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ABSTRACT

EFFICIENT PACKET DELIVERY IN
MODERN COMMUNICATION NETWORKS

by
Nan Wang

Modern communication networks are often designed for diverse applications, such as

voice, data and video. Packet-switching is often adapted in today’s networks to transmit

multiple types of traffic. In packet-switching networks, network performance is directly

affected by how the networks handle their packets. This work addresses the packet-

handling issues from the following two aspects: Quality of Service (QoS) and network

coding.

QoS has been a well-addressed issue in the study of IP-based networks.

Generally, nodes in a network need to be informed of the state of each communication

link in order to make intelligent decisions to route packets according to their QoS

demands. The link state can, however, change rapidly in a network; therefore, nodes

would have to receive frequent link state updates in order to maintain the latest link state

information at all times. Frequent link state updating is resource-consuming and hence

impractical in network design. Therefore, there is a trade-off between the link state

updating frequency and the QoS routing performance. It is necessary to design a link

state update algorithm that utilizes less frequent link state updates to achieve a high

degree of satisfaction in QoS performance. The first part of this work addresses this link

state update problem and provides two solutions: ROSE and Smart Packet Marking.

ROSE is a class-based link state update algorithm, in which the class boundaries are



designed based on the statistical data of users’ QoS requests. By doing so, link state

update is triggered only when certain necessary conditions are met. For example, if the

available bandwidth of a link is fluctuating within a range that is higher than the highest

possible bandwidth request, there is no need to update the state of this link. Smart Packet

Marking utilizes a similar concept like ROSE, except that the link state information is

carried in the probing packet sent in conjunction with each connection request instead of

through link state updates.

The second part of this work addresses the packet-handling issue by means of

network coding. Instead of the traditional store-and-forward approach, network coding

allows intermediate nodes in a multi-hop path to code multiple packets into one in order

to reduce bandwidth consumption. The coded packet can later be decoded by its

recipients to retrieve the original plain packet. Network coding is found to be beneficial

in many network applications. This dissertation makes contributions in network coding in

two areas: peer-to-peer file sharing and wireless ad-hoc networks. The benefit of network

coding in peer-to-peer file sharing networks is analyzed, and a network coding algorithm

– Downloader-Initiated Random Linear Network Coding (DRLNC) – is proposed.

DLRNC shifts the coding decision from the seeders to the leechers; by doing so it solves

the “collision” problem without increasing the field size. In wireless network coding, this

work addresses the implementation difficulty pertaining to MAC layer scheduling. To

achieve the ideal network coding gain in wireless networks, it requires perfect MAC layer

scheduling. This dissertation first provides an algorithm to solve the ideal-case MAC

layer scheduling problem. Since the ideal MAC layer schedule is often difficult to realize,



a practical approach is then proposed to increase the network coding performance by

modifying the ACK packets in the 802.11 MAC.
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CHAPTER 1

INTRODUCTION

Today’s networks are designed for diverse applications such as voice, data, and video. It

is observed that today’s networks are evolving towards the following two directions:

first, packet switching is replacing the old-fashioned circuit switching, and second,

wireless communication devices are gaining popularity with wider applications.

Packet switching is the key to integrate various types of traffic onto one same

network while still maintaining efficient use of network resources. The Internet Protocol

(IP) has become the de facto packet-switching network layer protocol of choice, due to

the great popularity of the Internet. Because of its success, more networks are adopting IP

as the network layer protocol, which also implies that more networks are becoming

packet-switching. For example, newly designed networks, such as the 4G wireless

network, are starting to adopt the Internet Protocol for the sake of interoperability with

the existing networks.

Wireless networks have become new market favors because they extend the

boundaries of traditional wired networks, provide greater accessibility to users, and

support at least some degree of mobility. Widely deployed wireless networks include

cellular networks and WiFi networks. In addition, a wireless ad hoc network can further

provide easy and fast deployment because it does not require physical wired connections

among its nodes. These are great features for sensor networks and disaster-recovery area

networks. With all these benefits offered by wireless networks, wireless networks will

gain greater penetration in people’s lives in the future.
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New challenges arise as today’s networks evolve. For starters, traffics from

various applications, such as voice, video or data, have different characteristics, and

therefore require different quality of service (QoS). When engineers attempt to put all

these traffics in the same network, can it be ensured that the network can provide proper

QoS to each type of traffic? Second, in a wireless network, its access medium – radio

frequency waves – is often a limited resource subject to bandwidth regulations and

interferences. Can the network bandwidth be utilized efficiently while coping with

interference?

The list of challenges is lengthy. The works presented in this dissertation focus on

the aforementioned two challenges. The approaches are to tackle these problems from the

packet level. Since all traffics are delivered in packets, it is how the switches and routers

handle packets that essentially determines the performance of the networks. The

contributions of this dissertation consist of two parts. The first part is related to link state

updates. Link state update algorithms determine how the link state information is

disseminated to network routers; based on this information, the routers decide how the

packets should be routed. Therefore, a good link state update algorithm is essential for

good QoS performance. This dissertation offers new solutions for link state update that

increase the accuracy of updating link state information. The second part of the

contributions is related to network coding, particularly, in peer-to-peer networks and

wireless networks. In peer-to-peer network, the findings and solutions of how network

coding improves the efficiency of a peer-to-peer file sharing network is presented. In the

area of wireless network coding, the issues of MAC layer scheduling is addressed.

Wireless network coding exploits the broadcast nature of wireless communications to
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make more efficient use of wireless medium, and therefore improve overall throughput of

the network. A major challenge of wireless network coding is the MAC layer scheduling.

The reason that network coding increases the throughput is that it allows multiple packets

to be encoded together, thus reducing the number of transmissions. Ideally, the MAC

layer must schedule the packet transmissions in an order that takes full advantages of all

coding opportunities. This dissertation provides an algorithm to find the ideal MAC layer

schedule, given the network topology and route information. The ideal schedule,

however, is not easy to implement in practice. Therefore, following the ideal solution, a

MAC layer scheduling scheme that utilizes the ACK packets to inform the neighboring

nodes of potential coding opportunities and gives the nodes with matching packets higher

priorities to transmit those packets is proposed. This proposed approach increases the

chance of packet encodings (as compared to the traditional contention-based MAC layer),

and thus improves the practical performance of wireless network coding.

The rest of this dissertation is organized as follows. Chapters 2, 3, and 4 are

dedicated to link state update algorithms pertaining to quality of service; Chapter 5

presents the proposed method of utilizing network coding in peer-to-peer file sharing

networks; Chapter 6 and 7 discusses network coding in wireless network environments;

and finally, Chapter 8 presents the conclusions and proposes future research directions.
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CHAPTER 2

UPDATING LINK STATE INFORMATION

2.1 Introduction

In order to provide Quality of Service (QoS) in the broadband integrated network, the

network has to be aware of all the QoS parameters in every node. Based on this

knowledge, the network can determine the best routing strategy to find the path that

satisfies the QoS requirements of each connection and achieves the overall network

resource efficiency [1]. In order to provide the knowledge of all the QoS parameters in

each node, each node itself must employ some scheme to report its own QoS parameters;

this process is referred to as “link state update”. Since the network resource is precious

(e.g., limited bandwidth), it is not practical to have all nodes reporting precise QoS

parameters all the time; this would result in a tremendous overhead. Therefore, an

effective link state update algorithm is necessary to provision QoS. Link state update

determines the behavior of how each node updates its status to the entire network,

including when to update and what to update.

A widely used link state update protocol, OSPF [2], recommends the link state to

be updated once every 30 minutes. However, because of the highly dynamic nature of the

traffic, updating in such a long time interval will result in stale/outdated link state

parameters. This will compromise the efficiency of QoS routing. Several other link state

update policies, such as threshold, equal class and exponential class based update policies

[3], have been proposed. In the threshold policy, an update is triggered when the

difference between the current value and the previously updated value of a certain
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parameter exceeds a threshold. That is, given a threshold value , an update occurs when

0| |cb b   , where 0b is the previously updated value and cb is the current value of a

QoS parameter. In the equal class and the exponential class based update policies, the

values of QoS parameters are divided into classes. An update is triggered when the

current value of a QoS parameter changes from one class to another. For example, in a

two-class situation, if the range (interval) of the first class is (0, ଵܾ), and the range of the

second class is ( ଵܾ, ଶܾ), then an update will happen when ܾ changes from 0 < ܾ < ଵܾ

to ଵܾ < ܾ < ଶܾ, or vice versa. What separates the equal class based link state update

policy from the exponential class based link state policy is the choice of the boundaries,

or in other words, the partitioning of each class. In the equal class based link state update,

the class of a QoS parameter is partitioned into equal-sized intervals, for example, (ܤ,0)

,ܤ) ,(ܤ2 ,ܤ2) ,(ܤ3 …, etc.. In the exponential class based update, the QoS parameter is

partitioned into unequal-sized ranges, ,(ܤ,0) ,ܤ) (݂+ ,(ܤ(1 ((݂+ ,ܤ(1 (݂ଶ + ݂+ ,(ܤ(1

…, whose sizes grow geometrically by a factor of f, where B is a predefined constant.

No matter which link state update policy is adopted by the network, it is

unavoidable that the QoS parameters of each node known to the entire network might not

be exactly accurate at any given time, due to the staleness and coarse classes. As a result,

false routing is inevitable. Some works [4], [5], [6] have been done trying to reduce the

impact of stale or inaccurate link state information. Recently, a probability-based link

state update referred to as “Routing-Oriented update SchEme” (ROSE) has been

proposed by Cheng and Ansari [7] to minimize the probability of false routing. As

reviewed above, most works reported in literature only consider concave link state

metrics, e.g., bandwidth. Nonetheless, it is not enough to provide an efficient solution by
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studying the concave metrics alone because of the different nature of additive and

concave link state metrics. Based on the previous work, ROSE [7], in which concave

metrics were considered, an effective link state update policy for additive metrics is

formulated, referred to as ROSE II. The key difference between ROSE II and previously

reported works lies in the fact that ROSE II takes the property of additive QoS metrics

into account: ROSE II is proposed for the purpose of efficient QoS routing under additive

constraints. As a result, it achieves the goal of providing accurate link state information

with a low protocol overhead. Via theoretical analysis and simulations, it is shown that

ROSE II greatly outperforms the state of the art. The rest of this chapter is organized as

follows. Section 2.2 describes the properties of additive constraints. Then, Section 2.3

describes the proposed efficient link state information update scheme, ROSE II. The

simulation results are presented in Section 2.4. Finally, concluding remarks are given in

Section 2.5.

2.2 Properties of Additive Constraints

Most of the QoS constraints can be categorized into the following three types: concave,

additive, and multiplicative. Multiplicative constraints can be converted into additive

constraints by using the logarithm operator. Therefore, only concave and additive

constraints are considered in QoS routing. A concave constraint works as follows: in the

case of a multi-link end-to-end path, as long as the smallest QoS parameter among all the

links is larger than the corresponding QoS constraint, then this path is considered to have

met the QoS requirement. Bandwidth is a typical example of a concave constraint. An

additive constraint works as follows: in the case of a multi-link end-to-end path, the sum
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of all the QoS parameters along the path has to be less than the corresponding QoS

constraint for this path to be considered to have met the QoS requirement. Delay is a

typical example of an additive constraint. In Figure 2.1, the path consists of 3 links: Link

1, Link 2, and Link 3. Each of these links has a concave QoS parameter C1, C2, and C3,

respectively, and an additive QoS parameter A1, A2, and A3, respectively. If a connection

imposes QoS constraints C0 and A0, then the path is deemed acceptable if

1 2 3 0min{ , , }C C C C , and 1 2 3 0A A A A   .

One of the special characteristics of an additive constraint is that, from a per-link

point of view, the QoS requirement of each link is related to the QoS behavior of all the

other links in the same path. Consider Link 2 in Figure 2.1 as an example: Link 2 will be

accepted if  2 0 1 3A A A A   . Similarly, in an m-link path, a link among these m links,

say Link n  n m , is acceptable if

ܣ ≤ ܣ −  ܣ



ୀଵ,ஷ

(2.1)

Because of such special characteristic, a single link cannot make decision whether

to accept or reject a connection purely based on its own additive link state metrics. Those

aforementioned current link state update schemes (threshold, equal class, and exponential

class updates) do not take this property into consideration; therefore, they are not

optimized for handling additive QoS metrics. ROSE II does take such property into

consideration which enables it to manage additive metrics more efficiently, as it will be

illustrated in the next section.
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Illustration of concave and additive constraints.
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measurement is quantized into coarse ranges. Taking the delay parameter as an example,
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instead of reporting the exact delay measurement, a link reports its quantized value 2
advB

(for instance) if its actual delay measurement falls in between ଵܤ and .ଶܤ Owing to the

quantization, it is inevitable that the edge nodes will obtain inaccurate link state

information and result in false routing. False routing results in degraded user satisfaction

and/or waste of network resources. Link state update scheme must be designed to reduce

the occurrences of false routing.

Continuing from equation (2.1), assume that for each link ݆(݆≤ ݉ ), its additive

QoS parameter ܣ is always within a range of ܣ,0ൣ
ெ ൧. This is a reasonable assumption

because, using the delay parameter as an example, the delay of each link can only reach a

certain amount (i.e., queue full) before the link will reject any connection attempts all

together. Without loss of generality, it is further assumed that ܣ
ெ  = ெܣ    ∀ ,݆ that is,

the maximum value of ܣ is the same for all links. In addition, the requested QoS

constraint A0 can also be assumed to have a finite range of values. Therefore, on a per-

link basis, the decision of whether to accept or reject the link depends on whether this

link’s current QoS parameter An is less than or greater than ൫ܣ − ∑ ܣ

ୀଵ,ஷ ൯.

Let ܥ = ൫ܣ − ∑ ܣ

ୀଵ,ஷ ൯, which will be referred to as the “accept/reject

criterion” throughout the rest of this chapter, then the decision making is essentially:

൜
ܿܿܣ ݂݅ݐ݁ ܣ ≤ ܥ
ܴ݆݁ ݁ܿ ݂݅ݐ ܣ > ܥ

� (2.2)

By treating all the QoS parameters that C is composed of as random variables

(that is, from ܣ to ܣ , except ܣ ), C is simply the sum of m random variables.
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According to the central limit theorem, when m becomes large, the accept/reject criterion

of a link can be approximated by a normal distribution.

Based on equation (2.2), the problem of updating additive link state information

can be greatly simplified in the sense that the probability density function (pdf) of the

accept/reject criterion C can be estimated. The pdf of C is solely related to the average

hop count, ெܣ  and ,ܣ of which the information is readily available to estimate the pdf.

With the estimated pdf, a class based update policy can be designed to minimize the

probability of false routing. Let ௗ௩ܤ
 be the advertised value of a QoS parameter by link n

ௗ௩ܤ)
 ∈ ൛ܤଵ

ௗ௩, … ܤ,
ௗ௩ൟ, where k is the number of classes). With the above class-based

update scheme, according to equation (2.2), a link n will be accepted if ௗ௩ܤ
 ≤ ,ܥ and

will be rejected otherwise. Therefore, a false positive will occur when ௗ௩ܤ
 ≤ ܥ but

ܣ > ,ܥ where ܣ is the actual value of the QoS parameter of link n. On the other hand, a

false negative will occur when ௗ௩ܤ
 > ܥ but ܣ ≤ .ܥ

Assume that when Link n reports a QoS parameter ௗ௩ܤ
 ܤ=

ௗ௩ , the actual

parameter ܣ is randomly distributed from ିܤ ଵ (note ܤ = 0) to ܤ with a pdf p(x).

Given a value ܥ = ߬ ܤ)
ௗ௩ < ߬< ,(ܤ the probability of false positive can be expressed

as:

൛݂ݎܲ ܽ ݏ݈݁ ݏ݅ ݒ݁ݐ݅ ܥ| = ௗ௩ܤ߬,
 = ܤ

ௗ௩ൟ= න ݔ݀(ݔ)


ఛ

ܤ,
ௗ௩ < ߬< ܤ (2.3)
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Equation (2.3) is essentially the probability of ܣ falling in between  and ,ܤ

given that ܥ = ߬ and ܤ
ௗ௩ < ߬< .ܤ Let ݂( )߬ be the pdf of the accept/reject criterion

,ܥ then equation (2.3) can be expanded as:

൛݂ݎܲ ܽ ݏ݈݁ ݏ݅ ݒ݁ݐ݅ ௗ௩ܤ|
 = ܤ

ௗ௩ൟ= න න ݔ݀(ݔ)


ఛ




ೌೡ

݂( )߬݀߬ (2.4)

Similarly, given a value ܥ = ߬ , but ିܤ ଵ < ߬< ܤ
ௗ௩ , the false negative

probability can be written in the same manner as in equation (2.3):

݂ܽ}ݎܲ ݏ݈݁ ݊݁݃ ݒ݁ݐ݅ܽ ܥ| = }߬ = ∫ ݔ݀(ݔ)
ఛ

షభ
, ିܤ ଵ < ߬< ܤ

ௗ௩,

and

൛݂ݎܲ ܽ ݏ݈݁ ݊݁݃ ݒ݁ݐ݅ܽ ௗ௩ܤ|
 = ܤ

ௗ௩ൟ= ∫ ∫ ݔ݀(ݔ)
ఛ

షభ


ೌೡ

షభ
݂( )߬݀߬ (2.5)

Therefore, the probability of false routing (both false positive and negative) when

the advertised parameter is ܤ
ௗ௩ is then:

൛݂ݎܲ ܽ ݏ݈݁ ௗ௩ܤ|݃݊ݐ݅ݑݎ
 = ܤ

ௗ௩ൟ= ∫ ∫ ݔ݀(ݔ)

ఛ



ೌೡ ݂( )߬݀߬+

∫ ∫ ݔ݀(ݔ)
ఛ

షభ


ೌೡ

షభ
݂( )߬݀߬

(2.6)
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Since there are k classes, the overall probability of false routing is the sum of the

probability of false routing within each class multiplied by the probability of the

occurrence of that class:

∑ ൛݂ݎܲ ܽ ݏ݈݁ ௗ௩ܤ|݃݊ݐ݅ݑݎ
 = ܤ

ௗ௩ൟ∙
ୀଵ ௗ௩ܤ൛ݎܲ

 = ܤ
ௗ௩ൟ (2.7)

The distribution of p(x), which may be estimated, is assumed to be uniformly

distributed in ିܤ) ଵ, .(ܤ The estimation of p(x) is beyond the scope of this chapter and

will be addressed in the future work. Instead, the worst-case scenario is presented

because a uniformly distributed random variable yields the highest entropy, i.e., the most

uncertainty, in any finite range. With this assumption, equation (2.6) can be rewritten as:

൛݂ݎܲ ܽ ݏ݈݁ ௗ௩ܤ|݃݊ݐ݅ݑݎ
 = ܤ

ௗ௩ൟ

= න
−ܤ ߬

−ܤ ିܤ ଵ




ೌೡ

݂( )߬݀߬+ න
߬− ିܤ ଵ

−ܤ ିܤ ଵ


ೌೡ

షభ

݂( )߬݀߬ (2.8)

Equation (2.7) involves the probability distribution of the advertised parameter

ܤ
ௗ௩. Assuming that ܣ is uniformly distributed between 0 and ெܣ  , then ௗ௩ܤ൛ݎܲ

 =

ܤ
ௗ௩}=

ି షభ

ಾ ಲ
for all i=1,2,…, k.

So the objective becomes:

min ∑ ൛݂ݎܲ ܽ ݏ݈݁ ௗ௩ܤ|݃݊ݐ݅ݑݎ
 = ܤ

ௗ௩ൟ∙
ି షభ

ಾ ಲ

ୀଵ .

Substituting equation (2.8) into the above equation:
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min
ೕ

 ൭න
−ܤ ߬

−ܤ ିܤ ଵ




ೌೡ

݂( )߬݀߬+ න
߬− ିܤ ଵ

−ܤ ିܤ ଵ


ೌೡ

షభ
݂( )߬݀ ൱߬ ∙

−ܤ ିܤ ଵ

ெܣ 



ୀଵ

(2.9)

Let ݂൫ܤଵ, … ଵܤ,ܤ,
ௗ௩, … ܤ,

ௗ௩൯

= ∑ ൬∫
ି ఛ

ି షభ



ೌೡ ݂( )߬݀߬+ ∫

ఛି షభ

ି షభ


ೌೡ

షభ
݂( )߬݀ ൰߬∙

ି షభ

ಾ ಲ

ୀଵ

=
ଵ

ಾ ಲ ∙ ∑ ൬∫ −ܤ) )߬


ೌೡ ݂( )߬݀߬+ ∫ (߬− ିܤ ଵ)


ೌೡ

షభ
݂( )߬݀ ൰߬

ୀଵ

The objective is to find andܤ ܤ
ௗ௩that minimize f. Therefore,

1

0 ( ) ( ) 0
adv

i i

adv
i i

B B

C CB B
i

f
f f

B
 


   

   (2.10)

and

       
1

10 0
adv

i i

adv
i i

B B
i

i C i Cadv adv B B
i i

f
e B f d B f d

B B
      





         
    

⇒ ܤ
ௗ௩ =

ି షభ

ଶ
for i=1,2,…, k, and ܤ =0 (2.11)

From equations (2.10) and (2.11), in a k-class case, canܤ be derived from the

following equation:

∫ ݂( )߬݀߬

షభ

= ∫ ݂( )߬݀߬
శభ


=
ଵ


(2.12)

Note that if ݂( )߬is uniformly distributed, the result is identical to the equal class

update policy. It can be interpreted as that equal class update policy is a special case of

ROSE II.
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2.4 Simulations

The simulation presented in this section uses delay as the additive QoS constraint.

Denote MAXD as the maximum amount of delay a link can experience in the network

(e.g., queue full), i.e., MAX
MAXA D . The accept/reject criterion C is simulated as

normally distributed with mean = 0.3 MAXD , and variance = 3 MAXD . Since the actual

delay distribution of each link in the network is not known, in the simulations, the actual

delay of the link, actualD , is modeled as uniformly distributed in (0, MAXD ) – which

represents the highest uncertainty (entropy). One hundred thousand connection setup

attempts were made, each time with a different value of accept/reject criterion C and a

different actualD . The class boundaries and their corresponding advertised delay adv
iD

(which is equivalent to adv
iB in equation (2.11)) were calculated according to equations

(2.11) and (2.12). MAXD is fixed at 1000 units.

Figure 2.2 shows the results of the simulation when the number of classes varies

from 3 to 12. As one can see, when the number of classes increases, the probability of

false routing from either ROSE II or equal-class updates decreases. This is due to the fact

that the more classes, the more accurate link state information the network can obtain.

However, regardless the number of classes, ROSE II always performs better than equal-

class update, especially when the number of classes is small because equal-class update

does not take the accept/reject criterion C into consideration.
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Figure 2.2 Probability of false routing with varying number of classes.
(ROSE II vs. equal class.)

Figure 2.3 shows the results where the number of classes is fixed to 5 but the

variance of the accept/reject criterion is varying from 1000 to 10000. From this figure,

one can see that when the variance of accept/reject criterion C increases, the probability

of false routing increases. However, ROSE II still performs better than equal-class,

especially when the variance is low. Since ROSE II takes the probability distribution of

the accept/reject criterion into consideration, the lower variance means the accept/reject

criterion is more predictable, hence yielding better performance for ROSE II.

Figure 2.4 compares the performance between ROSE II and exponential-class

update. Here, the number of classes is 5 and the variance of the accept/reject criterion is

3 ∙ ܦ ௫. The factor f in exponential update varies from 1.1 to 2.0. One can see that the

probability of false routing with ROSE II remains almost constant because the change of f

does not affect ROSE II. On the other hand, the performance of exponential-class update
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decays slightly as the value of f increases. Exponential-class update performs well when

the QoS parameter is exponentially distributed or approximately so, because it assigns

finer class ranges at lower value. Since this simulation is based on uniformly distributed

QoS parameter and the accept/reject criterion is normal-distributed, which is a likely

condition that additive QoS constraints would encounter, ROSE II is the better solution.

Figure 2.3 Probability of false routing with varying variance of C. (ROSE II vs. equal
class.)

Figure 2.4 Probability of false routing with varying f. (ROSE II vs. exponential class.)
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2.5 Summary

In this chapter, the behavior of additive QoS parameters has been investigated, such as

delay. Owing to the unique property of additive QoS metrics, each link cannot make the

decision of whether to accept or reject a connection request based on its own QoS

parameter individually. Instead, the decision depends on the QoS parameters of all the

links along the potential path. By the central limit theorem, on a per-link basis, the QoS

criterion of accepting or rejecting a connection can be approximated as a normal-

distributed random variable when the QoS constraint is additive. In this case, one can

design the class ranges accordingly, and apply the ROSE II algorithm based on equations

(2.11) and (2.12) to minimize the probability of false routing. Through extensive

simulations, the results demonstrate that ROSE II performs better than equal-class update

and exponential-class update with additive constraints.1

1 ROSE has been demonstrated to outperform other update schemes for the concave constraints [7].
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CHAPTER 3

SMART PACKET MARKING

TO IMPROVE THE ACCURACY OF EEAC_SV

3.1 Introduction

In order to provide Quality of Service (QoS) for the internet traffic, two fundamental

frameworks have been proposed: Integrated Service (Intserv) [8] and Differentiated

Service (Diffserv) [9]. Intserv along with RSVP [10] aims to offer flexible QoS

guarantees to each individual flow, but suffers from the scalability limitation. Diffserv

tries to overcome the scalability problem by coarsely aggregating traffic flows with

various QoS requirements into a finite number of service classes, such as Expedited

Forwarding (EF), Assured Forwarding (AF), and Best Effort (BE). All traffic flows in the

same class experience the same QoS. The inability of Diffserv to provision QoS in fine

granularity is its major drawback, thus potentially resulting in the wastage of network

resources. Recently, an Explicit Endpoint Admission Control with Service Vector

(EEAC-SV) has been proposed in [11] to provide finer granularity in QoS provisioning

while maintaining the scalability of Diffserv. In EEAC-SV, each node maintains a finite

number of service classes, and allows an end-to-end connection to utilize different

service classes in different routers along the path. Finer QoS granularity results in better

network utilization, and hence reduced costs [11].

Two phases are conducted during the life span of an end-to-end connection in

EEAC-SV: probing phase and data transmission phase. In the probing phase, a probing

packet is sent from the host that initiates the connection along the pre-selected route



19

Each router in the path marks the probing packet with its explicit QoS performance

measurements (e.g., bandwidth, delay, etc.) of each service class. When the probing

packet is sent back to this end host, based on the marked QoS information in the probing

packet, it calculates the best strategy to utilize the network resource: find the least cost

service vector that satisfies the QoS requirements. A service vector is defined as a

selection of service classes in all the routers along the path. Once a service vector is

selected, the data transmission phase begins.

The calculation of the service vector is a key step in EEAC-SV, and its accuracy

highly depends on the packet marking scheme. However, there have not been many

studies related to the efficiency of packet marking. In the framework proposed in [11],

three congestion levels corresponding to the random early detection (RED) algorithm

[12] are mapped into the delay measurements which are marked into the probing packets.

Further studies on the probing packet marking mechanism are needed. First, the number

of congestion levels should be in the form of 2 in order to fully utilize the marking field

in the probing packet, where n is a positive integer. For example, if the total number of

congestion levels is five, three bits in the marking field are needed to represent the

congestion levels from 1 to 5 even though the three bits are able to represent eight levels.

To fully utilize the three bits, eight congestion levels should be adopted that will provide

finer resolution of the congestion levels. Second, the choice of boundaries of each level

can also affect the efficiency of the service vector calculation; and third, there are various

types of QoS constraints (i.e., concave and additive) which have different properties and

need to be considered separately. In this chapter, the packet marking mechanism is

further investigated and an efficient packet marking solution that is suitable for various
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types of QoS constraints is developed. The work presented in this chapter assumes that

for any given QoS constraint, the probability distribution of users’ requirement is known

a priori. That is, taking the delay constraint as an example, the percentage of users that

request network connections with end-to-end delay smaller than x is assumed to be

known, where x is in the unit of time. This assumption can be justified by the fact that the

probability distributions of user requirements can be obtained from user profiles and from

the past experience of network operations. Furthermore, it is assumed that the probability

distributions of all QoS performance measurements of each service class in each node are

known. This probability distribution can be derived from the operation history of each

node. With the above assumptions, the Smart Packet Marking mechanism is proposed.

This mechanism takes advantage of the knowledge of the probability distributions of

users’ QoS requests and the network’s QoS performance measurements to improve the

efficiency of service vector calculation.

The rest of this chapter is organized as follows: Section 3.2 describes the general

model of probing packet marking in EEAC-SV and points out its potential challenges. In

Section 3.3 introduces the proposed Smart Packet Marking scheme. Section 3.4 presents

the simulation results, and Section 3.5 the conclusion.

3.2 Modeling the Probing Packet Marking Mechanism

In EEAC-SV, a probing packet is sent along the path before the end-to-end connection is

established. Each node along the path marks the probing packet with its own QoS

measurements of each service class. Marking the packet with the precise measurements

of all QoS parameters can result in tremendous amount of network overhead, i.e., the
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probing packet has to be gigantic in order to carry detailed information. Therefore, in

reality, the actual QoS measurement is coarsely quantized into a few levels. A network

node marks a probing packet with the quantized level of a certain QoS parameter that this

node can provision. When the probing packet is sent back to the sender, according to the

markings in the probing packet, an end-to-end path that satisfies the user’s QoS

requirements is set up if such path exists, or the connection request is rejected if the

network is deemed unable to satisfy the end user’s QoS request. If the connection is

rejected, the user can drop the request, make another request later, or try a different path.

The user’s reaction to the connection rejection is beyond the scope of this dissertation. In

the case that the network is able to support the requested connection, a service vector is

chosen based on the marking in the probing packet. The calculation of the service vector

can be performed by edge routers or end hosts. For simplicity, in this chapter, the end

hosts are referred to as the entities that perform the service vector calculation. The service

vector defines which service class the connection uses at each node. This procedure

allows the end-to-end connection to select different service classes at different nodes to

satisfy the end-to-end QoS requirements while minimizing the cost.

Since the calculation of the service vector is based on the information in the

probing packets, and the markings in probing packets only carry coarsely quantized

values of each node’s QoS measurements, it is possible that the chosen service vector is

not optimized. When the service vector is not optimized, two situations can occur: (1) the

chosen service vector cannot actually satisfy the user’s QoS requirement, or (2) the

chosen service vector can satisfy the user’s QoS requirement at an unnecessarily higher

cost. Note that the first situation also includes the condition where the connection is
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falsely accepted by the network while the network is unable to support its QoS at all (i.e.,

even the highest-cost path is unable to satisfy the QoS requirement). The second situation

includes the condition where the connection is falsely rejected by the network while there

should be a service vector that can support the connection. In this chapter, situation (1) is

referred to as a false positive since a service vector is falsely accepted, and situation (2)

is referred to as a false negative since a service vector is falsely rejected, or when the

user is forced to choose a service vector with a higher-than-necessary cost. The term

“false routing” [7] 2 will be used in this chapter to refer to both false positive and false

negative. The probability of false routing will be used as the measure of the efficiency of

packet marking and service vector calculation.

3.3 Smart Packet Marking

The Smart Packet Marking mechanism is proposed in this section, which can reduce the

probability of false routing. This mechanism takes the assumption that, for a given QoS

parameter, the probability distribution of users’ QoS requirement is known, denoted by

pdf p(x), and the probability distributions of the QoS measurements of each service class

in each node are also known, denoted by pdf ( )l
cq y ,where l is the node number and c

denotes the service class (e.g., BE, AF, and EF). For simplicity, further assume that

1 2( ) ( ) ( )c c cq y q y q y   for all nodes. In packet marking, let k be the total number of

2 “False routing” refers to the situation that the network makes an incorrect decision of accepting or

rejecting a connection with respect to the actually available resources. In this paper, it is assumed that the

only cause of false routing is the inaccurate QoS information reported by each node.
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levels of quantization in a service class c, and c
iB be the boundary of each level (i=0,…,

k), and 0
cB =0. Then, for each QoS parameter in each class, if its actual measurement is y,

the node will mark the probing packet as level m if 1
c c
m mB y B   (1 m k  ). When the

marked probing packet is sent back to the end user, it carries the information of the QoS

performance levels of all service classes in all nodes. For example, a probing packet that

has been marked by three nodes would have the following matrix:

Marked information =

1 1 1

2 2 2

3 3 3

, ,

, ,

, ,

BE AF EF

BE AF EF

BE AF EF

Q Q Q

Q Q Q

Q Q Q

    
    
    

,

where 1 0,1, ,BEQ k  is the delay level of the BE class currently measured at node 1,

2
EFQ is the delay level of the EF class measured at node 2, etc.. Note that the above matrix

only carries the information of one type of QoS performance measurement (e.g., delay),

each different type of QoS is denoted by a separate matrix.

For each level, an “advertised value” c
mB ( 1

c c c
m m mB B B   ), known to the end user

a priori, is used in the calculation of the service vector. The Smart Packet Marking is to

design the boundaries c
mB and advertised value c

mB based on p(x) and ( )cq y to minimize

the probability of false routing.

To analyze the probability of false routing, it is necessary to scrutinize two major

types of QoS constraints: concave and additive constraints (There is another type of QoS

constraints: multiplicative, which can be converted into additive constraints by using the

logarithm operation. Therefore, only concave and additive constraints need to be

addressed). Consider the case where an end-to-end path traverses through m links, and
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each link has a certain QoS parameter measurement (e.g., delay or bandwidth) Qi

(i=1,..,m), then this end-to-end path satisfies the user’s QoS requirement x if min{Q1, Q2,

…, Qm}x when the QoS constraint is concave, or if
1

m

i
i

Q x


 when the QoS constraint

is additive. Concave and additive constraints exhibit different properties in the analysis of

the probability of false routing, and therefore they have to be considered separately.

Concave constraints:

On a per-link basis, let y be the actual QoS measurement of class c in this link. Then,

when y falls between the interval [ 1
c
mB  , c

mB ] (i.e., level m), the probability of false

positive for concave constraints can be expressed by the following:

Pr{False Positive}=
1 1

( ) ( )
c
m

c c
m m

B x

cB B
q y dy p x dx

 

  . (3.1)

This is the probability that c
mB is greater than the user’s request x, but the actual

QoS measurement y is smaller than x. The connection will be accepted into class c of this

link, but this class is actually unable to satisfy the request.

Similarly, the probability of false negative is:

Pr{False Negative}= ( ) ( )
c c
m m

c
m

B B

c
B x

q y dy p x dx  (3.2)
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In this case, c
mB is smaller than the user’s request x, but the actual QoS

measurement y is greater than x. The connection will be denied from using class c of this

link while this class is actually able to satisfy the requirement.

Then, the probability of false routing at level m is

1 1

( ) ( ) ( ) ( )
c c c
m m m

c c c
m m m

B x B B

c cB B B x
q y dy p x dx q y dy p x dx

 

      (3.3)

Additive constraints:

A unique property of additive constraints is that the decision of whether a certain class of

a link can support the QoS requirement cannot be made based solely on this class’s QoS

measurement; it involves the QoS measurements of all other links along the path.

Therefore, from a single link’s point of view, whether class c can be selected to support

the connection relies on whether the advertised QoS performance c
mB is greater or smaller

than  advertised values of all other nodesx , where x is the user’s requirement.

Since it is assumed that the probability distributions of user’s request x and the QoS

measurement y are known, let  advertised values of all other nodesC x  , then C

can be viewed as the sum of multiple random variables. By applying the Central Limit

Theorem, the probability distribution of C can be approximated by a Gaussian

distribution whose mean and variance can be derived from p(x) and ( )cq y .

Let ( )Cf x be the pdf of C, on a per-link basis, the probability of false positive for

additive constraints can be expressed by the following:
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Pr{False Positive}=
1 1

( ) ( )
c
m

c c
m m

B x

c CB B
q y dy f x dx

 

  (3.4)

Similarly, the probability of false negative is:

Pr{False Negative}= ( ) ( )
c c
m m

c
m

B B

c C
B x

q y dy f x dx  (3.5)

The probability of false routing at level m is then

1 1

( ) ( ) ( ) ( )
c c c
m m m

c c c
m m m

B x B B

c C c CB B B x
q y dy f x dx q y dy f x dx

 

      (3.6)

Thus far, the probabilities of false routing have been derived for each congestion

level for both concave and additive constraints. Recall that k is the total number of levels,

and so the overall probability of false routing in each class is

Pr{False Routing }=
1

k

m
 Pr{False Routing , level = m} (3.7)

The objective is to design c
mB and c

mB such that the probability of false routing is

minimized. Let g=Pr{False Routing}. In order to find the minimum probability of false

routing, one needs to find c
mB and c

mB (m=1,2,…,k) such that 0
c
m

g

B





and 0

c
m

g

B





.

Therefore, for concave constraints:
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1

0 ( ) ( ) 0
c c
m m

c c
m m

B B

c B B
m

g
p x dx p x dx

B


   

   (3.8)

1

0 ( ) ( ) 0
c c
m m

c c
m m

B B

c cc B B
m

g
q y dy q y dy

B 


   


  (3.9)

For additive constraints:

1

0 ( ) ( ) 0
c c
m m

c c
m m

B B

C Cc B B
m

g
f x dx f x dx

B


   

   (3.10)

1

0 ( ) ( ) 0
c c
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From equations (3.8) to (3.11), c
mB and c

mB can be solved for. Although solving

these equations may require a considerable amount of computation, this computation only

needs to be executed once before the implementation of the Smart Packet Marking

scheme, since ( )cq y , ( )Cf x , and p(x) do not vary dramatically with time. Once the

solutions for c
mB and c

mB are found, they can be plugged into the routers. Then, the routers

will simply mark the probing packets according to these boundary values and the end

hosts will calculate the service vectors according to c
mB ’s.
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3.4 Simulations

To demonstrate the efficiency of the Smart Packet Marking scheme, this section

compares its performance with other packet marking schemes that do not take stochastic

information of user’s requests and network QoS measurements into consideration. In the

following simulations, an Equal-boundary Packet Marking scheme is being compared

with the Smart Packet Marking scheme. Unlike Smart Packet Marking, the Equal-

boundary Packet Marking (referred to as Equal Packet Marking hereafter) scheme

designs its boundaries in a way such that the differences between each adjacent boundary

pairs are equal, that is, 1 1
c c c c
m m m mB B B B    for all m. In other words, the quantization is

uniform. This packet marking scheme corresponds to the “Equal Class Update” scheme

in the study of link state update [7] [3], and it is therefore chosen here for comparison

purposes. It is assumed that the network offers three service classes: BE, AF, and EF,

with the cost of each class equals to 1, 2, and 3, respectively. Each end to end connection

traverses through 5 links (hop count = 5). Both concave and additive constraints are

considered in the simulation: for concave constraints, bandwidth is chosen as the QoS

parameter; for additive constraints, delay is used as the QoS parameter. In each

simulation, 100,000 connection attempts are made, and the propagation time of probing

packets are assumed to be negligible. The probability of false routing is calculated from

the total number of false routing occurrences divided by the total number of connection

attempts, while the occurrence of false routing is as defined in Section II.
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A. Concave Constraint – Bandwidth:

The bandwidth capacity of each class is 100,000 units, and is equal in every link. The

occupied bandwidth is exponentially distributed with means equal to 20,000 units in EF,

30,000 units in AF, and 40,000 units in BE. The user requested bandwidth is Gaussian

distributed with the mean of 40,000 units and variance of 5×108. The total number of

levels varies from 4 to 8, and is the same for each class and each link. Figure 3.1 shows

the comparison of probability of false routing between Smart Packet Marking and Equal

Packet Marking with various numbers of levels.

Figure 3.1 Probability of false routing for the concave (bandwidth) constraint. Equal
Packet Marking vs. Smart Packet Marking. The number of quantization levels varies
from 4 to 8.
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Figure 3.2 Probability of false routing for the additive (delay) constraint. Equal Packet
Marking vs. Smart Packet Marking. The number of quantization levels varies from 4 to 8.

B. Additive Constraint – Delay:

The maximum delay of each class is 100,000 units and is equal in every link. The actual

delay measurement is exponentially distributed with means equal to 8,000 units in EF,

10,000 units in AF, and 12,000 units in BE. The user requested delay is Gaussian

distributed with the mean of 50,000 units and variance of 1×108. Figure 3.2 shows the

comparison of probability of false routing between Smart Packet Marking and Equal

Packet Marking with the delay constraint. Again, the total number of levels varies from 4

to 8, equally applied to all classes in all links.

As one can see, Smart Packet Marking yields much lower probability of false

routing in most of the cases, especially when there are fewer levels. Recall that the total

number of levels corresponds to the number of bits used in packet marking; fewer levels

means smaller probing packets and less overhead. Therefore, the results indicate that
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even with only two bits dedicated for packet marking for each class, which corresponds

to four levels, Smart Packet Marking can effectively reduce the probability of false

routing for both concave and additive cases.

C. Varying the Variance

The previous subsection has shown the effect of changing the number of levels on the

performance of packet marking. This subsection further investigates the effect of

changing the variance by running simulations with a fixed number of levels and various

variances. In the case of bandwidth (concave) constraint, five scenarios are simulated. In

the first scenario, the mean bandwidth occupancies of EF, AF, and BE are 5,000, 15,000,

and 35,000, respectively. With each increment in the scenario index, the mean in each

class increases by 5000 units. Note that, since the bandwidth occupancy is exponentially

distributed, the variance of the available bandwidth is the square of the mean; increasing

the mean will increase the variance automatically. The number of levels is fixed at 4, and

the rest of the conditions remain the same as in the previous simulations. The results are

presented in Figure 3.3.

In the case of the delay (additive) constraint, five scenarios are adopted as well.

The mean of delay measurements increases by 2,000 units for each scenario: from 6,000

to 14,000 in EF, from 8,000 to 16,000 in AF, and from 10,000 to 18,000 in BE. Since all

delay measurements are assumed to be exponentially distributed, the variance therefore

increases accordingly. The number of levels is fixed at 4 as before. The results are

presented in Figure 3.4.
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From Figures 3.3 and 3.4, one can see that a higher variance of QoS

measurements will cause a higher probability of false routing in both packet marking

schemes for both concave and additive constraints. The increment is even more

significant in the case of the delay constraint since the algorithm of choosing the service

vector for an additive constraint involves the sum of the QoS behavior of all links. Since

a small variance increment in each link will result in a big variance increment in the sum,

the overall impact becomes more pronounced. One interesting note is that even though

Equal Packet Marking does not take any stochastic information into consideration, its

performance is still affected by the change in variance. However, regardless of the

variance chosen in the above simulations, Smart Packet Marking always outperforms

Equal Packet Marking.

Figure 3.3 Probability of false routing for the concave (bandwidth) constraint. Equal
Packet Marking vs. Smart Packet Marking. The variance of bandwidth measurements

increases with each scenario.
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Figure 3.4 Probability of false routing for the additive (delay) constraint. Equal Packet
Marking vs. Smart Packet Marking. The variance of delay measurements increases with
each scenario.

3.5 Summary

EEAC-SV is a solution that allows the network to provision QoS in finer granularity, thus

increasing network utilization and reducing cost. Marking the probing packet is an

important element in EEAC-SV. The mathematical analysis indicates that the

performance of EEAC-SV can be improved with a properly designed packet marking

scheme. In this chapter, a probing packet marking mechanism, Smart Packet Marking,

has been proposed based on a rigorous mathematical analysis. Extensive simulations

demonstrated that, with the knowledge of the probability distribution functions of users’

QoS requirements and network’s QoS performance, one can design the quantization

boundaries of probing packet marking that minimizes the probability of false routing by
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finding the optimal service vector. The computation, though with some degree of

complexity, only needs to be executed once before the implementation. Therefore, with

the same amount of network overhead, Smart Packet Marking achieves maximum

efficiency in the calculation of the service vector, hence improving the performance of

EEAC-SV.
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CHAPTER 4

ROUTING-ORIENTED UPDATE SCHEME (ROSE) FOR LINK STATE

UPDATING

4.1 Introduction

The ability to provide Quality of Service (QoS) is a necessity for the next generation

integrated networks. Today, QoS routing has become the fundamental focus of study. The

goal of QoS routing is to find a path that satisfies multiple QoS constraints while

maximizing the network utilization and minimizing users’ costs. QoS routing in general

consists of two critical issues: link state dissemination and route selection [1]. The link

state dissemination addresses how the link state information is exchanged throughout the

network while the route selection elaborates on how to find the optimal path given the

available link state information. Many works have addressed the issue of route selection

[13]-[18]. This chapter concentrates on the issue of link state dissemination.

The purpose of link state dissemination is to provide the knowledge of QoS status

of all the links to the routing devices (e.g., routers) in a network. Based on this

knowledge, the network can then determine the best route for any given end-to-end

connection to meet its QoS requirements and utilize the overall network resource

efficiently. In order to provide the knowledge of all the QoS parameters of each link, each

link itself must employ some scheme to report its own QoS parameters, referred to as

“link state update”. Generally, it is impractical to assume that routing devices have

accurate link state information of all links at all time, because this would require rapid

link state updates from all links, hence, consuming a large amount of network resource.
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Therefore, an effective link state update algorithm is necessary to provision QoS. Link

state update determines the behavior of how each node updates its status to the entire

network, including when to update and how to update.

A widely used link state update protocol, OSPF [2], which has also been adopted

in many types of networks such as optical networks [19], recommends the link state to be

updated once every 30 minutes. However, because of the highly dynamic nature of the

traffic, updating in such a long time interval will result in stale/outdated link state

parameters. This will compromise the efficiency of QoS routing. Several other link state

update policies, such as threshold, equal class and exponential class based update policies

[20], have been proposed. In the threshold policy, an update is triggered when the

difference between the current value and the previously updated value of a certain

parameter exceeds a threshold. That is, given a threshold value , an update occurs when

0| |cb b   , where 0b is the previously updated value and cb is the current value of a

QoS parameter. In the equal-class and the exponential-class based update policies, the

values of QoS parameters are divided into classes. An update is triggered when the

current value of a QoS parameter changes from one class to another. For example, in a

two-class situation, if the range (interval) of the first class is (0, b1), and the range of the

second class is (b1, b2), then an update will happen when bc changes from 0< bc <b1 to b1

< bc < b2, or vice versa.

What separates the equal class based link state update policy from the exponential

class based link state policy is the choice of the boundaries, or in other words, the

partitioning of each class. In the equal class based link state update, the class of a QoS

parameter is partitioned into equal-sized intervals, for example, (0,B), (B, 2B), (2B,
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3B),…, etc.. In the exponential class based update, the classes are partitioned into

unequal-sized ranges, (0,B), (B, (f+1)B), ((f+1)B,(f2+f+1)B),…, etc., whose sizes grow

geometrically by a factor of f, where B is a predefined constant.

No matter which link state update policy a network adopts, it is unavoidable that

the QoS parameters of each node known to the entire network might not be exactly

accurate at any given time, due to the staleness and coarse classes. As a result, false

routing is inevitable. Some works have been done in analyzing the effect of stale or

inaccurate link state information, and attempting to reduce its impact. In [4], extensive

simulations were made to uncover the effects of the stale link state information and

random fluctuations in the traffic load on the routing and setup overheads. In [5]-[6], the

effects of the stale link state information on QoS routing algorithms were demonstrated

through simulations by varying the link state update interval. A combination of the

periodic and triggered link state update is considered in [21]. Instead of using the link

capacities or instantaneous available bandwidth values, Li et al. [22] used a stochastic

metric, Available Bandwidth Index (ABI), and extended BGP to perform the bandwidth

advertising.

In this chapter, for the purpose of saving network resources and reducing the

staleness of link state information, a new link state information update scheme is

introduced: Routing-Oriented update SchEme (ROSE)3. The uniqueness of ROSE is that

it takes the QoS requirements of applications and the network QoS behavior into account.

As reviewed above, most of the existing link state update schemes do not consider both

3 Preliminary results of ROSE have been presented in [7] and [23].
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the statistical distributions of the actual user’s QoS requirements and the network’s QoS

behavior. In fact, this research has discovered that the knowledge of the distribution of

the user’s QoS requirements and the history of network’s QoS behavior can greatly

improve the efficiency of link state update and the accuracy of QoS routing. The

statistical distribution of the user’s QoS requirement and the network’s QoS behavior can

be obtained from the network operation history. The key concept of ROSE is to utilize

these statistical distributions and design a class-based link state update scheme that is

able to provide the most helpful link state information for the connection setup processes,

hence yielding better performance than other existing link state update schemes. Via

theoretical analysis and simulations, ROSE is shown to greatly outperform the state of the

art.

The rest of this chapter is organized as follows. Section 4.2 describes the

properties of various types of QoS constraints. Section 4.3 defines the term “false

routing” and the cost of false routing. Then, Section 4.4 proposes an efficient link state

information update scheme, ROSE. The simulation results are presented in Section 4.5.

Finally, concluding remarks are given in Section 4.6.

4.2 Properties of QoS Constraints

Most of the QoS constraints (e.g., bandwidth, delay) can be categorized into the

following three types: concave, additive, and multiplicative. Multiplicative constraints

can be converted into additive constraints by using the logarithm operator. Therefore,

only concave and additive constraints are considered in the study of QoS routing. A
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concave constraint works as follows: in the case of a multi-link end-to-end path, as long

as the smallest (or largest) QoS parameter among all the links is larger (or smaller) than

the corresponding QoS requirement, then this path is considered acceptable. Bandwidth is

a typical example of the concave constraint. An additive constraint works as follows: in

the case of a multi-link end-to-end path, the sum of all the QoS parameters along the path

has to be less than the corresponding QoS requirement in order for this path to be

acceptable. Delay is a typical example of the additive constraint. In Figure 4.1, the path

consists of 3 links: link 1, 2, and 3. Each of these links has a concave QoS parameter C1,

C2, and C3, respectively, and an additive QoS parameter A1, A2, and A3, respectively. If a

connection imposes QoS constraints C0 and A0, then the path is deemed acceptable if

݉ ݅݊ {ଷܥ,ଶܥ,ଵܥ} ≥ ,ܥ and ଶܣ+ଵܣ + ଷܣ ≤ ܣ

Figure 4.1 Illustration of concave and additive constraints: Concave QoS parameters of
link 1, 2, and 3 = C1, C2, and C3. Additive QoS parameters of link 1, 2, and 3 = A1, A2,
and A3. The path is acceptable if  min 1, 2, 3 0C C C C and 1 2 3 0A A A A   , where C0 and A0

are required concave and additive constraints.

One of the special characteristics of an additive constraint is that, from a per-link

point of view, the QoS requirement of each link is related to the QoS behavior of all the

other links in the same path. Taking link 2 in Figure 4.1 as an example, link 2 will be

accepted if  2 0 1 3A A A A   . Similarly, in an m-link path, a link among these m links,

jl  j m , is acceptable if 0
1,

m

j i
i i j

A A A
 

   .
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Therefore, from the perspective of a single link, it cannot make the decision whether to

accept or reject a connection purely based on its own additive link state metrics.

As one can see, the concave constraints have quite different properties from those

of additive constraints; therefore, they have to be considered separately when designing a

link state update scheme. Those aforementioned current link state update schemes

(threshold, equal class, and exponential class updates) do not take the difference of these

properties into consideration. The contents in the next few sections will show how ROSE

can cope with both concave and additive constraints better than the current link state

update schemes.

4.3 False Routing

Ideally, when a connection request with certain QoS requirements is made to the network,

the network’s routing mechanism will accept this request and set up the connection if

there are enough resources in the network to support the required QoS, and reject the

request otherwise. However, in the real situation, since the routing mechanism does not

always have the accurate link state information, it is unavoidable that some connections

will be falsely accepted when the network actually cannot meet the QoS requirements

while some other connections will be falsely rejected when the network actually has

enough resource to support the QoS requirements. In this chapter, an instance of the first

situation – a connection is falsely accepted – is referred to as a “false positive”, and an

instance of the second situation – a connection is falsely rejected – is referred to as a

“false negative”. Both false positives and false negatives constitute the definition of
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“false routing”. In other words, “false routing” has occurred as long as either a false

positive or a false negative occurs.

False positives can jeopardize user’s satisfaction since users are experiencing poor

QoS in this situation. Meanwhile, false negatives can cause the under-utilization of

network resources by rejecting the connections that should have been accepted.

Therefore, both false positives and negatives are considered undesired situations. One can

argue that one situation is more severe or, in other words, more costly, than the other. To

reflect this concern, instead of simply gauge the performance of QoS routing by the

probability of false routing, one should compare the “cost of false routing” for more

realistic evaluation. A cost factor is used in ROSE, and therefore ROSE is not only

capable of minimizing the occurrence of overall false routing, but also minimizing the

overall cost of false routing. Throughout the rest of this chapter, the cost of false routing

will be used as the measure of the efficiency of various link state update schemes.

4.4 Route-Oriented Update SchEme (ROSE)

This section describes the new class-based link state update scheme, ROSE. The

fundamental concept of ROSE is to utilize the statistical distribution of the user’s QoS

request and the network’s QoS behavior in order to design an efficient class-based link

state update scheme. The distribution of the user’s QoS request can be obtained from the

user profile (for example, x% of the connections requires y bps of bandwidth). The

distribution of the network’s QoS behavior can be derived from observing the operation

history. Taking delay as an example, many reports have studied the delay measurements

of various traffic types [24][25]. Reference [25] has proposed a method to measure the
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single-hop delay, represented as the frequency histogram of delay. Reference [26]

directly indicates that the queue length of a bottlenecked link is likely to be Gaussian

distributed as long as there is a large number of TCP sessions on this link at any given

time. Since queuing delay is a major contributor of the end to end delay and possesses the

most dynamic nature, the distribution of queue length can also be used to derive the pdf

of single-hop delay. The subject of Internet measurements, which is a readily pursued

research, is beyond the scope of this dissertation. In this chapter, the pdf’s of the user’s

request and network’s QoS behavior are assumed to be known for the purpose of

illustrating the ROSE algorithm.

Consider a network composed of m links, denoted by the graph ( , )G V E , and

assume there is a routing device (either distributed or centralized) that makes the decision

of whether to accept a connection request and finds the end-to-end paths that can provide

the appropriate QoS to all accepted connections. The routing device makes the decision

based on the link state information acquired via link state update. Generally, in a class-

based link state update scheme, each link updates its QoS parameter by using a finite

number of classes; here, let k be the number of classes. For a given QoS parameter, its

value is assumed within a finite range (for example, the available bandwidth of a link can

only be ranged from 0 up to the full link capacity). Under these assumptions, with k

classes, the ranges of the respective classes can be expressed as: [Bmin, B1], [B1, B2], [B2,

B3],…, [Bk-1, BMAX], where Bmin and BMAX are the minimum and maximum of the QoS

parameter, and B1,, B2 ,…, Bk-1 are the boundaries of classes. To simplify the notations, let

B0 = Bmin and Bk = BMAX throughout the rest of the chapter. For each class, there is also a

representative value which is “advertised” by the link to the routing device as if it is the
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exact value, denoted by 1 2, , ,adv adv adv
kB B B . For instance, if the available bandwidth of a

link jl E falls in the range of [B1, B2] (class 2), then the link state update message will

“advertise” that the available bandwidth of jl is 2
advB . In short, the links update their QoS

status in a quantized manner. Figure 4.2 illustrates the concept of class-based link state

update. The routing device then makes the routing decision based on the advertised

values from all the links. However, owing to quantization, false routing is inevitable. This

can be illustrated by continuing the above example: When link jl reports its available

bandwidth as 2
advB , the true value can be anywhere from B1 to B2. Therefore, if a

connection attempting to utilize link j requests x amount of bandwidth and 1 2
advB x B  ,

the routing device will accept this request. However, it is possible that the actual

available bandwidth of link jl is less than x but greater than B1, and therefore incurring a

false positive. On the other hand, if 2 2
advB x B  and the actual available bandwidth of

link jl is greater than x but less than B2, a false negative will occur (refer to Figure 4.2).

The goal of ROSE is to design the class boundaries and the advertised values intelligently

to minimize the cost of false routing. Owing to the different properties of concave

constraints and additive constraints as described in Section 2, they have to be considered

separately in the design of ROSE.

Figure 4.2 Illustration of class boundaries and advertised values. In the concave case, a

false positive occurs when 1 2j

adv
lB b x B   .

x

B0 B1 B2 B3= Bmax

1
advB 3

advB
blj
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A. Concave QoS Constraints:

The analysis in this section starts with a single concave QoS metric – bandwidth. When a

connection requests x amount of bandwidth from link jl , the connection will be accepted

if  adv
jx B l , where  adv

jB l denotes the advertised available bandwidth of link jl , and

will be rejected otherwise. Assume that the actual available bandwidth of jl ,
jlb , is within

the range of class n (1 n k  , k is the total number of classes), then  adv
jB l = adv

nB . A

false positive occurs when  adv
jx B l but

jlb x (the actual bandwidth is less than the

requested bandwidth). For this condition to hold, the following has to be true:

 1 j

adv
n l jB b x B l    . Recall that it is assumed that the statistical information of the

user’s QoS requirements and the network’s QoS behavior are known, from which one can

derive their corresponding probability density functions (pdf). Therefore, x and
jlb can be

simply treated as random variables. Let  q x be the pdf of the user’s request x and  p b

be the pdf of the actual available bandwidth
jlb , then the probability of false positive can

be written as:

Pr{False Positive, class=n}=  
1

( )
adv adv
n n

n

B B

B b
q d p b db 



  (4.1)

Similarly, the probability of a false negative is:
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Pr{False Negative, class=n}=  ( )
n

adv adv
n n

B b

B B
q d p b db    (4.2)

Equation (4.1) represents the situation of  1 j

adv
n l jB b x B l    , and equation

(4.2) the situation of  
j

adv
j l nB l x b B   . Note that equations (4.1) and (4.2) are not

conditional probabilities; they describe the probability of false positive/negative AND the

current class is n. Therefore, the overall probability of a false positive is

Pr{False Positive}=
1

k

n
 Pr{False Positive, class=n} (4.3)

and the probability of a false negative is

Pr{False Negative}=
1

k

n
 Pr{False Negative, class=n} (4.4)

Since the severity of a false positive and a false negative might not be equal, let

pc be the cost of a false positive and nc be that of a false negative, then the total cost of

false routing C can be written as:

C= pc Pr{False Positive}+ nc  Pr{False Negative}

=  
11

( )
adv adv
n n

n

k B B

p
B b

n

c q d p b db 


  +  
1

( )
n

adv adv
n n

k B b

n
B B

n

c q d p b db 


  (4.5)
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In order to minimize C with respect to nB and adv
nB , one needs to find the solutions

to the following equations:

1

0 ( ) ( ) 0
adv

n n

adv
n n

B B

n pB B
n

C
c q d c q d

B
   


   

   (4.6)

1

0 ( ) ( ) 0
adv
n n

adv
n n

B B

p nadv B B
n

C
c p d c p d

B
   




   

   (4.7)

B. Additive Constraints:

In the analysis of additive constraints, delay is chosen as an example for the rest of the

chapter. A unique property of additive constraints is that the decision of whether a link jl

can support the QoS requirement cannot be made based solely on this link’s QoS

measurement; it involves the QoS measurements of all other links along the path.

Therefore, from the routing device’s point of view, the decision of whether to select link

jl depends on whether

   
,

adv adv
j i

i path i j

B l x B l
 

   (4.8)

In other words, the decision is made based on whether the advertised delay of jl is

less than the user’s request x subtracted by the sum of the advertised delays of all other

links in the potential path. Again, since it is assumed the statistical information of x

(request) and
jlb (actual delay in link jl ) is available, x and  adv

jB l can be treated as
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random variables, where the pdf of  adv
jB l can be derived from the pdf of

jlb . Then, the

right half of equation (4.8) can be viewed as the sum of random variables. Let S=

 
,

adv
i

i path i j

x B l
 

  , and ( )Sf s be the pdf of S. Essentially, S is the criterion of whether

the connection will be accepted to utilize link jl . Therefore, S will be referred to as the

“accept/reject criterion” in this chapter. Applying the Central Limit Theorem, ( )Sf s can

be approximated by Gaussian distribution whose mean and variance can be derived from

the pdf of x and  adv
jB l . Note that the mean and variance are affected by the number of

hops in a connection. To simplify this problem, ROSE adopts the average hop count in a

network to estimate ( )Sf s . As it will show in the simulations, this simplified estimation

still produces better performance for ROSE than equal-class and exponential-class link

state updates.

Assume that the actual delay of link jl falls in class n, i.e., its advertised delay

 adv
jB l = adv

nB . On the per-link basis, a false positive occurs when  
j

adv
j l nB l S b B  

, and a false negative occurs when  1 j

adv
n l jB b S B l    . Therefore, the probability of a

false positive and a false negative can be written as:

Pr{False Positive, class=n}=  ( )
n

adv adv
n n

B b

SB B
f s ds p b db  (4.9)

Pr{False Negative, class=n}=  
1

( )
adv adv
n n

n

B B

S
B b

f s ds p b db


  (4.10)

where  p b is the pdf of the actual delay distribution of jl .
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From equations (4.9) and (4.10), following the same procedure as in the analysis

for concave constraints, the overall cost of false routing can be obtained:

C= pc Pr{False Positive}+ nc  Pr{False Negative}

=  
1

( )
n

adv adv
n n

k B b

p S
B B

n

c f s ds p b db


  +  
11

( )
adv adv
n n

n

k B B

n S
B b

n

c f s ds p b db


  (4.11)

Again, to find nB and adv
nB (n=1,… ,k), one needs to solve the following equations:

ܥ߲

ܤ߲
= 0 ⇒ ܿන ௦݂(ݏ)݀ݏ




ೌೡ

− ܿ න ௦݂(ݏ)݀ݏ
శభ
ೌೡ



= 0 (4.12)

ܥ߲

ܤ߲
ௗ௩ = 0 ⇒ ܿ න ௦݂(ݏ)݀ݏ


ೌೡ

షభ

− ܿන ௦݂(ݏ)݀ݏ



ೌೡ

= 0 (4.13)

Solving equations (4.6)-(4.7) and (4.12)-(4.13) requires a certain degree of

computational complexity. However, the advantage of ROSE is that once the boundaries

of the classes ( nB ’s) and their respective advertised values ( adv
nB ’s) are solved, they can

be simply plugged into each corresponding router so that the routers will perform link

state update accordingly. In a network where the traffic pattern varies at different time of

the day, the traffic pattern can be first categorized into different types for different time

periods (such as peak-hour/off-peak-hour traffic, etc.), then each of them will have a

separate set of nB ’s and adv
nB ’s which will be in effect during its corresponding time

period. As long as the traffic of the same type does not change drastically from day to
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day, (that is, say, every workday’s traffic pattern between 9am to 11am is similar) the

values of nB ’s and adv
nB ’s do not need to be recalculated. Therefore, when the network is

in operation, aside from applying different nB ’s and adv
nB ’s at different time periods of the

day, ROSE will not incur additional computational overhead than equal-class or

exponential-class link state updates.

4.5 Simulations

This section evaluates the performance of ROSE by comparing it with the existing class-

based update policies in [20]. For completeness, the equal class based and exponential

class based update policies are briefly defined in the following paragraphs.

Definition 1: Equal class based update policy [20] is characterized by a constant B

which is used to partition the available bandwidth or delay operating region of a link into

multiple equal size classes: (0,B), (B, 2B), (2B, 3B),…, etc. An update is triggered when

the available bandwidth on an interface changes to a class that is different from the one at

the time of the previous update.

Definition 2: Exponential class based update policy [22] is characterized by two

constants B and f (f>1) which are used to define unequal size classes: (0,B), (B, (f+1)B),

((f+1)B, (f2+f+1)B),…, etc. An update is triggered when a class boundary is crossed.

4.5.1 Concave Constraint: Bandwidth

The network topology used in the simulation is a 32-node network. Two performance

indices are adopted for the purpose of comparison: the update rate (average number of
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updates in a unit time) and the false routing probability of connections, which are

respectively defined below:

Update rate=
Total number of updates

(Total simulation time) (Number of links)
, and

False routing probability =
number of falsely-routed connections

number of connection requests
.

The arrivals of connection requests are generated by a Poisson process with

arrival rate 1  and the duration of each connection is derived from the standard Pareto

distribution with =2.5 (the cumulative distribution of the standard Pareto distribution is

   1F x x


  , where is the shape parameter and  is the scale parameter).

Hence, the average duration of a connection is  1d    (the mean of the standard

Pareto distribution). Upon the acceptance and the end of a connection, the available

bandwidth is re-computed. The bandwidth requested by each connection is uniformly

distributed in [bmin, bmax], that is,    min max~ ,q x u b b in equations (4.1) and (4.2) (do not

confuse this with the actual available bandwidth which is distributed in [0, C], where C is

the link capacity.)

Without loss of generality, it is assumed the costs of a false positive and a

negative are equal. Note that for a single class based link state update policy, the larger

number of the classes the bandwidth is partitioned into, the more accurate the link state

information is, implying the lower false blocking probability of connections, while the

more sensitive it is to the fluctuation of the available bandwidth, thus resulting in a larger

update rate. Hence, one can claim that policy 1 outperforms policy 2 if and only if, for

any given number of classes used for policy 2, an appropriate number of classes can
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always be found for policy 1 such that it achieves better performance in terms of both the

update rate and false routing probability of connections. By extensive simulations, it is

found that the link state update policy proposed in this chapter outperforms the equal and

exponential class based link state update policies for any given number of classes. This

section presents the simulation results of the cases that the numbers of classes of the

equal class based update policy is 10 (B=0.1C), and for the exponential class based

update policy, B=0.05C and f=2 (the number of classes is 5). In the two simulations,

[bmin, bmax] is set as [0, 0.05C] and [0.05C, 0.1C], and the number of classes of ROSE are

3 and 4, respectively.

The first step of the proposed link state update policy is to compute the classes

which partition the bandwidth. Since it is assumed the requested bandwidth is uniformly

distributed in the simulations and the costs of false positive and negative are equal,

equations (4.6) and (4.7) can be solved as:

ܤ = ܾ  +
݊ ∙ ( ܾ ௫ − ܾ )

݇

and

ܤ
ௗ௩ =

( ܾ ௫ − ܾ )

2

where k is the number of classes in ROSE.

Hence, the class based update policy adopted in the simulations is obtained. Figures 4.3-

4.6 illustrate the simulation results, in which Beta denotes the scale parameter  . In both
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simulations, the proposed link state update policy achieves much better performance than

others, i.e., the proposed link state update policy achieves lower false routing

probabilities with lower update rates than others, implying that the proposed link state

update is more practical than the equal and exponential class based link state update

policies in terms of the update rate and false blocking probability of connections.

Figure 4.3 Update rate when [bmin, bmax] = [0, 0.05C]

Figure 4.4 False routing probability when [bmin, bmax] = [0, 0.05C]
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Figure 4.5 Update rate when [bmin, bmax] = [0.05C, 0.10C]

Figure 4.6 False routing probability when [bmin, bmax] = [0.05C, 0.10C]

4.5.2 Concave Constraint with Error in PDF Estimation

Since ROSE relies on the estimation of the pdf’s of the user’s request and the network’s

QoS behavior, it is important to examine the impact of erroneous estimation (in other

words, fault tolerance). Here, bandwidth is used for illustrative purposes. In Figure 4.7,

error is introduced in measuring the mean of the user’s bandwidth request: the actual

distribution is assumed to be    2~ 0.3 ,0.02q x N C C while the estimated pdf is
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    2~ 0.3 1 ,0.02q x N C error C  . In Figure 4.8, the error resides in measuring the

variance of user’s bandwidth request distribution. The incorrectly estimated pdf is

    2~ 0.3 ,0.02 1 .q x N C C error  For both experiments, the network’s actual

available bandwidth distribution is assumed to be exponentially distributed. The resulting

probability of false routing is compared with that of the equal-class update. From these

experiments, the ROSE algorithm exhibits a good degree of fault tolerance.

Figure 4.7 False routing probability when there is error in measuring user’s mean

bandwidth request. Actual request pdf    2~ 0.3 ,0.02q x N C C .
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Figure 4.8 False routing probability when there is error in measuring user’s bandwidth

request variance. Actual request pdf    2~ 0.3 ,0.02q x N C C .

4.5.3 Additive Constraint: Delay

Let MAXD be the maximum amount of delay a link can experience in the network (e.g.,

queue full). The accept/reject criterion S (recall that S=  
,

adv
i

i path i j

x B l
 

  ) is simulated

as normally distributed with mean = 0.3 MAXD , and variance = 3 MAXD . The actual delay

distribution of actualD is approximated as exponentially distributed in the simulation. One

hundred thousand connection setup attempts were made, each time with a different value

of accept/reject criterion S and a different actualD . The class boundaries and their

corresponding advertised delay adv
nB were calculated according to equations (4.12) and

(4.13). MAXD is fixed at 1000 units.

Figure 4.9 shows the results of the simulation when the number of classes varies

from 3 to 12. As one can see, when the number of classes increases, the probability of
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false routing from either ROSE or equal-class updates decreases. This is due to the fact

that the more classes, the more accurate link state information the network can obtain.

However, regardless of the number of classes, ROSE always performs better than equal-

class update, especially when the number of classes is small because equal-class update

does not take the accept/reject criterion C into consideration.

Figure 4.9 Probability of false routing with varying number of classes. (ROSE vs. equal
class.)

Figure 4.10 shows the results where the number of classes is fixed to 5 but the

variance of S is varying from 1000 to 10000. From this figure, one can see that when the

variance of accept/reject criterion S increases, the probability of false routing increases.

However, ROSE still performs better than equal-class and exponential class updates,

especially when the variance is low. Since ROSE takes the probability distribution of the

accept/reject criterion into consideration, the lower variance means the accept/reject

criterion is more predictable, hence yielding better performance for ROSE.
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Figure 4.10 Probability of false routing with varying variance of S. (ROSE versus
exponential class and equal class.)

Figure 4.11 Probability of false routing with varying f (ROSE vs. exponential class).
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Figure 4.11 compares the performance between ROSE and exponential-class

update. Here, the number of classes is 5 and the variance of the accept/reject criterion is

3 MAXD . The factor f in exponential update varies from 1.1 to 2.0. One can see that the

probability of false routing with ROSE remains almost constant because the change of f

does not affect ROSE. However, the performance of exponential-class update decays

slightly as the value of f increases. Exponential-class update can be viewed as a special

case of ROSE in which all QoS parameters are exponentially distributed; in such case the

ROSE algorithm would also yield class sizes (optimized) resembling those of

exponential-class update. Nevertheless, the simulation result indicates that ROSE still

performs better than exponential-class update even under exponentially distributed

additive QoS parameters. This is because, for additive constraints, even if the QoS

parameter of an individual link is exponentially distributed, the accept/reject criterion S is

not. Therefore, the merit of ROSE is clearly revealed here.

4.5.4 Additive Constraints with Various Hop Counts

As it has been previously pointed out, the pdf estimation of the accept/reject criterion S is

based on the average hop count in the network. Obviously, ROSE serves well for the

connections with the hop count equal to the average hop count. However, it is important

to observe the impact to the other connections with different numbers of hops. For this

purpose, a network is simulated in which the delay distribution is exponentially

distributed with mean 8x103 units and variance 6.4x107 unit2. The user’s request is

Gaussian distributed with mean 105 units and variance 108 unit2. The average hop count

is set as 5, and therefore by applying the Central Limit Theorem, fS, the pdf of S, can be
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approximated by Gaussian distribution with mean 6x103 units and variance of 4.2x108

unit2.

To observe the effect of ROSE on the connections with various hop counts away

from the average, simulations are run over the connections with hop counts from as low

as 2 up to 8. The performance is compared with equal-class update and exponential class

update, as presented in Figure 4.12. From the result, one can see that ROSE still performs

better than both exponential-class and equal-class updates for different hop counts. It is

interesting to notice that the larger number of hops a connection traverses, the higher

chance of false routing it suffers. This is due to the fact that the inaccuracy of the link

state information will accumulate from link to link in the case of additive constraints.

Figure 4.12 Probability of false routing with various hop count. Average hop count =5.
(ROSE versus exponential class and equal class.)
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4.5.5 Discussion

These simulation results demonstrate that ROSE yields lower probability of false routing

than equal class update and exponential update in most of the scenarios. More

importantly, ROSE also shows reasonable fault-tolerance even when the estimation of

pdf is not accurate. In most of the simulations, the network QoS parameters are

exponentially distributed while the user’s request is normally distributed, but note that

ROSE is applicable to different types of pdf’s. The key here is to estimate the pdf’s and

solve Equations (4.12) and (4.13); the more accurate the estimation, the better the

performance of ROSE.

4.6 Summary

In this chapter, it has been demonstrated that the statistical distribution of the user’s QoS

requirements and networks QoS measurements can be exploited to efficiently and

effectively update link state information. An efficient link state update policy is proposed,

referred to as ROSE. Through theoretical analysis and extensive simulations, it has

shown that ROSE greatly outperforms its contenders which do not incorporate the

statistical information, i.e., ROSE achieves a much lower false routing probability and

reduces the cost of false routing without significantly increasing the network overhead.

Furthermore, ROSE can not only be applied to networks with various types of traffic and

user requests, but is also capable of handling the dynamic nature of modern network

traffic. ROSE can be the fundamental building block for QoS link state update in the next

generation network.
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CHAPTER 5

DOWNLOADER-INITIATED RANDOM LINEAR NETWORK CODING

FOR PEER-TO-PEER FILE SHARING

5.1 Introduction

Peer-to-Peer (P2P) file sharing networks have gained enormous popularity in recent

years. Several well-known P2P file sharing networks include Gnutella, eDonkey, the

Kazaa network, and BitTorrent. With the growing availability of broadband internet

access, more people are running P2P file sharing applications on their computers. As a

result, P2P file sharing has dominated the internet traffic [27]. The purpose of a file

sharing network is to distribute a single file or a bundle of files from a given set of nodes

to the other nodes in the network that are interested in obtaining such file(s).

Traditionally, file distribution is done by a client-server model in most of the networks.

Such client-server model suffers from the scalability problem: when the number of users

who concurrently want to download a certain file grows, the increasing demand will

eventually saturate the server(s)’ capacity(ies). As a result, users will experience slow

downloading speed (long downloading time) or, even worse, will not be able to gain

accesses to the server(s) at all.

The introduction of P2P file sharing has solved this type of scalability problem by

allowing every participating client who is downloading data from the network to act as a

server that uploads information as well. Therefore, there are no longer clients and servers

in such a model, only peers instead. The more users downloading a file, the more users

uploading this file, and hence the more upload bandwidth. While the scalability is a
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known advantage of P2P, it also brings new issues which require further investigation.

One of the issues is how to efficiently distribute data among peers such that each peer can

obtain the entire data as quickly as possible and the system is less susceptible to peer

churns [28], [29], [30].

Among all the proposed solutions, one is to utilize network coding in P2P file

sharing networks [31]. The concept of network coding was first introduced by Ahlswede

et al. in 2000 [32]. Later on, Li et al. [33] proposed a well defined linear network coding

algorithm. The fundamental difference between traditional networks and those with

network coding is that, in traditional networks, when information is sent from the source

node to the destination node, the intermediate nodes (if any) along the transmission route

simply forward the information to the next node along the path: they do not alter the

information nor impose any coding on this information; whereas in network coding, the

intermediate nodes are allowed to apply coding on the information they are forwarding,

implying that the out-going message(s) can be different from the incoming message(s) at

any given intermediate node. This approach has been shown to improve the overall

efficiency in multicast in a wired network, and increase the throughput in a wireless

network [34], [35]. It can also provide network security against wiretapping [50], [51].

Avalanche [36] is a project which attempts to apply network coding for file sharing.

Generally, when network coding is used in peer-to-peer file sharing networks,

instead of sending a particular piece of data, the peer now sends a linear combination of

pieces to other peers. When a peer receives enough linearly-independent pieces of data, it

will be able to reconstruct the original file. In the early stage, the benefit of network

coding in a P2P file sharing network was still unclear [37]. Today, there have been
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studies supporting the idea that network coding can indeed improve the efficiency of such

P2P file sharing networks [38]-[40]. Deb et al. [41]-[43] and Mosk-Aoyama et al. [44]

presented a series of analytical results on the performance improvements benefited by

network coding in generic data-distribution networks by using gossip-based approach.

The main difference between the gossip-based approach and a contemporary file sharing

network is that the nodes in a file sharing network are aware of the contents of certain

other peers while those in a gossip based network have no such information at all – nodes

simply make random connection with each other and see whether there is useful

information to exchange. Even so, the results from Deb et al. lead us to believe that

network coding can indeed improve the performance of a P2P file sharing network.

In this chapter, therefore, the work is focused on further investigating the

effectiveness of network coding in the file sharing P2P network model and offering

solutions for improvements. The first part of the chapter provides a mathematical analysis

on the performances of P2P networks with and without network coding. In order to adopt

random linear network coding at the sending node, it is necessary to increase the field

size in the binary operation in order to avoid possible “collisions” [31]. A “collision” is

the incident when one peer has innovative pieces that another peer needs, but this

innovative information is lost after it is linearly combined with other pieces. In order to

avoid this collision, the field size of the binary operation has to be increased. However,

increasing the field size introduces more overhead to network coding. Therefore, in the

second part of this chapter, a “Downloader-Initiated Random Linear Network Coding

(DRLNC)” scheme is proposed for the purpose of avoiding the collisions without

increasing the overhead.
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The rest of the chapter is organized as follows: Section 5.2 describes the general

concept of P2P file sharing networks, defines the terminologies used in this chapter, and

provides an overview on how network coding is applied in P2P file sharing networks.

Section 5.3 presents the mathematical performance analysis of P2P file sharing networks,

with and without network coding. Section 5.4 discusses the DRLNC scheme: its concept

and advantages. Section 5.5 provides the results of the simulations to substantiate the

analysis. Section 5.6 presents the summary.

5.2 Linear Network Coding for P2P File Sharing Networks

The purpose of a file sharing network is to distribute a single file or a bundle of files from

a given node in the network to other nodes in the network that are interested in obtaining

such file(s). In this chapter, the node that has the original data to be distributed is called

the source node, and the nodes that are acquiring the data are called the downloading

nodes. Obviously, this process of distributing data can be done by the conventional client-

server protocols, such as FTP. However, the drawback of these client-server protocols is

the lack of scalability: each time when a downloading node requests for the original data,

the source node has to upload the entire file(s). For example, if the original data has a size

of D and there are n downloading nodes, the source has to upload D n amount of data

through its upload link. Therefore, when n becomes large, the source node’s network

resource (i.e., upload capacity) can be exhausted. As a result, the average downloading

time becomes large as the downloading nodes have to wait for their connections. The P2P

file sharing network is an innovative way to solve the scalability problem encountered in

the client-server mode. Its basic approach is to allow all downloading nodes (which
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would be considered as clients in FTP) to behave as uploading nodes (which would be

considered as servers in FTP) as well. All nodes can distribute any part of the original

data they have to any other nodes that have not yet obtained this part. In the ideal

scenario, the source node only has to upload the original data once, i.e., 1D , and then

the rest of the downloading nodes can distribute the data among themselves until all

nodes have respectively obtained the entire original data.

Terminologies:

 Source node: the node that contains the entire original data to be distributed (a.k.a.
“seeder” in some protocols).

 Original data: the entire file or bundle of files that are to be obtained by other nodes.

 Upload: the action of transferring a piece of data a node already has to another node.
A node performing an upload does not increase the amount of its local data.

 Download: the action of receiving a piece of data from other nodes. A node
performing a download generally increases the amount of its local data.

 Downloader: the node that is the receiving end during a data transmission.

 Uploader: the node that is the sending end during a data transmission.

 Downloading nodes: the nodes which attempt to obtain the original data (a.k.a.
“leechers” in some protocols).

 Uploading nodes: the nodes that are uploading part of the original data to other
downloading nodes. Note that any node in a P2P file sharing network can potentially
be an uploading node.

 Upload-complete: the situation when the information that has been uploaded from
the source node is sufficient to reconstruct the original data. Theoretically, when
upload-complete is reached, the source node no longer has to upload anymore
information: the downloading nodes can exchange information among themselves to
obtain the original data.
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5.2.1 P2P File Sharing Network without Network Coding

Currently, in most of the file sharing protocols, the original data to be distributed is

chopped into a number of small equal-sized pieces, referred to as “chunks” in this

chapter. Each time when an upload/download occurs, a chunk is sent from one node to

the other. Nodes attempt to download the chunks that they do not have, and upload the

chunks they have to other nodes when requested. When a downloading node has

collected all the chunks, it can then reconstruct the original file. Any node can leave the

network at any given time, either before or after it receives the complete original data.

Later in this chapter, the P2P file sharing network without network coding will also be

referred to as “conventional P2P file sharing network”.

5.2.2 P2P File Sharing Network with Network Coding

A P2P file sharing network with network coding operates in similar ways to those

without network coding as described above. The only difference is that, instead of

uploading a specific chunk of the original data each time, a node now uploads a “linear

combination” of multiple chunks to the downloading nodes along with the “coefficient”

of this linear combination. When a node receives enough linearly independent

combinations, it will be able to reconstruct the original data. At first sight, this approach

seems to add extra overhead in transmission – the “coefficient” information. However,

the extra overhead can improve the overall efficiency of the P2P file sharing network by

overcoming some obstacles encountered by the conventional P2P file sharing networks,

as will be described in the next section.
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5.3 Performance Analysis – Coding vs. No Coding

For a conventional P2P file sharing network to achieve the ideal efficiency, all

downloading nodes have to download chunks from the source node – and later on from

each other – in a perfectly cooperative manner. The following example illustrates this

point: Consider a network with 1 source node S and 10 downloading nodes ( 1n to 10n ).

The original data is divided into 10 chunks ( 1k to 10k ). Keep in mind that in any such

network, total uploads=total downloads. Therefore, when there are 10 downloading nodes

attempting to acquire the 10-chunk data, the total download needed is 10 10 =100

chunks. Ideally, the burden of providing these 100 chunks worth of downloads should be

evenly shared by all nodes (load-balancing). In an ideal situation, the source node only

needs to offer 10 chunks of upload, and the remaining 10 nodes upload 9 chunks each. So

this leads to 10 1 9 10   =100 total chunks being downloaded.

Obviously, the nodes have to avoid downloading the same piece from the same

source as their peers to achieve this perfect load-balancing. Therefore, in most of the

conventional P2P file sharing networks, they adopt the “rarest-first” algorithm [45],

which dictates the nodes to download the chunks that are currently owned by the fewest

nodes first. This requires the downloading nodes to be aware of which chunks other peers

currently have. If all peers have this information from all other peers, the “global-rarest-

first” algorithm can be carried out properly. However, owing to the large size of most of

the P2P file sharing networks, it is often impossible for all nodes to be aware of the

information of all other nodes in the entire network. Therefore, most P2P file sharing

networks use the “local-rarest-first” algorithm instead. In “local-rarest-first”, each node is

only aware of a limited number of other peer nodes – which are referred to as its
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“neighbor nodes”. When a node is requesting a download, it will look for the chunk that

is owned by the fewest nodes within its neighborhood. However, even though “local-

rarest-first” is a reasonable alternative as opposed to “global-rarest-first” when global

information is not available, the overall efficiency of such a P2P file sharing network will

be less desirable than the “global-rarest-first” since it is less likely for all nodes to act

cooperatively.

However, even “global-rarest-first” in a conventional P2P file sharing network

has its limitations. For example, if at a given moment, there are 2 chunks that are both the

rarest and there are two nodes attempting to download these chunks, there is no guarantee

that each of these two nodes would select different rarest chunks to download. The

application of network coding in a P2P file sharing network is an attempt to solve this

kind of problems exhibited in the conventional file sharing.

5.3.1 Modeling the P2P Network

To analyze how much network coding can improve the performance of a P2P file sharing

network, consider a P2P file sharing network with the following model:

1. The original data is divided into k chunks, k1, k2, …, kk.

2. There is one node with the original data (1 source node).

3. There are n nodes participating in the download (n downloading nodes).

4. All nodes are aware of the states of other nodes. This means the global-rarest-first
algorithm is possible for conventional P2P networks.

5. Each time, there can be C simultaneous uploads from a node.

6. Without loss of generality, the network is assumed homogeneous, that is, the amount
of time needed to download a chunk is the same for all nodes.
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Based on this model, the performance of a P2P file sharing network without

network coding is compared with one with network coding.

5.3.2 Performance Metrics

To evaluate the performance, one needs to observe how many “rounds” of uploads the

source node has to perform until all downloading nodes have enough information to

reconstruct the original file among themselves – in other words, the “upload-complete”

state is reached. In the work presented in [41] and [43], the performance metric was “how

many rounds does the network take for all nodes to obtain all the information”. However,

in a P2P file sharing network, the “upload-complete” state is a more important factor for

the following two reasons: (1) the state of upload-complete marks the moment after

which the original source node is no longer needed in the network. The sooner the

upload-complete is reached, the sooner the source node can take off the shared file so the

computer resources (disk space, upload bandwidth) can be used for other tasks, and the

less likely there would be “dead files” (files that will never be completely downloaded).

(2) The fewer rounds to reach upload-complete lead to fewer uploads from the source

node and more uploads from the downloading nodes (leechers). This means better load-

balancing – which is one of the original purposes of the P2P network: to solve the

scalability problem of the client-server model. In this work, the “round” is defined as:

since each node can upload to C different nodes simultaneously, each “round” refers to C

such uploads. Note that not all these C uploads would be uploading different chunks

(since some of the C downloaders might have requested the same chunk). Obviously,

since the original data has k chunks, it takes at least k C   rounds of uploads to reach



70

“upload-complete”. So the question is: what is the probability that, in reality, upload-

complete is achieved after k C   rounds? This probability is greatly affected by whether

the P2P file sharing network adopts network coding, which is analyzed in the next

section.

5.3.3 P2P file Sharing Network with Network Coding

The model used in this chapter for a peer-to-peer file sharing network with network

coding is described as the following: each time when a node uploads information, it sends

a linear combination of chunks to the downloader. The linear combination is done in a

finite base field Fq. Without loss of generality, this analysis sets the field size to 2. (The

effect of choosing a larger field size is discussed in Section 5.4.) Using the 10-chunk

example (k=10) given in the previous section, if the uploader is sending a linear

combination of chunks 2k , 5k , and 10k , then it sends 2 5 10k k k  along with a binary

coefficient vector [0 1 0 0 1 0 0 0 0 1] (the 2nd, 5th and 10th elements are 1, and others 0).

Here, the operator means “modulo 2 addition” of the entire contents of the chunks. A

node will have complete information to reconstruct the original data once it has collected

10 (=k) linearly independent binary coefficient vectors. That is, these 10 vectors can form

a matrix whose rank=10 in the binary space.

Now return to the question that is being investigated: given a k-chunk original

file, and each time the number of simultaneous uploads is C, what is the probability that

“upload-complete” is reached after k C   rounds of uploads?

First, taking a simple case when k m C  , where m is a positive integer.

Therefore, k C m   and m C k  . Under this condition, after m rounds of uploads
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from the source node, there will be k linear combinations – or k vectors – that have been

downloaded by the downloading nodes. If these k vectors are all linearly independent in

the binary space, then “upload-complete” is reached. So, the probability in question is

essentially: “what is the probability that k random vectors (size 1 k , binary) can form a

full-ranked k k matrix in the binary space?”

To analyze this problem, consider the following facts:

1. The total number of possible linear combinations is 2 1k  . Since only binary space is
considered, the coefficients (vector) of any linear combination are either one or zero.

Excluding the zero vector, there are 2 1k  possible linear combinations (vectors).

2. For k vectors to form a full-ranked k k matrix in the binary space, each vector has
to be linearly independent from the previous ones. So, for the jth vector to be linearly
independent, it cannot fall into the vector space spanned by the previous j-1 vectors.

This leaves    1 12 1 2 1 2 2k j k j      possibilities for the jth vector.

Therefore, the probability that k randomly selected nonzero binary vectors can form a

full-ranked k k matrix is
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Next, let’s look at a more generic case when k is not a multiple of C, i.e.,

k m C a   , where m and a are positive integers and a C . This case becomes trickier

since  1m C  linear combinations have been uploaded after 1k C m    rounds of

uploads. That is, there can be  C a vectors which are not linearly independent. The

probability of  1m C  vectors to form a k-ranked  1m C  by k matrix is
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To further explain equation (5.2): take   1C a  as an example; among these

 1m C  vectors, one of them can be linearly dependent from its predecessors. The

conditional probability that the jth vector is linearly dependent with the previous (j-1)

vectors, given that previous (j-1) vectors are linearly independent, is    12 1 2 1j k   .

Therefore, the probability that only the jth vector is linearly dependent from its

predecessors is
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and j can vary from 2 to  1m C  ; therefore, the probability that there is exactly one

vector that is linearly dependent to its predecessors among a series of  1m C  vectors

is
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  (5.2b)

When (C-a) is greater than 1, more vectors can be linearly independent from their

predecessors, thus resulting in the nested summation in equation (5.2).

Next, the case of the conventional P2P file sharing network is explored.
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5.3.4 Conventional P2P File Sharing Network

In the analysis of conventional P2P file sharing networks, first again taking a simple case

where k m C  . For all downloading nodes to be able to reconstruct the original data

among themselves after m rounds of uploads, all the m C chunks that have been

uploaded from the source node have to be different from each other. Recall the previously

described model of the conventional P2P file sharing network; the downloading nodes are

aware of which chunks have been downloaded by other peers so they will not request the

same chunk from the source – assuming global-rarest-first. However, as mentioned

previously, global-rarest-first does not prevent two nodes from downloading the same

chunk at the same time. Therefore, the cause of inefficiency lies in the situation when not

all C chunks are different in one round of uploads. So, the probability that m C uploads

from the source will provide k distinct chunks is essentially the probability that all C

chunks being uploaded in each round are distinct.

So for the first round’s C chunks to be distinct, the probability is

 
!

!C

k

k k C 
(5.3)

For the second round’s C chunks to be distinct, the probability is
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Since there are m rounds of uploads, the probability that all uploads thus far are

distinct (hence “upload-complete”) is:

 0

1
!

m

C
i

k
k i C


 

 (5.5)

Next, the analysis takes on a more generic case where k is not a multiple of C, i.e.,

k m C a   , where m and a are positive integers and a C . It is more difficult to

formulate the probability that all k chunks have been uploaded by the source node after

 1m rounds of uploads, since now there can be up to C a uploaded chunks among

all  1m C  uploads to be the same as any of their predecessors; and the probability of

them being the same as their predecessors changes from round to round. Even so, it can

still provide a loose upper bound for this probability:

Assuming that, for the first  1m rounds of uploads, these  1m C  uploaded

chunks are distinct from each other with high probability, therefore, one only needs to

focus on the uploads of the last C+a chunks. This means the question can be reduced to:

with C a chunks not yet uploaded, what is the probability that all of these chunks will

be uploaded in the minimum number of rounds (two in this case) of uploads? This can be

formulated by using the same logic:

 

   

11

1 1 2 1 1

1 2

0

!

!
{[ ]

n

n

iiC a C n

nC
n i i i

C a
i i i

C a C n



  

 




   

 
   

 

 

11

1 1 2 1 1

1 2

!
[ ]}

C a n

C a n

iia n

nC
i i i

a n
i i i

a n

  

    


   


    (5.5)



75

To understand how equation (5.6) is derived, take a simple example when C=4

and a=2. The loose upper-bound assumes the first  1m rounds of uploads all contain

distinct chunks, and therefore after  1m rounds there will be C+a=4+2=6 chunks from

the original data yet to be uploaded. So, in order to have all remaining 6 chunks uploaded

in the next two rounds, either one of the following has to be true: 1) the m-th round

contains four distinct chunks (four distinct out of four total), and the (m+1)-th round

contains two distinct chunks (two distinct out of four total), 2) three distinct chunks in the

m-th round, and three distinct chunks in the (m+1)-th round, or 3) two distinct chunks in

the m-th round, and four distinct chunks in the (m+1)-th round. The index n in equation

(5.6) represents “the number of non-distinct chunks in the m-th round”.

In order to further investigate the probability besides calculating the upper

bounds, Figures. 5.1(a) and 5.1(b) are presented here to illustrate the same question from

a different point of view: what is the probability that upload-complete is reached at the x-

th round? After conducting some experiments based on the same mathematical model

(the chunks that have been uploaded in the previous rounds will not be uploaded again,

but within each round there can be non-distinct chunks uploaded), the statistical results

are shown in these two figures. One can see that the probability to reach upload-complete

at the (m+1)th round is low. In general, it takes about (m+2) to (m+4) rounds to reach

upload-complete.
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Figure 5.1(a)

Figure 5.1(b)

Figure 5.1 Statistical results of rounds needed for upload-complete for (a) k=202, C=4.
(b) k=102, C=4.

5.3.5 The Comparison: Conventional vs. Network Coding

For the simple case of k m C  , compare equation (5.1) with equation (5.5). Equation

(5.1) converges to approximately 28% as k becomes large. The value of equation (5.5)

depends on C; if C=4 as in the common bittorrent protocol [46], equation (5.5)
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approaches zero when k becomes large. Interestingly, if C=1, equation (5.5)=1 regardless

of k. This makes sense since C=1 means that there is only one chunk uploaded in each

round from the source; so, there is no chance that two nodes would download the same

chunk at the same time. However, in a practical network, even with C set to be 1, it still

cannot guarantee that two different nodes would not request the same chunk to download

from the source node. For instance, a node “A” is downloading chunk x from node “B” at

time t. Meanwhile, node “C” has made a request to node “B” for chunk x. At the next

moment t2, “B” will have forwarded chunk x to A. At this moment, ideally node “C”

should realize that “A” has already obtained chunk x, and therefore chunk x is no longer

the rarest piece and “C” should withdraw the request from “B”. However, if “B” starts to

upload to “C” before “C” has made this discovery, then the duplication would still occur.

In general, as long as there is a chance that two nodes would be downloading the same

chunk from the source, equation (5.5) approaches zero when k is large.

For the generic case, compare equation (5.2) with equation (5.6). Interestingly,

when k is large (>100), the value of equation (5.2) only depends on the value of a and C.

For illustrative purposes, C is set as 4 and the effect of a is observed. When a=1,

equation (5.2) is about 88%; when a=2, it is about 77%; and when a=3, it is 57%. The

reason the smaller a yielding higher probability of “upload-complete” is that: with a fixed

C, when C-a is larger (smaller a), it means there are more “allowable rooms” for uploads

to be linearly dependent, and therefore the chance of “upload-complete” is higher. For

equation (5.6), since it is a loose upper bound, its value also only depends on a and C.

Again, if C=4, when a=1, equation (5.6) yields 30%; when a=2, it is 21%; when a=3, it

decreases to 9.5%.



78

As one can see from Table 5.1, according to the analytical results, P2P file sharing

networks can reach upload-complete in fewer rounds of uploads with high probability

when it adopts network coding. In the next section, the efficiency of network coding in

P2P file sharing networks is further investigated.

Table 5.1 Probability of Reaching Upload-complete after (m+1) Rounds. Generic Case:
݇= ݉ × ܿ+ ܽ

a=1 a=2 a=3
No network coding <30% <21% <9.5%
Network Coding 88% 77% 57%

5.4 Downloader-Initiated Random Linear Network Coding

The previous section has provided mathematical analysis substantiating that P2P file

sharing networks with network coding perform better than that of the conventional ones.

When network coding is implemented in a peer-to-peer network with small field size

(such as 2), it is possible that a “collision” can occur when pieces of data is linearly

combined. A generic way to combat this is to increase the field size. However, increasing

the field size means the size of coefficient vectors is increased. Since coefficient vectors

need to be sent along each download and each content information exchange, adopting

larger field size imposes more overhead to the network coding scheme. This section is

dedicated to further discuss this problem and propose the Downloader-initiated Random

Linear Network Coding, a new network coding algorithm designed for P2P file sharing

networks that avoid the collisions without increasing the field size.
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5.4.1 Random Linear Network Coding

In traditional network coding algorithms (not limited to those proposed for P2P

networks), the encoding is done by the sending nodes. Gkantsidis et al. [31] showed,

through simulations/experiments, that by applying random linear network coding in a

P2P network, the efficiency can be improved. They also compared the performances of a)

network coding only at the source node, and b) network coding at all nodes, and found

that network coding in all nodes has better performance. Their findings are consistent

with the analysis in Section 5.3. Since network coding improves the efficiency of a

downloading node in distributing its data to peers just as well as it does to the source

node, allowing network coding in all nodes is expected to yield better performance.

5.4.2 The “Collision”

Interestingly, when network coding is carried out in the sending nodes, there is a

possibility that even though a node (say, node A) has innovative information to another

node (say, node B), after a random linear combination process at node A, the resultant

might no longer be innovative to B.

To illustrate this point, refer to the model described in Section 5.3: Consider node

A and node B; both are downloading nodes in a P2P file sharing network with network

coding. At some point during the transmission, node A has received two linear

combinations, i.e., two vectors 1
Av =[1 1 0 0 1] and 2

Av =[1 0 1 1 0] (original data = 5

chunks), and node B has received one vector 1
Bv =[0 1 1 1 1]. At this point, node B can be

benefited by downloading either of the two vectors node A has because either 1
Av or 2

Av is

linearly independent of 1
Bv . However, because of random network coding, node A might
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decide to distribute 1 2
A Av v instead. In such case, node B will not consider node A having

useful information (since 1 2 1
A A Bv v v  ) and will not download from node A, thus causing

a missed opportunity of downloading. Gkantsidis and Rodriguez [31] pointed out that this

kind of “collision” can be reduced to a negligible level by increasing the field size to 2ଵ.

However, such increase in the field size directly impacts the size of the coefficient

vectors; a field size of 2ଵ requires 16 bits to represent each coefficient, instead of just 1

bit when the field size is 2. Coefficient vectors and coefficient matrices are exchanged

frequently among peers. For example, according to the bittorrent protocol, peers must

exchange the bitmaps of the pieces they currently have when nodes first connect with

their neighbors (handshake), and keep their neighbors updated upon the reception of each

additional piece. With the implementation of network coding, the bitmaps are replaced by

the coefficient matrices and each update of the coefficient matrices corresponds to

broadcasting a coefficient vector to all the neighbors. Therefore, larger coefficient

vectors dramatically increase the overhead. In the next subsection a “Downloader-

Initiated Random Linear Network Coding” scheme is proposed for the purpose of

avoiding such collisions using only a field size of 2 – the minimum required to

implement network coding.

5.4.3 Downloader-Initiated Random Linear Network Coding

The “Downloader-Initiated Random Linear Network Coding” (DRLNC) algorithm is

based on the following rules:

1. The original data is chopped into k chunks of equal size. The larger the original data,
the larger the k.

2. Each time when upload occurs, a linear combination (modulo 2) of these k chunks is
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sent to the downloader.

3. Along with this linear combination, a “coefficient vector” is also sent to the
downloader, informing the downloader the linear combination it is receiving.

4. A downloading node keeps a “coefficient matrix” of which the rows correspond to the
coefficient vectors it has received.

5. The coefficient matrix at the source node is a k k identity matrix.

6. Each node in the network selects a limited number of other nodes as its neighbors. In
this chapter, this number ranges from 10 to 30.

7. A downloading node keeps a copy of the current coefficient matrix of each of its
neighbors. A node informs the update of its coefficient matrix to its neighbors
whenever it receives an innovative linear combination.

8. A downloading node examines its neighbors’ coefficient matrices. If the downloading
node deems a neighbor node has innovative information, it then makes a request to
this neighbor to download. When a downloading node makes a request to download
from its neighbor node, it randomly picks a linear combination among those that carry
useful information, and requests such combination explicitly from this neighbor node.

9. When a downloading node receives enough information such that its coefficient
matrix has a rank of k, it then reconstructs the original data, and changes its
coefficient matrix to a k k identity matrix like the source node.

Rule #8 above is the major difference between the proposed network coding

algorithm and other existing ones. It eliminates the “collision” situation completely. To

further explain how rule #8 works, here is an example:

Node A currently has the coefficient matrix:

AM =

1 0 1 1 0

1 1 0 0 1

0 0 0 1 1

1 0 0 0 1

 
 
 
 
 
 

Node B currently has the coefficient matrix:
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BM =
1 1 0 1 0

0 1 1 0 0

 
 
 

Node B sees node A’s matrix MA and realizes that it can increase the rank of its

own matrix (MB) by downloading either the 2nd, 3rd, or 4th row from MA. However,

node B also sees if it downloads a linear combination of row 2 and row 3 from MA, it will

not improve the rank of MB. Therefore, node B will randomly select a linear combination

of row 2, 3, and 4, but excluding the combination of row 2⊕3. Node B then explicitly

requests node A to upload the combination selected by node B. For example, if node B

chooses a linear combination of row 3⊕4, it sends a request to node A asking node A to

send the linear combination of row 3 and row 4 in A’s matrix to B.

The exchange of the coefficient matrices among neighbor nodes imposes

communication overhead, but it does not increase the complexity of the protocol, as some

conventional P2P protocol [46] already allows nodes to exchange chunk information

before the data transmission occurs. The size of a coefficient matrix is small as compared

to the memory of a computer. For example, a 1000-chunk file would have a coefficient

matrix of 125 kilobytes. Therefore, it would not be a major concern for a node to keep the

coefficient matrices of all its neighbor nodes.

The proposed algorithm does require some computational overhead in the

downloading nodes, such as calculating whether a neighbor node has innovative

information. However, the extra computation required here as opposed to other network

coding algorithms is simply the calculation of the rank of a binary matrix in the binary

space. The benefit of this extra computation can be significant as illustrated in the next

section.
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5.5 Simulations

In this section the performances of the proposed DRLNC are compared with those of the

traditional network coding where the random linear coding is performed at the uploading

nodes.

The network parameters considered in these simulations are: N – the total number

of nodes; Filesize – the number of chunks in the original data; C – the number of

simultaneous uploads, and neighborhood size – the number of neighbor nodes of each

node. Each simulation starts with one source node with the complete original data to be

distributed and ends when all nodes have obtained the entire original data. The field size

is set to 2 for both DLRNC and the traditional network coding. The performance metric is

the number of rounds each simulation takes – the fewer rounds to distribute the original

data to the entire network, the better the performance. Readers are reminded not to

confuse this performance metric with the one used in Section 5.3 – where the

performance metric was defined as “the rounds needed for upload-complete”. The

difference is that the comparison offered in Section 5.3 is the analytical results between

network coding and no network coding at all; in this section, the comparison is the

simulation results between traditional network coding and DRLNC.

The first comparison is presented in Figure 5.2, where N=100, C=4, and

neighborhood size=10. The effect of changing the Filesize is observed. Naturally, the

larger the Filesize the more rounds it will take to distribute the data. However, it is clear

that the downloader-initiated random linear network coding performs better than the

traditional network coding, especially when the original data has more chunks.
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Figure 5.3 illustrates how the neighborhood size would influence the

performances. One can see that the downloader-initiated random linear network coding

performs better than the traditional network coding for all different numbers of neighbor

nodes. The margin is larger when the neighborhood size is smaller. This makes sense

because when a downloader has fewer neighbor nodes, it has fewer random linear

combinations to choose from, and therefore it is more difficult to avoid the “collision”

situation. The fact that the downloader-initiated random network coding performs better

with smaller neighborhood size is a significant advantage: this means the nodes do not

have to exchange information about their coefficient matrices with a large number of

neighbor nodes in order to achieve the same performance as the traditional network

coding.

Figure 5.2 Performance comparison: traditional network coding vs. downloader-initiated
network coding. Network size=100 nodes, neighborhood size=10 nodes. C=4. Filesize
changes from 50 to 150.
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Figure 5.3 Performance comparison: traditional network coding vs. downloader-initiated
network coding. Network size=100 nodes, Filesize=100 chunks, C=4, neighborhood
size=10 to 30.

In Figure 5.4, the simulation sets N=100, Filesize=100 chunks, neighborhood

size=10 nodes, and changes C from 3 to 7. As expected, it takes fewer rounds to complete

the data distribution when C (number of simultaneous uploads) is larger, i.e., more

upload-download bandwidth is used. Figure 5.5 shows comparison performances with

various network sizes (N from 60 to 120) while keeping other parameters unchanged.

Figure 5.4 and Figure 5.5 indicate that the advantage of DRLNC is not sensitive to the

change of C or the total network size: it takes 10 to 15 percent fewer rounds to complete

the download than the traditional network coding in all scenarios.
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Figure 5.4 Performance comparison: traditional network coding vs. downloader-initiated
network coding. Network size=100 nodes, Filesize=100 chunks, neighborhood size=10,
C=3 to 7.

Figure 5.5 Performance comparison: traditional network coding vs. downloader-initiated
network coding. Filesize=100 chunks, C=4, neighborhood size=10, Network size=60 to
120 nodes.
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peer to exchange coefficient matrices/vectors with their neighbors until all nodes have

completed downloads. Both approaches achieve similar performances in terms of rounds

needed to complete download, but DRLNC requires less overhead.

Table 5.2 Overhead Comparison: DRLNC vs. Traditional Network Coding,
Neighbors=10, Total Number of Nodes=100

Filesize=50 Filesize=100 Filesize =150
DRLNC 3.465MB 12.99MB 28.22MB
Traditional network coding 24.75MB 99.90MB 222.8MB

In summary, from these simulation results one can conclude that downloader-

initiated random linear network coding generally performs better than the traditional

network coding. Its margin of improvement is less sensitive to the size of the network and

the value of C, but more relevant to the file size and the neighborhood size; the larger the

file size and/or the smaller the neighborhood size, the bigger the margin.

5.6 Summary

In this chapter, the effectiveness of network coding for P2P file sharing has been

investigated with mathematical analysis, and the Downloader-initiated Random Linear

Network Coding is proposed to further improve the performance of network coding in the

environment of P2P file-sharing networks. The mathematical models presented in this

chapter are specifically modeled after the contemporary file-sharing protocols. The

results from these analyses indicate that network coding can indeed help a P2P file

sharing network distribute data more effectively. This work has also pointed out the

“collision” problem in the traditional network coding. Previously proposed solution of
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this problem is to increase the field size, which leads to a larger overhead. This

dissertation proposed the Downloader-Initiated Random Linear Network Coding

algorithm to mitigate this problem without increasing the field size. Through extensive

simulations, the proposed scheme has been demonstrated to outperform that of existing

P2P network coding algorithms without additional overhead.



89

CHAPTER 6

INDENTIFYING THE NETWORK CODING OPPORTUNITY IN WIRELESS AD

HOC NETWORKS

6.1 Introduction

In recent years, network coding has been widely studied for various networking

applications. The concept of network coding was first introduced in 2000 [32]. Later on,

Li et al. [33] proposed a well defined linear network coding algorithm. Network coding

has been shown to improve the overall efficiency in multicast in a wired network, and

increase the throughput in wireless networks [35]. While the throughput of unicast traffic

in a wired network cannot be benefited by network coding, it is not so in a wireless

environment. Katti et al. [34] proposed the COPE network coding scheme which

performs coding at the packet level on unicast traffic in a wireless network, and showed

that the coding gain can vary depending on the topology. Based on the concept of COPE,

there have been various studies on how to take advantage of wireless network topologies

to design practical and effective network coding schemes [47]-[48]. For a network coding

scheme to be practical, it must be scalable and computationally economical; for it to be

effective, it must yield high coding gains. Based on these concerns, this dissertation

proposes a network coding algorithm referred to as “Identifying the Coding OPportunity”

(ICOP) for unicast packets. ICOP makes two major contributions. First, ICOP simplifies

the MAC Layer scheduling and saves communication overhead: ICOP proactively

calculates the coding configurations and their corresponding MAC layer scheduling.

Each node that participates in network coding will encode, decode, and send the
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appropriate packets according to a pre-determined schedule; nodes do not make coding

decisions “on the flight”, and so there is no need for extra communication overhead.

Second, ICOP takes the traffic pattern information into consideration to improve the

practical coding gain: In COPE, the theoretical coding gain was calculated under the

assumption that all participating nodes have packets to send whenever the MAC layer

network-coding timeslot arrives. In practice, if any of such nodes does not have a packet

to send in this timeslot, the practical coding gain will be less than the theoretical coding

gain. By considering the traffic pattern, ICOP can look for the coding configuration that

accommodates the most amount of traffic. Furthermore, ICOP maintains its scalability by

breaking down a large network into small “coding cells”, as will be described in detail in

Section 6.3. The rest of this chapter is organized as follows: Section 6.2 briefly reviews

the network coding mechanism in a wireless network and how it can improve the

throughput; Section 6.3 introduces the proposed ICOP algorithm; Section 6.4 presents

simulation and comparison results, and the conclusion is given in Section 6.5.

6.2 The Network Coding Opportunity

Consider a wireless network, ( , )G V E , where V is the set of all wireless nodes and E is

the set of wireless links. Let Ai (i=1,…, m; m is the total number of nodes in the network)

be a set of nodes that are one-hop neighbors of node i, i.e., Ai ={Vk :  k  Vk is a one-

hop neighbor of Vi}. The concept of “network coding opportunity” is illustrated by the

two examples shown in Figure 6.1. In the network on the left in Figure 6.1, A1={V4, Vr},

A2={V3, Vr}, A3={V2, Vr}, and A4={V1, Vr}; one possible coding configuration is

indicated by the arrows in the figure: V3 has a packet p3-1 to be delivered to V1, and V4 has
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a packet p4-2 to be delivered to V2 . The transmission ranges of these nodes are not long

enough to reach their respective destinations directly, and so both packets have to go

through the relay node. Without loss of generality, further assume that the packets have

equal length and their transmission times are the same – one timeslot. With the

conventional store-and-forward method, it would take 4 timeslots to complete the

delivery of these two packets. On the other hand, using network coding, the two packets

can be delivered in 3 timeslots: At timeslot 1, V3 transmits p3-1 to Vr. Meanwhile, V2

which is within the transmission range of V3 overhears this packet and stores it in its

buffer. At timeslot 2, V4 transmits p4-2 to Vr while V1, in a similar position as V2,

overhears it and stores it in its buffer. At timeslot 3, Vr transmits the XOR’ed packet p3-1

p4-2 which can be received by all other four nodes. After the third timeslot, both V1 and

V2 can decode the XOR’ed packet using their previously overheard packets to obtain p3-1

and p4-2, respectively. Comparing this scheme with the traditional store-and-forward

method which would take 4 timeslots to deliver the same two packets, the coding gain is

(theoretically) 4/3=1.33. The “overhearing” process is possible only because of the

broadcast nature of wireless transmission, commonly referred to as “opportunistic

listening” in the wireless network coding literature. The network on the right in Figure

6.1 (star topology) is a special case where each node’s transmission range includes every

node in the network except the node that is directly opposite to the relay node. That is,

A1={ V2 ,V3 ,V5 ,V6 ,V7}, and so on. Here, V7 is the relay node. According to COPE, the

packets from each node (1,2, … , 6) destined to their respective opposite nodes (1 to 4, 2

to 5, and so on; note that the arrows are bi-directional) can be coded in the following

manner: from timeslot 1 to 6, nodes 1 to 6 transmit their packets to the relay node in turn;
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at timeslot 7, node 7 transmits the XOR’ed packet of all these 6 packets. At the end of the

7th timeslot, all six nodes (1 through 6) will receive their designated packets. In this case,

the theoretical coding gain is 12/7 (12 timeslots needed for store-and-forward).

Obviously, this kind of special case does not exist often since it requires all nodes to be

positioned near perfectly. However, when it exists, it produces higher coding gain than

other ordinary scenarios because twice the number of packets can be coded together. In

this chapter, this kind of special case is referred to as “full-duplex” since every sending

node is also a receiving node in its role of network coding.

Note that the coding gains mentioned in this section are considered “theoretical”

because they can only be achieved if there are appropriate packets to be encoded. The

details of coding gains is further investigated in the following sections.

Figure 6.1 Left: X topology, where A1={V4, VR}, A2={V3, VR}, A3={V2, VR}, and A4={V1,

VR}. Right: star topology, where A1={ V2 ,V3 ,V5 ,V6 ,V7}, A2={ V1 ,V3 ,V4 ,V6 ,V7}, A3={

V1 ,V2 ,V4 ,V5 ,V7}, A4={ V2 ,V3 ,V5 ,V6 ,V7}, A5={ V1 ,V3 ,V4 ,V6 ,V7}, A6={ V1 ,V2 ,V4 ,V5

,V7}, and A7={ V1 , V2 ,V3 ,V4 ,V5 ,V6}. Opportunistic listening is allowed.
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Figure 6.2 Two possible configurations in the 5-node network. A1={ V2 ,V5 ,VR}, A2={ V1

,V3 , VR }, A3={ V2 ,V4 ,VR }, A4={ V3 ,V5 ,VR }, A5={ V1 ,V4 ,VR } and AR={ V1 , V2 ,V3 ,V4

,V5}. Opportunistic listening is allowed.

6.3 Identifying the Coding Opportunity (ICOP) Algorithm

The theoretical coding gains mentioned in Section 6.2 are only related to the topology. To

achieve these gains in practice, all sending nodes must have packets to send to their

respective receivers whenever the MAC layer assigns timeslots to these nodes for network

coding. If any of these nodes does not have a packet to send, the theoretical network

coding gain cannot be achieved. To illustrate this point, refer to the six-node network in

Figure 6.2. If node 1 has a packet, p1-3, to be delivered to node 3, and node 4 has a packet,

p4-2, to be delivered node 2, then network coding can be performed as described in the

previous section. However, if p1-3 has been transmitted to the relay node but node 4 does

not have a p4-2 to send, then the relay node might not have a suitable packet to be XOR’ed

with p1-3. At this moment, the relay node can choose to wait a few timeslots for p4-2 to

arrive, or simply forward p1-3 as is to node 3 in the very next timeslot. Waiting for p4-2

increases delay in delivering p1-3, while forwarding p1-3 as is sacrifices the coding gain;

either of these two choices can cause undesirable impact. Another choice for the relay
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node is to look among some other packets currently available that are suitable to be

XOR’ed with p1-3. For instance, if at the same instance node 3 has a packet to be delivered

to node 5, then node 3 can cease the channel and transmit p3-5 to the relay node. Then, the

relay node can transmit p1-3p3-5 at the very next timeslot, and nodes 3 and 5 can decode.

However, this maneuver requires the network nodes to make intelligent decisions “on the

flight”; this not only complicates the MAC layer scheduling, i.e., somehow the MAC layer

has to know that p3-5 can be coded and so it grants node 3 the channel, but also calls for

extra communication overhead, i.e., nodes 3 and 5 have to be informed to decode p1-3p3-

5 with some of their previously overheard packets while other nodes will disregard this

coded packet. Based on the above reasons, this dissertation proposes ICOP, a network

coding algorithm that does not require the nodes to make coding decisions on the flight,

and yet still maintains network coding efficiency. ICOP instructs the nodes which packets

to encode and which packets to decode, and how to decode before the actual transmission

starts. ICOP also informs the MAC layer to designate appropriate scheduling for packets

that are network coded or going to be network coded. During the actual transmission, each

node would simply follow the pre-determined instruction to send and receive packets, and

so no extra communication overhead is needed. The tradeoff of using this pre-determined

coding method is the sacrifice of some coding gain. For example, with the same scenario

mentioned above (Figure 6.2 left), assume ICOP has designated a network coding

configuration which involves p1-3, p4-2, and p1-3p4-2. Then, in the absence of p4-2, the

relay node will have no choice but to send p1-3 as is at the timeslot in which it was

supposed to send p1-3p4-2, which leads to no coding gain in this round of transmissions.

Therefore, in order to maintain high coding gains, one has to reduce the occurrence of the
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absence of packet(s) to be coded. ICOP attempts to do so by taking the traffic pattern into

consideration and uses the traffic information to find the coding configurations that can

potentially encode the most amount of packets.

To explain how ICOP works in detail, refer to the network in Figure 6.2. In this

network, each node (1, 2,… ,5) can hear the transmissions from the relay node and its two

adjacent nodes. This topology contains many possible coding configurations, for

example: 1) node 1 to 3, and 4 to 2, 2) node 2 to 5, 4 to 1,etc. ICOP is designed to choose

the configuration that can potentially code the most number of packets, and hence yield

the highest practical coding gain. It is assumed that (1) the one-hop neighbors of each

node is known, (2) the traffic pattern in the network is known a priori, and (3) the one-

hop neighbor information of each node is disseminated to all other nodes in the network.

Besides the network, ( , )G V E , the traffic pattern is also considered, which is denoted by

Λ={λ(i,j): i  j, ,i jV V V  } where λ(i,j) is the total traffic rate from node i to node j,

including any transit traffic (traffic that is not originated from nor destined to i or j).

Essentially, ICOP is to find the optimal coding configuration based upon the graph

( , )G V E and Λ. The algorithm consists of two phases: 

1: Relay node selection – the node with the largest number of neighbor nodes will

be selected as the relay node. In a large network where there is more than one relay node,

each relay node and its one-hop neighbors form a “coding cell”. This is an important step

that makes ICOP scalable.

2: Coding opportunity search – based on the relay node(s) selected in the previous

phase, the algorithm uses ( , )G V E and Λ to calculate the optimal coding configuration 

within each cell.
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The remainder of this section describes the algorithm in detail:

Phase 1: Relay Node Selection

Step 1: The algorithm will simply pick the node with the largest number of

neighbor nodes as the relay node because it potentially provides the most coding

opportunity. When there are two or more nodes tied with the highest number of neighbor

nodes, the algorithm will randomly select one node as the relay node.

Step 2: Once a relay node is determined, this relay node and all its one-hop

neighbors form a “coding cell”. A temporary subgraph of G, say, 1 1 1( , )G V A , will be

generated by removing this coding cell from G.

Step 3: The algorithm will repeat Steps 1 and 2 to pick the second relay node

based on G1, and then generate a new subgraph G2 by removing the second coding cell

from G1.

The algorithm repeats Steps 1 and 2 recursively until the latest subgraph generated

contains no nodes with more than 1 neighbor, i.e., no more coding cell can be created.

Phase 2: Coding Opportunity Search

Once the relay nodes are selected, the coding opportunities within each coding cell are

searched. Note that in the proposed algorithm the searching process only has local-

significance within the coding cell. In other words, if there are n relay nodes in the entire

network (n coding cells), then the search process computes the coding opportunities as if

these are n separate networks. The algorithm of searching the coding opportunities within

each coding cell is described below:

Step 1: Pick any node from the one-hop neighbors of the relay node. Denote the

relay node as node r, and then pick any node (1)iV from Ar.
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Step 2: Pick any node that is in Ar but not in (1)iA . That is, pick  (1) (1)\j r iV A A .

Assume (1)iV is the sending node and (1)jV is the receiving node.

Step 3: Pick another node (2)iV (1)r jA A  as another sending node.

Step 4: Pick a node (2)jV  (1) (2)\r i iA A A  as the receiving node.

Step 5: Repeat Steps 3 and 4; pick sending node(s) ( )i nV such that

1

( ) ( )
1

n

i n r j k
k

V A A




 
  

 
 and receiving node(s) such that

1

( ) ( ) ( )
1

n

j n r i k i n
k

V A A A




 
   

 
 , until

no more such sending/receiving pair can be found. At this point, all the sending/receiving

pairs found so far are considered as one “configuration”, denoted by two lists of nodes

 (1) (2) ( ), ,...,i i i nV V V and  (1) (2) ( ), ,...,j j j nV V V , where  represents the list of n

sending nodes and  represents the list of n receiving nodes. Each pair ( ( ) ( ),i a j aV V ) is a

sending/receiving pair. Note there must be an even number of sending/receiving pairs to

code unicast packets (i.e., n is an even number), and each two consecutive pairs [(

( ) ( ),i a j aV V ),( ( 1) ( 1),i a j aV V  )] (a=1,3,5,7,…,n-1) form a coding pair, implying that the

packets from these two pairs will be XOR’ed at the relay node.

Step 6: Calculate the total traffic rate among all the coding pairs found at the end

of Step 5. That is, total traffic rate  
2 1

(2 ) (2 ) (2 1) (2 1)
0

min ( , ), ( , )
n

total i a j a i a j a
a

V V V V  


 


  .

Step 7: Look for all other possible coding configurations around this relay node.

Eventually, select the configuration that yields the maximum λtotal.

Step 8: Look for the special “full-duplex” opportunity. Full-duplex coding is

possible only if the following condition is met: for every sending/receiving pair, its
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sending node and receiving node share the same one-hop neighbors around the relay

node. That is, ( ) ( )r i k r j kA A A A   for k=1,…, n, where n is the total number of

sending/receiving pairs in this configuration.

To further understand the second phase of the algorithm, refer to Figures. 6.3 and

6.4. Essentially, ICOP attempts to construct a tree diagram as in Figure 6.3. (The tree

shown here is built upon the 6-node network in Figure 6.2. For clarity, the marks for the

bottom layer under nodes 2 to 5 are omitted.) Each path from top to bottom represents a

valid coding configuration in the network. For example, the left-most path 1-3-4-2

represents the coding configuration where node 1 and 4 sending and node 3 and 2

receiving (referred to as one coding pair: 1-4 and 3-2). The weight of each coding pair is

min (λ(i1,j1), λ(i2,j2)) where i1 and i2 are the two sending nodes; j1 and j2 are the two

receiving nodes. ICOP picks the path that has the highest total weight as the optimal

configuration. Figure 6.4 is the flow chart of the algorithm from Step 1 to Step 7 in the

second phase of the algorithm. The process of finding a sender or a receiver follows the

same rule stated in Step 5 above.

Figure 6.3 Tree diagram of possible coding configurations for the network in Figure 6.2.

Once ICOP has chosen a coding configuration, the network then operates

accordingly: all the packets that traverse between each coding pair will be sent with
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network coding; all other packets will be sent in the conventional mean. When the

network topology and/or the network traffic pattern changes, ICOP will have to use the

newly changed information to recalculate the coding configurations in order to maintain

the network coding efficiency. It is worth mentioning that MAC layer scheduling is

another important issue in wireless network coding. ICOP coordinates the MAC layer

scheduling within a coding cell to ensure that nodes transmit their packets in the right

sequence, i.e., each node with a native packet to send transmits it in turns, and then the

relay node transmits the encoded packet.
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Figure 6.4 Flow chart of the second phase of ICOP algorithm (steps 1 to 7).

6.4 Simulations

The ICOP algorithm is illustrated via two examples. The first example is a small 9-node

wireless ad-hoc network as shown in Figure 6.5. The transmission range of each node is

70. For illustration purposes, λ(i,j) is simplified as λ(i,j) = λ(i) for all j, i.e., the traffic rate
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from node i to any other node j in the network is the same. As a result, instead of a 9 by 9

matrix for Λ, there is one simplified 9 by 1 matrix Λ=[0.95, 0.23, 0.61, 0.49, 0.89, 0.76, 

0.46, 0.02, 0.82]. Figure 6.5 shows the outcome of ICOP: node 1 is selected as the relay

node since it has the largest number of neighbors (all but node 2). Then, the seven nodes

(from node 3 to 9) around node 1 are potential candidates for network coding. After

considering the traffic rate matrix Λ, ICOP selects three pairs around node 1 to perform 

network coding: nodes 3-8, 6-7, and 9-4. Note that this is only a half-duplex

configuration, i.e., in timeslot 1-4, nodes 3, 6, and 9 are the sending nodes while nodes 8,

7, and 4 are the receiving nodes, respectively; then, in the next 4 timeslots the nodes swap

their sending/receiving roles. The theoretical coding gain is 6/4=1.5.

Figure 6.5 The 9-node example.

Next, the practical coding gains between ICOP and COPE is compared using the

6-node network featured in Figure 6.2. Each node from 1 to 5 generates packets randomly

designated to the other nodes except the relay node. If the packet is designated to an

adjacent node, e.g., from node 2 to node 3, the packet will be sent directly without the
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involvement of the relay node. Otherwise, the packet is first sent to the relay node. The

relay node will then either store-and-forward this packet to its destination or XOR it with

other packets, depending on the pre-calculated configuration from ICOP. The operation

of the relay node in both ICOP and COPE is set to minimize delays. If the relay node

does not have the appropriate packets to encode when it obtains access to the channel, it

will forward the packet as is. To avoid collision, only one node can transmit a packet at

any given time; each packet is assumed to have the same length, and hence requires the

same transmission time (one unit time). In the simulation, the total packet arrival rate is

0.4/unit time. Two pairs of non-adjacent nodes (i.e., nodes 1-4 and 2-5) are assigned to

have higher bi-directional traffic rates within the pair than the rest of the nodes. In other

words, node pair 1-4 and node pair 2-5 are the two “busy routes” that have more packets

to be delivered than the rest of the routes. Denote the traffic rates on these two busy

routes as λ(1,4) and λ(2,5). Without loss of generality, further assume that λ(1,4) =

λ(2,5)= λB. Let λavg represent the traffic rate of each of the non-busy routes, then the

traffic rate of the busy route can be quantified using a factor f such that B avgf   . Note

that f only affects the ratio of the traffic rates between a busy route and a non-busy route;

it does not affect the overall arrival rate of 0.4.

To evaluate the performances, recall that when more packets can be XOR’ed

together at once, the higher is the coding gain. One can observe the operations of ICOP

and COPE over a period of time and see how many original packets, on average, are

XOR’ed into one coded packet, that is,
Total number of original packets

Total number of coded packets
. The higher this

ratio means the better performance. Figure 6.6 shows the result of the simulation. One can

see that ICOP allows more packets to be coded together as f increases. Under COPE,
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however, this ratio is independent from the change of f. Since ICOP knows the route

between nodes 1-4 and the route between nodes 2-5 have higher traffic rates, it will pick

nodes 1-4 and 2-5 as the two coding pairs. On the other hand, COPE does not utilize the

traffic rate information, and therefore the coding chances at the relay node depends

heavily on the timing of each node’s channel access, which can be random at times. This

explains why ICOP performs better when the busy routes carry heavier traffic while the

performance of COPE remains unchanged.

Figure 6.6 Performance Comparison, ICOP vs. COPE in the 6-node network.

6.5 Summary

This chapter has proposed a practical algorithm, ICOP, to find the network coding

opportunity. The ICOP algorithm is able to look for the most effective network coding

opportunities when both the topology and traffic pattern are known. The fact that ICOP

takes into consideration of the traffic pattern gives its unique advantage over the plain

COPE algorithm such that ICOP is able to offer high network coding gain without
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complicated MAC layer scheduling and extra communication overhead. The simulations

indicate that ICOP yields higher practical coding gains when there are certain known

busy routes in the network. ICOP can recognize the busy routes and design the coding

configurations that fit into these routes, and hence allow statistically more packets to be

coded together. ICOP is particularly useful in wireless networks with slow-varying, non-

evenly distributed traffic patterns, such as the wireless mesh networks. With fast-varying

network conditions, ICOP can still maintain its advantage by recalculating the coding

configurations more frequently.
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CHAPTER 7

MAC LAYER SCHEDULING FOR WIRELESS NETWORK CODING:

THEORY AND PRACTICE

7.1 Introduction

Network coding has gained wide interests in modern network researches. Network coding

enables intermediate nodes along a path to encode and decode the packets as opposed to

the traditional store-and-forward method. By doing so, it allows a multicast to achieve its

maximum throughput. Li et al [32] demonstrated the concept of network coding using the

butterfly network. Since then, it is also discovered that network coding can improve the

throughput in wireless networks. COPE [34] was proposed to apply network coding to

wireless networks by exploiting the broadcast nature of wireless communications. The

fundamental concept of COPE is illustrated in Figure 7.1, the Alice-Bob topology. Alice

has a packet to send to Bob, and Bob has a packet to send to Alice. Alice and Bob,

however, are out of each other’s transmission range, and therefore their communication

paths have to go through the intermediate node (node R). In the traditional store-and-

forward network, it would take four transmissions to deliver these two packets (one

packet from each user to the other). However, COPE proposed that by using network

coding, the node R can XOR both Alice and Bob’s packets together and then broadcast it,

so that the intended receivers will be able to decode this XOR’ed packet and extract the

original information. In this case, it now only takes three transmissions to deliver these

two packets. Since the proposal of COPE, many works have been done to address more

open issues following COPE. These issues can be classified into the following three
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categories: 1. Coding opportunity discovery: how do the nodes know which packets can

be coded together and how to decode? 2. Code-aware routing: can the routing algorithm

be improved so that it will create more network coding opportunities, given the same set

of flows? 3. Code-aware MAC scheduling: How can the MAC layer be scheduled such

that the packets are delivered in the right sequences so that they can be network-coded?

Many literatures have addressed the first issue (coding opportunity discovery).

Generally, nodes discover the coding opportunity by collecting its neighborhood

topology and routes information [34], [47], [55]. Le et al. [52] further explored the

coding opportunity beyond the two-hop limitation in COPE. In terms of the second issue

– code-aware routing – Le et al. [52] proposed a joint “coding+routing discovery”

algorithm. Sengupta et al. [53] used linear programming to solve the multi-path code-

aware routing problem. Wu et al. [54] proposed a new routing metric that takes the

coding opportunity into consideration when calculating the routes: links with coding

opportunities would be assigned reduced weight than those without. The focus of this

chapter is on the third issue: MAC layer scheduling. The challenge in MAC layer

scheduling is to find a practical, distributed scheduling scheme that improve the network

coding performance as compared to the conventional, contention-based MAC protocol

such as 802.11. In the original proposal of COPE, MAC layer scheduling was not

particularly addressed; the nodes would simply code the packets opportunistically. That

is, when an intermediate node gains access to the channel, it will perform network coding

only if there is a matching packet in its buffer that can be coded with the head-of-the-line

packet. Otherwise, it will send a native (uncoded) packet. With this scheme, many

coding opportunities can be lost. For illustrative purposes, consider the Alice-Bob



topology. Assume that Alice has forwarded her packet (des

Bob still has not transmitted his packet. At this moment, node R has Alice’s packet in its

buffer, but not Bob’s. If node R gains access to the channel, it will simply forward

Alice’s packet to Bob in the native form. However

should “wait” for Bob to send his packet first so that node R can XOR these two packets.

The conventional MAC scheduling is not aware of this, and therefore whether Bob gains

access before node R is random. It is easy to

simple case; however, it is not so obvious when the network is large and when there are

many unicast sessions. This

optimal solution of MAC layer scheduli

network topology and routes. The optimal solution, nonetheless, is often not easy to be

implemented practically with today’s MAC protocol

this chapter, a distributed MAC layer

“Identifying the Coding Opportunity” (ICOP)

performance (in terms of throughput) over the conventional, contention

scheduling.

topology. Assume that Alice has forwarded her packet (destined to Bob) to node R, while

Bob still has not transmitted his packet. At this moment, node R has Alice’s packet in its

buffer, but not Bob’s. If node R gains access to the channel, it will simply forward

Alice’s packet to Bob in the native form. However, one can see that, ideally, node R

should “wait” for Bob to send his packet first so that node R can XOR these two packets.

The conventional MAC scheduling is not aware of this, and therefore whether Bob gains

access before node R is random. It is easy to design an ideal MAC scheduling for this

simple case; however, it is not so obvious when the network is large and when there are

This chapter proposes an algorithm that can find the theoretical

optimal solution of MAC layer scheduling and its corresponding throughput given any

network topology and routes. The optimal solution, nonetheless, is often not easy to be

implemented practically with today’s MAC protocols. Therefore, in the second part of

, a distributed MAC layer scheduling scheme is proposed, namely,

“Identifying the Coding Opportunity” (ICOP). ICOP improves the network coding

performance (in terms of throughput) over the conventional, contention-based MAC layer

Figure 7.1 The Alice-Bob topology.
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7.2 Related Works

The pioneer work by Li et al. [32] first showed that network coding can improve the

throughput of a wired network for multicasts. It demonstrated that with network coding,

the maximum throughput predicted by the max-flow-min-cut theorem can be achieved.

For wireless applications, Katti et al. [34] proposed a scheme, referred to as

COPE, which utilizes network coding in wireless networks by exploiting the broadcast

nature of wireless transmission. The concept of COPE is best illustrated in the Alice-Bob

topology as shown in Figure 7.1, and is described in the previous section. Many works

have followed COPE, addressing various issues on network coding in wireless networks

[66]. These works can be roughly categorized into three areas: first, network coding

opportunity discovery; second, network-coding-aware routing; third, network-coding-

aware MAC layer scheduling. In the area of coding opportunity discovery, many works

have addressed this issue from various aspects, such as topology and transmission power

[34],[47],[64],[48],[68]. In [59] and [67], the impact of overhearing probability on COPE

is studied. In the area of code-aware routing, the main concern is to route packets such

that more coding opportunities will be created [53],[54],[60]. Since network coding has

changed the traditional interference-avoidance-oriented routing, the traffic now can be

routed “closer to” each other to create more coding opportunities. Sengupta et al. [53]

used linear programming to find the theoretical optimal solutions on code-aware routing.

Wu et al. [54] proposed a routing algorithm that assigns modified weights to each link

based on its previous-hop and next-hop information. Zhang et al [58] proposed BEND,

an opportunistic MAC layer mixing method without fixed routes. References [56] and

[57] studied the impact of varying channel data rates on network coding. When a node
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broadcasts a packet to its neighboring nodes, it can only use the worst data rate among all

the intended recipients. These works study the trade-off between the gain of coding two

packets into one and the loss of having to broadcast the coded packet at a lower data rate.

7.3 Finding the Optimal MAC Schedule: A Theoretical Solution

7.3.1 Problem Formulation

Given a wireless network represented in a directed graph ,(ܧ,ܸ)ܩ where V is the set of

all nodes and E is the set off all directed edges. An edge ei,j belongs to E if and only if

node j is within node i’s transmission range. In other words, node i can transmit a packet

directly to node j without any relay. Assume there is only unicast traffic, and let N be the

total number of unicast sessions, each session with source node Si and destination node Di

(i=1,2,…, N).

Assumptions:

(1) The route for each unicast session is already determined. Further assume that only
single path routing is allowed.

(2) All source nodes always have a packet to send.

(3) All packets have the same length.

(4) All channels have the same rate and are lossless, and it takes one unit time to
transmit one packet.

Given the above conditions, the following two questions are considered:

(1) What is the optimal throughput that the network can achieve using network
coding (with or without opportunistic listening)? Here, the throughput is defined
as “the number of packets (from all flows) delivered successfully to the
destination per unit time”.

(2) What is the MAC layer schedule that yields the maximum throughput?
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7.3.2 Tackling the Problem

Denote fi,, i=1,2,…N, as the unicast sessions in this network, and each fi has a path ℘
.

Denote H(fi) as the hop count of flow fi; then, ℘
can be represented by an H(fi )-tuple,

that is, ℘
={ed,j1, ej1,j2, …, ej(H(fi )-1),s}, where d is the source node, s is the destination

node, and j1, j2,…j(H(fi )-1) are the intermediate nodes along the path. Each ej,k∈ ℘
is a

“hop” in ℘
. Note that it is possible that a link ej,k belongs to multiple ℘

’s (because

multiple flows can traverse a link). In order to differentiate the hops from different paths

that share the same link, it is necessary to introduce a new notation, hi,k , which denotes

the k-th hop of flow fi. For example, in Figure 7.2, ℘య ={e7,5, e5,4, e4,3}, and so h3,2=e5,4.

Because of wireless transmissions, links that are within the interference ranges of

each other should not be activated simultaneously. For the same reason, “hops” that are

within the interference ranges of each other should not be activated simultaneously either.

This means one can construct a conflict graph from the hops-basis. From the conflict

graph, all the possible independent sets Il={hi,j: hi,j can be activated simultaneously}can

be obtained. Note that Il here are not limited to only the maximal independent sets4; any

set of hop(s) that can be activated simultaneously is a legitimate Il, including those of a

single hop. Let L be the total number of independent sets. Without network coding, Il

must be composed of hops that are out of interference range of each other. However, with

network coding, a broadcast of a coded packet can be viewed as a “simultaneous

activation” of the hops that each of the original (native) packets would have traversed

through. As a result, two hops that were used to be conflicted with each other due to

4 A maximal independent set is one that becomes a non-independent set if any additional vertex is included.
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interference may no longer interfere with each other because of network coding. In other

words, network coding can erase some edges in the conflict graph, and therefore increase

the total number of independent sets.

These independent sets, Il (l=1,2,.., L), are very important in the algorithm because

a MAC layer schedule is essentially to determine when to activate which one of these

independent sets. Let A(Il) (0 ≤ (ܫ)ܣ ≤ 1) be the fraction of time that this independent

set is activated (i.e., all hops in this set is activated simultaneously), then ∑ ܫ)ܣ
ୀଵ 

) ≤ 1.

Let (ℎ,)ܣ be the fraction of time that hop hi,j is activated, and then (ℎ,)ܣ =

∑ :,ೕ∈ூ(ܫ)ܣ . Now, the MAC layer scheduling problem can be reduced into an

optimization problem:

max =ߣ ∑ ൫ℎ,ଵ൯ܣ
ே
ୀଵ

subject to

∑ (ܫ)ܣ

ୀଵ ≤ 1 (7.1)

=൫ℎ,ଵ൯ܣ ൫ℎܣ ,ଵ൯∀݅= 1,2, … ,ܰ ; ݉ = 1,2, … ,ܰ ;݅≠ ݉ (fairness) (7.2)

∀݅= 1,2, … ,ܰ , =൫ℎ,൯ܣ ൫ℎ,ܣ ൯( ,݆݉ = 1,2, … )ܪ, ݂);݆≠ ݉ ) (7.3)

(ܫ)ܣ ≥ 0, ∀݈= 1,2, … ܮ, (7.4)

Constraint (7.1) states that the sum of the fractions of time that each independent

set is activated cannot exceed 1. Constraint (7.2) ensures the fairness of each flow, such

that each flow experiences the same packet rate. In the situation where some flows

require more bandwidth than others, constraint (7.2) will be modified and possibly

expanded to multiple constraints, as will be shown in one of the examples. Constraint
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(7.3) is the information conservation law that simply dictates that the packet rates of all

the hops in the same path must be the same.

The inputs of the function λ are ,൫ℎ,ଵ൯ܣ ∀݅= 1,2, … ,ܰ ; however, it is the values

of that(ܫ)ܣ are of interest. (ℎ,ଵ)ܣ can therefore, be substituted with (ܫ)ܣ using the

relation (ℎ,)ܣ = ∑ :,ೕ∈ூ(ܫ)ܣ .

The solution gives the values of (ܫ)ܣ , ݈= 1,2, … ,ܮ, indicating how much

fraction of time each independent set should be active in order to achieve the optimal

throughput. The value of function λ at this optimal point is the ideal throughput. The next

step is to convert this solution to the actual schedule.

7.3.3 Actual Scheduling

Lemma 1: With the same set of unicasts, the optimal MAC layer schedule is periodical.

Proof: The exact solution to a linear programming problem is always a rational

number as long as the coefficients of the function and constrains are rational [62].

Therefore, A(Il) is always a rational number for all l. Let pl/ql represent the fractional

expression of A(Il), and let τ be the least common multiple (LCM) of ql, and then the

schedule can be sufficiently described in τ steps (time slots); the schedule repeats itself

after τ steps. Therefore, the optimal MAC layer schedule is periodical. ■ 

From Lemma 1, one can conclude that values of A(Il) can be expressed in the

fractional form pl/ql, and their lowest common denominator τ is the period of the

schedule. Rewrite (ܫ)ܣ = ߩ ߬⁄ , where ߩ ߬⁄ =  ⁄ݍ . In order to satisfy the solutions of

A(Il), the optimal schedule should consist of τ steps, among which ρ l steps must be

dedicated to activate all the hops in the independent set Il. However, the next question is



how these τ steps should be put in order. It turns out, for the sole purpose of maximizing

the throughput, any permutation of these

do impact some other performance factors such as packet jitter and the number of packets

that need to be buffered in the intermediate nodes. Finding the optimal permutatio

on minimizing jitter or minimizing buffers is out of the scope of this

will be addressed in the future work.

Figure

7.3.4 Example

This section presents an

network shown in Figure

f2 ,and f3 . The paths of the flows are

and ℘య ൌ ൛�ǡହ, eହǡଷ, eଷ

hଵǡଶ = eଶǡଷ , and so on. Assuming the interference range is two

independent sets can be found:

ସܫ� ൌ ൛݄ ଵǡଷ, ℎଶǡଷൟ, ହܫ = ൛ℎ

steps should be put in order. It turns out, for the sole purpose of maximizing

hroughput, any permutation of these τ steps will do. However, different permutations

do impact some other performance factors such as packet jitter and the number of packets

that need to be buffered in the intermediate nodes. Finding the optimal permutatio

on minimizing jitter or minimizing buffers is out of the scope of this dissertation

future work.

Figure 7.2 Seven-nodes three-flows example

an example to illustrate the proposed algorithm. Refer to the

Figure 7.2, which consists of seven nodes and three unicast

. The paths of the flows are ℘భ ൌ ൛�ଵǡଶ, eଶǡଷ, eଷǡହ, eହǡൟ, ℘మ =

ଷǡସൟ. These edges are then mapped into hops:

, and so on. Assuming the interference range is two-hop, then

independent sets can be found: Iଵ ൌ ൛�ଵǡଵ, hଵǡସൟ, Iଶ ൌ ൛�ଵǡଵ, hଶǡଵൟ,

൛ℎଵǡସ, ℎଶǡଶൟ, ܫ ൌ ൛݄ ଵǡଵൟ, ܫ ൌ ൛݄ ଵǡଶൟ, ܫ଼ ൌ ൛݄ ଵ
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steps should be put in order. It turns out, for the sole purpose of maximizing

steps will do. However, different permutations

do impact some other performance factors such as packet jitter and the number of packets

that need to be buffered in the intermediate nodes. Finding the optimal permutation based

dissertation, and it

algorithm. Refer to the

unicast flows, f1 ,

൛�ǡହ, eହǡଷ, eଷǡଶൟ,

into hops: hଵǡଵ = eଵǡଶ�,

hop, then, fifteen

ଷܫ ൌ ൛݄ ଵǡଵ, ℎଷǡଵൟ,

ǡଷൟ, ଽܫ ൌ ൛݄ ଵǡସൟ,
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ଵܫ = ൛ℎଶ,ଵൟ, ଵଵܫ = ൛ℎଶ,ଶൟ, ଵଶܫ = ൛ℎଶ,ଷൟ, ଵଷܫ = ൛ℎଷ,ଵൟ, nܫଵସ = ൛ℎଷ,ଶൟ, and ଵହܫ = ൛ℎଷ,ଷൟ. One

can observe that ସܫ and ହܫ are made possible only because of network coding.

The solution of the optimization is: (ଶܫ)ܣ = (ଷܫ)ܣ = (ଵܫ)ܣ = (ଵଷܫ)ܣ = 1 14⁄ ,

(ସܫ)ܣ = (ହܫ)ܣ = (ܫ)ܣ = (ଵସܫ)ܣ = (ଵହܫ)ܣ = 2 14⁄ , and zero activation time for the

remaining independent sets. The maximum throughput is =ߣ 3 7⁄ . From the solution,

one can conclude that the optimal schedule has a period of 14 steps (time slots), within

these 14 steps each source node injects two packets into the network, and each flow

receives two packets at its destination.

Table 7.1 Optimal Schedule for the Network in Figure 7.3

Step Activated hops

1 ℎଵ,ଵ, ℎଶ,ଵ

2 ℎଵ,ଶ

3 ℎଵ,ଷ, ℎଶ,ଷ

4 ℎଵ,ସ, ℎଶ,ଶ

5 ℎଵ,ଵ, ℎଷ,ଵ

6 ℎଷ,ଶ

7 ℎଷ,ଷ

8 ℎଵ,ଶ

9 ℎଶ,ଵ

10 ℎଵ,ଷ, ℎଶ,ଷ

11 ℎଵ,ସ, ℎଶ,ଶ

12 ℎଷ,ଵ

13 ℎଷ,ଶ

14 ℎଷ,ଷ
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Table 7.1 is one possible optimal schedule. Note that Steps 3 and 4 represent the steps

where network coding is performed at node 3 and 4, respectively, and so are Steps 10 and

11.

7.4 A Practical Scheme: Identifying the Coding Opportunity

Finding the optimal solution is NP-hard as it involves with finding all the independent

sets. Furthermore, even after the optimal solution is obtained, it is still difficult to

implement the solution in the actual networks because a centralized coordination for all

nodes is required. Therefore, a practical, distributed MAC layer scheduling scheme is

necessary. The conventional MAC protocol (such as 802.11), though easy to implement,

is not suitable for network coding. In this section, a new distributed MAC layer scheme --

ICOP – is proposed that will asymptotically improve the throughput of a wireless

network with network coding comparing to those using the conventional MAC.

7.4.1 The Shortcoming of Conventional MAC

In the conventional MAC protocol such as 802.11, nodes compete against each other to

access the wireless medium. Which nodes get the access at which time is essentially

determined by chance. The potential benefit of network coding may not be realized with

this type of MAC scheme. Take a simple example from the Alice-Bob topology. Alice

has a packet to send to Bob while Bob has a packet to send to Alice. In the beginning,

either Alice or Bob would have a 50% chance to gain access to the channel (since they

are the only two nodes with packets to send). Assume that Alice won the contention and

sent her packet to the relay node. Now at the second time slot, it is the relay node and



116

Bob who are competing for the channel. If Bob wins the contention and send his packet

to the relay node, then the relay node can network-code these two packets together and

broadcast the coded packet to Alice and Bob when it gains the access. However, if it is

the relay node that gains the access before Bob, then the relay node would simply

forward the packet it had received from Alice to Bob. Obviously in such case, a potential

coding opportunity is missed. Such missed coding opportunities mar the benefits of

network coding, and therefore should be avoided.

7.4.2 Identifying the Coding Opportunity (ICOP)

This section describes the proposed scheme “Identifying the Coding Opportunity”

(ICOP). ICOP is designed to reduce the occurrence of missing coding opportunities as

described above. The main idea of ICOP is to utilize the ACK packet sent by an

intermediate node to inform its neighboring nodes about the existence of a coding

opportunity, and gives the node(s) with the matching packet with a higher priority to

access the channel in the next time frame, assuming that all nodes are aware of network

coding, and have the knowledge of which packets could be coded together (such

knowledge can be obtained from the neighborhood information). When an intermediate

node receives a packet that can be coded with another packet that is already stored in its

buffer, then the intermediate node will send a regular ACK. However, when an

intermediate node receives a packet that could be coded, but it does not have a matching

packet in its buffer, then the node will send a modified ACK that informs its surrounding

nodes of such coding opportunity. The modified ACK contains the addresses of its

previous hop and the next hop, and its “type” field indicates that this is a modified ACK
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[61]. The surrounding nodes that overheard this ACK packet can use these two addresses

to determine whether itself has a matching packet in its local buffer. The surrounding

node that has the matching packet will then set its back off timer shorter than a threshold

t, while other nodes set their back off timers larger than t. When the node with the

matching packet gains access to the channel, it will send the matching packet from its

buffer, even if this packet is not at the head of line. This gives the node with matching

packet higher priority to deliver the matching packet to the intermediate node, thus

reducing the occurrence of missing coding opportunities. The only differences between

ICOP and the conventional MAC are the modified ACK packet and the setting of back

off timer. The simulation indicates that this slight modification produces significant

improvement, as will be shown in the next section.

7.5 Simulations Results

In this section provides the simulation results of ICOP, and compare them with those of

the conventional MAC scheme. The simulations in this section are carried out on a stand-

alone discrete-time simulator built for this dissertation using Matlab. The wireless

channels are lossless and each node is equipped with a tail drop buffer in the size of 100

packets. The simulation begins with the basic Alice-Bob topology with two flows, and

compare the throughputs achieved by ICOP and by conventional MAC. The throughput

is calculated by
௨ ௧௦௩ௗ

௧௧௨௧௧ 
. Unless otherwise specified, the number of

packets arrived include those from all flows. The simulation is run with various packet

rates at the source node. At the first run, each of the source nodes (Alice and Bob)

generates packets at the rate of 1/5 (one packet per five unit times, where one unit time is



118

defined as the time needed to transmit one packet). Once the packet is generated, it is

temporarily stored in a FIFO buffer waiting to be transmitted. The source packet rate is

increased with each run until it reaches one. The rate of one means the source nodes

always have packets to send. Figure 7.3 shows the throughput comparison between ICOP

and the conventional MAC. Obviously, the ideal throughput in this topology is 2/3, which

means each flow delivers one packet in every three unit time, and thus the ideal packet

generation rate is 1/3. This is reflected in Figure 7.3, as the throughput stays at the same

level (~2/3) once the packet generation rate reaches 1/3. Interestingly, there does not

seem much difference between the throughputs achieved by ICOP and by conventional

MAC. When further comparing the fairness of each flow (i.e., the throughput per flow),

ICOP and conventional MAC yield similar fairness. However, when the simulation is

conducted using the network in Figure 7.2, ICOP shows noticeable advantage over the

conventional MAC.

Figure 7.3 Throughput comparison: ICOP vs. conventional MAC; Alice-Bob topology.
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seven-node, three-flow network as shown in Figure 7.2. From the optimization algorithm

presented in Section 7.3, it is known that the ideal throughput is 3/7, which means each

flow delivers one packet in every seven unit time, and thus the ideal packet generation

rate is 1/7. In this figure, one can see that when the packet generation rate is below 1/7,

both ICOP and the conventional MAC perform the same since the network is not heavily

loaded. However, when the packet generation rate exceeds the ideal 1/7, the throughput

degrades dramatically with the conventional MAC, while the throughput of ICOP does

not decrease as much even when the packet generation rate reaches one. In terms of

fairness, ICOP and the conventional MAC both yield similar performances. (Refer to

Figure 7.5 and Figure 7.6). Finally, the frequencies of coding with ICOP and the

conventional MAC are compared in Figure 7.6. Generally, the more frequent the network

coding occurs, the fewer transmissions are required to deliver the same amount of

packets. The frequency of coding is measured as
୲୭୲ୟ୪୬୳୫ ୠ ୰ୣ୭ୡ୭ୢୣୢ ୮ୟୡ୩ ୲ୣୱ

௧௧௨௧௧ 
. As one can

see, when the packet generation rate exceeds the ideal level, the number of packets being

coded with ICOP is far more than those with the conventional MAC.

Figure 7.4 Per-flow throughput: ICOP and conventional MAC.
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Figure 7.5 Throughput comparison: ICOP vs. conventional MAC; 7 nodes and 3 flows.

Figure 7.6 Per-flow throughput. ICOP.
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Figure 7.7 Per-flow throughput. Conventional MAC.

From the results of the 7-node network, one can see that when the packet
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at the source nodes exceed the ideal throughput, then the throughput of the conventional

MAC degrades significantly while ICOP’s performance remains steady despite of the

increased packet arrival rates. These results imply that ICOP can be particularly

advantageous over the conventional MAC in networks where the upper layer flow control

is not perfect; this is often the case with today’s flow control mechanism in TCP [65].
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Figure 7.8 Coding occurrence comparison.

7.6 Summary

In wireless network coding, the MAC layer scheduling can affect the actual throughput

gain. This chapter has proposed an algorithm that finds the optimal MAC layer schedule

and the optimal throughput. Even though finding the optimal schedule is NP-hard, the

proposed algorithm provides an upper bound of the achievable throughput. This chapter

has also proposed a distributed MAC layer scheduling scheme, ICOP, which utilizes a

modified ACK packet to inform surrounding nodes of the network coding opportunity.
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control, ICOP can achieve better throughput than the conventional MAC.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORKS

Most of the problems and challenges faced by today’s networks can be reduced to a

common root: how packets shall be delivered. The works presented in this dissertation

have contributed in subjects including link state updates in the area of QoS routing,

network coding in peer-to-peer file sharing, and network coding in wireless networks.

With the growing popularity of wireless networks, network coding in wireless networks

has drawn much attention. The ICOP proposed in Chapter 6 is a first step towards finding

a practical solution to implement network coding in wireless networks. One of the

challenges of wireless network coding is MAC layer scheduling. In order to increase the

number of coded packets (hence increase the network coding gain), MAC layer has to

deliver the right packet at the right time so the matching packets can be coded together at

the relay node. The ideal MAC layer schedule can be found by using the algorithm

described in Chapter 7. However, to practically implement the ideal schedule is difficult.

This dissertation therefore, proposed a practical network-coding-aware MAC layer

scheduling scheme that will better support the network coding algorithm as compared to

the current MAC layer protocol such as 802.11.

In summary, the contributions of this dissertation are:

(1) Link state update: proposed ROSE, a class-based link state update scheme that

utilizes the statistical information of user’s QoS requests and the links’ actual QoS

states. ROSE takes this statistical information into account to design the class

boundaries to minimize the cost of false routing.
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(2) Peer-to-peer file sharing networks: proposed DRLNC, a network coding scheme that

shifts the coding decisions from the uploaders to the downloaders. DRLNC eliminates

the collision problem without increasing the field size.

(3) Wireless network coding: this dissertation has addressed the MAC layer scheduling

problem on both theoretical and practical grounds. In the theoretical work, it has

proposed an algorithm to solve the MAC layer scheduling problem. In the practical

work, it has proposed ICOP, a MAC layer protocol that utilizes the ACK packets to

deliver extra network-coding-related information so that matching packets can have

better chances to be coded at intermediate nodes.

The future works will be focused on MAC layer scheduling for wireless network

coding, which includes upgrading ICOP to accommodate variable channel rates and

handle packet losses.
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