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ABSTRACT

RETRANSMISSION STRATEGIES FOR MOVING NETWORKS OVER RICEAN FADING
CHANNELS

by
Alex Ruiz Lee

The problem of designing retransmission protocols based on Hybrid Automatic Repeat reQuest (HARQ)

for moving networks over Ricean fading channels has been considered. The scenario of interest consists

of one receiver traveling at a given speed while connected to a wireless network based on OFDM (e.g.,

WiMax) through several base stations located along the path. Five different retransmission protocols that

combine HARQ with handover between adjacent base stations are considered. Their performance in terms

of number of retransmissions per packet via numerical simulations, considering both frequency selective

and nonselective channels are presented. The results obtained show the relevant advantage that can be

achieved by the joint design of HARQ and handover, and by exploiting space-time transmit diversity and

beamforming via softhandover.
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CHAPTER 1

INTRODUCTION

Wireless communication market is growing rapidly, especially within the last 15 years, during which

wireless communication devices have become more and more popular. This growth does not seem to have

a stop in the near future as the public keeps demanding more sophisticated devices capable of provide

them with voice and data services at higher rates. WiMax technology has been developed as a solution

for broadband access networks to cover this need for high voice and date rates, and our work presented

here is focused on this technology. In particular, we consider the problem of designing retransmission

protocols for a fast moving network, e.g., a train, while it is connected to a WiMax infrastructure, through

base stations located along the path, as sketched in Fig. 1.1, which provides data services to terminals

therein. Due to its simplicity of the equalization process for multicarrier signals [1], we focus on an

OFDM-based radio interface as modulation scheme. Specified reliability requirements in terms of data

packet delivery can be guaranteed through Hybrid Automatic Retransmission reQuest (HARQ) protocols

(e.g., [1] for application to WiMax systems). In the presence of moving networks with OFDM, the problem

of packet loss and the need for HARQ techniques is emphasized by the performance degradation at the

physical layer due to Doppler spread, which causes a loss of subchannel orthogonality resulted from

interchannel interference (ICI). Finally, with high speed receivers, the implementation of retransmission

(HARQ) protocols is inevitably linked with the problem of devising adequate handover strategies from

one base station to the following. As an example, retransmission of a given packet might occur after the

moving receiver has reached a different area covered by the next base station along the path.

In this work, we compare the performance of different protocols that jointly perform HARQ retrans-

mission and handover. In particular, we consider both hard handover and soft handover via diversity,

beamforming and Alamouti's techniques. Performance comparison is based on the evaluation of the

average number of retransmissions per packet by numerical simulations. This comparison is presented

using two different models. In the first model, the channel is assumed to be frequency nonselective and is

simplified by assuming that it changes in a linear fashion during one OFDM symbol period. Furthermore,

the SINR at the receiver is used as performance criterion to decide whether a packet is lost or not. The

second model considers a frequency selective channel, and uses the BER at the receiver as performance

1
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criterion. Our results point to the importance of a joint design of HARQ and handover, and highlight the

relevant performance gains that can be harnessed by means of coordination among successive base stations

in the form of beamforming and space-time coding.

Figure 1.1 Illustration of the scenario of interest

1.1 Orthogonal Frequency Division Multiplexing (OFDM)

The basic idea of OFDM is to split a high rate data stream into a number of lower rate streams as shown

in Figure 1.2 and transmit these streams simultaneously, and in parallel over a number of orthogonal

subcarriers. The orthogonality of subcarriers guarantees that the streams do not interfere with one another.

A general block diagram of an OFDM system is shown in Figure 1.3.

Each data stream is sent in one subchannel, so that each has its own coherence bandwidth. If the

bandwidth of transmitted signal is less than coherence bandwidth of the channel, inter-symbol interference

(ISI) is eliminated on that channel. Lower data rate streams have lower bandwidth and therefore, if we

choose enough subcarriers, we will be able to have very low-rate parallel data streams in each such that

each subchannel will be ISI free.
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Figure 1.2 Subcarrier division on an OFDM system

The number of bits assigned to each sub-carrier is variable based on the variability of signal to

noise ratio (SNR) across the frequency range. The number of sub-carriers, N, used in an OFDM system

is chosen as a trade-off between the frequency offset of adjacent carriers and the adjacent channel inter-

ference. A greater number of sub-carriers implies less adjacent channel interference, but increased suscep-

tibility to frequency offset, and viceversa.

1.1.1 OFDM and Orthogonality Concept

The division of data stream to several sub-carriers can be implemented easily using Inverse Fast Fourier

Transform (IFFT). The match filtering of each sub-channel also is done by Fast Fourier transform (FFT).

These operations perform reversible linear mappings between N complex data symbols and N complex

OFDM symbols. An N-point FFT requires only on the order of NlogN multiplications rather than N 2 as

in a straightforward computation. Due to this fact, an OFDM system typically requires fewer computations

per unit time than an equivalent system with equalization. In OFDM the sub-carrier pulse used for

transmission is chosen to be rectangular. This has the advantage that a simple Inverse Discrete Fourier

Transform (IDFT), which can be implemented very efficiently as Inverse Fast Fourier Transform (IFFT),
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Figure 1.3 Baseband block diagram of an OFDM system

can perform the task of pulse forming and modulation. Accordingly, in the receiver we only need a FFT

to reverse this operation. According to the theorems of the Fourier Transform the rectangular pulse shape

will lead to a sin x/x type of spectrum of the sub-carriers as it is shown in Figure 1.4.

Figure 1.4 OFDM and orthogonality principle

Obviously the spectrums of the sub-carriers are not separated but overlapped. The reason why the

information transmitted over the carriers can still be separated is the socalled orthogonality relation. By
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using an IFFT for modulation we implicitly choose the spacing of the sub-carriers in such a way that at

the frequency where we evaluate the received signal (indicated as dotted lines) all other signals are zero.

Transmission of data in the frequency domain using an FFT, as a computationally efficient orthogonal

linear transformation, results in robustness against ISI in the time domain.

1.1.2 OFDM System in Non-ideal Channel Conditions

In real mobile radio environments, transmitted signals are usually subjected to time or frequency dispersion

which causes unacceptable error performance degradation. This degradation is known as intersymbol

interference (ISI) when it is introduced by the frequency selectivity of the channel or interchannel inter-

ference (ICI) when it is introduced by the time selectivity of the channel.

The first problem of ISI can be solved by creating a cyclically extended guard interval time in each

OFDM symbol, where each OFDM symbol is preceded by a periodic extension of the signal itself. The

total symbol duration is then

where Tq is the guard interval time and T, is the OFDM symbol time. Figure 1.5 shows a typical guard

interval insertion. Each symbol is made of two parts. The whole signal is contained in the active symbol,

the last part of which is also repeated at the start of the symbol and is called guard interval. The reason

for this is to convert the linear convolution of the signal and channel to a circular convolution and thereby

causing the DFT of the circularly convolved signal and channel to simply be the product of their respective

DFTs. If the guard interval time is longer than the multipath delay of channel, the effect of ISI can be

eliminated. The ratio of the guard interval to the useful symbol duration is applicationdependant because

the insertion of guard interval will reduce the data throughput. At the receiver-end this guard interval

should be removed before taking FFT from the received signal.

For simplicity, in this work, we always assume that the guard interval time is longer than the

multipath delay of the channel, and therefore it eliminates perfectly the ISI.

When the channel is time variant and the channel characteristics change over the duration of one

OFDM symbol duration, subcarriers lose their orthogonality. These changes can be modeled by a Doppler

spread caused by the relative motion between the receiver and the transmitter. This loss of orthogo-

nality reduces slightly the useful signal in each subcarrier, and introduces interchannel interference (ICI),
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Figure 1.5 Guard interval insertion

leading to a reduction in the effective SINR. Furthermore, the performance degration due to ICI becomes

significant as the carrier frequency, block size and receiver speed increase. This performance degration

due to time selectivity of the channel has been studied in [2] - [6].



CHAPTER 2

SYSTEM MODEL

The scenario of interest consists of one receiver traveling at a given speed v while connected to a wireless

network through M active base stations located along the path. As shown in Fig. 2.1, the base stations

are located at a fixed distance R from the path followed by the receiver. and at a distance d from each

other, starting at x = 0. Moreover, OFDM is assumed to be employed as radio interface as in, e.g.,

WiMax networks. A HARQ retransmission protocol is considered, so that packets that are not received

correctly by the moving terminal are retransmitted until successful reception or until a maximum number

of retransmissions L is reached. In particular, we assume type-I HARQ, whereby the receiver simply

discards previously received copies of a packet and decodes based on the last received copy. It is noted that

extension of the analysis to more advanced HARQ protocols such as Chase Combining [7] is conceptually

straightforward. Finally, the fading channels between base stations and receiver are assumed to be Ricean

distributed in order to account for a line-of-sight component.

Figure 2.1 Detailed illustration of the scenario of interest with M=2 active base stations

7
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In the described scenario, communication from the base stations to the moving receiver has to deal

with two main issues:

• The speed of the receiver causes a Doppler shift f d (in Hz) on the line-of-sight component that

produces a loss of subchannel orthogonality as a result of interchannel interference (ICI) and hence

higher packet loss [2];

• Movement of the receiver introduces the need for handover, that is the switching the active commu-

nication session from one base station to the next.

Because of the relevant Doppler shift, and corresponding ICI, we consider scenarios with relatively

large number of retransmissions per packet (large probability of block error). Moreover, due to the

movement of the receiver, it is generally advantageous to enable handover even within the same HARQ

session, that is to allow successive copies of a given packet to be transmitted by a different base station.

Finally, we remark that, besides hard handover schemes, in the scenario at hand transmit spatial diversity

(soft handover) can be leveraged.



CHAPTER 3

SNR-BASED MODEL FOR FREQUENCY NON-SELECTIVE CHANNELS

In this chapter, we present a simplified model by assuming that the channel is frequency non-selective and

relying on the results obtained in [2], where the BER performance of an OFDM system over time-varying

frequency non-selective fast Ricean channels is analized using an approximation of the channel variations

by a linear model, as proposed in [3].

We are interested in obtaining an analitical closed expression for the instantaneous Signal-to-Inter-

ference-plus-Noise ratio (SINR) at the receiver, accounting for both additive noise and ICI, which will be

used as performance criterion to determine whether a packet is lost or not. A packet will be considered to

be successfully received if the instantaneous Signal-to-Interference-plus-Noise ratio (SINR), accounting

for both additive noise and ICI, at the receiver is above a threshold 7. According to the HARQ protocol,

retransmission of an erroneously decoded packet is performed after a time T seconds, which in practice

depends on the specific implemented retransmission protocol and on the round trip signaling times.

3.1 Signal Model

We consider an OFDM system with N subcarriers, an input data symbols sequence (X0 , X1,..., XN-1 )

corresponding to subcarriers 0,1,..., N — 1 and bandwidth 1/T s, where T sis the symbol period.

With reference to Figure 1.3, an input data bits are first encoded into symbols (X m ), and then the

Serial-to-Parallel converter (S/P) transmits N symbols to the OFDM modulator (N-point IFFT block),

where each symbol is modulated by the corresponding subcarrier as:

where xn represents the nth sample of the output of the IFFT. After this, the guard interval is inserted

in each OFDM symbol to avoid ISI and to preserve the orthogonality of the subchannels. Each OFDM

symbol is then sampled and D/A converted and finally sent through a multipath fading channel consisting

9



10

of L discrete paths. At the receiver, after the signal has been A/D converted and the guard interval has

been removed, the received signal from M active base stations at time n can be written as:

where: subscript i denotes different base stations, δ i accounts for the path loss and is equal to (R/r i)η/2

with r, being the distance between base station i and receiver and η  is the path loss exponent which depends

on the specific propagation environment (Table A.1 in Appendix A); h n,l,i is a nonzero mean complex

Gaussian variable accounting for the channel response for the lth path; x n,l,i is the nth time-sample of the

trasmitted sequence from base station i for the l th path; and wn is additive white Gaussian noise (AWGN)

with power N0 .

Assuming time-varying flat fading channel, i.e., no multipath is considered, the received signal in

(3.2) can be simplified as follows:

If we further assume that the phase shift caused by the fading channel can be recovered perfectly (as

assumed in e.g., [2] [3]) and compensated individually for each time sample, the received signal in (3.3)

can be written as:

where |hn, i| is the channel gain amplitude taken as Ricean random variable with Ricean factor K and

power ξ  = E [|h n,i| 2 ] = 1 Vn,i,

At the receiver, the demodulated signal on subcarrier k, Yk, is obtained by taking the FFT of the

received sequence yn , leading to
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where Wk denotes the FFT of noise w n and Hk,i is the FFT of the time-variant Ricean flat fading channel

|hn,i| as follows:

Substituing equation (3.6) into (3.5) we get:

where

represents the multiplicative distortion at the desired subchannel and

represents the ICI. Notice that, if the channel is considered to be time-invariant during a block period,

βk,i vanishes, implying that no ICI exists. As mentioned previously,|h

n , i

| is considered to be time-

variant and thus ICI exists. However, a remarkable simplification can be reached taking the assumption

that the channel varies in a linear fashion during one OFDM symbol. This assumption was first taken

in [3] and then applied in [2] to analyse the BER perfomance of an OFDM system over frequency

nonselective Ricean fading channels. Relying on those analysis, the equivalent channel gainα

i

 in (3.7)

can be aproximated as:



and its probability density function can be represented as in [2]:
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where μ i is defined as:

with fd, being the Doppler shift fd, suffered by the signal transmitted from base station i and is given

by [8]:

where v is the speed of the receiver, λ  is the wavelenght of the frequency carrier and θ i is the angle between

the direction of the motion of the receiver and the direction of arrival of the signal (as illustrated in Fig.

2.1).

Figures 3.1 and 3.2 show the Probability Density Function (PDF) and the Cumulative Distribution

Function (CDF) of a, respectively, for different values of θi fromθ i  = 137° toθ i  = 165° at a fixed speed

of v = 210 km/h. Furthermore, for this simulation we set N = 1024 OFDM subcarriers. The carrier

frequency f, is assumed to be fc = 2 GHz and the symbol period T, is 7.8125 μ s. The Ricean factor K is

assumed to be K = 0 and K = 10 dB. Notice that for K = 0, the pdf in (3.11) becomes the pdf of two

correlated Rayleigh distributed random variables.

Furthermore, the power of the ICI component βk,i can be derived as σβi2 = E[|β k,i| 2 ] [4]:



Figure 3.1 PDF of α i for v = 210 km/h, θ i E [137°, 165°] and K=0,10 dB

where we define Ei = E [|X k,i|2] as the per-symbol energy transmitted from base station i. Noticing that

the ICI power σβi2 are the same for each subcarrier [2], we can omit subscript k in the following.

3.2 Retransmission Protocols

In this section we describe five different protocols which jointly perform HARQ retransmission and

handover. The relative merits of these techniques will be then discussed in section IV via numerical

results. It should be noted that while the first two protocols are based on hard handover, the latter three

exploit soft handover (spatial diversity).

3.2.1 Protocol 1

This protocol combines HARQ with hard handover between adjacent base stations, Just one base station

transmits at any given time and handover is performed once the receiver approaches the next base station,

even within the same HARQ session corresponding to the transmission of a given packet. The corre-

sponding areas of coverage of different base stations are as indicated in Fig. 3.3, where for simplicity of

notation, and henceforth, we refer to base stations 1 and 2.

13
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Figure 3.2 CDF of a, for v = 210 km/h, 0, E [137°, 1651 and K=0,10 dB

In this case, since only one base station trasmits at a given time, equation (3.7) can be simplified as:

where i could be either 1 or 2 depending on which base station is transmitting in the active HARQ session.

From equation (3.15) the instantaneous SINR can be written as:

where both base stations transmit the same power, namely, E 1 = E2 = E3 .

3.2.2 Protocol 2

This second protocol also combines HARQ with hard handover between adjacent base stations, but in this

case the handover is performed once the receiver approaches half the distance between base stations, so

that the areas of coverage are as indicated in Fig. 3.5.

Since the only difference with the previous protocol is the area of coverage of each base station, the

instantaneous SINR at the receiver can be expressed as in equation (3.16).
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Figure 3.3 Area of coverage of adjacent base stations for protocol 1.

3.2.3 Protocol 3: Selection Diversity

According to this third protocol, the two base stations nearest the receiver transmit simultaneously the

same sequence, x n , 1 = xn , 2 = xn , on two orthogonal spectral resources for any packet (as in FDMA

or TDMA). The receiver compares the SINR of both signals and chooses the signal with largest SINR.

In order to maintain the same overall transmission energy per packet, we assume that each base station

transmits with half power with respect to protocols 1 and 2, i.e., E 1 = E2 = Es /2. Notice, however,

that this protocol is more expensive in terms of bandwidth as compared to protocols 1 and 2 due to the

requirement on orthogonal transmissions. It follows that the equivalent SINR at the receiver is:

where SINR1  and SINR2 are the SINRs of the signal received from base station 1 and base station 2

respectively and are expressed as in equation (3.16).
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Figure 3.4 Protocol 1: the receiver is served by BS1 when it is located at x E [0, d) (a), and by BS2 when
it is located at x E [d, 2d)

3.2.4 Protocol 4: Beamforming

This protocol exploits beamforming to control the directionality of the transmission in order to enhance

the received SINR. This technique consists in applying weighting factors wi to the signal of interest

at the base stations, so the transmitted signal from base station i is:

where M is the number of active base stations and wi are the weighting factors satisfying

The above constraint ensures that the transmitted power is not being increased. This technique is called

transmit beamforming because the signal x,,, is being formed before being transmitted. In this protocol,

the two base stations nearest to the receiver, BS 1 and BS2 transmit simultaneously the following signals:
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Figure 3.5 Area of coverage of adjacent base stations for protocol 2.

where (h * n,1 /|hn,1|) and (h *n,2/|hn,2|) are the weighting factors (satisfying constraint (3.19)). Notice that,

unlike protocol 3, the two nearest base stations transmit simultaneously on the same spectral resource for

any packet.

Recalling (3.3) the received signal can be written as:

Notice that, unlike the previous protocols, the channel phase does not need to be known at the receiver,

since the phase is already compensated through the operation(h

*

n,i

h

n,i/|hn,i|) = |hn,i|. Taking the FFT of

the received sequence and following the same steps as in equations (3.5) through (3.7), the demodulated

signal on subcarrier k can be proved to be:



18

Figure 3.6 Protocol 2: the receiver is served by BS1 when it is located at x E [—d/2, d/2) (a), and by
BS2 when it is located at x E [d/2, 3d/2)

where βk,1 andβ k,2  are the ICI components for channel 1 and 2 respectively. Assuming that, like protocol

3, each base station transmits at half power with respect to protocols 1 and 2, the received SINR can be

then written as:

Correlation E

[β k,1

β

k,2

]  is affected by the fact that the transmitted signals from both base stations are

correlated (recall (3.21)). However, we will show in Appendix A that, due to the structure of the received

signal, E [βk,1β

k,2

]  = 0, and therefore the received SINR can be then written as:

Finally, notice that in this protocol, simultaneous transmissions are coordinated by the availability of

channel state information at the base stations, i.e, in order to achieve transmit diversity, the base stations

must have the CSI. This presents the problem of having the receiver to send it to the base station, reducing

so the throughput. In the next section, we present an alternative technique to beamforming, Alamouti's

STBC, which does not need to provide the base station with the CSI.
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Figure 3.7 Illustration of Protocol 3.

3.2.5 Protocol 5: Alamouti's STBC

This last protocol is based on Alamouti's space-time block coded diversity [9]. Alamouti presented the

STBC code that achieves the maximum rate and diversity for two transmitting antennas. According to it

and, when applied in the frequency domain, during the first symbol period, Xk,1 and Xk,2  are sent from

BS1 and BS2 respectively for each k = 0, 1, N — 1. During the second symbol period,-X*

k,2

 and

X* k,1

are sent from BS 1 and BS2 respectively for each k = 0, 1, N — 1. Figure 3.9 illustrates the two base

stations transmitting according to this technique. The block diagram of an OFDM system with Alamouti's

space-time block coded diversity is shown in Figure 3.10.

Recalling (3.4), at the receiver the received signal from M = 2 active base stations at time n can be

expressed as:
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Figure 3.8 Illustration of Protocol 4.

where p denotes the pth symbol period. The modulated signal on subcarrier k after taking the FFT, can be

expressed in the frequency domain [10] as:

Equation (3.26) can be expressed in matrix notation as [10]

where
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Figure 3.9 Illustration of Protocol 5 with Alamouti's technique applied in the frequency domain

These signals are then combined according to the Alamouti's combining scheme, this is by multi-
- H

plying the received signal by Ak , being Ak defined as:

with α i i = 1, 2 defined in (3.8). Therefore if we define

then the received signal after decoding reads

where
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Figure 3.10 OFDM system with Alamouti's space-time block coded diversity

CINTRAkXk  is the intracarrier interference (or intracodeword coupling) that shows the coupling effect

between symbols in a codeword with

Σm=0,m≠k  C

INTRAm

Xm  is the ICI (or intercodeword coupling) that shows the coupling effect between

symbols in different codewords with

and

An analitical closed expression for the SINR at the receiver can not be written from (3.32), therefore

performance of this protocol will not be presented in the numerical results section. However, this protocol

will be analized again in the second model presented in this work for frequency selective channels, and

numerical results will be then presented.
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3.3 Numerical Results

In order to compare the four protocols we consider the averaged number of retransmissions per packet

over the fading distribution as the performance criterion, and evaluate it via Monte Carlo simulations. We

fix R equals to R = 5 m. Moreover, with reference to Fig. 2.1, the receiver travels along the x-axis,

and our simulations are focused on HARQ sessions that start within the area between BS1 and BS2. We

call x* or initial position to the point where the HARQ session starts. Figure 3.11 illustrates one HARQ

session. Receiver is located at x = x* when the first transmission of the packet is sent. T retransmissions

are needed until the packet is successfully received.

Figure 3.11 Illustration of one HARQ session with x* being the initial position

A packet is transmitted while the receiver moves, and we are interested in finding the average number

of retransmissions necessary for successful transmission. We set N = 1024 OFDM subcarriers. The

Ricean factor K is assumed to be K = 10 dB and Es /N0 = 5 dB. The carrier frequency h is assumed to

be f, = 2 GHz and the symbol period Ts is 7.8125 μs. The delay τ  between the retransmissions of the

same packet has been set to τ  = 10 ms. We have considered the path loss exponent η  equal to 3 and the

threshold γ for the SINR equal to γ = 2 (3 dB). Finally, the maximum number of retransmissions L is set

equal to L = 25.
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3.3.1 Performance for Fixed Initial Position f = d/2

Figures 3.12 and 3.13 show the average number of transmissions of the four protocols for two different

speeds of the receiver, v = 60 and 210 km/h respectively, and for a specific initial position, x* = d/2. As

it can be seen, for both speeds beamforming (protocol 4) always presents the lowest rate of transmissions

followed by protocol 2 (hard handover according to Fig. 3.5), protocol 3 (selection diversity) and then

protocol 1 (hard handover according to Fig. 3.3). Also notice that protocols 2 and 3 require a larger

number of retransmissions for v = 60 km/h rather than for v = 210 km/h. This is due to the fact that when

the receiver is located at x = d/2 and the transmitted packet gets lost, it is best for the receiver to travel

as fast as possible to the second base station in order to experience a better SINR. Finally, it is noted that

the number of transmissions tends to the maximum delay L = 25 (which implies an outage event) as the

distance between base stations d increases.

Figure 3.12 Average number of transmissions per packet for a user starting at x* = d/2 and travelling
with velocity v=60 km/h versus distance d between base stations.

3.3.2 Performance for Fixed d = 20 m

Figures 3.14 and 3.15 show the performance of the four protocols for the same two different speeds of the

receiver but in this case the distance d between base stations has been fixed to d = 20 m and the starting



25

Figure 3.13 Average number of transmissions per packet for a user starting at x* = d/2 and travelling
with velocity v=210 km/h versus distance d between base stations.

point x* varies from x* = 0 to x* = 20 m. For protocol 1, if the starting point x* is sufficient large, i.e.,

transmission starts at a large enough distance from the serving base station, successful transmission is not

achieved and therefore the maximum number of retransmissions L=25 is reached. This shows the need

for a better handover scheme as prescribed by the other protocols. Protocol 2 has increasing number of

retransmissions for starting points x* such that handover to the second base station is not initiated within

the HARQ session, and decreasing number of retransmissions after this point. Similarly, protocols 3 and

4 have increasing number of retransmissions for starting points x* such that the receiver is not able to

exploit the signal from the second base station within the given HARQ session due to the small received

power, and decreasing number of retransmissions after this point. Accordingly, larger speeds cause the

worst-case starting point x* to become smaller. For instance, in the case of protocol 3 and 4, this is due

to the fact the successive retransmissions within the HARQ session benefit from more significant power

from the second base station if movements between retransmissions cover larger distances.
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Figure 3.14 Average number of transmissions for distance between base stations d = 20 m and travelling
with velocity v=60 km/h versus starting point x*.

3.3.3 Performance on Average Over All Initial Positions

As a final evaluation, Figures 3.16 and 3.17 show the number of retransmissions averaged over all initial

positions x* uniformly distributed between 0 and d, versus the distance d between base stations. The basic

conclusions drawn above for fixed inital positions are confirmed, namely in terms of the performance

comparison between different schemes.
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Figure 3.15 Average number of transmissions for distance between base stations d 20 m and travelling
with velocity v=210 km/h versus starting point x*.

Figure 3.16 Average number of transmissions for starting point x. = 0 and travelling with velocity v=60
km/h versus distance d between base stations.
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Figure 3.17 Average number of transmissions for starting point x* = 0 and travelling with velocity
v=210 km/h versus distance d between base stations.



CHAPTER 4

BER-BASED MODEL FOR FREQUENCY SELECTIVE CHANNELS

In this chapter we study a more general scenario where a time variant frequency selective fading channel

is considered, We notice that the analitical expressions for the statistical characterization of the SINR

found in the previous chapter, that have enabled a simplified treatment of the system performance, no

longer apply. Therefore, here we take a more practical approach and employ the BER at the receiver as

performance criterion to determine whether a packet is lost or not. More specifically, a packet is considered

to be successfully received if, after decoding, the number of erronenous bits is below a threshold x. The

analysis below focuses on obtaining an expression for the demodulated received signal on the desired

subchannel Y[k] for different retransmission strategies, the BER at the receiver is then evaluated by

simulating the system from the input bit stream to the output bit stream (recall Fig. 1.3). Finally, like

in the previous model, according to the HARQ protocol, retransmission of an erroneously decoded packet

is performed after a time T seconds, which in practice depends on the specific implemented retransmission

protocol and on the round trip signaling times.

4.1 Signal Model

As considered in the previous section, we consider an OFDM system with N subcarriers, an input data

symbols sequence (X0 , X1 , ... , XN-1 ) corresponding to subcarriers 0,1,..., N — 1 and bandwidth 1/T3 ,

where 713 is the symbol period. For clarity of the notation, we will use in this chapter [n] and [k] for

denoting time and frequency subscripts respectively. At the receiver, considerig a multipath fading channel

consisting of L discrete paths, the received signal from M active base stations at time n can be expressed

as in equation (3.2):

where: subscript i denotes different base stations, δi = (R/ri)η/2 accounts for the path loss withri

being the distance between base station i and receiver and η  is the path loss exponent which depends on

the specific propagation environment (Table A.1); hl,i [n ] is a nonzero mean complex Gaussian variable
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accounting for the channel response for the lth path; x , i [n] is the nth time-sample of the trasmitted

sequence from base station i for the lth path; and w[n] is additive white Gaussian noise (AWGN) with

power No .

If we further assume that the guard interval length is longer than the multipath delay of the channel

L — 1, then, once it is removed, the received signal in (4.1) can be considered as a circular convolution

result of the transmitted signals and the channel. Therefore the demodulated signal on subcarrier k, Y [k]

after taking the FFT of the received sequence y[n] reads

where

is the FFT of the time-variant multipath channel hi [n , 1] and W [Al denotes the FFT of noise w[n]. If we

define:

then equation (4.2) reads

where

represents the multiplicative distortion at the desired subchannel and

represents the ICI.
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4.2 Retransmission Protocols

In this section we present the same protocols as in the previous chapter, with the exception of Protocol

1 and Protocol 3, which have already been proved to have the worst performances. Notice that, for

consistency, we still refer to the remaining protocols as Protocol 2 and Protocol 4. Notice that, unlike

in the previous chapter, analysis and simulation of Protocol 5 (Alamouti's STBC) can be easily performed

within the framework of this new model.

4.2.1 Protocol 2

As in the previous model, this protocol combines HARQ with hard handover between adjacent base

stations. Just one base station transmits at any given time and the handover is performed once the receiver

approaches half the distance between base stations, so that the areas of coverage are as indicated in Fig.

3.5.

Simplifying equation (4.5) for the case of M = 1 active base stations, we get:

where i could be either 1 or 2 depending on which base station is transmitting in the active HARQ session.

4.2.2 Protocol 4: Beamforming

In this model the beamforming is performed on the frequency domain and on each subcarrier individually.

According to this, the two base stations nearest to the receiver, BS1 and BS2 transmit simultaneously the

following signals for subcarrier k:

where ai [ k, k ] is defined in (4.4) and w1 [ k ] = (a*1[k, k]/|a1 [ k, k]|) and w2 [k ] =(a*2[k, k]/|a2 [ k, k]|) are the

weighting factors. The total power constraint is satisfied by transmitting from the two base stations at half

power from respect to Protocol 2.



Figure 4.1 Illustration of Protocol 4 with beamforming performed on each subcarrier.

Recalling (4.5) the demodulated signal on subcarrier k for M = 2 active base stations reads:

32

Notice that the gain for subcarrier k has been increased compared to the gain in the previous protocol,

since it is a linear combination of the gains of both channels. However notice that the ICI has been also

increased.
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4.2.3 Protocol 5: Alamouti's STBC

Recalling the analysis in section 3.2.5, we rewrite equations (3.26) to (3.36) for frequency selective

channels. During the first symbol period, X1[ k] and X2 [k ] are sent from BS1 and BS2 respectively for

each k = 0, 1, ..., N — 1. During the second symbol period, -X*2[k]and

X

*1[k] are sent from BS1 and BS2

respectively for each k = 0, 1, ..., N — 1.

Figure 4.2 Illustration of Protocol 5 with Alamouti's technique applied in the frequency domain

At the receiver, considerig a multipath fading channel consisting of L discrete paths, the received

signal from M = 2 active base stations at time n can be expressed as:

where p denotes the pth symbol period. Notice that the received signals are a combination of the signals

transmitted from both base stations. The modulated signal on subcarrier k after taking the FFT, can be

expressed in the frequency domain [10] as:
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where

and

represents the FFT of the lth multipath component between the ith base station and the receiver during the

pth symbol period.

Equation (4.12) can be expressed in matrix notation as [10]:

where

These signals are then combined according to the Alamouti's combining scheme, this is by multi-

plying the received signal by A~
H 

[k], being A~[k] defined as:

where

Therefore if we define
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then the received signal after decoding reads

where

C I NT RA [k]X[k] is the intercarrier interference (or intracodeword coupling) that shows the coupling effect

between symbols in a codeword with

Σm=0,m≠k

C I NT RA

[m ] X [m ] is the ICI (or intercodeword coupling) that shows the coupling effect between

symbols in different codewords with

and

Finally, the total power constraint is satisfied by transmitting from the two base stations at half power

from respect to Protocol 2.

4.3 Numerical Results

As in the previous chapter, in order to compare the three protocols we consider the averaged number of

retransmissions per packet over the fading distribution as the performance criterion, and evaluate it via

Monte Carlo simulations. The receiver travels along the x-axis, and our simulations are focused on HARQ

sessions that start within the area between BS 1 and BS2. Again, we refer to the point where the HARQ

session starts as x* (recall Fig. 3.11).

While in order to simulate Protocols 2 and 4, the system depicted in Fig. 1.3 is considered, for

simulation of Protocol 5 (Alamouti's STBC) the system in Fig. 3.10 is used. For all cases, an OFDM
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system with N=128 subcarriers is considered and each subcarrier has been QPSK modulated. As in [10],

a two-path channel with equal power and delays of 0 dB and 4Ts respectively is considered, with each

experiencing independent Ricean fading. Clark's model was used for the Ricean fading channel simulation

and it was simulated as indicated in [8 - Fig. 5.24]. The total signal power from the transmit base stations

is so that Etotal/  N0 = 10 dB. The carrier frequency fc  is assumed to be fc = 2 GHz and the symbol period

T, is 7.8125 μ s. The delay τ  between the retransmissions of the same packet has been set to τ  = 10 ms.

We have considered the path loss exponent η  equal to 3. The maximum number of retransmissions L is

set equal to L = 25. Finally, a packet is considered to be successfully received if the number of erroneous

bits after decoding is lower than the 5% of the total bits transmitted (x = 5%).

4.3.1 Performance for Fixed Initial Position x* = d/2

Figures 4.3 and 4.4 show the average number of transmissions of the three protocols for two different

speeds of the receiver, v = 60 and 210 km/h respectively, and for a specific initial position, x* = d/2. As

it can be seen for both speeds beamforming (protocol 4) always presents the lowest rate of transmissions

followed by protocol 5 (Alamouti's STBC) and then protocol 2 (hard handover according to Fig. 3.5).

Figure 4.3 Average number of transmissions per packet for a user starting at x* = d/2 and travelling
with velocity v=60 km/h versus distance d between base stations.
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Figure 4.4 Average number of transmissions per packet for a user starting at x. = d/2 and travelling
with velocity v=210 km/h versus distance d between base stations.

4.3.2 Performance for Fixed d = 20 m

Figures 4.5 and 4.6 show the performance of the three protocols for the same two different speeds of the

receiver but in this case the distance d between base stations has been fixed to d = 20 m and the starting

point x* varies from x* 0 to 1* = 20 m. As it can be seen Protocol 2 and 4 behave similarly as in the

previous model for this same set of simulations. Protocol 2 has increasing number of retransmissions for

starting points x* such that handover to the second base station is not initiated within the HARQ session,

and decreasing number of retransmissions after this point. On the other hand, Protocol 4 and 5 have

increasing number of retransmissions for starting points x* such that the receiver is not able to exploit the

signal from the second base station within the given HARQ session due to the small received power, and

decreasing number of retransmissions after this point.

4.3.3 Performance on Average Over All Initial Positions

As a final evaluation, Figures 4.7 and 4.8 show the number of retransmissions averaged over all initial

positions x* uniformly distributed between 0 and d, versus the distance d between base stations. This last

set of simulations confirms the conclusions drawn before.
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Figure 4.5 Average number of transmissions for distance between base stations d = 20 m and travelling
with velocity v=60 km/h versus starting point x*.

4.3.4 Remarks

Notice that, while an OFDM system with N=1024 subcarriers was considered in the first model, an

OFDM system with only N=128 subcarriers has been used in this last model, since the ICI becomes

inacceptably large as the number of subcarrier increases, especially in protocol 5 (Alamouti's STBC).

Due this, the results obtained in the two models are not quantitative comparable between each other.

However, the results obtained with the two models confirm that protocols that emploit soft handover based

on beamforming outperform any other protocol in terms of number of retransmissions.
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Figure 4.6 Average number of transmissions for distance between base stations d = 20 m and travelling
with velocity v=210 km/h versus starting point x*.

Figure 4.7 Average number of transmissions for starting point x* = 0 and travelling with velocity v=60
km/h versus distance d between base stations.
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Figure 4.8 Average number of transmissions for starting point x. = 0 and travelling with velocity v=210
km/h versus distance d between base stations.



CHAPTER 5

FINAL REMARKS

5.1 Conclusion

In this work, we have studied the problem of implementing HARQ protocols for communications to

moving receivers served by base stations placed along the path. Furthermore OFDM has been considered

as modulation scheme. Typical applications of interest are vehicular or moving networks. Two different

models has been presented. The first model considered a frequency nonselective channel that changes in

a linear fashion during one OFDM symbol period, and it used the SINR at the receiver as performance

criterion to decide when a packet is lost. The second model considered a multipath channel and used the

BER at the receiver as performance criterion. Numerical results presented here have shown that, under

total power constraints, hard handover strategies perform well with respect to soft handover schemes based

on selection diversity protocols. Moreover, protocols that exploit space-time coding (Alamouti's STBC)

outperform hard handover strategies. Finally, significant improvement can be achieved by employing soft

handover based on beamforming in the presence of channel state information at the base stations.

5.2 Future Research

The work presented here has focused on the single-user case. It would be interesting to extend this work

to study the multi-user case and see how the protocols presented here perform when the system has more

than one receiver. Multiple access could be achieved by employing OFDMA, which is the multi-user

version of the OFDM modulation scheme, and where multiple access is achieved by assigning subsets of

subcarriers to individual users.
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APPENDIX A

PATH LOSS EXPONENTS FOR DIFFERENT ENVIRONMENTS

Table A.1 Path loss exponents for different environments [8]

Environment Path loss exponent, 7/

Free space 2

Urban area cellular radio 2.7 	 to 	 3.5

Shadowed urban cellular radio 3 to 5

In building line-of-sight 1.6 	 to 	 1.8

Obstructed in building 4 to 6

Obstructed in factories 2 to 3



APPENDIX B

PROOF OF E [βK,1β K,2 ] = 0 IN EQUATION (3.23)

The ICI component for subcarrier k and channel i is defined as (recall (3.9)):

so that:

Now we notice that for m w, the expected value E [Xm,1Xw,2 ] is 0, sinceXm,1  andXw,2  are independent

zero-mean random variables, whereas for m = w, E[

X

m,1

X

w,2 ] = E[X 2m,l] = Es/2, so that equation

(B.2) can be written as:

Observing now that |hn,1| and |hn,2| are independent variables of constant mean, we can write the above

expression as:
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where the term ΣN-1n=
0  ΣN-1n=0 ΣN -1m ≠k =e j2 π (m-k)(n+g)/N 	 is the sum of equal spaced fasors over the unit circle

and therefore equal to 0, thus concluding the proof.
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