

Now Eq. (2.19) becomes

utt = c2

[
3

2
(−ux)

1
2uxx +

(2R)2

8
(−ux)

1
2uxxxx −

(2R)2

8

uxxuxxx

(−ux)
1
2

− (2R)2

64

(uxx)3

(−ux)
3
2

]
,
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−ux > 0, c2 = A(2R)
5
2 .

And the above equation can be rewritten as

utt = −c2

{
(−ux)3/2 +

(2R)2

12

[(
(−ux)3/2

)
x
x− 3

8

(
(−ux)−1/2

)
u2
xx

]}
x

,

Suppose u can be found in the form u(x − V t) and we introduce the new variables

ξ = −ux, then we obtain

V 2

c2
ξx =

3

2
ξ1/2ξx −

a2

64
ξ−3/2ξ3

x +
a2

8
ξ−1/2ξxξxx +

a2

8
ξ1/2ξxxx,

where a = 2R, or

V 2

c2
ξx =

3

2
ξ1/2ξx −

a2

64
ξ−3/2ξ3

x +
a2

8
ξ−1/2(ξξxx)x.

Integrate and suppose that as ξ → ∞, ξ → ξ0, ξx → 0, and ξxx → 0, and replace ξ

by ξ = z4/5, then we have

V 2

c2
z4/5 = z6/5 +

a2

10
z1/5zxx + c1

where c1 is an integration constant. Now introduce the change Change of variables,

y4/5 = y6/5 + y1/5yηη + c2, (2.20)

z = (
V

c
)5y, x =

a√
10
η

where c2 is a constant and Eq. (2.20) is in dimensionless form. We rewrite Eq. (2.20)

as follows with a new constant c3:

yηη = −∂W (y)

∂y
, (2.21)

W (y) = −5

8
y8/5 +

1

2
y2 + c3y

4/5. (2.22)
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For the special case c3 = 0, we make the ansatz y = A cos5(kx) on Eqs. (2.21) and

(2.22) and find

k =
1

5
, A = (

5

4
)5/2.

Thus in this case,

ξ =

(
5V 2

4c2

)2

cos4

( √
10

5(2R)
x

)
. (2.23)

Unlike the solitary wave solution found in a strongly compressed chain, this wave

has the same width regardless of amplitude. The width of the wave is roughly five

particle diameters and is independent of system parameters.

2.2 Other Nonlinear Lattices

Solitary waves are also found in other well-known lattice-based systems. We give a

brief review of two well-known ones. We will explore the similarities of the system of

interest to us with these systems in the proposed work.

2.2.1 The Fermi-Pasta-Ulam Lattice

The Fermi-Pasta-Ulam (FPU) lattice is a chain of particles joined by springs which

obey Hooke’s law but with a nonlinear term. The equations of motion [4] are

ẍi = (xi+1 − 2xi + xi−1) + α
[
(xi+1 − xi)2 − (xi − xi−1)2

]
, (2.24)

ẍi = (xi+1 − 2xi + xi−1) + β
[
(xi+1 − xi)3 − (xi − xi−1)3

]
(2.25)

where xi gives the ith particle’s displacement from equilibrium.

Eq. (2.24) and Eq. (2.25) are called FPU − α model and FPU − β model,

respectively. Under the long-wave approximation, the α model can be converted into

the KdV equation and the β model turns into a modified KdV equation.
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2.2.2 The Toda Lattice

The Toda lattice [82] was discovered by the Japanese physicist Morikazu Toda. The

basic idea of this lattice is a chain of identical particles linked by nonlinear springs.

Assume the springs have potential energy U(r) where r is the distance between

adjacent particles from the resting position at which the springs have minimum energy

and the corresponding force

F = −dU
dr

is zero. If xn still denotes the horizontal displacement of the ith particle from its

equilibrium, then the motion of the ith particle is determined by

m
d2xi
dt2

= U ′(xi+1 − xi)− U ′(xi − xi−1).

This gives the set of ODEs

m
d2ri
dt2

=

(
dU(ri+1)

dri+1

− dU(ri)

dri

)
−
(
dU(ri)

dri
− dU(ri−1)

dri−1

)
(2.26)

where ri = xi+1−xi. The Toda lattice is obtained for an anharmonic potential of the

form

U(r) =
a

b
(e−br + br − 1) (2.27)

where a, b > 0. With unit masses (m = 1), Eq. (2.26) becomes

d2ri
dt2

= a(2e−bri − e−bri+1 − e−bri−1), (2.28)

which are called the Toda-lattice equations.

In the limit b → 0 with ab finite, the potential U(r) is a harmonic potential,

and Eq. (2.28) reduces to

d2rn
dt2

= ab(rn+1 − 2rn + rn−1). (2.29)
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If b is large, the potential U(r) appears as a hard sphere potential. Equation (2.28)

has an exact solitary wave solution of the form

rn = −1

b
log[1 + sinh2κ sech2(κn± t

√
ab sinhκ)] (2.30)

where κ is the amplitude parameter, see [70].



CHAPTER 3

2-D GRANULAR SYSTEMS WITH BOUNDARY EXCITATIONS

3.1 Introduction

One critical issue in the physics of granular materials is the basic physical mechanism

of energy and/or stress propagation. Resolving some aspects of this issue has been a

subject of numerous works. One can roughly distinguish two groups of efforts here.

The first one concentrates on forces and energy fluctuations inherent in granular

systems, including force transmission. The second one discusses signal (such as sound)

propagation and is often based on a continuum description of a granular system. One

important issue is how to link these approaches. More generally, an issue is how to

connect micro- and meso- spatial scales, in addition to the relevant time scales.

In the first direction, there has been much recent debate regarding static force

propagation. A substantial range of models has been proposed, with dramatically

different properties. Some of these approaches, based on probabilistic model for

force propagation, predict diffusive (parabolic) propagation of forces [13]. Diffusive

behavior has been also reported in experiments [76], although with very small systems.

Others, also probabilistic approaches, lead to a response which may be either wave-like

or elastic-like [6, 7]. Related conclusions have been reached in other works [8, 64].

Assemblies of frictionless particles are shown to lead to wave-like signal propagation [81].

Recent experiments, however, seem to be consistent with an elastic response to an

applied point force [24, 25, 67]. It is puzzling that in different experiments and models

one can observe such a variety of signal propagation mechanisms. One wonders

whether different behavior is triggered as the parameters of a granular system are

modified [28, 49].

16
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Continuum models used in the engineering literature (e.g., [27, 37, 55, 69])

commonly assume elastic or elasto-plastic response, which does not seem to be consistent

with the propagating, hyperbolic (or parabolic) type of response often obtained under

microscopic picture. There is a question whether the models based on elasticity

theory can be used to explain signal propagation through granular systems [51].

Some progress in connecting discrete and continuum descriptions has been reached

in recent works that show that the system’s response may change depending on the

scale: one can see wave-like response on short (meso) scales, but elastic response on

larger scales [28, 29]. These works also point out that friction and anisotropy can have

an important effect on force propagation. Still, there are numerous questions to be

answered, even regarding relatively simple configurations of static granular material

exposed to a localized perturbation.

An issue of signal, such as sound, propagation through granular systems is

closely connected to force and energy propagation, although it is often treated differently.

Within continuum theory, the issue of sound propagation is typically approached

via effective medium theory [27, 75, 86]. Most of the works explore theoretically

and experimentally the response of a granular system to a spatially independent

perturbation which is large compared to a particle size, such as a piston moving in a

granular system. It has been shown that the speed of signal propagation, c, follows

a power law dependence on the applied pressure p, c ∝ pα, where α typically varies

between 1/6 and 1/4, although there is some discussion on how general this result

is [26, 39, 40, 50, 51, 78, 86]. Furthermore, it has also been pointed out that force

chains may be important in sound propagation [35, 36, 46, 47, 48]. Some recent

papers try to reconcile the apparent differences between earlier works [39, 40] by

pointing out that the direct and strongly scattered signal components should be

treated separately. However, this issue is still not completely understood, in particular

regarding propagation through fragile systems close to the rigidity threshold.
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A different approach to signal propagation through granular samples is based on

considering one-dimensional particle chains, which allow for formulation of continuum

models from first principles, as discussed in Chapter 2. In some cases, one can even

obtain closed form solutions [15, 57, 59, 73]. We note that the review [57] points out

the differences in formulation between the case of compressed and uncompressed, or

weakly compressed systems. In the former case, one obtains (under certain conditions)

a KdV equation leading to solitary wave solutions, while the latter case leads to a

more complicated nonlinear high-order wave equation. This difference may be of

relevance to the properties of granular systems that are close to jamming. Additional

issues of disorder, polydispersity, and different models for particle interactions enter

into the problem, leading to a number of effects, some of which have been observed

experimentally [14, 15, 45]. Extensions of the one-dimensional results to two-dimensional

and three-dimensional geometry lead to effects which are expected to be of importance

to signal propagation in physical granular systems [35, 60, 77].

In this work, we consider computationally a dense granular system exposed to

a perturbation that is space and time dependent. The main motivation for using a

relatively complex perturbation is that by varying the critical parameters, such as

the spatial scale of the imposed perturbation, we can learn about the nature of signal

propagation through the granular sample. Our computations are carried out using

a discrete element method (DEM). In the last part, we present the comparison of

the DEM results to the ones resulting from a relatively simple continuum model.

This comparison provides further insight into the mechanisms responsible for signal

propagation through dense granular matter.

3.2 Methods

We choose a relatively simple granular geometry in two spatial dimensions with

the granular particles constrained between two rough walls (up-down) with periodic
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boundary conditions (left-right). We use the constant volume (CV) protocol where

the walls’ positions prescribe the volume fraction, ρ, of the considered system; we

also briefly consider the constant pressure (CP) protocol where constant load is

applied to the top boundary. We consider ρ’s in the interval [0.80 − 0.90] under

CV protocol, and the loads which lead to similar average volume fractions for CP

protocol. The particles are polydisperse disks, with the radii varying randomly in

some range r about the mean. For simplicity, we put gravity to zero. Particle-particle

and particle-wall collisions are modeled as described in Appendix A. Here we proceed

with the simulation details which are specific to the considered problem.

The walls in the simulations are made of particles that are rigidly attached,

thus creating an impenetrable boundary. The wall particles are chosen as strongly

inelastic and frictional in order to reduce the reflection phenomena.

The simulations are prepared by very slow compression without applied perturbation

until the required ρ is reached. After this initial stage, the system is relaxed. The

upper boundary is fixed and the lower boundary is perturbed. The perturbations are

of the form z(x) = A sin(2πft) sin(λx), where A, f , and λ are the amplitude, the

frequency, and the wavelength of the imposed perturbation, respectively. We also

consider a simpler functional form z(x) = A sin(2πft) corresponding to piston-like

motion in and out of the domain. Formally, the limit λ → ∞ reduces the more

complex form to the simpler one. This form is chosen so that ρ is kept constant in

time.

Particle properties: The (Normal) spring constant is given value of kn = 4000;

we use the tangential spring constant kt = 0.8kn. Dissipation is specified by γn and

γt which are given the values leading to the coefficient of restitution en = 0.5, defined

in Appendix A; polydispersity is r = 0.1; the coefficient of friction is µ = 0.5. The

wall particles are characterized by en = 0.1, µ = 0.9, and are taken as monodisperse
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Table 3.1 Parameters of the Model

Parameter Value

particle diameter d 4 mm

collision time tcol 7.0× 10−4 s

normal spring constant kn,p 656.5 N/m

friction constant µ 0.5

r = 0.0. Table 3.1 lists the values of parameters, which correspond to the typical

photoelastic disks used in experiments at Duke [24].

System properties: The perturbation as described above is applied by perturbing

the lower wall which defines the x axis; typically 40, 000 particles are used, with the

x dimension of the system being 250 d. The reason for using so many particles is to

reduce the boundary effects. The typical volume fraction is ρ = 0.90.

Perturbation properties: Amplitude A = 0.6 d; f = 30 Hz. First we consider the

system characterized by infinite λ (spatially uniform perturbation) and then consider

finite λ’s. Typically λ = 250 d. These values are used in all the simulations except

if specified differently. The particular numerical values used for the perturbation are

chosen so that wave propagation can be clearly observed.

The results that follow are given in dimensionless form, using average mass of a

particle as a mass scale, collision time as the time scale, and average particle diameter

as the length scale. In some cases, it is convenient to also present the results using the

scales related to the properties of the imposed perturbation. These cases are clearly

marked.
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3.3 Results

In this section, we start by considering the simplest case of infinite wavelength

perturbation (essentially a piston moving in and out) in Section 3.3.1. In Section 3.3.2,

we will consider the case of finite wavelength perturbations and use this example to

illustrate the influence of the spatial structure of the perturbation on the propagation.

In Sections 3.3.3 and Section 3.3.4, we discuss the influence of the parameters. In

Section 3.3.5, we will digress briefly from considering the constant volume setup to

discuss the modifications of the results if the system is instead constrained by constant

applied load.

3.3.1 Infinite Wavelength Perturbation

We first consider the limit λ → ∞ with the main goal of connecting our results to

the existing experiments and simulations [35, 39, 40, 46, 47, 48, 51, 78, 86]. We note

here that there are still many open questions regarding signal (sound) propagation

through granular matter. Some works argue that force chains and their response to

applied perturbation are important in understanding the system response [35], while

others do not find force chains important [51]. Also, other works find that signal speed

(measured by the time of flight) in their DEM simulations is 40% more than what

would be expected based on elasticity theory [78]. These differences could possibly

be a result of different scales and the nature of the experiments and simulations; for

example, it is not obvious that the results of the approach that measures system

response to an infinitesimal compression or shear [51] can be directly related to

continuous and often strong perturbation used in other works [35, 78].

Figure 3.1 shows snapshots of the forces that granular particles experience at

four different times during one period of the boundary motion right after the creation

of perturbation at the lower wall. The color scheme shows the forces on particles,

with blue (dark) corresponding to low, and green-yellow/light to large forces (force is
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Figure 3.1 Total force on granular particles at four different phases during one
period of the boundary oscillation; The upper wall is static, and the lower one
performs standing type of motion. In this and the following figures, we use r = 0.1,
f = 30 Hz, amplitude A = 0.6 d, and 40, 000 particles except if specified differently.

normalized by the mean). We note the force chains in the interior of the domain, as

typically observed for dense granular systems.

While the evolution, dynamics, and distribution of force chains are of significant

interest in understanding dense granular systems (see e.g., [35, 78]), in what follows

we concentrate on the system quantities which can be averaged over a volume which

is small compared to the system size, but still includes a relatively large number of

particles: we use a network of 64× 64 rectangular cells for spatial averaging. We also

average over time intervals long compared to tcol, but short compared to 1/f . The
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results do not depend on the details of the averaging procedure, for the conditions

specified above.

The averaging procedure is illustrated by considering the local elastic energy,

E, defined as the cell average of the compression energies contained in the individual

collisions taking place in a given cell during the specified time-averaging period. More

precisely, elastic energy in a given cell l is defined by

El =
1

Ntnl

kf
2

Nt∑
k=1

nl∑
j=1

nc,j∑
c=1

[xj,c]
2 , (3.1)

where xj,c is the compression of particle j due to the collision c, normalized by the

average particle diameter, d. Next, nl is the number of particles in the cell l at a

given time, and n̄l is the average number of particles during the period of k = 1 to

k = Nt � 1 time steps (in practice, the averaging time scale is sufficiently short so

that to a high degree of accuracy nl = n̄l). Collisions may last over relatively long

times, but even the fastest collisions are well resolved due to the short simulation

time step.

A similar averaging procedure is carried out for other quantities, such as kinetic

energy of the granular particles. The considered quantities are calculated by averaging

over a large number (typically 30) periods of the boundary motion in order to increase

the signal to noise ratio, and to ensure that we are not seeing transient effects. For

the same reason, initial results obtained for the first few periods of the oscillations are

discarded. In addition, we have verified the steady nature of the results by carrying

out the selected simulations for much longer time periods.

Figure 3.2 shows the results for the elastic energy obtained using the averaging

procedure described above, for the same system and at the same times as shown

in Figure 3.1. For this particular case, we observe wave-like propagation of energy

through the system. Analysis of this propagation is the main focus of the discussion

that follows.
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Figure 3.2 Elastic energy at four times during one period of the boundary
oscillation; The upper wall is static, and the lower one moves in and out.

Figure 3.3 justifies concentration on the elastic energy. This figure shows

elastic and kinetic energies averaged over the x direction and over time, for different

frequencies of the boundary motion. We uniformly find that the elastic energy is

significantly larger than the kinetic one, particularly away from the moving boundary.

Even close to the moving boundary, the energy contained in the elastic degrees of

freedom is at least a couple of times larger than the kinetic one, except for the

highest frequency of driving (shown in part d) of Figure 3.3). We note in passing

that the relation between kinetic and elastic energies is connected to collisional and

streaming contributions to the total stress [10, 11].

To analyze the properties of propagation and their dependence on the perturbation

itself, we carry out a Fourier transform FZ-AXAT (Fourier expansion in the z direction
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Figure 3.3 Elastic and kinetic energy of the granular particles as the frequency of
the perturbation on the lower boundary is modified.

and then average over the x direction and time) of the particle elastic energy, which

provides information about the wavelength chosen by the system in the z direction.

FZ-AXAT is obtained from the simulations carried out with perturbation frequencies

f = 15, 30, 60 and 100 Hz, and are given in Figure 3.4. The FZ-AXAT’s show that

the dominant modes for propagation in the z direction increase from 1 to 5 as the

frequency is increased, although for higher frequencies we find the presence of multiple

modes, suggesting stronger dispersion. We emphasize the long time averaging is used

to obtain the results in this figure (and the figures below); therefore the structures
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shown in the figures are not traveling waves but instead a combination of traveling and

standing waves. In this work, we do not concentrate on the details of this combination,

but simply ask whether the waves are present or not.
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Figure 3.4 Fourier spectrum (FZ-AXAT) of the elastic energy for four
representative frequencies of boundary excitations.

Next we measure the speed of propagation by examining the time interval

required for information about the perturbation to reach the top wall. Figure 3.5

shows the results for the force experienced by the particles close to the walls (more

precisely, in the center cells adjacent to the top and bottom walls) as a a function

of time. We find that approximate speed (sound speed in the system) is c ≈ 2.0.

Additional simulations with different perturbation frequencies give similar results for

the sound speed. We will use this result to discuss a continuum model of energy

propagation.

The continuum model to which we use for comparison in general includes

elastic behavior and diffusive damping. We chose such a model since static force

transmission well above jamming densities is, to date, best described in terms of an

elastic picture [24, 29], and because we expect dissipative processes. Assume that the

space-time properties of E are given by

∇2E − 1

c2

∂2E

∂t2
− 1

D

∂E

∂t
= 0 , (3.2)
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Figure 3.5 Total force on the particles close to the boundaries.

which as D → ∞ becomes a linear wave equation often used to describe wave

propagation in elastic solids, and as c→∞ a diffusion equation (see [39]). Equation (3.2)

is given in a dimensionless form. We take the diffusionD, and the speed of propagation,

c, as constants. We emphasize that this model is not meant as a full description of the

data, but only a basis for comparison; discussion regarding various nonlinear effects

relevant to compressed granular matter can be found in, e.g., [57] and references

therein.

Here we discuss the predictions of this simple model for the one-dimensional

case of Equation (3.2) in the limit of no damping. In Appendices C.1, we derive

the results for the complete two-dimensional case (where the perturbation itself

depends on x) and where damping is included. In this simple case of spatially

independent perturbation with no damping, the dispersion relation is simply ω = cq,

where ω = 2πf , and q is the wave number specifying the wavelength 2π/q of the

propagating waves in the z direction. With the value of c as given above, we find

that the obtained value of q closely corresponds to the dominant mode obtained from

the Fourier transform of the DEM results shown in Figure 3.4. Note that exact

comparison of numerical values cannot be expected to be very precise due to the fact
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that the system choses either an integer of half integer number of waves in the domain.

More explicit comparisons can be also carried out as discussed in Appendix C.1 where

we present the results of a continuum model including damping. Figure C.3 shows

the predicted results which agree well with what is seen in the DEM simulations -

compared with the dominant mode results shown in Figure 3.4. Therefore, at least

approximately, we find that the simple wave equation explains reasonably well the

main features of the propagation waves in the system where the perturbation itself is

spatially independent. In what follows, we consider spatially dependent perturbations

and discuss whether the above conclusions extend to this more complex case.

3.3.2 Finite Wavelength Perturbation

In this section, we discuss finite wavelength perturbations. We first concentrate on

the signal characterized by the wavelength λ = 250 d (equal to the domain size),

frequency f = 30 Hz, and amplitude A = 0.6 d. Polydispersity is characterized by

r = 0.1. We will refer to this configuration as the ‘basic case’. Later in the section,

we will discuss the influence of f , λ, and other parameters on the results.

Figure 3.6 shows the elastic energy of the granular particles at a few different

phases during one period of the boundary oscillation. We note the clear and well

defined wave form propagating from the lower boundary towards the upper boundary.

To discuss more precisely the properties of the signal, it is convenient to consider

again Fourier transforms (FT’s). Significant information about the signal can be

obtained from two-dimensional (2D) FT (Fourier transforms in the x and z direction,

averaged over time). Figure 3.7 shows the result: we see the dominant modes for this

case being the mode 1 in the x-direction, and the mode 2 in the z-direction. Note

that the system is divided into 64×64 cells, and the central row/column corresponds

to the 0 mode. Instead of considering this 2D FT for the other configurations to

be discussed below, we find it convenient to consider instead simpler FT in the x
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Figure 3.6 Elastic energy at four times during one period of the boundary
oscillation; The upper wall is static, and the lower one performs standing type of
motion. In this and following figures, we use r = 0.1, f = 30 Hz, λ = 250 d,
A = 0.6 d, and 40, 000 particles except if specified differently.
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the central row/column corresponds to the 0 mode in the x/z directions, respectively.
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direction only, followed up by the time averaging, and consider the dependence of

the FT on z; this FXAT (Fourier in x, average in time) provides information on how

well the properties of the original signal are preserved as it propagates through the

system. Note that these FT’s are different from the ones used in the one-dimensional

case (FZ-AXAT).

Figure 3.8 shows the FXAT of the elastic energy. The part a) shows the spectral

power, and the part b) the amplitude of the imposed (dominant) Fourier mode of the

signal, as a function of z. We see essentially damped wave-like propagation of the

energy away from the boundary.

Z(d)

S
pe

c.
P

ow
er

0 50 100 1500

0.2

0.4

0.6

0.8

1

(a) Spectral power.

Z(d)

D
om

.M
od

e

0 50 100 1500

1

2

3

4

(b) Dominant mode.

Figure 3.8 Fourier spectrum (FXAT) of the elastic energy as a function of z, the
distance from the shearing wall.

3.3.3 Parametric Dependence I: System Parameters

An obvious question is whether the behavior as illustrated in the proceeding section is

general. Do we expect similar kind of behavior for the systems consisting of different

types of particles, or different volume fractions, for perturbations characterized by

different amplitudes and/or frequencies? Do the results depend on the system size?

We answer these questions here. Note that we use r = 0.1, f = 30 Hz, λ = 250 d,

A = 0.6 d except if specified differently.
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Reproducibility Figure 3.9 shows the results for FXAT for three systems prepared

independently. These results suggest that the main features of the results are independent

of the initial condition.
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Figure 3.9 Fourier spectrum (FXAT) of three independently prepared systems.

System size dependence Figure 3.10 concentrates on the possible dependence

of the results on the system size in the x direction. Here we keep the perturbation

wavelength the same (λ = 125 d), and carry out simulations in different domain sizes.

We see that the main features of the results are similar although they differ in details

(clearly, different initial conditions had to be used for these simulations, so part

of the difference may be attributed to the dependence on the initial configuration

of particles). We have also considered the influence of the domain size in the z

direction, by changing the total number of particles from approximately 40, 000 to

50, 000 (the domain size in the x direction is kept fixed to 250 d). Figure 3.11 shows

the corresponding results, where we see that the larger domain can accommodate

on additional 1/2 wavelength, but aside from this obvious change, the results are

consistent between the two different domain sizes - most importantly, there is no

change of the dominant Fourier mode describing propagation in the z direction.
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Figure 3.10 Fourier spectrum (FXAT) in two systems where the domain size in
the x direction is varied. Lx = 250 d (solid line) and Lx = 125 d (dashed line) are
shown. Here λ = 125 d.

Force model dependence The simulations that we typically carry out are performed

using a given value of dynamic friction and coefficient of restitution. One may ask

what is the influence of these quantities, as well as of the static friction, which is not

included in the force model that we use in this work.

Figure 3.12 shows the Fourier spectrum (FXAT) of the elastic energy for different

restitution coefficients. en is reduced from 0.9 to 0.5 and we see the results are almost

indistinguishable. Modifying en does not influence the properties of the propagating

waves. In Figure 3.13, µ = 0.0 and µ = 0.5 (Model I), together with µ = 0.5

(Model II) (see Appendix A), are presented. The similarity of the results obtained

using Model I shows that in this (kinetic friction based) model, friction does not

have an influence on the properties of the propagating signal. The results obtained

using Model II are however different. We find that the wavelength characterizing the

propagation is longer, leading to a smaller number of waves in the considered domain.

To understand the reason for this difference, we recall that the dispersion relation in

the simplest case (ignoring damping, and for infinite wavelength of perturbations)

suggests that the wavenumber, q, describing the propagation in the z direction is

inversely proportional to the speed of sound (ω ≈ cq). Therefore, we recalculated
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Figure 3.11 Fourier spectrum (FXAT) in two systems where the domain size in the
z direction is varied. The simulations with 40, 000 particles (solid line) and 50, 000
particles (dashed line) are shown.
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Figure 3.12 Fourier spectrum (FXAT) of the elastic energy for different elastic
particle properties.

the speed of sound using a similar approach as discussed in connection to Figure 3.5

and found that the speed of sound is indeed larger in the system with static friction

(Model II), reaching the value of c ≈ 2.4. This larger speed of sound leads to smaller

q and larger wavelength, as illustrated in Figure 3.13.

Stiffness of the particles The force constant, kn, in our simulations can be easily

related to the material properties, Young modulus and Poisson’s ratio, as discussed

in, e.g., [43]. One could ask what is the influence of these material properties
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Figure 3.13 Fourier spectrum (FXAT) of the elastic energy for different elastic and
frictional particle properties. Influence of dynamic and static friction : µ = 0 (solid
line, model I), µ = 0.5 (dotted line, model I) and µ = 0.5, kt = 0.8kn (dashed line,
model II) are shown.

(or, correspondingly of the force constant) on the propagating signal. Within the

linear force model, the force constant defines one of the time scales of the problem,

the typical time two colliding particles spent in contact (assuming only two-body

interactions). The collision time tcol and spring constant kn is related by tcol ∝ 1/
√
kn

(see Appendex A). Another obvious time scale is 1/f , where f is the frequency of

perturbation. So, the question is whether changing both time scales, but keeping

their ratio constant would lead to the same or similar results.

Figure 3.14 shows the results for three different kn’s and frequencies of driving.

These curves were normalized and scaled by the value of the dominant mode of the

‘basic case’ at z = 0 and by its amplitude (the difference between the first maximum

at z ≈ 20 and the first minimum at z = 0) in order to remove the influence of much

larger input energy in the case of larger frequency of perturbation. With the scaling

and normalization as described, we find that the curves collapse very well, suggesting

that the above time scale argument is satisfied to a high degree of accuracy.
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We note that we have also carried out simulations with Hertzian interaction

between the particles (normal force proportional to x3/2) with very similar results as

the ones presented here.
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Figure 3.14 Fourier spectrum (FXAT) in the systems where the stiffness of the
particles as well as the frequency of driving were modified, but their ratio was kept
constant.

Volume fraction Figure 3.15 shows that a decrease of volume fraction leads to

a loss of well defined properties of the propagating signal, compared to the basic

case ρ = 0.90. This change is due to the fact that the number of contacts between

particles is smaller and they are easier to break, thus reducing the energy propagation.

Figure 3.16 shows this number of contacts for the three considered volume fractions -

clearly, in particular close to the oscillating wall, the number of contacts is significantly

smaller for smaller values of ρ. These results were obtained by averaging over the

whole duration of simulation, after removing the initial transient part. We will discuss

in Section 4.5 in much more detail the influence of closing and opening contacts on

the process of energy propagation.

Polydispersity Figure 3.17 shows FXAT for the systems characterized by different

degrees of polydispersity. We see that the main features of the results do not depend

on this system property, as long as there is some degree of polydispersity. But
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Figure 3.15 Fourier spectrum (FXAT) of three systems whose only difference is
the volume fraction: ρ = 0.90 (solid line) ρ = 0.85 (dashed line) and ρ = 0.80 (dotted
line).
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Figure 3.16 Numbers of contacts for ρ = 0.90 (solid line), ρ = 0.85 (dashed line)
and ρ = 0.80 (dotted line).

when the system becomes monodisperse, well defined propagating signals are lost.

An insight into this result can be reached by considering the total elastic energy.

Figure 3.18 shows that this energy is much smaller in the monodisperse systems,

compared to polydisperse cases. This is a consequence of better packing of monodisperse

particles, leading to a weaker interaction between the particles under the constraint

of fixed volume. Compressing the monodisperse system further, in order to reach the

elastic energy roughly comparable to the one of polydisperse systems, brings us back

to well-defined propagating signal.
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Figure 3.17 FXAT and elastic energies as polydispersity is changed from r = 0.1
(basic case, solid line) r = 0.2 (dashed line) r = 0.4 (dotted line), and for two
monodisperse systems: ρ = 0.90 (thick solid line) and ρ = 0.917 (thick dashed line).

Figure 3.18 For ρ = 0.917, the average elastic energy of the monodisperse particles
is similar to the average elastic energy of the polydisperse case r = 0.1.
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3.3.4 Parametric Dependence II: Perturbation Properties

The imposed perturbation is defined by three parameters: the amplitude A, frequency

f , and wavelength λ. The influence of the amplitude is the most straightforward and

we consider it first.

Figure 3.19 shows the results where the amplitude of the perturbation is modified.

While smaller/large amplitudes lead to smaller/large values of the amplitude of the

dominant modes, the response of the system is qualitatively the same, suggesting that

amplitudes of perturbations do not influence the properties of the propagation signal.

This is important, since this result suggests that exact properties of the perturbation

are not crucial, and that the conclusion reached here are not influenced by the strength

of perturbation.
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(b) A = 0.45 d.

Figure 3.19 FXAT as the amplitude, A, of imposed perturbation is modified.

Figure 3.20 shows the results where the wavelength of the imposed perturbation

is modified. In part a), where λ = 125 d, the main difference compared to the basic

case characterized by λ = 250 d shown in Figure 3.8 is that stronger attenuation of

the signal as one moves away from the boundary. Figures 3.20 c) and d) show that as

λ is further decreased, the attenuation becomes even stronger and a wave-like form

of the propagating signal is completely lost. Note that although λ is significantly
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decreased, it is still large compared to particle size. Therefore, we are not in the

regime where the imposed length scales are so small that the particle size should be

important.
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Figure 3.20 FXAT as the wavelength of imposed perturbation is decreased.

Figure 3.21 shows the result where λ is kept fixed, but the frequency, f , is

modified. We see that the imposed frequency has a strong influence on the signal

properties. Well-defined wave propagation only exists in certain range of frequencies,

which is consistent with what we found for infinite wavelength perturbation in the

previous section.
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Figure 3.21 FXAT as the frequency, f , of imposed perturbation is modified.
Spectral power is shown in part a) since dominant mode could not be clearly identified.

Before proceeding, we digress briefly to consider the Fourier transform in the z

direction (FZ-AXAT) discussed in more detail for infinite wavelength perturbations

in Section 3.3.1. Over there, we found shift to larger wavelengths as the frequency

perturbation was increased. Figure 3.22, which shows the results for the perturbation

of λ = 250 d, suggests that the main features of the results follow the same trend

as in the case of spatially independent perturbations. The main difference is slightly

lower amplitudes of the dominant mode.
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Figure 3.22 Fourier spectrum (FZ-AXAT) of the elastic energy for four
representative frequencies of boundary excitations with λ = 250 d.

3.3.5 Constant Pressure (CP) System

So far, we have considered signal propagation under the constant volume (CV)

protocol. Another commonly used protocol (particularly in experiments) is the constant

applied pressure. To consider such a system, we apply a constant force to the top

wall and let it find its own equilibrium position. We define the (constant) pressure,

P , applied on the top wall as the applied force divided by the length of the top wall.

This pressure is given in the unit of m/t2col. We chose the value of applied pressures

in such a way that the typical volume fraction is between 0.87 and 0.90.

Based on the results presented so far, in particular regarding the influence of

the volume fraction on the properties of propagating waves, we expect that systems

exposed to large pressures would lead to better propagating waves. Figure 3.23

shows that this is indeed the case: as the applied pressure is decreased, the wave-like

properties of the propagation gradually disappear, similarly as if the volume fraction

were decreased under the CV protocol. So systems under the large applied pressure

behave similarly as the large volume fraction systems.

Figure 3.24 shows that the analogy between the CV and the CP protocols

extends qualitatively to the response to the perturbations of shorter wavelengths.

The main difference is that the wave-like propagation is less-visible in the CP case
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Figure 3.23 Dominant Fourier mode (FXAT) as applied pressure is varied.
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(a) f = 30 Hz, λ = 250 d/2.
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(b) f = 30 Hz, λ = 250 d/4.

Figure 3.24 Dominant Fourier mode (FXAT) as the wavelength, λ, and frequency,
f , of imposed perturbation are varied.

for the perturbations characterized by λ = 250 d/2, shown in part a) of this figure.

Similar results are found as the frequency of perturbation is modified.

Next we consider the influence of polydispersity of granular particles. Figure 3.25

shows that here the differences between CV and CP protocols become more obvious,

particularly for larger applied pressures shown in part b). The difference occurs

for the monodisperse case. Recall that for CV protocol, the total elastic energy of

monodisperse system is smaller than for the polydisperse ones, viz. Figures 3.17 and

3.18. This is, however, not the case for CP case, since here the pressure applied to the
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(a) f = 30 Hz, λ = 250 d, P = 1.6.
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(b) f = 30 Hz, λ = 250 d, P = 3.2.

Figure 3.25 Dominant Fourier mode (FXAT) of systems with different pressures
and different polydispersities, r.

top boundary determines the total elastic energy. Therefore, monodisperse system is

compressed more strongly (larger volume fraction results) for the monodisperse case,

leading to wave-like propagation of energy. Furthermore, the speed of the sound in

the monodisperse system is slightly larger, leading to longer wavelengths, as it can

be seen in Figure 3.25 b) for r = 0.0.

Despite the outlined differences between CP and CV, we find that the systems

exposed to either CV or CP protocols behave similarly. We will therefore proceed

with discussing the CV case only, with the results easily extendable to the CP case.

3.4 Discussion

Here we proceed with the discussion of the results presented so far. First we will

discuss in more detail the agreement between the DEM simulations and the continuum

model, which we have introduced when discussing infinite wavelength perturbations.

Next, we will consider additional quantities which will help us understand more

precisely the mechanism responsible for energy propagation.
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3.4.1 Continuum Model

Following Eq. (3.2), assuming a plane wave solution as a zeroth order approximation

to more complex waves that can be expected in dense granular matter [35, 57, 73] in

the form

E(x, z, t) = E0e
ıωteıkxeıqz,

we obtain the dispersion relation

q2 + k2 − ω2

c2
− ω

D
i = 0,

or

ω = ±c
√
k2 + q2 − c2

4D2
+ i

c2

2D
= i

c2

2D
±K,

If k2 + q2 <
c2

4D2
, then ω is pure imaginary. There is no propagation. If k2 + q2 >

c2

4D2
,

then solutions are in the form as e−
c2

2D
tei(kx+qz±Kt). In this case, K is the angular

frequency and c2/(2D) is a damping parameter. The wave speed is given by

v =
±K√
k2 + q2

= ±c

√
1− c2/(4D2)

k2 + q2
.

For higher wave numbers, v = c; For lower wave numbers, v decrease to zero when

k2 + q2 = c2/(4D2).

Back to the DEM results, for relatively large k and q, the wave speed v is

relatively large, so we believe that waves travel faster and are quickly damped out.

This leads to the loss of energy propagation we observe for high frequency perturbation.

The model agrees with the DEM results. In Appendix C.1, we obtain the exact

solution to the boundary value problem. The constant c is obtained as described

earlier, and the constant D = 2.5 × 102 is measured using the damping parameter

c2

(2D)
on the DEM results.



45

3.4.2 Particle Scale Response

Here we discuss response of the system to imposed perturbation on the particle scale.

This approach is useful to clarify some aspects of the large-scale wave propagation.

For this purpose, we compute affine and non-affine (conforming and non-conforming)

components of the particle motion. The implemented procedure is described in

Appendix D.

Affine Motion Figure 3.26 shows the affine component, Af = A · (r(t)−r(t−δt)),

of particle dynamics at a given time for our ‘basic’ system. We see that the affine

part of the motion still shows wave-like properties as expected from the results shown

up to now. Figure 3.27 shows the influence of the frequency (part a) and of the

wavelength (part b) on the affine component. We see that in both cases, the affine

component decreases very quickly away from the oscillating boundary.

We have also computed Fourier transform of the affine component. Figure 3.28

shows the results of FXAT transforms for few selected systems. Similarly as it was

found in analysis of ‘raw’ DEM results in Section 3.3.3, we see wave-like propagation

for our ‘basic’ system (part a)), while change of the frequency or wavelength of the

imposed perturbation leads to a quick decay of the amplitude of the dominant mode.

Note also that larger frequency (parts c) - d) of this figure) lead to much larger

amplitude of the affine component, compared to lower frequency shown in parts a) - b).

To conclude, we find that the intensity of the affine component of particle dynamics

is strongly correlated with the wave-like propagation of energy.

Non-Affine Motion We proceed by discussing non-affine component of particle

motion, computed in the Appendix D. This component is quantified via quantityDmin

which measures the non-affine component: large Dmin corresponds to large non-affine

part of the particles’ dynamics. This discussion will let us understand better various
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Figure 3.26 Affine component of particle dynamics for the ‘basic’ system (f = 30
Hz, λ = 250 d) at t = 240.
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(a) f = 100 Hz, λ = 250 d.
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(b) f = 30 Hz, λ = 250 d/4.

Figure 3.27 Affine component of particle dynamics at t = 240 for specified systems.

features of energy transport discussed up to now, and their dependence on the system

properties.

Figures 3.29 and 3.30 show the snapshot of non-affine component of particle

motion together with the number of contacts which particles experience. In Figure 3.29,

which presents the results for monodisperse case, r = 0.0, we see formation of zones

with the boundaries characterized in part b) of the figure by smaller number of

contacts. Visual comparison of the parts a) and b) of this figure suggests correlation

between the zone boundaries and the areas of large non-affine motion. Therefore, we
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(b) f = 30 Hz, λ = 250 d/4.

Z(d)

D
om

.M
od

e

0 50 100 1500

0.2

0.4

0.6

0.8

1

(c) f = 60 Hz, λ = 250 d.
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(d) f = 100 Hz, λ = 250 d.

Figure 3.28 Fourier transform (FXAT) of the affine component of particle
dynamics. Note different scales in a) - b) versus c) - d).

can conclude that non-affine component of particle motion is concentrated in the areas

with smaller contact number Z’s. Even small amount of polydispersity is sufficient to

remove both the zone formation and the correlation between Z’s and the non-affine

component of particle motion measured by Dmin, as shown in Figure 3.30. We note in

passing that the areas of large non-affine deformation occur in the parts of the domain

where the affine component is large as well: compare Figures 3.30 b) and 3.26.

In attempt to further quantify the differences between monodisperse and polydisperse

systems, we have computed pair correlation function, g(r), which essentially provides
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(b) Non-affine component.

Figure 3.29 Monodisperse system (f = 30 Hz, λ = 250 d). The results are shown
at t = 240.

information about the degree of ordering (crystallization) in the system. The pair

distribution function is formally defined by

g(r) =
V

N2
<
∑
i

∑
j 6=i

δ(ri)δ(rj − r) >

=
V

N2
<
∑
i

∑
j 6=i

δ(|rij| − r) >

where N is the total number of particles and V is the volume. This function gives the

probability of finding a pair of particles a distance r apart, relative to the probability

expected for a completely random distribution at the same density.

The δ function is replaced by a function which is nonzero in a small range of

separations, i.e., δr = 0.2 d, and the maximal distance we examine is rmax = 10 d. All

the target particles are in the domain 10 d away from the top and bottom boundaries.

For each particle, we take it’s position as the center and find the numbers of particles

in the rings [kδr, (k+1)δr], k = 0, · · · , rmax/δr, respectively. These numbers are saved

in b(k) accordingly. We carry out this process for all the particles and Nstep time steps,

so that b(k) has the total number of particles for the kth ring. We normalize this

number by n(k) = b(k)/(NNstep). Assume the average number of particles in the
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Figure 3.30 Monodisperse system (r = 0.0). The results are shown at t = 240.

same range in a completely random material at the same volume fraction ρ is

nid(k) = πρ{[(k + 1)δr]2 − (kδr)2} .

Then the pair distribution function is defined by

g(kδr + δr/2) =
1

NNstep

b(k)

nid(k)

Figure 3.31 shows the results. While we find certain degree of ordering which

decays as polydispersity is increased, we do not find a significant difference in g(r)

between the monodisperse case (r = 0.0) and the smallest polydispersity used (r =

0.1). This observation suggests that considering g(r) is not sufficient to understand

the differences between mono-and polydisperse system, and furthermore that some

degree of ordering of particles is not crucial for the process of energy propagation.

Additional insight can be reached by computing the correlation between the

quantities of interest computed at different times. Here we consider only the contact

number correlations. Figure 3.32 shows these correlations computed as follows. Chose

a random particle, and find its’ current number of contacts (for simplicity, we separate

the particles in two groups: those having Z ≤ 3 and those characterized by Z ≥ 4).



50

r/d
g(

r)
0 2 4 6 8 100

0.2

0.4

0.6

0.8

1 r = 0.1
r = 0.2
r = 0.4
r = 0.0
r = 0.0

ρ

ρ
ρ
ρ
ρ

= 0.90
= 0.90
= 0.90
= 0.90
= 0.917

Figure 3.31 Pair-pair correlation function for the systems characterized by different
polydispersities and volume fractions.

Then, follow this particle in time and record whether it still belongs to the same

group, according to the Z value. Repeat for all particles. Finally, compute the

probability that if particle belongs to one of the two groups at time t0, it will belong

to the same group at the time ti. The results shown in Figure 3.32 a) are intriguing,

since they suggest that to a large degree there are always the same particles whose

contacts open and close during boundary oscillations. On the time scale shown in the

figure, there is no visible decay of correlations: if a particle belongs to a given group,

at time t0, there is a high probability that it will belong to the same group at the

time t = t0 + 1/f , where f is the frequency of the boundary motion. Figure 3.32 b)

shows much smaller degree of correlation for the monodisperse system, particularly

for the particles characterized by Z ≤ 3. Note that higher probabilities for Z ≥ 4 (for

both mono- and polydisperse systems) show that only small percentage of contacts

is broken during the time corresponding to a large number of oscillations of the

boundary.

Next we discuss the influence of the frequency and wavelength of perturbation on

the number of contacts and non-affine component of particle dynamics. Figures 3.33

and 3.34 both show slightly decreased number of contacts next to the oscillating

boundary. Much more prominent feature of the results is how strong non-affine
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(b) Monodisperse system.

Figure 3.32 The probability that number of contacts of a given particle remains
through time in one of the considered groups: Z ≤ 3 shown by the red (solid) curves,
and Z ≥ 4 shown by the green (dashed) curves. The period of oscillations corresponds
to the motion of the boundary.

component close to the oscillating boundary. To confirm that this is general feature of

the results, Figure 3.35 shows the non-affine component averaged over the x direction

and over time. We see large Dmin for short wavelengths and high frequencies of

perturbations, consistently with the snapshots shown in Figures 3.33 and 3.34. These

results suggest strongly that non-affine part of the particle motion is responsible for

removal of wave-like propagation of energy, at least for the considered configurations.

For completeness, Figure 3.36 shows the correlation plots similar to Figure 3.32.

We find similar degree of correlation as for the ‘basic’ case, still suggesting that to a

large degree, the same contacts break up as time evolves.

3.5 Conclusions

In this work, we have discussed the energy propagation through dense granular

system. We find that the main features of the propagation can be reasonable well

described by a continuum model based on linear wave equation with damping. To

reach this finding, we found it useful to consider space-time dependent perturbation of
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(b) Non-affine component.

Figure 3.33 High frequency driving f = 100 Hz (λ = 250 d, r = 0.1). The results
are shown at t = 240.

the boundary since this type of excitation provides additional parameter (in our case

the wavelength of the imposed perturbation) which can be used to test the prediction

of a continuum model. We find that the influence of this additional parameter is

non-trivial: excitations characterized by the wavelengths which are smaller than

approximately 100 particle diameters lead to stronger dispersion and loss of the

wave-like properties of the signal propagation from the boundary excitation. To

analyze more precisely the source of this dispersion for the perturbations which are

still considerably larger than the particle size, we have computed affine and non-affine

components of particle dynamics. The affine parts agree well the predictions of

the continuum model, as expected. We find however strong non-affine component

of particle dynamics close to the source of the signal (oscillating boundary). We

conjecture that this strong non-affine component leads to significant energy loss and

that it is responsible for the loss of wave-like properties of propagation energy pulse.

We expect that this finding will serve as a basis for the future work which should

discuss the exact mechanisms which determine the length scale on which non-affine

part of particle dynamics becomes significant.
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Figure 3.34 Short wavelength perturbation: λ = 250 d/4 (f = 30 Hz, r = 0.1).
The results are shown at t = 240.

One interesting and perhaps unexpected result is that we find very satisfactory

description of the main features of energy propagation based on a simple linear

model involving wave equation with damping, without the need to consider complex

nonlinear models discussed in Chapter 2. Our results suggest stat similarly good type

of agreement can be reached if Hertzian force model is used.
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(b) λ = 250 d/4.

Figure 3.36 The probability that number of contacts of a given particle remains
through time in one of the considered groups: Z ≤ 3 shown by the red (solid) curves,
and Z ≥ 4 shown by the green (dashed) curves. The period of oscillations corresponds
to the motion of the boundary.



CHAPTER 4

IMPACT ON 2-D GRANULAR SYSTEMS

4.1 Overview

We study the impact of an intruder on a dense granular material. The process of

impact and interaction between the intruder and the granular particles is modeled

using discrete element simulations in two spatial dimensions. In the first part of

this chapter, we consider the influence on impactor dynamics of 1) the intruder’s

properties, including its size, shape and composition, 2) the properties of the grains,

including friction, packing, and elasticity, and 3) the properties of the system, including

its size and gravitational compaction. It is found that packing and frictional properties

of the granular particles play a crucial role in determining impact dynamics. Then,

we proceed to consider the response of the granular system itself. First, we discuss

the force networks that develop, including their topological evolution. The role of

friction and packing on force propagation, including the transition from hyperbolic-

like to elastic-like behavior is discussed as well. Then, we discuss the affine and

non-affine components of the grain dynamics. Several broad observations include the

following: tangential forces between granular particles are found to play a crucial

role in determining impact dynamics; both force networks and particle dynamics are

correlated with the dynamics of the intruder itself.

4.2 Introduction

The problem of impact on a dense granular material has been explored extensively due

to its relevance to processes that vary from asteroid impact, numerous technological

applications, defense from high speed projectile impact, or to simply walking on a

sandy beach. While a large amount of research has been done over hundreds of years,

55
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only during last few decades has significant progress been reached in formulating

relatively simple but realistic effective models which characterize the basic features

of the interaction between an intruder and a granular material itself.

These effective models have allowed for much better understanding of the dependence

of the forces due to impact on various parameters. A simple model due to Poncelet and

dating from the 19th century is based on the concept that the force experienced by an

intruder may be separated into independent speed- and depth-dependent parts [65].

The speed-dependent part is hydrodynamic-like, while the depth-dependent part

is considered to be due to forces of either hydrostatic or frictional origin. While

careful experiments [1, 2, 12, 18, 31, 42, 84, 85] and simulations [9, 12, 62, 72, 83]

have improved our understanding of the physics of impact considerably, they have

also opened a new set of questions. Some of these questions include scaling of the

penetration depth with the impact speed and intruder size, for which a variety of

sometimes contradictory results exist, see e.g., [31, 42] and discussions therein. The

dependence of the granular force on the intruder speed is not always clear [31],

and the role of various effects which determine the depth-dependent part of the

force is also a subject of discussion, with models that suggest either frictional [83]

or hydrostatic-like [72] forces. The picture which has evolved as a result of recent work

is that there are multiple regimes where different aspects of the interaction between

an intruder and granular particles may be relevant, and it has become obvious that

it is necessary to look into the granular system itself in order to understand the basic

physical mechanisms responsible for determining large scale dynamics of an intruder.

In this work, we take a different approach by correlating the results for the

dynamics of an intruder with the evolution of the microstructure of the granular

material itself. In particular, we concentrate on the influence of frictional properties

of the granular particles, and on their packing. In particular, we show that these

quantities may strongly influence the response of the granular material, the interaction
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between the granular particles and intruder, and, consequently, the dynamics of the

intruder.

The structure of this chapter is as follows. The simulation techniques and

system setup are discussed in Appendix E and Section 4.3. In Section 4.4, we present

results for the intruder dynamics for various parameters characterizing the intruder,

and the granular system. We compare our results with existing simulations and

experiments, with a significant part of this comparison in the Section 4.6. In the

present work, we limit ourselves to the regime where total penetration depth is no

larger than the intruder size. In Section 4.5, we then consider the granular material

itself. In Section 4.5.1, we explore properties of the force field, the influence of packing

and friction on force propagation, and topological quantities describing structure of

the force field. In Section 4.5.2, we discuss affine and non-affine components of the

dynamics of the granular particles. We conclude by discussing the question of energy

expenditure, and we further elaborate on the role of friction and packing.

4.3 System Setup

Figure 4.1 shows the system setup. Here, H and W are the height and width of

the granular bed, respectively. Periodic boundary conditions are implemented on the

left and right boundaries. From below and above, the domain is bounded by rigid

horizontal walls made up from monodisperse particles, with particle properties the

same as in Chapter 3. The role of the top wall is essentially to contain those few

particles which would be ejected during particularly violent impacts. However, the

upper boundary is positioned sufficiently high that collisions with this wall are very

rare.

We consider both circular and elliptical intruders. An elliptical form is one

way to represent an ogive shape. The initial height of the intruder is fixed so that

the lowest part of the intruder is 5 average particle diameters above the granular
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Figure 4.1 System setup. For illustration we show implementations of both circular
and elliptic intruders. In the simulations, one of these shapes is incident on the middle
of the upper surface of the granular system.

surface; we then vary the initial intruder velocity. The implementation of a circular

intruder is straightforward. It is still considered to be a single large particle, with

its own set of parameters, e.g., stiffness, and friction. We model elliptical/ogive

intruders as a cluster of 360 granular particles with a mass appropriate to the intruder.

This cluster forms a rigid shell on the surface of an ellipse; i.e., the particles in the

cluster are rigidly attached to each other. In the simulations, the total force on the

cluster is computed, and then the positions of all cluster particles are updated by

applying Equations. (E.1) and (E.2) to the cluster as a whole. We have confirmed

that implementing a circular intruder as either a single particle or as a cluster does not

influence the results, as discussed below. Although we position the cluster particles

on the surface only, we typically consider solid intruders, by choosing the cluster

moment of inertia appropriately. More precisely, for solid intruders, the moment of

inertia is given by I = M(a2 + b2)/4, where a and b are the semi-axes of an ogive

intruder, and M is its mass.

The speed of sound, c, in the system will be needed below in order to put the

results in perspective. We estimate this property by the time needed for information
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to propagate across the domain. Specifically, we apply a point force at the top of

the granular bed and measure the time needed for the force information to reach

the bottom. When using the kinetic friction model, we find (in dimensionless units)

c ≈ 2, while for the static friction model, we find slightly larger c ≈ 2.4. In our

simulations, we concentrate on the subsonic regime, and consider intruder speeds up

to 1.

In order to examine the effect of the granular microstructure on the impact,

we model two types of packings. One is an exact hexagonal lattice with particles

of identical size, and the other is a randomly packed system with r = 0.0, 0.1, 0.2,

0.3 and 0.4. The hexagonal lattice is prepared by simply positioning the particles so

that they initially touch each other. The random systems are prepared by positioning

the particles on a square lattice, giving them random initial velocities, letting them

settle under gravity, and then smoothing the irregular top surface roughness, if there

is any. To consider reproducibility and the influence of a particular configuration

on the results, we modify the initial random velocities assigned to the particles, and

repeat the simulation.

Typically, no additional compaction of the bed is used; we have experimented

with shaking of the bed to increase the volume fraction, but have not found any

influence of this (minor) additional compaction on the results that follow. If not

otherwise specified, we use 6000 particles, with the initial width of the domain, in

units of the mean particle diameter, given by W = 100, and the initial height of the

granular bed, given by H = 60, see Figure 4.1. After settling, the particles form a

system of height ∼ 56 for random polydisperse systems. This system size is at least

moderately large. However, to test for system size independence, we have also carried

out simulations in much larger domains containing up to 90, 000 particles.
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4.4 Results for the Penetration Depth

In this section, we discuss results for the penetration depth, and its dependence on

parameters characterizing the granular system and of the intruder. We also briefly

compare our results to the existing data, and we present more detailed comparisons

in Section 4.6. In Section 4.5, we discuss the properties of the force field in the

system, its dynamics, and their influence on the penetration depth, defined as the

distance between the position of the bottom part of the intruder and the initial upper

boundary of the granular bed at the point of impact.

We start by considering a randomly packed system with particles characterized

by polydispersity r = 0.2, Coulomb friction µ = 0.5, coefficient of restitution en = 0.5,

and with kinetic friction only, kt = 0.0. The intruder is a disk, with diameter of

Di = 10 in units of the average particle diameter, and otherwise possessing the same

material properties as the granular particles. Figure 4.2 shows the time evolution of

the penetration depths of an intruder impacting the granular bed with one of seven

different speeds, ranging from 0.05 to 1.

The main properties of the results presented in Figure 4.2 are as follows. As

expected, slower intruders create shallow craters; specifically, the penetration depth

is less than the intruder’s own diameter. By contrast, intruders of higher speeds are

entirely submerged in the granular bed. For the larger impact velocities, we find an

overshoot in the penetration depth, i.e., the intruder rebounds towards the surface of

granular layer somewhat, as also observed experimentally [31]. The ‘stopping time’

at which the intruder essentially stops is somewhat ambiguous for smaller impact

velocities, for which there is no overshoot, and this time might be considered to be

either approximately constant, as in [12], or a decreasing function of the impact

velocity, as in [42].

The origin of the small oscillations seen in plots of the intruder depth versus

time for longer times in Figure 4.2 will be discussed later. Here, we proceed to analyze
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Figure 4.2 Penetration depth of Di = 10 intruder impacting with different speed.
Here we use r = 0.2, kn = 4 · 103, kt = 0.0, en = 0.5, µ = 0.5. Material properties of
the intruder are the same as of the granular particles. The arrow shows the direction
of increasing impact speed.

the influence of the properties of the intruder and of the granular system itself on the

penetration depth.

4.4.1 Intruder Properties

Effect of Size: Figure. 4.3 shows the penetration of different size intruders in

identical granular systems. For larger intruders of the same initial speed, we see

deeper penetration . The results presented here agree well with the experimental

and numerical results on penetration depths presented in [12], where similar granular

materials, sizes of intruders, and system setup were considered.

Effect of Shape: Realistic intruders are often not circular, and therefore it is

relevant to explore the influence of the intruder shape on the interaction with granular

matter. This issue was considered experimentally [61], and it was found that as

expected, more pointed objects penetrated deeper, although only in the case of shallow

penetration.

To be specific, we consider here a particular shape, an elliptic ogive, and examine

how the aspect ratio affects the penetration depth. As explained in Section 4.3, we
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Figure 4.3 Penetration depths of intruders of different sizes. The other parameters
and line patterns are the same as in Figure 4.2.

simulate elliptic intruders by preparing a ‘composite’ intruder made up from rigidly

attached particles. To isolate the effect of the intruder’s shape, we fix the intruder

masses to that of a disk with Di = 2a by changing the intruders’ density. Figure 4.4

show the penetration depth of the intruders characterized by different a’s, b’s, and

impact velocities. We find that for the intruder sizes and aspect ratios considered

here, the penetration depth increases approximately linearly with the aspect ratio, b.

Effect of Composition and Stiffness: The equations of motion determining the

intruder’s dynamics are also influenced by the moment of inertia. To consider the

influence of this quantity, we consider hollow intruders, consisting of only a shell of

thickness d. In order to ensure that the ‘composite’ intruders behave identically

to a single-particle, we model solid intruders using both approaches. All three

configurations (single-particle solid, composite solid, and composite hollow) yield

essentially identical results, showing that (i) modeling of an intruder either as a

composite or as a single particle produces indistinguishable results, and (ii) the

influence of moment of inertia of an intruder, at least with the present choice of
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Figure 4.4 Penetration depth for intruders characterized by different elliptical
ogives; we show the results for (i) a = 5 and v = 0.1 (red squares), v = 0.4 (green
triangles), v = 0.7 (blue diamonds), and for (ii) a = 10, v = 0.7 (red circles). The
domain size was increased in (ii) to H = 100, W = 100. The other parameters are as
in Figure 4.2.

parameters, is minimal. We have also considered briefly the influence of the intruder’s

stiffness on penetration, and simulated infinitely stiff intruders (limit of infinite spring

constant kn in our force model) interacting with soft granular particles. We find that

the penetration depth for these stiff intruders is only slightly smaller compared to

the finite-kn ones. This result suggests that direct interaction of an intruder with

granular particles plays only a minor role in determining final presentation depth,

while particle-particle interactions are much more important. This interaction is

discussed next.

4.4.2 System Properties

Effect of Particle Stiffness and the Coefficient of Restitution: Particle

stiffness, modeled by the spring constant, kn, modifies the collisional time scale in

the problem, tcol ∝ 1/
√
kn. Conceivably, one might expect that as kn varies at

constant (nondimensional) impact speed, the results would not change. That is,

dynamics expressed in units of tcol might be independent of dimensional properties

such as kn. However, this invariance is broken by the presence of gravity. While
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Figure 4.5 Penetration depth of an intruder in systems with varying stiffness:
kn = 4× 103 (black solid); kn = 4× 104 (red dashed); kn = 4× 105 (blue dash-dot).
In the part a), the impact speed is v = 0.7; in part b), the impact speed in physical
units (m/s, for example) is kept fixed at the value vp = 0.7d/tcol (kn = 4.0 · 103). The
other parameters are as in Figure 4.2.

the role of gravity is explicitly considered later, we can already see its influence on

the dynamics in the results of Figure 4.5 a). This figure shows that as kn increases

at fixed dimensionless impact speed, the impact depth becomes significantly larger.

This result can be understand by realizing that: (i) the influence of gravitational

compaction is much weaker for stiffer particles; and (ii) the energy of impact is much

larger in the case of larger kn, since impact velocity (in physical units) scales as
√
kn.

Note that larger stiffness is one of the reasons for significantly larger penetration

depths in recent simulations [72], where stiffer particles were considered. To conclude

this discussion, Figure 4.5 b) shows that, as expected, the penetration depth decreases

if an impactor of fixed speed in physical units interacts with a granular system made

of stiffer particles.

Figure 4.6 shows the influence of elasticity of the granular particles, measured

by the coefficient of restitution, en. A large coefficient of restitution leads to a

significantly deeper penetration, as it would be expected, since the energy loss is



65

time
D

0 500 1000 1500 20000

10

20

30

Figure 4.6 Penetration depth of an intruder in systems with varying coefficient
of restitution, en = 0.9, 0.5, 0.1 shown by red (solid), dashed (green) and blue
(dash-dot) lines, respectively. Here, v = 0.7, the system size is W = 200, H = 200;
the other parameters are as in Figure 4.2.

reduced relative to a lower restitution coefficient. Interestingly, while a decrease of

en reduces the depth of penetration, it does not remove the overshoot of the D(t)

curve. Also, we will see below that a different behavior results when the frictional

properties of granular particles are modified. Later in this section, we will also discuss

the influence of en on the long-time oscillations of the intruder depth, h(t). Note that

in the simulations reported in Figure 4.6, we find it necessary to increase the domain

size to avoid its influence on the results.

Effect of Friction: The role of friction between the granular particles on the

penetration depth in particular, and on the response of the granular material to

an intruder in general is not immediately obvious. For example, in considering the

response of a system to a point force, it has been found that friction plays a role in

determining how forces and stresses propagate through the system [29]. Of course,

a response to an intruder is expected to be more complicated since it leads to a

large scale rearrangement of granular particles, which is not expected in a response

to a localized (small) point force. Indeed, it has been suggested that friction is not

necessary crucial in understanding this response [72]. Here, we illustrate the influence



66

time
D

0 500 1000 1500 20000

10

20

30

Figure 4.7 Penetration depth for different friction models and Coulomb thresholds;
here we show the results as follows (top to bottom): µ = 0 (red dashed); µ = 0.1, kt =
0.0 (green dotted); µ = 0.1, kt = 0.8kn (pink dash-dot-dot), µ = 0.5, kt = 0.0 (black
solid); µ = 0.5, kt = 0.8kn (blue dash-dot). Here v = 0.7, the other parameters are
as in Figure 4.2.

of friction on the penetration depth for a particular system. We discuss more generally

the manner in which friction influences the dynamics of an intruder in Section 4.6, and

the corresponding behavior of the granular material of different frictional properties

in Section 4.5.

To illustrate the influence of friction, we consider two effects: first, the effect

of the friction model, and second of Coulomb threshold. Figure 4.7 shows the

corresponding results. We find that having a model with static friction leads to a

significantly smaller penetration depth (blue dash-dotted curve in Figure 4.7) than

a model without static friction, particularly for a large Coulomb threshold. For a

smaller Coulomb threshold, the influence of static friction is weaker, and the response

of the system in that case turns out to be similar to the one obtained using kinetic

friction only (compare green dotted and pink dash-dot-dot curves in Figure 4.7).

Furthermore, an ‘overshoot’ in the intruder depth may be removed in the case of

(strong) static friction.
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Effect of Packing and Polydispersity: One of the focal points of this work is the

influence of granular microstructure on impact. Microstructure is strongly influenced

by the packing and polydispersity of granular particles. To analyze the influence

of these parameters, we have carried out simulations where we have varied the

parameter r determining polydispersity between 0.0 and 0.4. We have also carried out

simulations using a perfect hexagonal lattice of particles as the initial configuration.

We typically find that the results for a system with r = 0.0, prepared as described

in Section 4.3, are similar to results obtained using a hexagonal lattice. This is

not surprising, since monodisperse particles tend to crystallize, as confirmed by the

pair correlation function, which shows only small differences between monodisperse

‘random’ and hexagonal lattices. (These results are not shown here for brevity.) Here,

we show the results obtained using a hexagonal lattice in place of an r = 0.0 system

prepared using our usual protocol.

Figure 4.8 shows the intruder depth as a function of time for an impact on a

hexagonal lattice. We immediately note very different properties of the D(t) curves

compared to an impact on a polydisperse system, viz. Figure 4.2. For the impact

velocities considered here, the intruder very quickly reaches a depth at which its

velocity reverses, and then the intruder actually rebounds outside of the granular

layer, falls again under gravity, and then settles at the final depth. This final depth

does not depend in any obvious manner on the impact velocity, which essentially

influences only the initial depth which the intruder reaches (before rebound), and the

length of the interval after impact which the intruder spends outside of the granular

layer (this interval being longer for larger impact velocities). Finally, by comparing

the penetration depth between an impact on a hexagonal lattice, shown in Figure 4.8,

and on a disordered granular system, such as the one shown in Figure 4.2, we note

that the penetration depth in the former case is much smaller. We will discuss the

reasons for this difference later in Section 4.5.
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Figure 4.8 Penetration depth for an impact on a hexagonal lattice; here r = 0.0
and the other parameters and line patterns are as in Figure 4.2. Note the different
range on the vertical axis compared to the one typically used.

Figure 4.9 shows in more detail how the final penetration depth depends on the

polydispersity. To help interpretation of the results we show both the final depth as

a function of r for fixed v’s (part a)) and the final depth as a function of v for fixed

r’s, part b). Clearly, the penetration is deeper in polydisperse systems compared to

the hexagonal one, for all considered impact velocities. However, we find that the

degree of polydispersity has no significant effect on the penetration depth as long as

the system is not monodisperse and ordered.

Figure 4.9 b) shows that the penetration depth depends approximately linearly

on the impact speed of the intruder for larger velocities and deeper penetration.

This observation agrees with results reported earlier [12, 18, 31], where it was found

that the penetration depth increases linearly with the impact speed for a range of

impact depths that are comparable or larger than the intruder size. For smaller

impact velocities, we find deviations from the linear scaling, again consistently with

the literature [1, 2, 84]. We discuss this scaling in some more detail in Section 4.6.

Effect of Gravity: We discuss here in more detail the influence of the acceleration

of gravity on the penetration depth. As mentioned earlier, the value of the gravitational
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Figure 4.9 Final (long time) penetration depth for the systems characterized by
different polydispersities, r; the other parameters are as in Figure 4.2.

acceleration is expected to play a role, since it influences the mobility of the particles

following impact. For brevity, we consider the effect of gravity only for the ‘basic’

system characterized by r = 0.2, kt = 0.0. Here, as the initial configuration we

consider a system prepared under Earth’s gravity and then left to relax until any

dynamics ceases, prior to impact under appropriate g. Figure 4.10 compares the

results for Earth’s gravity with data for several other planets/satellites, specifically,

Pluto, Moon, Mars, Jupiter. We find significantly deeper penetration for smaller

gravitational accelerations, see Figure 4.10. Furthermore, the maximum penetration

is reached at much later times, as expected from the discussion in [31, 72] and in

Section 4.6. Figure 4.11 shows significantly increased mobility of the particles after

impact, confirming the intuitive argument presented above. Note that we modify

only gravitational force on the particles, and not their stiffness, which remains the

same. We also note that change of impact speed due to modified gravity is minor,

only a fraction of a percent.

Effect of System size and reproducibility: System size has been recognized

in previous work as one of the factors which may influence the results [9, 41, 42,
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Figure 4.10 Influence of gravitational acceleration on impact; here, v = 1.0 and
the other parameters are as in Figure 4.2. We chose g’s (given in cm/s2), appropriate
to various objects in the Solar system: Pluto, Moon, Mars, Earth, Jupiter.

71, 72, 79]. To explore this effect, we have carried out additional simulations where

the system size was varied. Since changing the system size also requires changing

the configurations of the particles, which, we affect reproducibility, we also consider

that issue here, that is, we consider the variations between realizations for the same

macroscopic parameters. It is to be expected that changing the initial particle

configuration will lead to different dynamics, and the different realizations give us a

measure of statistical fluctuations on macroscopic properties such as the penetration

depth.

Figure 4.12 shows results for six different system sizes, corresponding to different

depths, H, and widths, W . First we note that despite different visual appearance

of the the detailed trajectories, the final penetration depth (the value reached for

long times) varies only very little (less than a particle diameter) between systems of

different sizes. This variation is smaller than that due to different initial conditions,

and therefore we conclude that for the systems considered here, the system size is

sufficiently large that there is no significant influence on the total penetration depth.

This observation agrees with the experiment results found in [71] and [56]. We note
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Figure 4.11 Snapshots of a granular system after impact under the four larger
gravities considered here (g = 160, 369, 980, and 2479 cm/s2) from Figure 4.10 at
t ≈ 300. Gravity is monotonously increasing from a) to d).

in passing that the presence of overshoot in D(t) is not influenced by the system size,

as also found in a recent experimental work [31].

Next, we comment on the oscillations of the penetration depth that are clearly

visible in Figure 4.12. Perhaps contrary to an intuitive expectation, these oscillations

do not decrease for the largest systems considered here; on the contrary, they increase

in amplitude. Below, we first discuss the origin of these oscillations, and then their

dependence on the system size.

Recall that the penetration depth is defined with respect to the initial (t = 0) top

surface of the granular system. During an impact, the kinetic energy of the intruder is

mostly transferred into elastic energy that propagates through the system in the form

of (damped) elastic waves [9]. (Note that some of the energy goes into friction; this

issue is discussed briefly in the Conclusions.) These elastic waves interact with the

system boundaries, and in the case of the bottom boundary they partially reflect and

lead to an expansion of the whole granular bed. We have confirmed this by comparing

the period of oscillations visible in the Figure 4.12 with the time it takes for the elastic

waves to cross the system twice. For example, note that for shallower systems, the
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Figure 4.12 Influence of the system width, W , and height, H, on the penetration
depth as a function of time. The solid/dashed lines show three realizations of impacts
with the speed v = 1.0/0.1, respectively. The other parameters are as in Figure 4.2.
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period of the oscillations is shorter, as expected based on the above argument. It

is important to note that for the present choice of parameters these elastic waves

do not influence in any significant manner the motion of the intruder relative to the

granular particles surrounding it: they essentially lead to global oscillations of the

system. To confirm this statement, Figure 4.13 shows the depth of the intruder with

respect to the time − dependent position of the interface, calculated at the same

time as the intruder’s position. The long-time oscillation are not visible anymore.

A different regime, with intruders comparable in size to the granular particles, and

therefore more susceptible to the pressure due to the propagating elastic waves, has

been discussed recently [9].

The next question is the influence of the system width, W , on the oscillations.

Again, for the widths considered, there is no influence on the final penetration depth.

More narrow systems, however, lead to increased amplitude of the oscillations. This

is a consequence of our periodic boundary conditions imposed at the right and left

boundaries: the waves propagating right/left from the impact point ‘re-appear’ from

the other side of the domain and increase the oscillatory behavior. In the case

of large systems, these waves lead to non-sinusoidal oscillations, as can be seen in

Figure 4.12 f).

The final question is why don’t the oscillations diminish with the system height,

H, for the system sizes considered here. The answer to this question has to do with

the properties of the elastic waves propagating through the system. It is known that

propagation is enhanced in the systems characterized by stronger compression, or,

correspondingly to some degree, larger volume fractions, as discussed recently [44].

In larger systems, there is stronger gravitational compaction in the deeper layers,

leading to stronger wave propagation and rebound, and correspondingly, to more

visible oscillations. This conjecture is supported by the results for different gravity

(Figure 4.10) where we observe that in the systems under smaller gravity, the oscillations
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Figure 4.13 Penetration depth for a system characterized by W = 100 and H =
200; the impact speed is v = 0.7; the other parameters are as in Figure 4.2.

are weaker as well. We note that for significantly larger systems compared to the ones

considered here, one expects that damping and/or friction would be strong enough

to reduce or eliminate the influence of elastic waves. Consistently, for the systems

considered here, Figure 4.6 shows that stronger damping significantly dampens the

oscillations.

4.5 Microstructure Evolution, Force Networks,

and Granular Dynamics during Impact

In this section, we discuss the internal response of the granular system to impact,

and the role which microstructure plays in determining the macroscopic results, such

as penetration depth. We concentrate in particular on the role which polydispersity,

ordering, and friction play in determining the granular response. We consider two

separate sets of measures to quantify the response: (i) the geometric and topological

properties of the force field evolving in a granular system during impact, and (ii) the

dynamics of the granular particles quantified by measuring affine (conforming) and

non-affine (non-conforming) components of granular motion.
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4.5.1 Properties of the Force Field

Figures 4.14 - 4.17 show snapshot of the normal and tangential forces which granular

particles experience due to impact on a polydisperse system at four different times.

Before the impact itself (part a), we see the force chains due to gravitational compaction,

already discussed earlier. During the impact, we observe approximate isotropic

expansion of the area in which particles experience large normal force. Properties

of this large-force area are discussed next.

One issue of interest is the influence of inter-granular friction on the properties of

the force field. By comparing Figures 4.14 and 4.16, we find no significant differences,

suggesting that the friction model is not crucial in determining the properties of the

normal force field between the granular particles. On the other hand, Figures 4.15

and 4.17 suggest that tangential forces depend much stronger on the friction model.

Recalling now that the penetration depth is much smaller for the particles modeled by

static friction and large Coulomb threshold, viz. Figure 4.7, we conclude that at least

for the systems considered, tangential forces are the ones which play a significant role

in determining the dynamics and final penetration depth of an intruder. The influence

of friction on force network is even more obvious in the impact on hexagonally ordered

system, which we discuss next.

Figures 4.19 to 4.22 show the structure of the normal and tangential force field

during impact on an ordered, hexagonal system. We find that the forces propagate

in very a different way, compared to what we find for an impact on a random,

polydisperse system: in the case of the ordered packing, we see predominant propagation

in the lattice directions, combined with a (weaker) uniform, isotropic front. Therefore,

we conclude that geometric microstructure plays a significant role in determining

the force field in a granular system. We note that any degree of polydispersity and

related disorder leads to a transition from ray-like propagation, shown in Figures 4.19

and 4.21, to isotropic propagation, seen in Figures 4.14 and 4.16. We have confirmed
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this by carrying out corresponding simulations with smaller r’s (not shown here for

brevity). Since we observe larger magnitudes of the forces in the ordered system, we

expect that these larger forces manifest themselves as larger forces on the intruder

itself, and therefore lead to more shallow penetration.
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Figure 4.14 Normal force experienced by the granular particles at four different
times. Here, v = 0.7, and the other parameters are as in Figure 4.2 (kinetic friction).
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Figure 4.15 Tangential force experienced by the granular particles at four different
times for the same parameters as in Figure 4.14 (kinetic friction).

Next we discuss the influence of friction on force propagation in an ordered

system. Regarding normal forces, by comparing Figures 4.19 and Figure 4.21, we
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Figure 4.16 Normal force experienced by the granular particles at four different
times for kt = 0.8kn; the other parameters are as in Figure 4.14 (static friction).

again see no significant differences on the temporal and spatial scales considered.

However, one can still observe the effect of friction on some features of force propagation,

which have been discussed recently from the point of view of elastic versus hyperbolic

force propagation [29, 30]. Static friction is expected to lead to a more elastic-like

response, that is, the force (or pressure) on granular particles is expected to reach

a maximum value directly below the source, while kinetic or no friction, is expected

to lead to a more a hyperbolic-like response, with a pressure dip below the source.

By comparing the results in Figures 4.19 and 4.21 at t = 24, one can observe a

variation of this effect, with the significantly more pronounced force dip below the

source for kinetic or no friction. Figure 4.18 shows this effect precisely: here we show

the normal forces on the granular particles at t = 24 at fixed depth below the surface,

for systems characterized by different friction models, and by different Coulomb

thresholds. We note that having an ordered structure is important to observe this

effect; polydispersity and associated disorder have masked it in Figures 4.14 and 4.16,

which show the normal force for a polydisperse system.

As for the disordered system discussed above, the influence of friction is much

more significant for tangential forces than for normal forces. Figures 4.20 and 4.22
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Figure 4.17 Tangential force experienced by the granular particles at four different
times for the same parameters as in Figure 4.16 (static friction).

illustrate this effect. In addition to observing significantly larger tangential forces

when static friction is included, we again find more hyperbolic-like force propagation

in the case of kinetic friction, and a more uniform, elastic-like response when static

friction is present.

Figure 4.23 shows Fy, the total force on the intruder in the y direction, for

different friction models and polydispersities/ordering. We see that this force is very

large immediately after impact, and then decreases significantly on a very short time

scale. The second, much smaller peak in the force visible in some of the results is

due to reflected elastic waves as discussed before. The influence of these waves on the

intruder dynamics is minor. While we note larger force for impact on polydisperse

particles modeled by static friction model (blue dash-dot line in the part a)), perhaps

the most important observation regarding the results shown in this figure is how

similar they are for the different systems considered here, suggesting that it may be

difficult to extract the main features about the intruder’s dynamics based on this

information alone: recall that the penetration depths differ significantly between the

different friction models and different polydispersities.
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Figure 4.18 Normal force experienced by the granular particles at fixed distances
below the surface due to an impact on a hexagonal lattice at time t = 24; µ = 0 (red
up-triangles); µ = 0.1, kt = 0.0 (green down-triangles); µ = 0.1, kt = 0.8kn (pink
squares), µ = 0.5, kt = 0.0 (black diamonds); µ = 0.5, kt = 0.8kn (blue circles). Here
v = 0.7, the other parameters are as in Figure 4.2.
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Figure 4.19 Normal force experienced by the granular particles at four different
times during impact on a hexagonally ordered system. Here, r = 0.0, and the other
parameters are as in Figure 4.14 (kinetic friction).
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Figure 4.20 Tangential force experienced by the granular particles at four different
times for the same system as in Figure 4.19 (kinetic friction).

x

y

-50 -25 0 25 50-50

-25

0

25

50

Fn

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

T = 6.00

x

y

-50 -25 0 25 50-50

-25

0

25

50

Fn

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

T = 18.00

x

y

-50 -25 0 25 50-50

-25

0

25

50

Fn

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

T = 24.00

x

y

-50 -25 0 25 50-50

-25

0

25

50

Fn

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

T = 12.00

Figure 4.21 Normal force experienced by the granular particles at four different
times for kt = 0.8kn; the other parameters are as in Figure 4.19 (static friction).
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Figure 4.22 Tangential force experienced by the granular particles at four different
times for the same system as in Figure 4.21 (static friction).
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Figure 4.23 The total force on the intruder as a function of time for the following
systems (depth versus time for the systems in part (a) is available in Figure 4.7):
µ = 0 (red dashed); µ = 0.1, kt = 0.0 (green dotted); µ = 0.1, kt = 0.8kn (pink
dash-dot-dot), µ = 0.5, kt = 0.0 (solid black); µ = 0.5, kt = 0.8kn (blue dash-dot).
Here v = 0.7; the other parameters are as in Figure 4.2.
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Topological Properties of the Force Field The force fields, in particular in

disordered systems, may have very complicated structures. Therefore, it is difficult

to extract their generic properties, and to reach, for example, an answer to the

question of global changes of the force field due to impact. For this reason, we

consider topological properties of the force network, by computing its connectivity.

One measure of the connectivity can be formulated in terms of Betti numbers, which

are global topological measures specifying the properties of a network. In particular,

the zeroth Betti number, B0, measures the number of connected components, and

the first Betti number, B1, measures the number of holes inside a network. Clearly,

these quantities depend on the force threshold chosen. For example, if one chooses

zero threshold (considering all the particles), B0, will provide an information about

the fabric of the material. As the force threshold is increased, the number of particles

experiencing a force larger than a given threshold decreases, and consequently, the

topology of the network changes. The computations are carried out using the publicly

available software package [52] CHomP. These computations involve thresholding

a particular force level and producing a binary image (black less than or equal to

the threshold and white above the threshold), and then computing Betti numbers,

measuring connectivity of the resulting images. Here, we will concentrate only on

B0, with the main goal of quantifying the differences between the force networks

developing during impact for different friction models, and for different packings. We

note that here we explore connectivity on the particle scale; an alternative approach

where connectivity is considered on the level of individual contacts is possible as

well [66]. Future work should address the differences, if any, resulting from these two

different approaches to computing connectivity. For brevity, here we concentrate only

on the force fields in polydisperse systems.

Figure 4.24 shows B0’s for the impact on a polydisperse system with (a) kinetic

and (b) static friction. The snapshots of the corresponding force field for the part
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Figure 4.24 Zeroth Betti number, B0, for the normal force during impacts on
polydisperse, r = 0.2, systems with v = 0.7 and (a) kinetic friction; (b) static friction;
the other parameters are as in Figure 4.2. In this and the following figures, B0’s are
normalized by the number of particles, and the forces by the average (normal) force
on all particles. Note that the peaks in the B0’s for F/ < F > ≈ 2 are due to the
elastic waves propagating through the system.
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Figure 4.25 Zeroth Betti number, B0, for the tangential force during impacts on
the systems as in Figure 4.24.
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a) can be seen in Figure 4.14. We see that for very small and for very large forces,

the B0’s are very small, since for very small forces all particles are found to form

a cluster (due to being in contact with each other), while the number of particles

experiencing very large forces is small, so that there are no components/clusters to

be seen. The main difference between the two parts of the figures is larger number of

components/clusters for the system where static friction is included. Recalling more

shallow penetration for the system where static friction is included, we conjecture that

there is a correlation between larger number of components/clusters and corresponding

resistance to an impact. To our knowledge, this influence of static friction on the

structure of force network has not been discussed previously in the literature.

Figure 4.25 shows the tangential forces for the same system as in Figure 4.24.

The information which can be obtained form this figure is consistent with the insight

which we reached by considering the normal forces: larger number of components/clusters

for the systems where static friction is present.

We conclude by summarizing our current results regarding properties of the force

field during an impact. For disordered, polydisperse system, we find the following:

• The main influence of static friction on the force field is a significant increase

of tangential forces;

• Both normal and tangential forces show increased ramification (in the sense of

increased number of components/clusters) in the presence of static friction.

For monodisperse, ordered systems, we find:

• As for polydisperse systems, there is only a minor influence of friction on the

normal forces, while tangential forces are increased strongly by static friction. In

addition, the total force on an intruder is similar for monodisperse ordered and

polydisperse disordered systems, suggesting that it may be difficult to extract
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information about the intruder’s dynamics based on the information about the

total force on the intruder alone.

• The normal force field is highly uniform; however, the tangential force field is

much more structured, suggesting that a significant amount of disorder of the

tangential interactions between the particle is introduced during an impact.

We note that the current results concentrate only on the global, large scale features.

More work is needed to analyze the detailed, local, features of the force fields,

including their temporal evolution.

4.5.2 Properties of the Displacement Field

Next, we consider the dynamics of the granular particles due to impact. It is of

interest to consider both affine/conforming and non-affine/not conforming parts of

the displacement field. For this purpose, we use the approach from [22], which is

explained in Appendix D.

Figure 4.26 shows snapshots of the affine deformation for the polydisperse

systems characterized by different friction models. We show the x and y components

of the vector Af = A · (r(t)− r(t− δt)). These figures reveal outward motion of the

granular particles away from the point of impact (parts a) and b)), downward motion

in the area below the impact, combined with the upward motion at the surface of the

granular bed just next to the impact point. While the results for the two systems are

fairly similar, we see increased mobility for the particles experiencing kinetic friction

only, in particular for the y-component of affine deformation.

Figure 4.27 shows D2
min, measuring the strength of the non-affine component.

This component of motion is more prominent for the case where only kinematic

friction is present; however, the differences between the two cases are only moderate.

As for the earlier results showing forces on granular particles, precise information

about affine and non-affine components of granular dynamics for hexagonally ordered
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Figure 4.26 Affine deformation at t = 24 for impact on polydisperse systems
modeled by different friction models; i and j are the unit vectors in the x and y
directions; here v = 0.7, the other parameters are as in Figure 4.2.
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Figure 4.27 D2
min distribution at t = 24 for impact on polydisperse systems modeled

by different friction models; the parameters are as in Figure 4.26.

systems is also of interest. Figures 4.28 and 4.29 show corresponding results, again

for the systems characterized by kinematic and static friction. for systems prepared

in hexagonal arrays. Here, we also include the L2 norm of the affine deformation

since it provides useful additional insight. Figure 4.28 shows significantly stronger

affine deformation for the kinetic friction case, particularly visible when considering

the norms, parts e) and f) of the figure. Granular particles interacting only by kinetic

friction clearly respond much stronger to an impact. Consistently, Figure 4.29 then

shows that non-affine component is also much more pronounced for the kinetic friction

case, suggesting that static friction reduces also non-affinity of particle motion.

4.6 Comparison to Effective Models and Experimental Results

A simple model for the force describing interactions between an intruder and granular

material can be outlined as follows [83]. The total force on the intruder includes

gravity, and the force due to interaction with the granular material. The force

due to the interaction may be considered as a separable function of two variables,

(y(t), u(t)), where y(t) is the time dependent position of the intruder, and u(t) is its
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Figure 4.28 Affine deformation at t = 24 for impact on monodisperse hexagonal
systems modeled by different friction models; here v = 0.7, the other parameters are
as in Figure 4.2.
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Figure 4.29 D2
min distribution at t = 24 for impact on polydisperse systems modeled

by different friction models; the parameters are as in Figure 4.28.

time-dependent velocity

∑
F = Mg + Fd(y) + Fv(u), (4.1)

where M is the mass of the intruder and the positive y directions points in the

direction of gravity (for simplicity, we also use y to refer to the time dependent depth

of the intruder). It should be noted here that there is a strong assumption that

this separation can actually be done, which is not clear a priori. However, assuming

that this separated model is appropriate, one can proceed to discuss the origin of

the force terms. The depth-dependent force, Fd(y), may be taken to be a result of

resistance by the granular material to impact, which is present even for vanishing

velocity. This force is commonly considered to be due to friction, although it was

recently observed to be present even if frictional effects were absent [72]. As reported

in the literature [31, 42, 72, 83], by exploring analogy with hydrostatic forces which

govern propagation though a Newtonian fluid, Fd(y) is expected to vary linearly with

y, Fd ∝ y for large y, with more complicated behavior expected for smaller y’s [83].

The velocity dependent force, Fv(u), is the inertial drag force, required to push away
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the particles in front of the intruder. For an intruder of diameter D and having

velocity u, a simple argument [83], suggests that this component of the force scales

as Fv ∝ u2, although one can also find evidence for linear scaling F ∝ u [12, 31].

To examine the depth dependent force Fd(y), we consider a number of different

impact velocities, v, and we find the intruder’s acceleration as a function of y, at fixed

u. For brevity, here we discuss only impacts on polydisperse, disordered systems.

Figure 4.30 a), c) and e) shows the results obtained for three systems: Coulomb

threshold µ = 0 (frictionless), and µ = 0.5 with kinetic, kt = 0.0, and static,

kt = 0.8kn, friction. For the frictionless case, shown in Figure 4.30 a), we find

monotonously increasing a(h), with a dependence which can be described reasonably

well by a linear fit, consistent with several previous studies [31, 72]. Friction, however,

leads to modifications not only of the linearity, but also of monotonicity of the a(y)

dependence, as illustrated by parts c) and e) of Figure 4.30, where kinetic and static

friction were considered, respectively. The deviation from monotonicity is particularly

obvious for small y’s, as expected based on the arguments given in [83]. Therefore,

we find that the dependence of intruder’s acceleration on time-dependent penetration

depth, y(t), is strongly influenced by the frictional properties of the granular material.

Let us now consider the dependence of the intruder’s acceleration on its time-

dependent velocity, u. To do so, we again consider different initial velocities, v, and

find a(u) for fixed y. Figure 4.30 b), d), and e) show the results for the three different

friction cases. We extract a(u) for relatively small y’s, where the acceleration is

relatively large, in order to decrease the scatter of the results, and we note that for

the static friction case, we could extract accelerations only for y = 1 − 3, since the

total penetration depth is small here. We note that Figure 4.30 does not show any

obvious y-dependence (that is, for fixed u, a does not appear to depend on y).

By comparing Figures 4.30 b), d) and e), we see that there is a strong influence

of friction on the results. For the parameters considered here, we find approximate
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Figure 4.30 Intruder’s acceleration versus its time-dependent depth, y(t), and time-
dependent velocity, u(t). The impact velocities are v = 0.05, v = 0.1, v = 0.2, v = 0.3,
v = 0.4, v = 0.7, and v = 1.0. The parameters that are not varied are as in Figure 4.2.
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power-law scaling, a ∝ uk only for the frictionless and kinetic friction cases. As seen

in Figures 4.30 b) and d), the fitting exponent, k, is smaller than the proposed value

k = 2 [42, 72, 83]; for the frictionless case, we find a best fit with k ≈ 1.4, and for

the kinetic friction case we find k ≈ 1 [12]. From the frictionless results shown in

Figure 4.30 b) it does appear, however, that the slope increases with the depth, y,

suggesting that different scaling may be found at different depths. We conjecture that

the parameters and penetration depths considered here belong to the ‘intermediate

range’ where there is no precisely defined scaling regime [31].

Clearly, more work is needed to understand precisely the nature of the forces

determining impact dynamics, and their dependence on the quantities such as the

velocity of intruder or its depth. In any case, at least from the point of view

of a comparison with physical experiments carried out, necessarily, with frictional

particles, the most relevant conclusion is that the speed dependence of the force on

the intruder may be influenced strongly by friction model for inter-granular forces .

As pointed out [83], this aspect of the problem is complicated by the fact that most

particle interaction laws include velocity-dependent frictional damping, which may

prevent us from reaching generic answers regarding the dependence of the force on

an intruder on its speed.

Finally, we briefly compare our simulations with the available experimental

results for the dependence of penetration on the falling distance. In the experiments

of Durian et al. [42], it was found that the penetration depth dependence can be well

fitted by D ∝ H1/3, where H = h + D, and h is the falling distance before impact.

Other investigators have found somewhat different results, suggesting D ∝ v [18, 31].

We have already briefly mentioned scaling of D with v, see Figure 4.9, where we saw

that approximately, D ∝ v.

Figure 4.31 shows the results for D for a polydisperse, disordered system (part

a)), and for a monodisperse, ordered system, part b). We find that for an impact
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Figure 4.31 Intruder’s total penetration depth, D, versus H = y+, where h is
the falling distance. Here, we show µ = 0.0 (red circles), µ = 0.5, kt = 0.0 (black
squares), and µ = 0.5, kt = 0.8kn (blue diamonds). The parameters that are not
varied are as in Figure 4.2.

on a polydisperse system, D can be fitted reasonably well by a power-law using an

exponent which is close (although typically a bit smaller) to 1/3. The main deviation

occurs for very small values of H, for which the penetration depth is also very small.

However, the quality of the fit is not sufficient to distinguish between D ∝ H1/3

scaling shown here, or D ∝ v, suggested by Figure 4.9. We do not find a significant

influence of friction model here, aside from significantly smaller penetration depths

for the frictional cases.

For impacts on a monodisperse, ordered system, we find that the results are

significantly different, in particular for the frictional cases. There is no obvious scaling

of the penetration depth with the total falling distance H. This result underscores

the fact that an ordered granular microstructure can have a significant influence on

the penetration, and in particular penetration depth. Future research should show

the generality of this conclusion.
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4.7 Conclusion

In this work, we analyze the response of a granular system to an impact, with

particular emphasis on understanding the influence of granular microstructure on

intruder dynamics. The results show that the grain-scale properties of the granular

system itself play a crucial role in determining the dynamics of an intruder. The

penetration depth is significantly smaller for impacts on ordered granular material,

and the manner in which the forces propagate is strongly influenced by packing.

Stronger frictional interactions between the particles play a major role as well. For

example, different friction may lead to a change from overshoot to a monotonous

increase of penetration depth with time, suggesting that friction plays an important

role in determining the nature of the forces that an intruder experiences during

impact. Analysis of topological properties of the force field inside the granular

materials suggests a strong influence of tangential forces between the granular particles,

consistent with the observation that stronger frictional interaction leads to shallower

penetration. By analyzing the force field in the granular material, we also confirm

the proposed result that static friction leads to a transition from a hyperbolic to an

elliptic type of force propagation. A more pronounced pressure dip may be seen below

the point of impact in the case of a kinetic friction type of interaction between the

granular particles, compared to the static friction case.

To illustrate the influence of friction and of elastic damping on the dynamics,

we discuss briefly the evolution of the energy in the system consisting of the intruder

and granular particles. Figure 4.32 shows the total, kinetic, potential, and elastic

energies as a function of time for combined intruder/granular particles system. For

brevity, only the results obtained for polydisperse systems are shown, since the results

for ordered monodisperse packings are similar. The total energy, which is the sum

of the others shows a monotonous decrease and illustrates faster loss of energy for

the systems with friction (kinetic or static). Part b) shows that kinetic energy is lost
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very quickly, again faster in the case of frictional systems. Parts c) and d) show that

the exchange of energy between potential and elastic components persists for much

longer times; the dynamics associated with this exchange is rather weak however, and

therefore its signature is not seen in the plot of kinetic energy.

We conclude that the energy evolution is similar for the three types of systems

considered here, with the differences between static and kinetic friction models being

surprisingly minor. Therefore, energy balance on its own does not provide a complete

picture, since, as can be seen clearly in, e.g., Figure 4.7, static friction leads to a

significant decrease in the penetration depth. It is clearly necessary to go beyond

energy balance and explore the structure of the force field and dynamical response

of granular media, in order to gain a better understanding of the interaction of an

intruder with a granular system, and its consequences on the final penetration depth.
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Figure 4.32 Combined energy of the intruder and granular particles during impact
for three systems characterized by different frictional properties; penetration depth
versus time is shown in Figure 4.7. Here we show the results for: µ = 0 (red dashed);
µ = 0.5, kt = 0.0 (black solid), and µ = 0.5, kt = 0.8kn (blue dash-dot). The
parameters are as in Figure 4.7.



CHAPTER 5

HOPPER FLOW

5.1 Introduction

We report on two independent sets of simulations of the flow out of a hopper. The

geometry of the setup is taken directly from the experiments reported by Tang and

Behringer [80]. Then, the material properties of the granular particles are used to

obtain the parameters entering the model. The simulations are based on discrete

element simulations of elastic, frictional, disk-like particles. In comparing between

the simulations and experiments, we concentrate, in particular, on the survival times

(time between consecutive jams) and on the time needed to completely empty the

hopper. In addition, we consider velocity and pressure fields in the hopper, as well as

their fluctuations.

5.2 System Setup and Material Parameters

In the experiment [80], particles are poured in a hopper consisting of front and back

walls, which are placed slightly over one-particle-size apart. After particles are placed

in the hopper, the outlet is opened, and the particles flow through under gravity. In

simulations, we attempt to reproduce as closely as possible the experimental flow

geometry. Figure 5.1 shows the setup used. The width of the hopper is 43 cm. The

size of the outlet and the slope of the hopper walls can be controlled. There is a total

of 8750 particles, which are bidisperse disks, 62% of which are of diameter 0.602 cm,

and 38% are of diameter 0.770 cm. The width of the particles is 0.32 cm. The material

properties of the particles provided are as follows:

• density ρ = 103 kg/m3;

• Young’s modulus Y = 4.8× 106 Pa;

97
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Figure 5.1 Hopper Setup. Particles in the hopper are colored according to the
normal force experienced. Gravitational compaction leads to larger forces in the
lower parts of the hopper.

• Poisson ratio σ = 0.5;

• Coefficient of static friction µ = 0.7− 0.8.

• diameter 0.77 or 0.602 cm.

5.3 Simulation Protocol

Initially, given the outlet size D and the angle, θ, of the inclined walls with the

horizontal, particles are placed in the area above the inclined walls on a square lattice.

Each particle’s diameter is determined by a random number generator. The generator

randomly produces a value between 0 and 1. If the number is greater than or equal to

0.62, the particle diameter is taken to be 0.602 cm, otherwise the particle diameter is

0.77 cm. Then, particles are left to settle under gravity (with hopper outlet closed).
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The obtained configuration is used as initial condition for the simulations of the flow

out of the hopper. As discussed later, we have found that it is necessary to carry out

multiple realizations of the flow process in order to reduce statistical noise. For each

realization, we re-generate initial configuration by changing the seed for the random

number generator, leading to a different initial configuration.

The simulations carried out with smaller size of the outlet, D, lead to particles

that jam at the outlet, as in the experiments. To unjam the flow, we shake the inclined

hopper walls - similarly as in the experiments where a controlled tap is applied to

unjam the flow. To monitor for possible jamming, in the simulations we keep track of

the number of particles in the area just below the hopper outlet, of the height equal

to 2d. If no particles are found in this region during time

tcheck = 2

√
d

g
, (5.1)

the flow is assumed to be jammed. This value of tcheck is found to be sufficiently long

to ensure that the system is indeed jammed. On the other hand, it is sufficiently

short so that it does not lead to a large inaccuracy of the results for jamming time,

discussed below. This inaccuracy results from the fact that during tcheck, it is not

known whether the system is jammed or not. The error of estimating survival time

in this way is found to be of the order of 0.1 second. The shake itself consists of a

single sinusoidal oscillation of amplitude and duration chosen in such a way that it

is (almost always) sufficient to unjam the system, without disturbing it significantly.

In rare occasions when a single oscillation is not sufficient to unjam the system,

consecutive oscillation(s) are applied.

In what follows, we will discuss the empty time (time to empty the whole

hopper) and the survival time. The empty time is calculated as the total time it

takes to empty all the particles in the hopper, subtracting the shaking time, if any.

Figure 5.2 illustrates how the survival time is defined: it is the time between two
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Figure 5.2 Survival time diagram.

consecutive jams/shakes. In our calculation of the survival time, we have not included

the time period between after the last shake.

5.4 Calibration of the Model

In our preliminary work, we have carried out single realization simulations where we

varied the parameters entering the model. The parameters on which we concentrate

are the ones which are not precisely known: the coefficient of restitution, en, the

friction coefficient, µ, and the force constant, kn.

Tables 5.1 and 5.2 show the results for the mean survival time for given hopper

outlet size, D, and the hopper angle, θ, for a set of values of en, µ and kn for both

granular particles and the walls. Table 5.1 concentrates on the case where the flow

jams frequently (small outlet); Table 5.2 considers the case where jamming is not

observed (large outlet).

The conclusions of the single realization results are as follows:

• Empty times appear insensitive to the model parameters. They are also close,

although slightly shorter compared to the experimental value for the same set

of parameters, which is reported as 15.87± 0.05 seconds.
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Table 5.1 Mean Survival Time for Varied System Parameters of Outlet Size D =
2.7 cm and Angle θ = 45◦ (Single Realization Results)

system en wall en system µ wall µ particle kn mean survival time (second)

0.5 0.5 0.5 0.8 3350.70 6.20

0.5 0.5 0.6 0.8 3350.70 5.60

0.5 0.5 0.7 0.8 3350.70 2.11

0.5 0.5 0.8 0.8 3350.70 2.76

0.8 0.5 0.5 0.8 3350.70 6.14

0.8 0.5 0.6 0.8 3350.70 5.82

0.8 0.5 0.7 0.8 3350.70 3.03

0.8 0.5 0.8 0.8 3350.70 16.54

0.5 0.3 0.8 0.8 3350.70 8.47

0.5 0.8 0.8 0.8 3350.70 5.24

0.5 0.5 0.8 0.5 3350.70 4.55

0.3 0.5 0.8 0.8 3350.70 2.89

0.5 0.5 0.8 0.8 1000.00 14.46

0.5 0.5 0.8 0.8 3000.00 4.43

0.5 0.5 0.8 0.8 5235.00 5.56
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Table 5.2 Empty Time for Varied System Parameters of Outlet Size D = 4.5 cm
and Angle θ = 60◦ (Single Realization Results)

system en wall en system µ wall µ empty time (second)

0.5 0.5 0.5 0.8 12.16

0.5 0.5 0.6 0.8 12.54

0.5 0.5 0.7 0.8 13.07

0.5 0.5 0.8 0.8 13.23

0.8 0.5 0.5 0.8 12.17

0.8 0.5 0.6 0.8 12.46

0.8 0.5 0.7 0.8 12.95

0.8 0.5 0.8 0.8 13.22

• Survival times resulting from single realization results are characterized by a

large variation, and there is no clear influence of the material parameters. We

note in passing that simulations carried out without static friction, µ = 0, or

with completely elastic particles, en = 1.0, do not lead to jamming, suggesting

importance of both static friction and inelasticity.

The results regarding survival time suggest that a single realization is not sufficient

to obtain statistically relevant results. For this reason, we have carried out multiple

(40) realizations in order to improve the statistics. Due to computational expense

involved, we have carried out the multiple realizations only for one set of parameters

defined as follows: system particles: en = 0.5, µ = 0.7; walls: en = 0.5, µ = 0.7,

kn = 3350.70. This value of kn is obtained using the procedure described above.

5.5 The Mass Flow Rate

Studies on granular flow through an outlet have been carried on for a long time.

Experimental studies on this subject have been done by many earlier researchers.
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W

H

D

Figure 5.3 Diagram of a hopper.

One aspect among them is the discharge rate through the outlet, and some general

agreements have been achieved.

The effect of the size of the hopper and the quantity of material in the hopper,

as shown in Figure 5.3, is little. Here, W is the width of the hopper, D is the width

of the outlet, and the material height in the outlet is noted as H. It was reported [23]

in 1955 that the discharge rate remains constant as long as the height of the material

is greater than the width of the hopper, i.e. H > D. Later in 1959, similar result [68]

was reported and supported the idea that the discharge rate is independent of H until

the hopper is almost empty though the precise value of the critical height is not clear.

On the other hand, the dependence on D is weak as well provided W − D > 30d,

where d is the particle diameter.

We see that the relevant characteristic size is D not H or W , if ignoring the

possible effect of d. By comparing dimensions between the mass flow rate V

[V ] = MT−1
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and the independent parameters

[g]a[ρ]b[D]c =
La

T 2a

M b

L3b
Lc,

where g is the gravitational acceleration and ρ is the bulk density. The dimensional

analysis implies that V ∝ ρg1/2D5/2.

The interesting power 5/2 can be physically explained. Particles above the

outlet seem to have an arch-shaped free-fall zone, whose characteristic size is somehow

proportional to the outlet size D. In the zone, particles fall freely under gravity. So

the velocity of the particle, v, is proportional to D1/2 and therefore the mass flow rate

V = ρvA,

where A is the flow area, is proportional to D5/2.

Then in 1961, Beverloo found that the power 5/2 varies slightly with different

particle diameter d, so he correlated this relation with d and proposed the currently

widely accepted law that predicts the mass flow rate of granular materials through

an outlet, which has the form:

V = Cρb
√
g(D − kd)5/2. (5.2)

Here V is the mass flow rate through the outlet, ρb is the bulk density, g is the

acceleration of gravity, d is the mean diameter of the particles in the hopper, D is

the width of the outlet, as shown in Figure 5.3. C and k are fitting coefficients.

Both of the coefficients are required to be determined experimentally for every single

kind of grains and container properties. The value of C may depend on the friction

coefficient, and the other coefficient k generally depends on the particle shape and

the slope of the hopper. The validity of the Beverloo law has been tested only for

D � d so that no jamming event would take place due to the formation of domes

(3D) or arches (2D).
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Table 5.3 Mean Survival Time Data (Algebraic Means) over 40 Realization Runs

outlet properties mean survival time (second) number of jamming events

D = 2.7 cm, θ = 15◦ 3.06 524

D = 2.7 cm, θ = 30◦ 3.53 371

D = 2.7 cm, θ = 45◦ 4.5 261

D = 2.7 cm, θ = 60◦ 6.55 98

D = 2.9 cm, θ = 15◦ 5.58 228

D = 2.9 cm, θ = 30◦ 6.62 146

D = 2.9 cm, θ = 45◦ 6.45 124

D = 2.9 cm, θ = 60◦ 10.10 47

D = 3.1 cm, θ = 45◦ 8.0 48

D = 3.3 cm, θ = 45◦ 10.89 26

D = 3.5 cm, θ = 45◦ 12.53 8

In the same way, in a two-dimensional structure, the Beverloo equation reduces

to

V = Cρb
√
g(D − kd)3/2. (5.3)

5.6 Results

Here we present the results of multiple realization simulations, concentrating first

on the survival times which appear to be the most challenging part regarding direct

comparison to the experiments. We then proceed with comparing the remaining

results available from the experiments [80].

5.6.1 Survival Times

Table 5.3 gives the algebraic mean for the survival times averaged over 40 realizations,

together with the total number of jamming events.
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As pointed out [80], one may expect that the distribution of survival times

obeys Poisson process, that is, the probability that the flow will survive for time t

without being jammed is given by P (t) ∝ exp(−t/τ). To test this model, we consider

the distribution of survival times in our simulations. Figure 5.4 shows the results for

given D and θ. The main conclusions which can be reached are as follows:

• For small outlets, D (Figures 5.4 a) - d)) , we find very good exponential fit to

distribution of the survival times, in agreement with the experiments;

• Still for small outlets, the survival times do not appear to depend on the hopper

angle, θ, again in full agreement with the experiments (vis. Figure 5.4 b) and

c));

• For larger outlet sizes (Figures 5.4 e) and f)), the quality of the fit is not as good

anymore, as confirmed by considering χ2 values of the fits’ quality. Clearly, the

statistics is not as good for these data, due to a small number of data points

available.

Table 5.4 summarizes the data obtained from the exponential fitting, together with

the standard deviation of the results for survival times obtained in this manner.

By comparison of the average data and the exponential fits (Tables 5.3 and 5.4,

respectively), we see that for large D’s, there is a relatively large discrepancy between

the time resulting from the fits and from algebraic means (if the Poisson distribution

were indeed satisfied, these results would have been close to each other, as for the

case of small opening size).

Figure 5.5 shows together the simulation data for mean survival times and

the ones resulting from the experiments [80]. We see that both experiments and

simulations can be very well fitted by an exponential, although the coefficient in

the exponent and prefactor are different. Experimental survival times increase faster

with D compared to the simulation ones. We discuss below some possible reasons



107

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 4.58)

(a) D = 2.7 cm, θ = 45◦, χ2 = 0.9970

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 6.38)

(b) D = 2.9 cm, θ = 45◦, χ2 = 0.9806

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 6.26)

(c) D = 2.9 cm, θ = 30◦, χ2 = 0.9862

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 11.49)

(d) D = 3.1 cm, θ = 45◦, χ2 = 0.9502

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 7.39)

(e) D = 3.3 cm, θ = 45◦, χ2 = 0.8373

t (second)

P
(t

)

5 10 15 200

0.2

0.4

0.6

0.8

1

P(t) = exp(- t / 11.24)

(f) D = 3.5 cm, θ = 45◦, χ2 = 0.9429

Figure 5.4 Distribution of survival times for D = 2.7 cm and θ = 45◦. The data
are obtained from 40 realizations.
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Table 5.4 Mean Survival Times and Standard Deviations from Exponential Fitting
over 40 Realization Runs

outlet properties θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦

D = 2.7 cm (3.23, 0.03) (3.22, 0.06) (4.57, 0.02) (6.25, 0.03)

D = 2.9 cm (5.03, 0.04) (6.25, 0.02) (6.37, 0.03) (9.26, 0.06)

D = 3.1 cm (11.49, 0.04)

D = 3.3 cm (7.4, 0.2)

D = 3.5 cm (11.24, 0.09)
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m
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exp(3.058 D)

Figure 5.5 Dependence of survival times on the outlet size.

for this discrepancy. Encouraging results is that the general features of the results

(exponential dependence) is consistent between the simulations and experiments.

Finally, we discuss whether there is any evidence that survival times may depend

on the amount of material in the hopper itself. Figure 5.6 shows the distribution of

the number of times jamming occurred as a function of elapsed time for four opening

sizes. Within the statistical fluctuations, the jamming times appear to be independent

of the elapsed time and therefore on the amount of material in the hopper.
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(c) D = 3.1 cm.
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(d) D = 3.3 cm.

Figure 5.6 Distribution of survival times as function of elapsed time from the
beginning of simulations. Here, θ = 45◦. The data are obtained from 40 realizations.
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5.6.2 Time to Empty the Hopper and the Mass Flux

Next we discuss the time needed to empty the whole hopper and the corresponding

mass flux. Here we consider both small and large outlet sizes (for large outlets

jamming is not observed). The results are shown in the context of Beverloo equation [5]

which predicts the mass flow rate of the following form (in two spatial dimensions)

V = Cρb
√
g(D − kd)3/2. (5.4)

Here V is the mass flow rate through the outlet, ρb is the bulk density, g is the

acceleration of gravity, d is the mean diameter of the particles in the hopper, D is the

width of the outlet. C and k are fitting coefficients. The value of C may depend on

the friction coefficient, and k generally depends on the particle shape and the slope

of the hopper. The validity of the Beverloo law has been tested for D � d so that

no jamming takes place. Here we check the validity of the proposed scaling for both

small and large D’s.

Figures 5.7 and 5.8 shows the results for the flux, V , for different outlet sizes.

The part a) shows that the scaling predicted by the Beverloo formulation is satisfied

for both small and large outlets. The part b) of this figure shows that the constant

k in the Beverloo equation indeed strongly depends on the hopper angle, θ, and it

strongly decreases for large θ, as expected based on geometric considerations.

Table 5.5 summarizes the results for empty times for the considered outlet

sizes and hopper angles. The results are close to the experimentally observed ones

(typically within 10− 20%).

Figure 5.9 shows the number of particles in the hopper for the case of large

opening (D = 4.5 cm), as a function of time for different hopper angles. We see

that the mass flux (the rate at which the number of particles decreases) is essentially

constant, during any given simulation, except close to the end of a simulation and
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Figure 5.7 Mass flux for θ = 45◦.
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Figure 5.8 Dependence of the constant k from Eq. (5.4) on the outlet angle, θ.
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Table 5.5 Mean Empty Time Data (Averages over 40 Realizations are Used for
D ≤ 3.5 cm, and Single Realizations are Reported for Larger D’s Since If There is
No Jamming, the Fluctuations between Realizations are Negligible.)

outlet properties θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦

D = 2.7 cm 45.93 41.08 34.45 29.37

D = 2.9 cm 39.12 34.88 30.44 27.44

D = 3.1 cm 27.83

D = 3.3 cm 25.25

D = 3.5 cm 22.82

D = 4.1 cm 20.19 18.96 17.27 15.23

D = 4.3 cm 18.40 17.42 15.76 13.87

D = 4.5 cm 17.12 16.09 14.52 12.76

for small outlet angles. Note that the hopper with θ = 0◦ never empties since some

particles remain at the bottom wall.

5.6.3 Results for Velocities and Pressures

We proceed to discuss the results for the velocities and pressures in the hopper. We

compute these quantities by averaging over cells of size 2 × 2 (in units of d) and

furthermore carrying out time averaging as done in the experimental part of the

project. More precisely the results are first time-averaged over the interval of 1/100

second, and then the obtained values are averaged over the part of simulation during

which considered part of the domain is filled up with particles. The fluctuation plots

show standard deviation of the 1/100 second averages. In this section, we concentrate

on large outlets where the flow does not jam.

Figure 5.10 shows the velocity vectors at three consecutive time outputs for the

specified simulation. We show three snapshots to illustrate variability of the velocity

field both in space and in time.
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Figure 5.9 Number of particles in the hopper as a function of time for different
hopper angles (D = 4.5 cm).
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Figure 5.10 Velocity vectors at three consecutive output times (averaged over 1/100
second). Here D = 4.1 cm, θ = 60◦.
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Figure 5.11 shows contour plots of the averaged velocities for two outlet angles.

We find very similar results as in experiments. To illustrate the degree of fluctuations

of velocities, we also show standard deviation of the velocity field in Figure 5.12 for

θ = 60◦. In general, we find that the results for velocities are very similar to the ones

found in the experiments [80].

Figures 5.13 and 5.14 show the pressures (more precisely, the normal force

which particles experience, in units of mg), averaged over space and time in the same

manner as the velocities above. These results again show close resemblance to the

experimental ones.

5.7 Summary

To conclude, we discuss the main conclusions and in particular the possible reasons

for some discrepancies between the experiments and simulations.

• There is a good agreement between simulations and experiments for a number

of results: times to empty the container, the Beverloo equation predictions, the

exponential dependence of the survival times on the size of the outlet, all show

very good agreement.

• Pressure and velocity fields, as well as their fluctuations closely follow the ones

found in the experiments.

• Survival times, although follow the same (exponential) distribution for small

outlet sizes as in experiments, overestimate the survival times for the small

outlets and underestimate it for the large ones. It should be noted that the fit

to exponential distribution is only qualitative for large outlets, which may be one

of the reasons for the discrepancy. The other reasons may be (i) over-simplified

modeling - the effects such as rolling friction, nonlinear force laws; velocity

dependent coefficient of restitution may have an effect; (ii) the experimental
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(a) Velocity magnitude, θ = 60◦.
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(b) Velocity magnitude, θ = 15◦.
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(c) x-component of velocity, θ = 60◦.
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(d) x-component of velocity, θ = 15◦.
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(e) y-component of velocity, θ = 60◦.
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(f) y-component of velocity, θ = 15◦.

Figure 5.11 Averaged velocity fields for outlet size of D = 4.5 cm and two outlet
angles. Absolute values of velocity components are shown. Slight waviness next to
the hopper walls is due to cell-averaging procedure.
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(a) Velocity magnitude.
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(b) x-component of velocity.
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(c) y-component of velocity.

Figure 5.12 Fluctuation of velocity components (D = 4.5 cm, θ = 60◦).
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(a) θ = 60◦.

x

y

-27 -18 -9 0 9 18 270

10

20

30

40

0.15
0.135
0.12
0.105
0.09
0.075
0.06
0.045
0.03
0.015
0

(b) θ = 15◦.

Figure 5.13 Averaged pressure fields for outlet size of D = 4.5 cm and two outlet
angles.

x

y

-27 -18 -9 0 9 18 270

10

20

30

40

0.15
0.135
0.12
0.105
0.09
0.075
0.06
0.045
0.03
0.015
0

(a) θ = 60◦.
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(b) θ = 15◦.

Figure 5.14 Fluctuations of pressure fields for outlet size of D = 4.5 cm and two
outlet angles.



118

effects not included in the model, such as air drag and/or interaction with the

front and back wall of the hopper.



CHAPTER 6

CONCLUSIONS

In this work, we have considered a few different granular systems and discussed

the issues of granular flow and associated energy propagation. In Chapter 2, we

provide an overview of the results in simple 1D geometry. These results suggest that

a continuum model describing accurately energy propagation should be based on a

complex nonlinear wave-type of equations leading to solitary wave type solutions. In

Chapter 3, we carry out extensive discrete element (DEM) simulations, discussing

in particular propagation of energy from an oscillating boundary. It turns out that

a significant insight can be reached by adding a spatial structure to the excitation

itself, since comparison to any continuum model becomes much more demanding.

This comparison shows that at least for the considered systems, a good agreement

can be found by considering a rather simple continuum model - linear wave equation

with damping - in place of more complex nonlinear models discussed in the 1D case.

While we do not have a precise answer to the question on why such a good description

is possible in (more complex) 2D systems, we expect that the disorder of polydisperse

(different size) granular particles plays a significant role.

In Chapter 4, we consider force and energy propagation in a system exposed to

the impact of a large scale intruder. Again using DEM simulations we discuss response

of a granular system to impact, and discuss the processes which govern this response.

An additional insight here is reached by considering topological features describing the

structure of the force field which develops during impact. These measures, combined

with other techniques, allow us to quantify the role of various material properties,

such as inter-particle friction, on the force and energy propagation. Furthermore,

we discuss a number of scaling laws determining, for example, the depth which an
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intruder reaches as a function of its initial velocity. One of the main findings is that

inter-particle friction may play a significant role in determining these scaling laws.

The final part of this work, reported in Chapter 5, discusses a slightly different

problem of a hopper flow. In particular, we consider situations where a hopper

becomes jammed (particles do not flow) and discuss the quantities determining the

jamming behavior. We carry out an extensive statistical analysis of the data, since

it turns out that the results are strongly realization dependent. One of interesting

results here is that the probability of jamming does not appear to depend significantly

on the amount of material in the hopper itself.

To conclude, we have carried out extensive discrete element simulations of dense

granular materials. Whenever possible, we have compared the simulation results to

those obtained for the continuum models, and have clearly identified the situations

where continuum models provide a realistic and accurate description of the considered

systems. We expect that the results presented here will serve as a basis for future

work in this exciting field.



APPENDIX A

MODELING PARTICLE INTERACTIONS

A.1 Force Model

We use a two-dimensional Discrete Element Method (see Appendix B), of disks.

Figure A.1 displays two particles, i and j, in collision. We simulate collisions of

soft particles, so there are deformations during collision. To model derformations,

we simply assume these two particles can slightly overlap each other on the contact

point. The governing equations of the linear motion and rotational motion exerted

on particle i by the collision are:

mi
d2ri
dt2

= mig +
∑
j

(F n
i,j + F t

i,j), (A.1)

Ii
dωi
dt

= −
∑
j

1

2
dini × F t

i,j. (A.2)

Here, the index i runs from 1 to the total number of particles used in a system and

the index j runs through all particles which collide with particle i. mi is the mass

of particle i, Ii is the particle’s moment of inertia, ri is the position vector, ωi is

the vector of angular velocity, di is the diameter, the normal direction of particle i is

defined as pointing from the other particle j to itself, i.e.,

ni =
ri − rj
|ri − rj|

,

and F n
i,j and F t

i,j are the force exerted on particle i in its normal and tangential

directions, respectively. Its tangential direction will be defined later.

We use the so-called linear spring-dashpot model. In the normal direction, a

spring is assumed placed between particles i and j, so the expression for the normal
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force is given by

F n
i,j = knxni − γnm̄v n

i,j .

Here,

x = max{0, 1

2
(di + dj)− (ri − rj) · ni}

is the overlap between particles i and j in the normal direction, kn is the normal

spring constant, γn is the normal damping coefficient,

m̄ =
mimj

mi +mj

is the reduced mass for this two-body collision. v n
i,j is the relative velocity in the

normal direction between particles i and j. First, the relative velocity between two

particles is given by

vi,j = (vi − vj)−
1

2
(ωidi + ωjdj)ez × ni

where vi and vj are velocity vectors of particle i and j, respectively. Particles can

only rotate in the plane, so both the x and the y components of the angular velocity

are zero. In other words, ωi and ωj denote the z component of particle i’s and j’s

angular velocities. In addition, the relative velocity in the normal direction is defined

through the normal direction by

v n
i,j = (vi,j · ni)ni

=

{[
(vi − vj)−

1

2
(ωidi + ωjdj)ez × ni

]
· ni
}

ni

= ((vi − vj) · ni)ni.
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Figure A.1 Diagram of two particles interaction.

Furthermore, the tangential direction is defined through the relative tangential

velocity,

ti =
v t
i,j

|v t
i,j|
,

and the relative tangential velocity is given by

vti,j = vi,j − vni,j

= (vi − vj)− (ωidi/2 + ωjdj/2)ez × ni − [(vi − vj) · ni]ni

= (vi − vj) + (ωidi/2 + ωjdj/2)(ny,−nx)− (vi − vj) · (nx, ny)(nx, ny)

= (vxi,j, v
y
i,j) + (ωidi/2 + ωjdj/2)(ny,−nx)− [vxi,jnx + vyi,jny](nx, ny)

=
[
vxi,j + (ωidi/2 + ωjdj/2)ny − (vxi,jnx + vyi,jny)nx ,

vyi,j − (ωidi/2 + ωjdj/2)nx − (vxi,jnx + vyi,jny)ny
]

=
[
vxi,j + (ωidi/2 + ωjdj/2)ny − (vxi,jnxnx + vyi,jnxny) ,

vyi,j − (ωidi/2 + ωjdj/2)nx − (vxi,jnxny + vyi,jnyny)
]
.

It is known that the friction force should be bound from above by the coefficient of

static friction, µ multiplied by the normal force. Using a damping term to estimate
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Figure A.2 Direction of ξ.

the friction, one comes up with the following ‘kinematic friction model’

F t
i,j = −min(γtm̄|v t

i,j|, µ|F n
i,j|)ti (A.3)

where γt is the tangential damping coefficient. We take γt = γn/2. One problem with

this model is that when v t
i,j = 0, the tangential force vanishes. This is not realistic,

since, for example, a pile of sand at rest does not collapse. To overcome this problem

and in order to depict both the dynamic friction and the static friction, another

spring is introduced in the tangential direction, see Figure A.1. When a collision is

established between two particles, a spring is assumed to be attached to the contact

point in the tangential direction as well, and the tangential deformation is defined by

ξ =

∫
t

v t
i,j(t)dt. (A.4)

Since the direction of ξ is defined through the direction of the tangential velocity v t
i,j

and the tangential velocity may change directions from time to time, the direction of ξ

after the integration is not actually in the current tangential direction. See Figure A.2

for example. Suppose v t
i,j is v1 at time t, after one simulation time dt, v t

i,j becomes

v2, then the direction of ξ at time t + dt is in the same direction as v3 according

to Eq. A.4. However, the direction of the tangential spring should be always in the

same direction as the tangential direction, which is also defined in the same direction

of v t
i,j. So the direction of ξ at time t + dt has to be in the same direction as v2.

For this reason, at each simulation time, we remap ξ to use the actual tangential
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deformation.

ξ ← ξ − ni(ni · ξ), (A.5)

and the newly assigned ξ on the left side of Eq. (A.5) is the correct tangential

deformation coming into the following calculation. Now the tangential force is obtained

first through a test force,

Ft
test = −ktξ − γtm̄vti,j (A.6)

where kt and γt are the spring constant and damping constant in the tangential

direction. If the test force is less than the static friction threshold

|Ft
test| < |µFn

i,j|,

then we have static friction and ξ still goes by definition, i.e.,

ξ ← ξ + vtdtMD

where dtMD is one simulation time step, and the test force is the tangential force,

Ft
i,j = Ft

test.

If, on the other hand, the test force is greater than the static friction threshold,

|Ft
test| > |µFn

i,j|,

then dynamic friction comes into play. Thus, we take the threshold as the magnitude

of the tangential force converted into the current tangential direction

Ft
i,j = µ|Fn

i,j|
Ft
test

|Ft
test|

and retrieve the tangential deformation from Eq.(A.6) as the new ξ

ξ = − 1

kt
(µ|Fn

i,j|
Ft
test

|Ft
test|

+ γtF
t
i,j).
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We refer to tangential force defined above as Model II, and tangential force given by

Eq. (A.3) as Model I. Model I is also specified by kt = 0.0 and kt 6= 0.0 for Model II.

Here kt = 0.0 simply indicates there is no tangential spring.

A.2 Key Parameters

In the simulation, we have to choose the values of all the parameters. Some of them

are easy to give, i.e., the mass and the diameter of the particles, but some are not so

obviously determined, i.e., the spring constant. Thus, in this section, we retrieve the

information from analysis of the material properties.

Collision time tcol: In the MD simulation, all the values of particles are integrated

over a ’small’ time step. Thus, we need to know the duration of a typical collision

between two particles. This collision time tcol is connected with the material properties

of the particles we simulate. We start with the commonly used nonlinear equation

[43], since the shape of the deformation depends on the compression and a linear

model is not accurate enough to estimate the collision time.

m̄
d2x

dt2
+ ηd xγ

dx

dt
+ Ed xβ+1 = 0,

where x is still the compression between particles, d is the diameter of a particle,

m̄ = (m1 +m2)/m1m2 is the reduced mass of the collision, m1 and m2 being the mass

of the two particles, and η and E are the material constants. The bulk modulus,

E = Y/[3(1 − σ2)], depends on the Young’s modulus Y and the Poisson ratio σ. η,

on the other hand, depends on both the bulk modulus and the shear modulus.

Integrating the last term in the above equation, we can obtain the expression

for the elastic energy Ee stored during the collision, as

Ee =
Ed

β + 2
xβ+2.
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Upon impact, the initial kinetic energy is converted partly into a reduced kinetic

energy and partly into elastic energy. Thus, we write

1

2
m̄v2

0 =
1

2
m̄(

dx

dt
)2 +

Ed

β + 2
xβ+2, (A.7)

where v0 is the initial impact velocity. The velocity drops to zero when the two

particles have penetrated each other at maximal distance, xmax. At that moment,

dx/dt = 0, and we have

xmax =

(
1 +

β

2

) 1
β+2 ( m̄

Ed

) 1
β+2

v
2

β+2

0 .

Thus, the entire duration of the collision is obtained by integrating Eq. (A.7)

tcol = 2

∫ xmax

0

dx√
v2

0 − 2Ed
m̄(β+2)

xβ+2
.

Let y = xβ+2,

tcol = 2

∫ (1+β
2

) m̄
Ed
v2
0

0

1
β+2

y−
β+1
β+2dy√

v2
0 − 2Ed

m̄(β+2)
y
.

Let y = z2,

tcol =
2

β + 2

∫ √(1+β
2

) m̄
Ed
v0

0

z−2β+1
β+2 2zdz√

v2
0 − 2Ed

m̄(β+2)
z2
.

Let z =
√

(1 + β
2
) m̄
Ed
v0α,

tcol =
2

β + 2

∫ 1

0

2
[
(1 + β

2
) m̄
Ed
v2

0α
2
]−β+1

β+2 (1 + β
2
) m̄
Ed
v2

0αdα√
v2

0 − v2
0α

2

=
2

β + 2

[
(1 +

β

2
)
m̄

Ed

] 1
β+2

v
1−2β+1

β+2

0

∫ 1

0

2α1−2β+1
β+2

√
1− α2

dα

=
2

β + 2

[
(1 +

β

2
)
m̄

Ed

] 1
β+2

v
− β
β+2

0

∫ 1

0

2α−
β
β+2

√
1− α2

dα.
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Let α = sin θ,∫ 1

0

2α−
β
β+2

√
1− α2

dα =

∫ π/2

0

2(sin θ)−
β
β+2 cos θ

cos θ
dθ =

∫ π/2

0

2(sin θ)−
β
β+2dθ.

Considering the Beta function

B(x, y) = 2

∫ π/2

0

(sin θ)2x−1(cos θ)2y−1dθ,

and taking x = 1
β+2

and y = 1
2
, we have∫ 1

0

2α−
β
β+2

√
1− α2

dα = B(
1

β + 2
,
1

2
) =

Γ( 1
β+2

)Γ(1
2
)

Γ( 1
β+2

+ 1
2
)

=
Γ( 1

β+2
)Γ(1

2
)

Γ( β+4
2β+4

)
=

√
πΓ( 1

β+2
)

Γ( β+4
2β+4

)

since

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y),

and

Γ(
1

2
) =
√
π.

Finally,

tcol = I(β)

[
1 +

β

2

]1/(2+β) [ m̄

Ed1−β

]1/(2+β)

v
−β/(2+β)
0 . (A.8)

and

I(β) =

√
πΓ
(

1
2+β

)
(1 + β/2)Γ

(
4+β
4+2β

) =

 π for β = 0;

2.94 for β = 1
2
,

where Γ(z) is the gamma function. Here β = 0 indicates a linear model and β = 0.5

indicates the Hertz model. Normally, we can choose β = 0.5 for better approximation

and the values of all the other known physical parameters to estimate tcol.

Spring constant kn: We expect that the stiffness of a particle, or the spring

constant kn in our model, relates to the collision time tcol. The greater the stiffness of
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particles, the shorter the time two particles are in contact during a collision. Here, we

find a relation between a typical collision duration of two particles and their spring

constant. Since we use a linear spring to describe the deformation between particles

in our force model, the compression x satisfies

m̄
d2x

dt2
+ m̄γn

dx

dt
+ knx = 0, (A.9)

or

d2x

dt2
+ γn

dx

dt
+ ω2

0x = 0,

where γn is the damping constant in the normal direction and ω0 =
√
kn/m̄. We only

discuss the underdamped case when γn � ω0, which resembles real materials. The

initial conditions are

x(0) = 0,

and

dx

dt
(0) = v0,

Applying the initial condition, we find the solution as

x = Ae−
γn
2
t sin

[√
ω2

0 − (
γn
2

)2 t

]
.

Now the collision duration is the first positive time at which x(t = tcol) = 0, so

tcol =
2π√

ω2
0 − (γn

2
)2
≈ 2π

ω0

= 2π

√
m̄

kn
.

Thus, the normal spring constant kn is determined by the collision time tcol through

kn = m̄

(
2π

tcol

)2

.
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Damping coefficient γn: Now we determine the values of the damping coefficient

γn and γt through the coefficient of restitution en, which is defined as the ratio of the

speed of a particle after a collision vf to its speed before the collision vo, i.e.,

en =
vf
vo
.

Following the same notation, we can obtain the expression of x′ from the expression

of x, then evaluate it at tcol, so

en =
vf
vo

=
x′(tcol)

v0

= e−
γn
2
tcol .

Therefore,

γn = −2 ln en
tcol

.

In an elastic collision, en = 1. In our simulation, en varies between 0.5 to 0.9. The

tangential damping constant γt is chosen to be γn/2.



APPENDIX B

DISCRETE ELEMENT TECHNIQUES

The general scheme of a discrete element method (DEM), based on a predictor-

corrector algorithm, is described step-by-step in this section. *.f denotes any FORTRAN

subroutine code used in the simulation.

init.f: Initial values of all the variables and parameters are set here.

predictor.f: The particle’s positions x0, linear velocities x1, linear accelerations

x2, angular motion related variables x1rot, and x2rot etc. at next time step are

predicted using the current values of these quantities, simply by Taylor Expansion.

x0(t+ δt) = x0(t) + δtx1(t) +
1

2
δt2x2(t) +

1

6
δt3x3(t) + · · ·

x1(t+ δt) = x1(t) + δtx2(t) +
1

2
δt2x3(t) + · · ·

x2(t+ δt) = x2(t) + δtx3(t) + · · ·

x3(t+ δt) = x3(t) + · · ·

x1rot(t+ δt) = x1rot(t) + δtx2rot(t) +
1

2
δt2x3rot(t) + · · ·

x2rot(t+ δt) = x2rot(t) + δtx3rot(t) + · · ·

x3rot(t+ δt) = x3rot(t) + · · ·

He we point out for the purpose of computational convenience, x1rot = dω/2 rather

than simply angular velocity ω.

131



132

Introducing new variables as follow:

x0′ = x0

x1′ = δtx1

x2′ =
1

2
δt2x2

x3′ =
1

6
δt3x3

x1′rot = δtx1rot

x2′rot =
1

2
δt2x2rot

x3′rot =
1

6
δt3x3rot

Replacing x0, x1,x2, x3,x1rot,x2rot, and x3rot by x0′, x1′,x2′, x3′, x1′rot, x2′rot, and

x3′rot and dropping ’ ′ ’ from the new variables, the predicted values are given by

x0 = x0 + x1 + x2 + x3

x1 = x1 + 2x2 + 3x3

x2 = x2 + 3x3

x3 = x3

Similarly, the angular motion related variables take the same form as

x1rot(t+ δt) = x1rot(t) + 2x2rot(t) + 3x3rot(t)

x2rot(t+ δt) = x2rot(t) + 3x3rot(t)

x3rot(t+ δt) = x3rot(t)

make list.f: Now we would like to know which particles are in contact with which

particles at one iteration. In this subroutine, we only identify the potential pairs

of particles which are mostly likely to collide. If we simply take each particle as a

pair with all the other particles, the computation would cost a lot of time and it is
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Figure B.1 Illustration of cells in make list.f.

not necessary, because particles are only able to contact particles which are close to

them. Thus, we divide the whole simulation domain into NBX ×NBY cells with

even size. Each cell has eight neighboring cells surrounding it, see Figure B.1. The

outer loop first runs through all the cells. For each cell, for example, the red-shaded

one in the center, all the pairs of particles in the cell itself are collected and then one

particle from this cell and one particle from its ’five neighboring cells’ are collected.

The reason of only choosing from the five upper and right cells is to avoid repeated

counting. All the candidate pairs are stored for later use.

force.f: The motion of particles are taken into account here. First, we determine

if the candidate pairs obtained from ’make list’ subroutine are indeed in contact, i.e.

the overlap between them x > 0. If they are, then the forces, and hence the linear

and rotational accelerations xnp and xnprot are calculated through equations (A.1)

and (A.2) as

xnpi =
d2x0i
dt2

= g +
1

d2
i

Fn
i

xnprot,i =
1

2
di
dωi
dt

= − 1

d2
i

(2n× Ft
i).

collision.f: ’collision’ subroutine is used inside the force subroutine. For each

collision, the deformation of tangential spring evolves with time, so we need to track
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this information all along. The array ncd(i, :) stores the index of all the particles that

particle i is in contact with, in an ascending order. And we only store the information

of the particle with the smaller index in the pair. Three cases may occur. First, the

contact is newly established and there is no existing spring for the collision pair at

all; then we assign a tangential spring to them. Second, or the contact is already in

the list, then the calculation of ξ follows from the force model. Third, or there are

existing springs but the current collision pair is not one of them. In this case, we

need to assign a new spring to them and put the index number in the right position

in ncd(i, :) and move all the others after it down.

In addition, after one iteration, if we find an existing spring is not being updated,

then it no long exists. We remove it by shifting all the information of particles with

index after it up.

corrector.f: The error between the correct acceleration (force subroutine) and the

predicted acceleration (predictor subroutine) is

xnp(t+ δt) = x2correct(t+ δt)− x2(t+ δt).

Here xnp are just what we have obtained in the force subroutine and are used to

correct the predicted results in the form of

x0(t+ δt) ← x0(t+ δt) + c0xnp(t+ δt)

x1(t+ δt) ← x1(t+ δt) + c1xnp(t+ δt)

x2(t+ δt) ← x2(t+ δt) + c2xnp(t+ δt)

x3(t+ δt) ← x3(t+ δt) + c3xnp(t+ δt)

x1rot(t+ δt) ← x1rot(t+ δt) + c1xnprot(t+ δt)

x2rot(t+ δt) ← x2rot(t+ δt) + c2xnprot(t+ δt)

x3rot(t+ δt) ← x3rot(t+ δt) + c3xnprot(t+ δt)
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where c0 = 1/6, c1 = 5/6, c2 = 1 and c3 = 1/3. The choices of these ci’s are

determined by the order of Taylor Series used in the approximation.

output.f: Values of interest are calculated in this step before going back to the next

iteration.



APPENDIX C

CONTINUUM MODEL FOR ENERGY PROPAGATION

C.1 Eigenfunction Approach

1

c2
utt +

1

D
ut = ∇2u, − L < x < L, 0 < y < H

u(−L, y, t) = u(L, y, t)

ux(−L, y, t) = ux(L, y, t)

u(x, 0, t) = U sin(wt) cos(
2πkx

L
)

u(x,H, t) = 0

u(x, y, 0) = 0

ut(x, y, 0) = 0

By applying the method of separation of variables, we obtain the eigenvalue

problem:

∇2φ = −λφ

with

φ(−L, y) = φ(L, y)

φx(L, y) = φ(L, y)

φ(x, 0) = 0

φ(x,H) = 0

on the entire boundary. The eigenvalues are λnm = (nπ/L)2 + (mπ/H)2, and the

corresponding eigenfunctions are φnm(x, y) = sin
nπx

L
sin

mπy

H
and cos

nπx

L
sin

mπy

H
,

136
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where n = 0, 1, 2, 3, · · · and m = 1, 2, 3, · · · . Thus,

u(x, y, t) =
∑
i

Ai(t)φi(x, y)

Here the
∑

i represents a summation over all eigenfunctions. Now

1

c2
utt +

1

D
ut =

1

c2

∑
i

d2Ai(t)

dt2
φi(x, y) +

1

D

∑
i

dAi
dt

φi(x, y)

=
∑
i

(
1

c2

d2Ai
dt2

+
1

D

dAi
dt

)φi(x, y)

Thus,

1

c2

d2Ai
dt2

+
1

D

dAi
dt

=

∫ ∫
( 1
c2
utt + 1

D
ut)φi dx dy∫ ∫

φ2
i dx dy

(C.1)

=

∫ ∫
∇2uφi dx dy∫ ∫
φ2
i dx dy

(C.2)

Now we use Green’s formula to find an expression for the right hand side of the above

equation. ∫ ∫
(φi∇2u− u∇2φi) dx dy =

∮
(φi∇u− u∇φi) · ~n ds

where ~n is a unit outward normal to the boundary. Since φi satisfy homogeneous

boundary conditions, and hence some of the boundary terms vanish:∫ ∫
(φi∇2u− u∇2φi) dx dy = −

∮
u∇φi · ~n ds

=

∫ L

−L
u
∂φi
∂y
|y = 0 dx

=
mπ

H
U sin(wt)

∫ L

−L
cos

2πkx

L
cos

nπx

L
dx

On the left side, since ∇2φi + λiφi = 0, the above equation becomes∫ ∫
φi∇2u dx dy = −λi

∫ ∫
uφi dx dy +

mπ

H
U sin(wt)

∫ L

−L
cos

2πkx

L
cos

nπx

L
dx

= −λiAi(t)
∫ ∫

φ2
i dx dy +

mπ

H
U sin(wt)

∫ L

−L
cos

2πkx

L
cos

nπx

L
dx
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since Ai(t) is the generalized Fourier coefficient of u(x, y, t):

Ai(t) =

∫ ∫
uφi dx dy∫ ∫
φ2
i dx dy

Consequently, we derive from Eq. (C.2) that

1

c2

d2Ai
dt2

+
1

D

dAi
dt

+ λiAi =
mπ

H
U sin(wt)

∫ L
−L cos 2πkx

L
cos nπx

L
dx∫ ∫

φ2
i dx dy

or

d2Ai
dt2

+
c2

D

dAi
dt

+ c2λiAi =
mπ

H
c2U sin(wt)

∫ L
−L cos 2πkx

L
cos nπx

L
dx∫ ∫

φ2
i dx dy

(C.3)

We need n = 2k, so that the right side of Eq. (C.3) is not zero (otherwise there is

only a trivial solution due to zero initial conditions) and it reduces to

d2Am
dt2

+
c2

D

dAm
dt

+ c2λmAm =
4mπ

H2
c2U sin(wt) (C.4)

where λm = (2kπ/L)2 + (mπ/H)2 and k 6= 0. For k = 0,

d2Am
dt2

+
c2

D

dAm
dt

+ c2λmAm =
8mπ

H2
c2U sin(wt).

We put

d2Am
dt2

+
c2

D

dAm
dt

+ c2λmAm =
pmπ

H2
c2U sin(wt),

where

p =

 4 if k 6= 0;

8 if k = 0.

This is a harmonic oscillator driven by an externally applied sinusoidal force, where

2mπc2/H2U is the driving amplitude and w is the driving frequency. For (c/2/D)2 < (2kπ/L)2 + (mπ/H)2,

the underdamped oscillator has general solution

Am(t) = e−
c2

2D
t(c1 cosµmt+ c2 sinµmt) + Ap
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where µm =
√
c2λm − (c2/2/D)2 and Ap is a particular solution, which can be

obtained as

Ap = Mm sinwt+Nm coswt

where

Mm =
pmπc2

H2
U

c2λm − w2

(c2/D − w2)2 + (c2/D)2w2
(C.5)

and

Nm = −pmπc
2

H2
U

c2/Dw

(c2/D − w2)2 + (c2/D)2w2
. (C.6)

After applying the initial conditions, we find c1 = Nm and c2 = c2Nm/2Dµm −

Mmw/µm. Thus

Am(t) = −e−
c2

2D
tpmπc

2U

H2

c2/Dw

(c2/D − w2)2 + (c2/D)2w2
cosµmt

− e−
c2

2D
t

[
c2

2Dµm

pmπc2U

H2

c2/Dw

(c2/D − w2)2 + (c2/D)2w2

+
w

µm

pmπc2U

H2

c2λm − w2

(c2/D − w2)2 + (c2/D)2w2

]
sinµmt

+
pmπc2U

H2

c2λm − w2

(c2/D − w2)2 + (c2/D)2w2
sinwt

− pmπc2U

H2

c2/Dw

(c2/D − w2)2 + (c2/D)2w2
coswt

u(x, y, t) =
∑
m

Am(t) cos
2kπx

L
sin

mπy

H

The following plots are generated by using c = 2.0 d/tcol and D = 250 d2/tcol.
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(a) f = 15 Hz, λ = 250d. (b) f = 30 Hz, λ = 250d.

(c) f = 60 Hz, λ = 250d. (d) f = 100 Hz, λ = 250d.

Figure C.1 Continuum model results as the frequency of perturbation is modified.
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(a) f = 30 Hz, λ = 250d. (b) f = 30 Hz, λ = 250d/2.

(c) f = 30 Hz, λ = 250d/4. (d) f = 30 Hz, λ = 250d/8.

Figure C.2 Continuum model results as the wavelength of perturbation is modified.
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(a) f = 15 Hz, λ =∞. (b) f = 30 Hz, λ =∞.

(c) f = 60 Hz, λ =∞. (d) f = 100 Hz, λ =∞.

Figure C.3 Continuum model results as the frequency of perturbation is modified
for spatially independent perturbation.



APPENDIX D

AFFINE AND NON-AFFINE DEFORMATIONS

Deformation of a system may be conforming or non-conforming - in granular systems,

where a classical example is plane Couette flow driven by the motion of the boundaries.

The dynamics of the particles which conforms to the imposed shear leading to (in

this case) a linear velocity profile is called conforming or affine. Any deviation of the

affine dynamics is non-affine. In this appendix, we present a general approach which

we use to compute both affine (in the case it is not known) and non-affine components

of particle motion.

We start by collecting the local information around each particle from its neighbors.

For one particle, a circle of radius R centered at this specified particle is defined, and

all particles in this circle are considered to be its neighbors. We choose the size of the

radius R = 2.5d. For example, r0(t) denotes the position of this central particle and

rm(t),m = 1, ..., n, denotes the positions of the neighboring particles, respectively.

Thus, the actual displacement of one neighboring particle relative to the central one

is

rn(t)− r0(t) (D.1)

at time t. We denote the affine deformation as

r(t+ δt) = A(t) · r(t)

where A(t) can be any 2× 2 matrix. Under the affine deformation, the displacement

of the neighboring particle relative to the central one becomes

A(t) · rn(t)− A(t) · r0(t). (D.2)
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Then we define a new quantity D2 as the mean-square difference between these two

displacements, Eq. (D.1). and Eq. (D.2), i.e.

D2 =
m∑
n=1

‖rn(t+ δt)− r0(t+ δt)− [A(t) · rn(t)− A(t) · r0(t)] ‖2, (D.3)

and define the minimal ofD2 as the measurement of the localized non-affine deformation.

We minimize D2 with respect to the elements of A(t), i.e.

A(t) =

 A11(t) A12(t)

A21(t) A22(t)

 .
Rewriting Eq. (D.3) as

D2 =
m∑
n=1

‖rn(t+ δt)− r0(t+ δt)−

 A11(t) A12(t)

A21(t) A22(t)

 · [rn(t)− r0(t)] ‖2. (D.4)

Let

rn(t+ δt)− r0(t+ δt) =

 Rx
n(t+ δt)

Ry
n(t+ δt)


and

rn(t− δt)− r0(t− δt) =

 Rx
n(t)

Ry
n(t)

 ,
then Eq. (D.4) implies that

D2 =
m∑
n=1

‖

 Rx
n(t+ δt)

Ry
n(t+ δt)

−
 A11(t) A12(t)

A21(t) A22(t)

 ·
 Rx

n(t)

Ry
n(t)

 ‖2

=
m∑
n=1

‖

 Rx
n(t+ δt)− A11(t)Rx

n(t)− A12(t)Ry
n(t)

Ry
n(t+ δt)− A21(t)Rx

n(t)− A22(t)Ry
n(t)

 ‖2

=
m∑
n=1

[
[Rx

n(t+ δt)− A11(t)Rx
n(t)− A12(t)Ry

n(t)]2

+ [Ry
n(t+ δt)− A21(t)Rx

n(t)− A22(t)Ry
n(t)]2

]
.
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We differentiate D2 with respect to the element of A(t), respectively,

dD2

dA11

= −
∑m

n=1 2 [Rx
n(t+ δt)− A11(t)Rx

n(t)− A12(t)Ry
n(t)]Rx

n(t) = 0,

dD2

dA12

= −
∑m

n=1 2 [Rx
n(t+ δt)− A11(t)Rx

n(t)− A12(t)Ry
n(t)]Ry

n(t) = 0,

dD2

dA21

= −
∑m

n=1 2 [Ry
n(t+ δt)− A21(t)Rx

n(t)− A22(t)Ry
n(t)]Rx

n(t) = 0,

dD2

dA22

= −
∑m

n=1 2 [Ry
n(t+ δt)− A21(t)Rx

n(t)− A22(t)Ry
n(t)]Ry

n(t) = 0.

Then solve for them

m∑
n=1

Rx
n(t+ δt)Rx

n(t)− A11(t)
m∑
n=1

Rx
n(t)Rx

n(t)− A12(t)
m∑
n=1

Rx
n(t)Ry

n(t) = 0,

m∑
n=1

Rx
n(t+ δt)Ry

n(t)− A11(t)
m∑
n=1

Rx
n(t)Ry

n(t)− A12(t)
m∑
n=1

Ry
n(t)Ry

n(t) = 0,

m∑
n=1

Ry
n(t+ δt)Rx

n(t)− A21(t)
m∑
n=1

Rx
n(t)Rx

n(t)− A22(t)
m∑
n=1

Rx
n(t)Ry

n(t) = 0,

m∑
n=1

Ry
n(t+ δt)Ry

n(t)− A21(t)
m∑
n=1

Rx
n(t)Ry

n(t)− A22(t)
m∑
n=1

Ry
n(t)Ry

n(t) = 0.

So

A11(t) = 1
S

∑m
n=1R

x
n(t+ δt)Rx

n(t)
∑m

n=1R
y
n(t)Ry

n(t)

− 1
S

∑m
n=1 R

x
n(t+ δt)Ry

n(t)
∑m

n=1 R
x
n(t)Ry

n(t),

A12(t) = 1
S

∑m
n=1R

x
n(t+ δt)Ry

n(t)
∑m

n=1R
x
n(t)Rx

n(t)

− 1
S

∑m
n=1 R

x
n(t+ δt)Rx

n(t)
∑m

n=1 R
x
n(t)Ry

n(t),

A21(t) = 1
S

∑m
n=1R

y
n(t+ δt)Rx

n(t)
∑m

n=1R
y
n(t)Ry

n(t)

− 1
S

∑m
n=1 R

y
n(t+ δt)Ry

n(t)
∑m

n=1 R
x
n(t)Ry

n(t),

A22(t) = 1
S

∑m
n=1R

y
n(t+ δt)Ry

n(t)
∑m

n=1R
x
n(t)Rx

n(t)

− 1
S

∑m
n=1R

y
n(t+ δt)Rx

n(t)
∑m

n=1R
x
n(t)Ry

n(t),
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where

S =
m∑
n=1

Rx
n(t)Rx

n(t)
m∑
n=1

Ry
n(t)Ry

n(t)−
m∑
n=1

Rx
n(t)Ry

n(t)
m∑
n=1

Rx
n(t)Ry

n(t).

Therefore, we find the affine deformation matrix A(t) which minimizes D2, and then

obtain the non-affine contribution by evaluating D2 at this A(t). We denote it as

D2
min, and its square root as Dmin which is shown in the main text.



APPENDIX E

SIMULATING IMPACTS OF A LARGE INTRUDER

In this section, we simulate a large intruder impacts on granular matter. If the

intruder is a disk of the same material as the granular particles, then all the previous

calculations follow. However, we would like to vary the shape of the intruder, for

instance, an elliptical intruder. In order to achieve that, we generate a composite

intruder, which is made up of a number of individual particles assigned on the surface

of the composite intruder. Although particles are only on the surface, the intruder

is treated as a solid object. In this new scenario, when a particle collides with the

intruder at a point, it actually interacts with the particle composed of the intruder

at that point. Thus, most of the particle-particle collision we described earlier can

follow. Now we list all the modification required.

Equations of motion for the intruder: First, we write down the motion equations

of the intruder.

mb,p
d2r0,p

dt2p
= mb,pg +

∑
i

Fi,p (E.1)

Ib,p
d2φb,p
dt2p

=
∑
i

(ri,p − r0,p)× Fi,p, (E.2)

where mb,p is the mass of the intruder, Ib,p is its moment of inertia, ri,p is the position

of particle i on the intruder, r0,p is the center of mass of the intruder, φb,p is the

rotational angle of the intruder in the xy-plane, and Fi,p is the total force of particle

i on the intruder.

We see that the motion of the intruder is determined by the total forces experienced

by all the particles on the intruder.
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The reduced mass: When a system particle hits an intruder particle, the particle

on the intruder should be treated as the intruder as a whole. So the reduced mass of

this collision is not the reduced mass we use for the two particles. Instead, it ought

to be the reduced mass of the system particle and the intruder.

Moment of inertia: The moment of inertia of intruders vary as their shape changes.

In a two-dimensional system, particles and the intruder are allowed to rotate only in

the x − y plane. Thus, the rotation is about the z-axis. In general, the moment of

inertia of a continuous solid body rotated about the z axis can be calculated by the

integral

I =

∫
V

ρ(r)d(r)2 dV (r),

where ρ(r) is the mass density at point r, and d(r) is the distance from point r to the

axis of rotation. The integration goes over the volume V of the body.

• Circe

Particles in the system are treated as disks. The moment of inertia of a thin,

solid disk of radius r and mass m, rotating about z axis, is given by

Iz =

∫ h

0

∫ 2π

0

∫ r

0

ρ(x2 + y2) dθ dr dz =
mr2

2
.

• Ellipse

The moment of inertia of an ellipse with the same mass, given the major axis a

and minor axis b, is obtained in the same way, that is

Iz =

∫ h

0

∫ b

−b

∫ a
q

1−x2

b2

−a
q

1−x2

b2

(x2 + y2) dθ dr dz =
1

4
(a2 + b2)m.

Position and velocity: The position of any intruder particle is determined by the

combination of the linear motion which is updated from the previous calculation and
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the rotational motion which rotates an angle of φb about the intruder’s center of mass

(x0, y0) in the xy-plane. The general forms are given by

xi = (xi,l − x0) cosφb − (yi,l − y0) sinφb + x0,

and

yi = (xi,l − x0) sinφb + (yi,l − y0) cosφb + y0.

Here (xi,l, xi,l) is the translational position of particle i on the intruder, and (xi, yi)

is the final position of particle i on the intruder after combining contributions from

both translational motion and rotational motion.

Intruder particles move and interact as a whole. We can imagine that the

angular velocity of an intruder is the same at every point, but the velocity is not the

same anywhere. The velocity of an intruder particle is expressed as

vi = vb + ωb × (ri − r0),

where vi denotes the velocity of the intruder particle i, vb is intruder’s linear velocity,

ωb = (0, 0, ωb) and ωb =
dφb
dt

is the angular velocity of the intruder, ri = (xi, yi) is

the position of particle i on the intruder, and r0 is intruder’s center of mass.

One other thing that needs to be changed is the relative velocity calculation

of a collision between a system particle and an intruder particle. We have given the

general expression for relative velocity for two particles in Eq. A.1 as follow:

vi,j = (vi − vj)− (ωidi/2 + ωjdj/2)ez × ni.

We point out that di and dj are the diameters of the two particles, and the normal

ni is always along the line through the centers of the two particles. However, when

a system particle and an intruder particle come into contact, the normal between

the two particles is not the true normal of the system particle and the intruder as a
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whole, thus we replace the relatively velocity in this case approximately by

vb,j = (vb − vj)− (ωb|ri − r0|+ ωjdj/2)ez × ni.

Spring constant: Now we deal with the kbg, the spring constant for a particle-

intruder collision. Spring constants vary from material to material. For two-material

collisions, we assume there are two springs; one is for the system particle and the other

one is for the intruder. According to Hooke’s law, when two springs are attached in

series, the equivalent spring constant is given by

kbg =
kgkb
kg + kb

,

where kg is the spring constant for the system particles and kb is the spring constant

for the intruder.



REFERENCES

[1] M. A. Ambroso, R. D. Kamien, and D. J. Durian. Dynamics of shallow impact
cratering. Phys. Rev. E, 72:041305, 2005.

[2] M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian. Penetration depth
for shallow impact cratering. Phys. Rev. E, 71:051305, 2005.

[3] M. Ammi, D. Bideau, and J. P. Troadec. Geometrical structure of disordered packings
of regular polygons; comparison with disc packing structures. J. Phys. D: Appl.
Phys., 20:424, 1987.

[4] G. P. Berman and F. M. Izrailev. The Fermi-Pasta-Ulam problem: fifty years of
progress. Chaos, 15:015104, 2005.

[5] W. A. Beverloo, H. A. Leniger, and J. Van De Velde. Chemical Engineering Science,
15:260, 1961.

[6] J.-P. Bouchaud, M. E. Cates, and P. Claudin. Stress distribution in granular media
and nonlinear wave equation. J. Phys. I, 5:639, 1995.

[7] J.-P. Bouchaud, P. Claudin, M. E. Cates, and J. P. Wittmer. Models of stress
propagation in granular media. In H. J. Herrmann, J.-P. Hovi, and S. Luding,
editors, Physics of Dry Granular Media, page 97, Dordrecht, 1998. Kluwer
Academic Publishers.

[8] J.-P. Bouchaud, P. Claudin, D. Levine, and M. Otto. Force chain splitting in granular
materials: A mechanism for large-scale pseudo-elastic behavior. Eur. Phys. J. E,
4:451, 2001.

[9] F. Bourrier, F. Nicot, and F. Darve. Physical processes within a 2D granular layer
during an impact. Granul. Matter, 10:415, 2008.

[10] C. S. Campbell and A. Gong. The stress tensor in a two-dimensional granular shear
flow. J. Fluid Mech., 164:107, 1986.

[11] S. Chapman and T. G. Cowling. The mathematical theory of nonuniform gases.
Cambridge University Press, London, 1960.

[12] M. P. Ciamarra, A. H. Lara, A. T. Lee, D. I. Goldman, I. Vishik, and H. L. Swinney.
Dynamics of drag and force distributions for projectile impact in a granular
medium. Phys. Rev. Lett., 92:194301, 2004.

[13] S. N. Coppersmith, C.-h. Liu, S. Majumdar, O. Narayan, and T. A. Witten. Model
for force fluctuations in bead packs. Phys. Rev. E, 53:4673, 1996.

151



152

[14] C. Coste, E. Falcon, and S. Fauve. Solitary waves in a chain of beads under Hertz
contact. Phys. Rev. E, 56:6104, 1997.

[15] C. Coste and B. Gilles. On the validity of Hertz contact law for granular material
acoustics. Eur. Phys. J. B, 7:155, 1999.

[16] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin. Strongly nonlinear waves in
a chain of teflon beads. Phy. Rev. E, 72:16603, 2005.

[17] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin. Energy trapping and shock
disintegration in a composite granular medium. Phys. Rev. Lett., 96:058002,
2006.

[18] J. R. de Bruyn and A. M. Walsh. Penetration of spheres into loose granular media.
Can. J. Phys., 82:439, 2004.

[19] R. Doney and S. Sen. Decorated, tapered, and highly nonlinear granular chain. Phys.
Rev. Lett., 97:155502, 2006.

[20] J. Duffy and R. D. Mindlin. Stress-strain relations and vibrations of a granular
medium. J. Appl. Mech., 24:585, 1957.

[21] J. Duran, editor. Sands, Powders, and Grains. Springer-Verlag, New York, 2000.

[22] M. Falk and J. Langer. Phys. Rev. E, 57:7192, 1998.

[23] F. C. Franklin and L. N. Johanson. Flow of granular materials through a circular
orifice. Chemical Engineering Science, 4:119, 1955.

[24] J. Geng, R. P. Behringer, G. Reydellet, and E. Clément. Green’s function
measurements of force transmission in 2d granular materials. Physica D, 182:274,
2003.

[25] J. Geng, D. Howell, E. Longhi, R. P. Behringer, G. Reydellet, L. Vanel, E. Clément,
and S. Luding. Footprints in sand: The response of a granular material to local
perturbations. Phys. Rev. Lett., 87:035506, 2001.

[26] B. Gilles and C. Coste. Low-frequency behavior of beads constrained on a lattice.
Phys. Rev. Lett., 90:174302, 2003.

[27] J. D. Goddard. Nonlinear elasticity and pressure-dependent wave speeds in granular
media. Proc. R. Soc. Lond. A, 430:105, 1990.

[28] C. Goldenberg and I. Goldhirsch. Force chains, microelasticity, and macroelasticity.
Phys. Rev. Lett., 89:084302, 2003.

[29] C. Goldenberg and I. Goldhirsch. Friction enhances elasticity in granular solids.
Nature, 435:188, 2005.



153

[30] C. Goldenberg and I. Goldhirsch. Effects of friction and disorder on the quasistatic
response of granular solids to a localized force. Phys. Rev. E, 77:041303, 2008.

[31] D. I. Goldman and P. Umbanhowar. Phys. Rev. E, 77:021308, 2008.

[32] J. Hong. Universal power-law decay of the impulse energy in granular protectors.
Phys. Rev. Lett., 94:108001, 2005.

[33] J. Hong and A. Xu. Effects of gravity and nonlinearity on the waves in the granular
chain. Phys. Rev. E, 63:061310, 2001.

[34] S. R. Hostler. Wave propagation in granular materials. PhD thesis, California
Institute of Technology, 2005.

[35] S. R. Hostler and C. E. Brennen. Pressure wave propagation in a granular bed. Phys.
Rev. E, 72:031303, 2005.

[36] S. R. Hostler and C. E. Brennen. Pressure wave propagation in a shaken granular
bed. Phys. Rev. E, 72:031304, 2005.

[37] R. Jackson. Some mathematical and physical aspects of continuum models for the
motion of the granular materials. In R. E. Meyer, editor, Theory of Dispersed
Multiphase Flow, page 291. Academic Press, New York., 1983.

[38] H. M. Jaeger, S. R. Nagel, and R. P. Behringer. Granular solids, liquids, and gases.
Reviews of Modern Physics, 68:1259, 1996.

[39] X. Jia. Codalike multiple scattering of elastic waves in dense granular media. Phys.
Rev. Lett., 93:154303, 2004.

[40] X. Jia, C. Caroli, and B. Velicky. Ultrasound propagation in externally stressed
granular media. Phys. Rev. Lett., 82:1863, 1999.

[41] S. Kann, S. Joubaud, G. A. C-Robledo, D. Lohse, and D. van der Meer. Phys. Rev.
E, 81:041306, 2010.

[42] H. Katsuragi and D. J. Durian. Unified force law for granular impact cratering. Nature
Physics, 3:420, 2007.

[43] L. Kondic. Dynamics of spherical particles on a surface: Collision-induced sliding
and other effects. Phys. Rev. E, 60:751, 1999.

[44] L. Kondic, O. Dybenko, and R. P. Behringer. Probing dense granular materials by
space-time dependent perturbations. Phys. Rev. E, 79:041304, 2009.

[45] A. N. Lazaridi and V. F. Nesterenko. Observation of a new type of solitary waves in
a one-dimensional granular medium. Journal Appl. Mech. Tech. Phys., 26:405,
1985.

[46] C.-h. Liu. Spatial patterns of sound propagation in sand. Phys. Rev. B, 50:782, 1994.



154

[47] C.-h. Liu and S. R. Nagel. Sound in sand. Phys. Rev. Lett., 68:2301, 1992.

[48] C.-h. Liu and S. R. Nagel. Sound in a granular material: Disorder and nonlinearity.
Phys. Rev. B, 48:15646, 1993.

[49] S. Luding. Information propagation. Nature, 435:159, 2005.

[50] H. A. Makse, N. Gland, D. J. Johnson, and L. M. Schwartz. Why effective medium
theory fails in granular materials. Phys. Rev. Lett., 83:5070, 1999.

[51] H. A. Makse, N. Gland, D. J. Johnson, and L. M. Schwartz. Granular packings:
Nonlinear elasticity, sound propagation, and collective relaxation dynamics.
Phys. Rev. E., 70:061302, 2004.

[52] K. Mischaikow. Computational Homology Project, http://chomp.rutgers.edu/.

[53] C. F. Moukarzel, H. Pacheco-Martinez, J. C. Ruiz-Suarez, and A. M. Vidales. Static
response in disk packings. Granular Matter, 6:61, 2004.

[54] N. W. Mueggenburg, H. M. Jaeger, and S. R. Nagel. Stress transmission through
three dimensional ordered granular arrays. Phys. Rev. E, 66:031304, 2002.

[55] R. M. Nedderman. Statics and kinematics of granular materials. Cambridge
University Press, Cambridge, 1992.

[56] E. L. Nelson, H. Katsuragi, P. Mayor, and D. J. Durian. Projectile interactions in
granular impact cratering. Phys. Rev. Lett., 101:068001, 2008.

[57] V. Nesterenko. Dynamics of Heterogenous Media. Springer, New York, 2001.

[58] V. F. Nesterenko. Solitary waves in discrete media with anomalous compressibility
and similar to “sonic vacuum”. Journal de Physique IV, 4:729, 1994.

[59] V. F. Nesterenko, C. Daraiao, E. B. Herbold, and S. Jin. Anomalous wave reflection
at the interface of two strongly nonlinear granular media. Phys. Rev. Lett.,
90:158702, 2005.

[60] V.F. Nesterenko. Propagation of nonlinear compression pulses in granular media. J.
Appl. Mech. Tech. Phys., 24:733, 1983.

[61] K. A. Newhall and D. J. Durian. Projectile-shape dependence of impact craters in
loose granular media. Phys. Rev. E, 68:060301, 2003.

[62] M. Nishida, K. Tanaka, and Y. Matsumoto. Discrete Element Method Simulation of
the Restitutive Characteristics of a Steel Spherical Projectile from a Particulate
Aggregation. JSME International Journal Series A, 47:438, 2004.

[63] S. Ostojic and D. Panja. Elasticity from the force network ensemble in granular
media. Phys. Rev. Lett., 97:208001, 2006.



155

[64] M. Otto, J.-P Bouchaud, P. Claudin, and J. E. S. Socolar. Anisotropy in granular
media: Classical elasticity and directed-force chain network. Phys. Rev. E,
67:0313023, 2003.

[65] J.V. Poncelet. Course de Me’canique Industrielle. Paris, 1829.

[66] F. Radjai, M. Jean, J. J. Moreau, and S. Roux. Force distribution in dense two-
dimensional granular systems. Phys. Rev. Lett., 77:274, 1996.

[67] G. Reydellet and E. Clément. Green’s function probe of a static granular piling. Phys.
Rev. Lett., 86:3308, 2001.

[68] H. F. Rose and T. Tanaka. Rate of discharge of granular materials from bins and
hoppers. The Engineer, 208:465, 1959.

[69] S. B. Savage. Analysis of slow high-concentration flows of granular materials. J. Fluid
Mech., 377:1, 1998.

[70] A. Scott. Nonlinear Science. Oxford Univesity Press, London, 2003.

[71] A. Seguin, Y. Bertho, and P. Gondret. Influence of confinement on granular
penetration by impact. Phys. Rev. E, 78:010301, 2008.

[72] A. Seguin, Y. Bertho, P. Gondret, and J. Crassous. Sphere penetration by impact in
a granular medium: A collisional process. Europhys. Lett., 88:44002, 2009.

[73] S. Sen, M. Manciu, R. S. Sinkovits, and A. J. Hurd. Nonlinear acoustics in granular
assemblies. Granular Matter, 3:33, 2001.

[74] S. Sen, M. Manciu, and J. D. Wright. Solitonlike pulses in perturbed and driven
Hertzian chains and their possible applications in detecting buried impurities.
Phys. Rev. E, 57:2386, 1998.

[75] P. Sheng. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena.
Academic Press, San Diego, 1995.

[76] M. Da Silva and J. Rajchenbach. Stress transmission through a model system of
cohesionless elastic grains. Nature, 406:708, 2000.

[77] R. S. Sinkovits and S. Sen. Nonlinear dynamics in granular columns. Phys. Rev.
Lett., 74:2686, 1995.

[78] E. Somfai, J.-N. Roux, J. H. Snoeijer, M. van Hecke, and W. van Saarloos. Elastic
wave propagation in confined granular systems. Phys. Rev. E, 72:021301, 2005.

[79] M. B. Stone, D. P. Bernstein, R. Barry, M. D. Pelc, Y. Tsui, and P. Schiffer. Getting
to the bottom of a granular medium. Nature, 427:503, 2004.

[80] J. Tang and R. P. Behringer. IFRPI-NSF Collaboratory: 2D hopper data summary.
Technical report, Duke University, 2010.



156

[81] A. V. Tkachenko and T. A. Witten. Stress propagation through frictionless granular
material. Phys. Rev. E, 60:687, 1999.

[82] M. Toda. Problems in nonlinear dynamics. J. Math., 8:197, 1978.

[83] L. S. Tsimring and D. Volfson. Modeling of impact cratering in granular media.
In R. Garcia-Rojo, H. J. Hermmann, and S. McNamara, editors, Powders and
Grains, page 1215, Leiden, 2005.

[84] J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian. Low-speed impact craters
in loose granular media. Phys. Rev. Lett., 90:194301, 2003.

[85] P. Umbanhowar and D. I. Goldman. Granular impact and the critical packing state.
Phys. Rev. E, 82:010301, 2010.

[86] B. Velicky and C. Caroli. Pressure dependence of the sound velocity in a
two-dimensional lattice of Hertz-Mindlin balls: Mean-field description. Phys.
Rev. E., 65:021307, 2002.


	Energy propagation in jammed granular matter
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: 1-D Granular Systems
	Chapter 3: 2-D Granular Systems with Boundary Excitations
	Chapter 4: Impact on 2-D Granular Systems
	Chapter 5: Hopper Flow
	Chapter 5: Conlcusions
	Appendix A: Modeling Particle Interactions
	Appendix B: Discrete Element Techniques
	Appendix C: Continuum Model for Energy Propagation
	Appendix D: Affine and Non-Affine Deformations
	Appendix E: Simulating Impacts of a Large Intruder
	References

	List of Tables
	List of Figures (1 of 8)
	List of Figures (2 of 8)
	List of Figures (3 of 8)
	List of Figures (4 of 8)
	List of Figures (5 of 8)
	List of Figures (6 of 8)
	List of Figures (7 of 8)
	List of Figures (8 of 8)


