New Jersey Institute of Technology

Digital Commons @ NJIT

Theses

Electronic Theses and Dissertations

Fall 1-27-2008

Structure and thermochemistry of disulfide-oxygen species

Shyamala Pravin Pillai New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

Part of the Chemistry Commons

Recommended Citation

Pillai, Shyamala Pravin, "Structure and thermochemistry of disulfide-oxygen species" (2008). Theses. 335. https://digitalcommons.njit.edu/theses/335

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

STRUCTURE AND THERMOCHEMISTRY OF DISULFIDE-OXYGEN SPECIES

by Shyamala Pravin Pillai

Sulfur compounds are known to form aerosols that can counteract the greenhouse effect, and recent studies suggest that aerosols can also contribute to global warming; sulfur species are also known as major contributors to acid rain. Both of these atmospheric chemistry interactions involve SO_2 , which is formed by oxidation of sulfur hydrocarbons and H_2S . This study describes the structure, internal rotor potentials, bond energies and determines thermochemical properties ($\Delta_t H^v$, S^o and Cp(T)) on the S-S bridge system in the sulfur bridged molecules CH_3SSOH , $CH_3SS(=O)H$, HSSOH, HSS(=O)H and CH_3SSOCH_3 and the their radicals corresponding to H atom loss. Structure and thermochemical parameters (S^o and Cp(T)) are determined using Density Functional B3LYP/6-31G (d, p), B3LYP/6-311++G (3df, 2p) and composite CBS-QB3 ab initio computational chemistry calculations.

Enthalpies of formation for CH₃SSOH, CH₃SS(=O)H, CH₃SS*=O and *CH₂SSOH are -38.46, -17.74, -17.02 and 7.17 kcal mol⁻¹ respectively. The C—H Bond Energy of CH₃SSOH is 97.73 kcal mol⁻¹, and the O-H bond energy is weak at 73.54 kcal mol⁻¹. The weak O—H bond results because the CH₃SSOH parent undergoes electron rearrangement upon loss of the CH₃SSO—H hydrogen atom to form the more stable CH₃SS*=O structure. The C—H bond energy of CH₃SS(=O)H is remarkably weak at only 77.01 kcal mol⁻¹ and results in the formation of *CH₂SSOH radical by the loss of H— CH₂SS(=O)H hydrogen atom, and the S-H bond energy is also weak. The very weak

S—H bond (only 52.82 kcal mol-1) formed from loss of the CH₃SS(=O)—H hydrogen atom forms a CH₃SS*=O radical.

Enthalpies of formation for HSSOH, HSS(=O)H, HSS*=O and S*SOH are -33.62 (+/-0.2) kcal mol⁻¹, -12.88 (+/-0.2) kcal mol⁻¹, -14.44 (+/-0.2) kcal mol⁻¹ and -19.96 (+/-0.2) kcal mol⁻¹ respectively. The S—H Bond Energy of HSSOH is 65.76 kcal mol⁻¹, and the O-H bond energy is 71.28 kcal mol⁻¹. The S—H Bond Energy of H—SS(=O)H is weak at only 45.02 kcal mol⁻¹ and results in the formation of *SSOH radical by the loss of hydrogen atom, and the S-H bond energy of HSS(=O) —H is very weak at 50.54 kcal mol⁻¹. The very weak S—H bond, upon loss of the HSS(=O)—H hydrogen atom forms a more stable HSS*=O radical.

Enthalpies of formation for CH₃SSOCH₃ and the radical ^{*}CH₂SSOCH₃ are -34.33 kcal mol-1 and 11.4 kcal mol-1 respectively. It is important to note that as the CH₃SSOC•H2 radical is formed it immediately dissociates to lower energy products CH3SS^{*}(=O) + CH₂=O with no significant LT 6 kcal mol-1) barriers. This CH₃SSOC*H₂ radical does not exist.

STRUCTURE AND THERMOCHEMISTRY OF DISULFIDE-OXYGEN SPECIES

by Shyamala Pravin Pillai

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Chemistry

Department of Chemistry and Environmental Science

January 2008

APPROVAL PAGE

STRUCTURE AND THERMOCHEMISTRY OF DISULFIDE-OXYGEN SPECIES

Shyamala Pravin Pillai

Dr. Joseph W. Bozzelli, Distinguished Professor of Chemistry and Environmental Science, NJIT					
Dr. Carol Venanzi, Distinguished Professor of Chemistry and Environmental Science, NJIT	Date				
Dr.Tamara Gund, Professor of Chemistry and Environmental Science, NJIT	Date				

BIOGRAPHICAL SKETCH

Author:

Shyamala Pravin Pillai

Degree:

Master of Science in Chemistry

Date:

January 2008

Undergraduate and Graduate Education:

Master of Science in Chemistry,
 New Jersey Institute of Technology, Newark, NJ, 2008

 Master of Science in Physical Chemistry, University of Mumbai, Mumbai, India, 1995

• Bachelor of Science in Chemistry and Biochemistry, University of Mumbai, Mumbai, India, 1993

Major:

Chemistry

Publications:

Shyamala P. Pillai, J.W. Bozzelli, "Structural and Thermochemical Studies on S-S-O Bridged System in CH₃SSOH and Radicals Corresponding to Loss of H Atom", to be submitted to Journal of Molecular Structure: Thermochem, (2008).

Shyamala P. Pillai, J.W. Bozzelli, "Structural and Thermochemical Studies on S-S-O Bridged System in HSSOH and Radicals Corresponding to Loss of H Atom", to be submitted to Journal of Molecular Structure: Thermochem, (2008).

Shyamala P. Pillai, J.W. Bozzelli, "Structural and Thermochemical Studies on S-S Bridged System in CH₃SSOCH₃ and Radicals Corresponding to Loss of H Atom", to be submitted to Journal of Molecular Structure: Thermochem, (2008).

To my beloved son, Mayaank.

ACKNOWLEDGMENT

I take this opportunity to express my deepest appreciation to Dr. Joseph W. Bozzelli, who not only served as my research supervisor, providing valuable and countless resources, insight, but also constantly gave me support, encouragement, and reassurance. Special thanks are given to Dr. Li Zhu, Dr. Rubik Asatryan and Dr. Gabriel da Silva for sharing their knowledge resources with me. I would also like to thank Dr. Carol Venanzi and Dr. Tamara Gund for actively participating in my committee.

I also acknowledge partial funding for this research from Army Research Office Grant W911NF0410120.

TABLE OF CONTENTS

\mathbf{C}	Chapter P				
1	INTRODUCTION AND OBJECTIVE	1			
2	STRUCTURAL AND THERMOCHEMICAL STUDIES ON S-S-O BRIDGED SYSTEM IN CH ₃ SSOH AND CH ₃ SS(=O)H AND THEIR RADICALS CORRESPONDING TO LOSS OF H ATOM	2			
	2.1 Introduction	2			
	2.2 Calculation Methods	4			
	2.3 Results and Discussion.	5			
	2.3.1 Structure	5			
	2.3.2 Heats of Formation and Enthalpies of Reaction	10			
	2.3.3 Bond Energies.	15			
	2.3.4 Frequencies and Moments of Inertia.	17			
	2.3.5 Internal Rotational Potential	18			
	2.3.6 S° ₂₉₈ and Cp° (T)	27			
	2.4 Summary	29			
3	STRUCTURAL AND THERMOCHEMICAL STUDIES ON S-S-O BRIDGED SYSTEM IN HSSOH AND HSS(=O)H AND RADICALS CORRESPONDING TO LOSS OF H ATOM	30			
	3.1 Introduction	30			
	3.2 Calculation Methods	33			
	3.3 Results and Discussion	34			
	3.3.1 Structure	34			
	3.3.2 Heats of Formation and Enthalpies of Reaction	38			

TABLE OF CONTENTS (Continued)

Cl	hapt	er	Page
		3.3.3 Bond Energies	43
		3.3.4 Frequencies and Moments of Inertia.	44
		3.3.5 Internal Rotational Potential	45
		3.3.6 S°_{298} and Cp° (T)	50
	3.4	Summary	52
4	SYS	RUCTURAL AND THERMOCHEMICAL STUDIES ON S-S-O BRIDGED STEM IN CH ₃ SSOCH ₃ AND RADICALS CORRESPONDING TO LOSS OF ATOM.	53
	4.1	Introduction	53
	4.2	Calculation Methods	55
	4.3	Results and Discussion.	. 56
		4.3.1 Structure	56
		4.3.2 Heats of Formation and Enthalpies of Reaction	60
		4.3.3 Bond Energies	64
		4.3.4 Frequencies and Moments of Inertia	. 64
		4.3.5 Internal Rotational Potential	65
		4.3.6 S° ₂₉₈ and Cp° (T)	. 72
	4.4	Summary	73
A	PPEI	NDIX A ADDITIONAL DATA ON ENTROPY	. 74
A	PPE	NDIX B ADDITIONAL DATA ON HEAT CAPACITIES	. 78
A	PPE	NDIC C INPUT FILES FOR SMCPS	82
		NDIX D INPUT FILES FOR INTERNAL ROTOR CONTRIBUTIONS FULATED BY ROTATOR PROGRAM	. 93

TABLE OF CONTENTS (Continued)

Chapter	Page
APPENDIX E OPTIMIZED Z-MATRIX	105
APPENDIX F LIST OF ENERGIES	109
REFERENCES	112

LIST OF TABLES

Table		Page
2.1	Angles and Bond Distance From Optimized Geometry	6
2.2	Comparison of Lowest Energy Dihedral from PE curve with Structural Parameter	9
2.3	Mulliken Atomic Charges for the Molecules and their Radicals	10
2.4	Calculated ΔH_{rxn298} (kcal mol ⁻¹) from Isodesmic Reactions	12
2.5	Calculated Enthalpies of Formation (kcal mol ⁻¹) of Species in Isodesmic Work Reactions	13
2.6	Enthalpies of Formation of Reference Species in Work reaction	15
2.7	Bond Energy Calculation (kcal mol ⁻¹)	16
2.8	Frequencies and Moments of Inertia	17
2.9	Entropy and Heat Capacities	28
3.1	Angles and Bond Distance from Optimized Geometry	35
3.2	Comparison of Lowest Energy Dihedral from PE curve with Structural Parameter	37
3.3	Mulliken Atomic Charges for the Molecules and their Radicals	38
3.4	Calculated ΔH_{rxn298} (kcal mol ⁻¹) from Isodesmic Reactions	40
3.5	Calculated Enthalpies of Formation (kcal mol ⁻¹) of Species in Isodesmic Work Reactions	41
3.6	Enthalpies of Formation of Reference Species in Work reaction	42
3.7	Bond Energy Calculation (kcal mol ⁻¹)	43
3.8	Frequencies and Moments of Inertia	45
3.9	Entropy and Heat Capacities	51

LIST OF TABLES (Continued)

Table		Page
4.1	Angles and Bond Distance from Optimized Geometry	57
4.2	Comparison of Lowest Energy Dihedral from PE curve with Structural Parameter	59
4.3	Mulliken Atomic Charges for the Molecules and their Radicals	59
4.4	Calculated ΔH_{rxn298} (kcal mol ⁻¹) from Isodesmic Reactions	61
4.5	Calculated Enthalpies of Formation (kcal mol ⁻¹) of Species in Isodesmic Work Reactions	62
4.6	Enthalpies of Formation of Reference Species in Work reaction	63
4.7	Bond Energy Calculation (kcal mol ⁻¹)	64
4.8	Frequencies and Moments of Inertia	65
4.9	Entropy and Heat Capacities	72

LIST OF FIGURES

Figur	e	Page
2.1	Potential Energy Profile for the HC—S-(SOH) Rotor in CH ₃ SSOH Molecule	19
2.2	Potential Energy Profile for the (CH ₃)S—S(OH) Rotor in CH ₃ SSOH Molecule	19
2.3	Potential Energy Profile for the (CH ₃)SS—(OH) Rotor in CH ₃ SSOH Molecule	20
2.4	Potential Energy Profile for CH ₂ —S(SOH) Rotor in CH ₂ SSOH Molecule	21
2.5	Potential Energy Profile for S—S rotor in CH ₂ SSOH Molecule	22
2.6	Potential energy profile for the CH ₂ S-S—O-H rotor in *CH ₂ SSOH Molecule	23
2.7	Potential Energy Profile for the H ₃ C—S(S'=O) Rotor in CH ₃ SS'=O	24
2.8	Potential Energy Profile for the CH ₃ -S—S*=O Rotor in CH ₃ SS.=O Molecule	24
2.9	Potential Energy Profile for the H ₃ C—S-S(=O)H Rotor in CH ₃ SS(=O)H Molecule	25
2.10	Potential Energy Profile for the H ₃ C-S—S(=O)H Rotor in CH ₃ SS(=O)H Molecule	26
3.1	Potential Energy Profile for the HS—SOH Rotor in HSSOH Molecule	46
3.2	Potential Energy Profile for the HSS—OH Rotor in HSSOH Molecule	47
3.3	Potential Energy Profile for S-S—O-H Rotor in 'SSOH Molecule	48
3.4	Potential Energy Profile for the HS—S'=O Rotor in H-SS'=O	49
3.5	Potential Energy Profile for the H-S—S(=O)H Rotor in HSS(=O)H Molecule	50

LIST OF FIGURES (Continued)

Figure	Figure			
4.1	Potential Energy Profile for the H-C—S-(SOC) Rotor in CH ₃ SSOCH ₃ Molecule	66		
4.2	Potential Energy Profile for the (CH ₃)S—S(OH) Rotor in CH3SSOH Molecule	67		
4.3	Potential Energy Profile for the (CH ₃ SS O—C) Rotor in CH ₃ SSOCH ₃ Molecule	67		
4.4	Potential Energy Profile for CH ₃ S(S—OC) Rotor in CH ₃ SSOCH ₃ Molecule	68		
4.5	Potential Energy Profile for C—S rotor in 'CH ₂ —SSOC Molecule	69		
4.6	Potential Energy Profile for the 'CH ₂ S—SOC Rotor in 'CH ₂ SSOCH ₃ Molecule	69		
4.7	Potential Energy Profile for the 'CH ₂ S(S—OC) Rotor in 'CH ₂ SSOCH ₃ Molecule	70		
4.8	Potential Energy Profile for the 'CH ₂ -SSO—C Rotor in 'CH ₂ SSOCH ₃ Molecule	71		

LIST OF SYMBOLS

ΔHrxn Heat of Reaction

 $\Delta H_{\ f}^{o}$ Heat of Formation

I Moments of Inertia

S°298 Entropy at 298 K

Cp°(T) Heat Capacity at Constant Temperature

PE Curve Potential Energy Curve

CHAPTER 1

INTRODUCTION AND OBJECTIVES

This work describes the structure, internal rotor potentials and bond energies and determines thermochemical properties (ΔH_f^o , S^o and Cp(T)) on the S-S-O bridge systems. Structure and thermochemical parameters (S^o and Cp(T)) are determined using Density Functional B3LYP/6-31G (d, p), B3LYP/6-311++G (3df, 2p) and composite CBS-QB3 ab initio computational chemistry calculations. Enthalpies of formation for stable species are calculated using the total energies at B3LYP/6-31G (d, p), B3LYP/6-311++G (3df, 2p), and CBS-QB3 levels with work reactions that are isodesmic in most cases. Contributions to $S^{\circ}298$ and $Cp^{\circ}(T)$ of each species are calculated from the parameters determined using the B3LYP structures, frequencies, plus symmetry spin degeneracy and number of optical isomers. In place of the torsion frequency values the internal rotor potentials are analyzed and their contributions to entropy and heat capacity are included. Chapter 2 discuss about CH₃SSOH and CH₃SS(=O)H and the two radicals corresponding to H atom loss CH₃SS'=O and 'CH₂SSOH. Chapter 3 will deal with HSSOH and HSS(=O)H and the two radicals corresponding to H atom loss HSS'=O and 'SSOH. The two aforementioned radicals, CH₃SS'=O and 'CH₂SSOH, can originate from either or both the parent molecules viz: CH₃SSOH and CH₃SS(=O)H. Similarly the radicals HSS'=O and 'SSOH can originate from either or both the parent molecules viz: HSSOH and HSS(=O)H. Chapter 4 talks on the CH₃SSOCH₃ and its radicals •CH₂SSOCH₃ and CH₃SSOC•H₂.

CHAPTER 2

STRUCTURAL AND THERMOCHEMICAL STUDIES ON S-S-O BRIDGED SYSTEM IN CH₃SSOH AND CH₃SS(=O)H AND THEIR RADICALS CORRESPONDING TO LOSS OF H ATOM

2.1 Introduction

Atmospheric sulfur chemistry is important in climate change because both naturally and anthropogenically emitted sulfur compounds form minute particles in the atmosphere (aerosols) that reflect solar and absorb IR radiation; they also affect production of atmospheric haze, acid rain, and ozone depletion. These sulfur oxide particles may also act as condensation nuclei for water vapor and enhance global cloudiness. The primary natural sources of sulfur are volcanic emissions and dimethylsulfide production by oceanic phytoplankton [1].

Human impact on the sulfur cycle is primarily in the production of sulfur dioxide (SO₂) from industry (e.g. burning coal) and the internal combustion engine. Sulfur dioxide can precipitate onto surfaces where it can be oxidized to sulfate in the soil (it is also toxic to some plants), reduced to sulfide in the atmosphere, or oxidized to sulfate in the atmosphere as sulfuric acid, a principal component of acid rain [2].

Studies are underway to carry out details on the reactivity and stability of the sulfur compounds and their radicals and also to know the kinetics and thermochemistry involved in their reaction process. The reaction of methylthiyl radical (CH₃S•) with 3O_2 is a potentially important process for both combustion and atmospheric chemistry as a pathway for the exothermic conversion (oxidation) of CH₃S. This reaction system also serves as a surrogate reaction system for a number of paths in longer chain and

substituted thiol radical reactions with molecular oxygen [3]. This $CH_3S + O_2 \leftrightarrow CH_3S$ -OO reaction has a very shallow well, ~ 10 kcal mol⁻¹, which results in very rapid reverse reaction to back to CH_3S • and a quasi equilibrium. The CH_3S and CH_3SOO can react with hydroperoxides (e.g. HO_2 , CH_3SOO .) or OH or NOx to form the CH_3SO moiety, which exists as CH_3S •(=O).

With the rapid rise of economic development, acid rain has become one of the ten most serious problems which threaten the world environment [4]. CH₃S•=O has been postulated as one of the key intermediates in the DMS oxidation mechanism. It may play an important role in the formation of acid rain because the bond length of the C—S bond is longer than that in CH₃S. The principal mechanism of SO₂ formation has been suggested to include a sequence of reactions of the CH₃S•=O radical with O₂, NO₂, and O₃ as well as the thermal decomposition of CH₃-SO₂ [5].

It has been shown that the CH₃SS•=O radical can be formed by the reaction CH₃SS + NO₂ → CH₃SS•=O + NO and CH₃SS•=O can potentially react with NO₂ to give several products [15]. Until now, however, there has been no theoretical or experimental study on the stability and thermochemical properties of CH₃SSOH and its radicals. Thus, a detailed knowledge about structure, bond energies, internal rotor potentials and the thermochemical properties of the disulfur methyl thiols and its reactions to radicals from loss of H is desirable to help in understanding its effect on environment.

2.2 Calculation Method

The structure and thermochemical parameters of CH₃SSOH are based on the density functional and composite ab initio levels using Gaussian 03 [6]. Computation levels include B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p). The CBS-QB3 methods are utilized for improved energies and analysis.

The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p), and CBS-QB3 levels with work reactions that are isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bonding on both sides of an equation, results in a cancellation of calculation error [7] and improves the accuracy for energy analysis. The reported enthalpy values can be compared with the known enthalpies of several molecules in the system to serve as a calibration on the thermochemistry and the Potential Energy (PE) diagram. Contributions to S°298 and Cp° (T) of each species are calculated using the "SMCPS" (Statistical Mechanics for Heat Capacity and Entropy Cp and S) program[8] which incorporates the frequencies, moments of inertia, mass, symmetry, number of optical isomers, from the Gaussian calculation. It also incorporates frequency corrections. Torsion frequencies are omitted in SMCPS [8] calculation, and the "ROTATOR" program [8-10] is used for contributions from internal rotations that are less than 3.0 kcal to S°298 and Cp° (T).

2.3 Results and Discussion

2.3.1 Structure

The S—O bond in CH₃SSOH is 1.69A°, while S—O bond distance in CH₃SS:=O exhibits shorter bond length of 1.51A°. The C—S bond in CH₃SSOH is 1.83A° against the 1.72A° in CH₂SSOH. In CH₃SS(=O)H, the S—O bond is 1.5A° and the C—S bond is 1.83A°. The shorter bond distance of 1.51A° in S-O bond in CH₃SS:=O predicts the presence of double bond.

The formation of CH_3SS =O is accompanied by reduction of the S-S-C bond angle to 99.13°, while formation of $C\bullet H_2SSOH$ reveals increase in bond angle S-S-C to 105.6° compared to the S-S-C bond angle of 103.87° in CH_3SSOH as listed in Table 2.1.

Table 2.1 Angles and bond distances from optimized Geometry using B3LYP/6-31G(d,p) $\,$

CH₃SSOH

 $CH_3SS(=O)H$

R1	R(1,2)	1.838	RI	R(1,2)	1.830
R2	R(1,3)	1.090	R2	R(1,3)	1.094
R3	R(1,4)	1.093	R3	R(1,4)	1.091
R4	R(1,5)	1.090	R4	R(1,5)	1.091
R5	R(2,6)	2.055	R5	R(2,6)	2.183
R6	R(6,7)	1.696	R6	R(6,7)	1.503
R7	R(7,8)	0.970	R7	R(6,8)	1.387
A1	A(2,1,3)	110.55	Al	A(2,1,3)	108.10
A2	A(2,1,4)	106.32	A2	A(2,1,4)	107.29
A3	A(2,1,5)	110.10	A3	A(2,1,5)	111.44
A4	A(3,1,4)	109.68	A4	A(3,1,4)	109.04
A5	A(3,1,5)	110.52	A5	A(3,1,5)	110.71
A6	A(4,1,5)	109.53	A6	A(4,1,5)	110.12
A7	A(1,2,6)	103.87	A7	A(1,2,6)	97.26
A8	A(2,6,7)	106.420	A8	A(2,6,7)	110.12

Table 2.1 Continued

A9	A(6,7,8)	106.611	A9	A(2,6,8)	91.98
D1	D(3,1,2,6)	59.383	A10	A(7,6,8)	106.52
D2	D(4,1,2,6)	178.383	D1	D(3,1,2,6)	33.34
D3	D(5,1,2,6)	-63.038	D2	D(4,1,2,6)	150.82
D4	D(1,2,6,7)	81.933	D3	D(5,1,2,6)	-88.5496
D5	D(2,6,7,8)	84.948	D4	D(1,2,6,7)	-39.1412
			D5	D(1,2,6,8)	69.275

•	CH ₂ SSOH	SOH C			$CH_3SS^*(=O)$	
R1	R(1,2)	1.727	R1	R(1,2)	1.830	
R2	R(1,3)	1.082	R2	R(1,3)	1.090	
R3	R(1,4)	1.083	R3	R(1,4)	1.090	
R4	R(2,5)	2.087	R4	R(1,5)	1.093	
R5	R(5,6)	1.693	R5	R(2,6)	2.153	
R6	R(6,7)	0.970	R6	R(6,7)	1.516	
Al	A(2,1,3)	120.93	A1	A(2,1,3)	110.67	
A2	A(2,1,4)	117.55	A2	A(2,1,4)	107.04	
A3	A(3,1,4)	121.49	A3	A(2,1,5)	108.66	

Table 2.1 Continued

A4	A(1,2.5)	105.60	A4	A(3,1,4)	110.37
A5	A(2,5,6)	106.97	A5	A(3,1,5)	110.44
A6	A(5,6,7)	106.71	A6	A(4,1,5)	109.54
DI	D(3.1.2,5)	29.728	A7	A(1,2.6)	99.13
D2	D(4.1,2,5)	-149.51	A8	A(2,6,7)	109.23
D3	D(1,2,5,6)	80.454	D1	D(3,1,2,6)	91.794
D4	D(2,5,6,7)	85.405	D2	D(4,1,2,6)	-147.870
			D3	D(5,1,2,6)	-29.648
			D4	D(1,2,6,7)	24.4624

The lowest energy structure for the individual species has been confirmed by comparing the lowest energy dihedral from the internal rotational potential curve with the structural parameter obtained from B3LYP/6-31G(d,p) of the parent molecule as shown in Table 2.2. Table 2.3 refers to the Mulliken atomic charges for the molecules and their radicals.

Table 2.2 Comparison of Lowest Energy Dihedral from PE Curve with Structural Parameter (see Figures 2.1 to 2.10)

Species	Potential curve	Structural Parameter	Dihedral
CH ₃ SSOH			
	Figure 1	D(3,1,2,6)	59.383
	Figure 2	D(1,2,6,7)	81.9337
	Figure 3	D(2,6,7,8)	84.9489
·CH ₂ SSOH			
	Figure 4	D(3,1,2,5)	29.7289
	Figure 5	D(1,2,5,6)	80.4543
	Figure 6	D(2,5,6,7)	85.4059
CH ₃ SS*=O			
	Figure 7	D(3,1,2,6)	91.7948
	Figure 8	D(1,2,6,7)	24.4624
CH3SS(=O)H	I		
	Figure 9	D(4,1,2,6)	150.82
	Figure 10	D(1,2,6,8)	69.27

Table 2.3 reveals, the C—S, S—O bonds in CH₃SSOH and CH₃SS(=O)H and S=O bond in CH₃SS:=O are all polar covalent bonds. In CH₃SSOH, the S—O bond is more polar than the C—S bond due to higher degree of electron negativity / electron density on S atom of S—O bond. Hence it is obvious that the bond distance of S—O (1.69 A°) is shorter than C—S (1.84 A°) bond in CH₃SSOH. The C—S bond in CH₂SSOH is 1.72A° and is slightly shorter than the C—S bond in CH₃SSOH. This is due to the fact that the C atom possesses an extra electron which imparts partial ne gative charge to the C of C—S bond in CH₃SSOH.

Table 2.3 Mulliken atomic charges for the molecules and their derived radicals

CH ₃ SSO	OH	CH ₃ SS(=	=O)H	CH ₃ SS	=O	·CH ₂ SS	SOH	
Atoms	Charges	Atoms	Charges	Atoms	Charges	Atoms	Charges	
1 C	-0.465	1 C	-0.492	1 C	-0.487	1 C	-0.383	
2 S	0.014	2 S	-0.040	2 S	-0.021	2 S	0.079	
3 H	0.157	3 H	0.185	3 H	0.159	3 H	0.158	
4 H	0.148	4 H	0.163	4 H	0.162	4 H	0.151	
5 H	0.162	5 H	0.148	5 H	0.188	5 S	0.213	
6 S	0.213	6 S	0.578	6 S	0.471	6 O	-0.556	
7 O	-0.566	7 O	-0.562	7 O	-0.473	7 H	0.337	
8 H	0.335	8 H	0.019					

2.3.2 Heats of Formation and Enthalpies of Reaction

The following work reactions are used to calculate the heat of reaction and enthalpies of formation for CH₃SSOH and CH₃SS(=O)H molecule and their two radicals, CH₃SS =O and CH₂SSOH respectively. The enthalpy calculations are based on the lowest energy conformer.

Work reactions for CH₃SSOH:

$CH_3SSOH + C_2H_6 \rightarrow$	$CH_3SSH + CH_3CH_2OH$	(1)
$CH_3SSOH + C_2H_6 \rightarrow$	CH ₃ SCH ₃ + CH ₃ SOH	(2)
CH ₃ SSOH + CH ₄ →	CH ₃ SH + CH ₃ SOH	(3)
$CH_3SSOH + HSH \rightarrow C$	H ₃ SOH + HSSH	(4)
$CH_3SSOH + CH_3SH \rightarrow$	$CH_3SSH + CH_3SOH$	(5)
$CH_3SSOH + CH_3OH \rightarrow$	$CH_3SOH + CH_3SOH$	(6)

Work reactions for CH₃SS(=O)H:

$$CH_3SS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H + CH_3SCH_3$$
 (7)
 $CH_3SS(=O)H + CH_4 \rightarrow CH_3S(=O)H + CH_3SH$ (8)
 $CH_3SS(=O)H + CH_3OH \rightarrow CH_3S(=O)H + CH_3SOH$ (9)

Work reactions for CH₃SS =O:

$$CH_3SS'=O + CH_3OH \rightarrow CH_3SSOH + CH_3O'$$
 (10)

$$CH_3SS'=O + C_2H_5OH \rightarrow CH_3SSOH + C_2H_5O'$$
(11)

$$CH_3SS = O + CH_3SOH \rightarrow CH_3SSOH + CH_3S = O$$
 (12)

$$CH_3SS = O + CH_3S(=O)H \rightarrow CH_3S = O + CH_3SS(=O)H$$
 (13)

$$CH_3SS:=O + CH_3SH \rightarrow CH_3S' + CH_3SS(=O)H$$
 (14)

Work reactions for •CH₂SSOH

$${}^{\cdot}\text{CH}_2\text{SSOH} + \text{CH}_3\text{SH} \rightarrow \text{CH}_3\text{SSOH} + {}^{\cdot}\text{CH}_2\text{SH}$$
 (15)

$$\cdot$$
CH₂SSOH + C₂H₅SH \rightarrow CH₃SSOH + CH₃ ·CHSH (16)

$${}^{\cdot}\text{CH}_2\text{SSOH} + \text{CH}_3\text{SH} \rightarrow \text{CH}_3\text{SSOH} + {}^{\cdot}\text{CH}_2\text{SH}$$
 (17)

Table 2.4 illustrates the comparative study on enthalpies of reaction for the above reactions. Table 2.5 compares the heat of formation for the Species under study using various levels of calculations. Similar calculations were also run for the reference species whose literature values are listed in table 2.6.

Table 2.4 Calculated $\Delta H_{rxn(298)}$ (kcal mol⁻¹) from isodesmic reactions.

Isodesmic reaction I	33LYP/6-31G (d, p)	B3LYP/6-311++G (3df, 2p)	CBSQB3
Work reactions for CH ₃ SSOH:			
$CH_3SSOH + C_2H_6 \rightarrow CH_3SSH + CH_3CH_2OH$	-1.75	0.1417	-8.59
$CH_3SSOH + C_2H_6 \rightarrow CH_3SCH3 + CH_3SOH$	13.28	15.08	12.12
CH ₃ SSOH + CH ₄ → CH ₃ SH + CH ₃ SOH	14.15	15.61	11.68
CH ₃ 3SSOH + HSH → CH ₃ SOH + HSSH	16.99	16.97	17.49
CH ₃ SSOH + CH ₃ SH→ CH ₃ SSH + CH ₃ SOH	13.55	13.67	7.837
CH ₃ SSOH + CH ₃ OH → CH ₃ SOH + CH ₃ SOH	20.98	20.78	20.81
Work reactions for CH3SS(=0)H:			
$CH_3SS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H + CH_3S$	CH ₃ 6.61	7.31	6.93
$CH_3SS(=O)H + CH_4 \rightarrow CH_3S(=O)H + CH_3SH_3$	H 7.49	7.85	8.45
$CH_3SS(=O)H + CH_3OH \rightarrow CH_3S(=O)H + CH_3$	SOH 14.31	13.02	13.67
Work reactions for CH ₃ SS =0:			
CH ₃ SS'=O + CH ₃ OH → CH ₃ SSOH + CH ₃	9O· 24.66	29.46	33.78
$CH_3SS'=O + C_2H_5OH \rightarrow CH_3SSOH + C_2H_5OH$	O· 26.79	31.73	33.25
$CH_3SS'=O + CH_3SS(=O)H \rightarrow CH_3S'=O + CH_3SS$	(=O)H 0.3612	-11.18	-1.078
$CH_3SS'=O + CH_3SH \rightarrow CH_3S' + CH_3SS(=O$)Н -33.79	-30.28	-31.08
CH ₃ SS'=O + CH ₃ SOH → CH ₃ SSOH + CH ₃ S'	=O -6.30	-6.64	-6.06
Work reactions for *CH ₂ SSOH :			
$\cdot \text{CH}_2\text{SSOH} + \text{CH}_3\text{SH} \rightarrow \text{CH}_3\text{SSOH} + \cdot \text{CH}_3$	CH ₂ SH -0.8383	-1.20	-2.21
$CH_2SSOH + C_2H_5S \rightarrow CH_3SSOH + CH_3$	·CHSH -3.73	-3.44	-3.703
·CH ₂ SSOH + CH ₃ SCH ₃ → CH ₃ SSOH + ·C	CH ₂ SCH ₃ -2.04	-2.72	-3.459

Table 2.5 Calculated Enthalpies of formation (kcal mol⁻¹) of species in isodesmic work reaction

Isodesmic reaction	B3LYP/6-31G(d,p)	B3LYP/6-311++G(3df,2p)	CBSQB3
Enthalpies of Formation of CH ₃ SSOH:		,•	
$CH_3SSOH + C_2H_6 \rightarrow CH_3SSH + CH_3CH_2OH$	-35.62	-37.46	-34.17
$CH_3SSOH + C_2H_6 \rightarrow CH_3SCH_3 + CH_3SOH$	-36.08	-37.88	-36.88
CH ₃ SSOH + CH ₄ → CH ₃ SH + CH ₃ SOH	-35.63	-37.09	-37.08
CH ₃ SSOH + HSH → CH ₃ SOH + HSSH	-42.02	-41.99	-42.51
CH ₃ SSOH + CH ₃ SH→ CH ₃ SSH + CH ₃ 3SOH	-43.22	-43.35	-37.51
CH ₃ SSOH + CH ₃ OH → CH ₃ SOH + CH ₃ SOH	-41.74	-42.55	-42.58
Average	-39.05	-40.05	- 38.46
Mean of aver	rages -39.19		
Enthalpies of Formation of CH ₃ SS(=0)H:			
$CH_3SS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H + CH_3SC$	Н -16.11	-16.81	-16.43
$CH_3SS(=O)H + CH_4 \rightarrow CH_3S(=O)H + CH_3SH$	-15.67	-16.03	- 16.64
$CH_3SS(=O)H + CH_3OH \rightarrow CH_3S(=O)H + CH_3SO$	ОН -20.77	-19.48	-20.14
Average	-17.52	-17.44	-17.74
Tivolage	17.52	*****	

Table 2.5 continued

Isodesmic reaction	B3LYP/6-31G(d,p)	B3LYP/6-311++G(3df,2p)	CBSQB3
Enthalpies of Formation of CH ₃ SS =0:			
$CH_3SS'=O + CH_3OH \rightarrow CH_3SSOH + CH_3SSOH +$	H ₃ O· -11.97	-15.78	-20.10
$CH_3SS'=O + C_2H_5OH \rightarrow CH_3SSOH + C$	C ₂ H ₅ O -12.97	-17.92	-19.45
$CH_3SS'=O + CH_3S(=O)H \rightarrow CH_3S'=O + CH_3$	SS(=O)H -15.81	-16.57	-16.53
$CH_3SS'=O + CH_3SH \rightarrow CH_3S' + CH_3SS($	=O)H -16.16	-12.66	-13.45
$CH_3SS'=O + CH_3SOH \rightarrow CH_3SSOH + CH_3SOH + C$	H ₃ S'=O -16.56	-16.22	-15.80
Average	- 14.92	- 15.83	- 17.02
Mean of ave	rages -15.92		
Enthalpies of Formation of 'CH ₂ SSOH			
$\cdot \text{CH}_2 \text{SSOH} + \text{CH}_3 \text{SH} \rightarrow \text{CH}_3 \text{SSOH} + \cdot \text{CH}_3 \text{SOH} + \cdot \text{CH}_3 SO$	CH ₂ SH 5.55	5.92	6.92
$^{\circ}$ CH ₂ SSOH + C ₂ H ₅ SH \rightarrow CH ₃ SSOH + CH	HarCHSH 6.89	6.61	6.87
${}^{\circ}\text{CH}_2\text{SSOH} + {}^{\circ}\text{CH}_3\text{SCH}_3 \rightarrow {}^{\circ}\text{CH}_3\text{SSOH} + {}^{\circ}\text{CH}_3\text{SOH}_3 \rightarrow {}^{\circ}$	CH ₂ SCH ₃ 6.30	6.98	7.72
Average	6.25	6.50	7.17

Table 2.6 Enthalpies of formation (in kcal mol⁻¹) of reference species in work reactions

H [11] 52.1 C ₂ H ₆ [17] -20.04 CH ₄ [16] -17.89 CH ₃ SSH [20] -1.24 CH ₃ SCH ₃ [11] -8.94 CH ₃ SH [20] -5.47 C ₂ H ₅ OH [19] -56.17 CH ₃ SOH [14] -33.9 C ₂ H ₅ SH [12] -10.99 CH ₃ OH [19] -48.04 ·CH ₂ SCH ₃ [12] 33.78 CH ₃ ·CHSH [28] 30.64 ·CH ₂ SH [3] 37.7 CH ₃ SO· [13] 18.31 C ₂ H ₅ O· [28] -3.9 CH ₃ O· [18] 4.1	Species	$\Delta \mathrm{H}^{\mathrm{o}}_{f298}$	Species	$\Delta ext{H}^{ ext{o}}_{f298}$	
CH ₃ SCH ₃ [11] -8.94 CH ₃ SH [20] -5.47 C ₂ H ₅ OH [19] -56.17 CH ₃ SOH [14] -33.9 C ₂ H ₅ SH [12] -10.99 CH ₃ OH [19] -48.04 ·CH ₂ SCH ₃ [12] 33.78 CH ₃ ·CHSH [28] 30.64 ·CH ₂ SH [3] 37.7 CH ₃ SO· [13] 18.31 C ₂ H ₅ O· [28] -3.9 CH ₃ O· [18] 4.1	H[11]	52.1	C ₂ H ₆ [17]	-20.04	
C_2H_5OH [19] -56.17 CH_3SOH [14] -33.9 C_2H_5SH [12] -10.99 CH_3OH [19] -48.04 CH_2SCH_3 [12] 33.78 $CH_3 \cdot CHSH$ [28] 30.64 CH_2SH [3] 37.7 $CH_3SO \cdot$ [13] 18.31 $C_2H_5O \cdot$ [28] -3.9 $CH_3O \cdot$ [18] 4.1	CH ₄ [16]	-17.89	CH₃SSH [20]	-1.24	
C_2H_5SH [12] -10.99 CH_3OH [19] -48.04 CH_2SCH_3 [12] 33.78 $CH_3 \cdot CHSH$ [28] 30.64 CH_2SH [3] 37.7 $CH_3SO \cdot$ [13] 18.31 $C_2H_5O \cdot$ [28] -3.9 $CH_3O \cdot$ [18] 4.1	CH ₃ SCH ₃ [11]	-8.94	CH₃SH [20]	-5.47	
'CH2SCH3 [12] 33.78 CH3 'CHSH [28] 30.64 'CH2SH [3] 37.7 CH3SO [13] 18.31 C2H5O [28] -3.9 CH3O [18] 4.1	C ₂ H ₅ OH [19]	-56.17	CH₃SOH [14]	-33.9	
·CH ₂ SH [3] 37.7 CH ₃ SO· [13] 18.31 C ₂ H ₅ O· [28] -3.9 CH ₃ O· [18] 4.1	C ₂ H ₅ SH [12]	-10.99	CH₃OH [19]	-48.04	
C ₂ H ₅ O· [28] -3.9 CH ₃ O· [18] 4.1	·CH ₂ SCH ₃ [12]	33.78	CH₃ ·CHSH [28]	30.64	
	·CH ₂ SH [3]	37.7	CH₃SO· [13]	18.31	
CU S(=0)U [21] 20.6	C ₂ H ₅ O· [28]	-3.9	CH ₃ O·[18]	4.1	
C1135(-O)11 [21] -20.0	CH ₃ S(=O)H [21]	-20.6			

Of the above three methods, used in the calculation of enthalpies of formation of several species, B3LYP/6-31G(d,p) did not give satisfactory results due to smaller basis set. The results of B3LYP/6-311++G(3df,2p) are closer to CBS-QB3 composite method . Since we obtain very good agreement with the CBS-QB3 method for all of the work reactions and as the composite CBS-QB3 method has an advantage of utilizing geometry and frequencies calculated at the same level of theory, the CBS-QB3 composite method is recommended for thermo chemical determination on these S-S-O bridge systems.

2.3.3 Bond Energies

The bond energy of C—H bond in CH₃SSOH is calculated using [CH₃SSOH- [(H· + ·CH₂SSOH)]] reaction and the bond energy of O—H in CH₃SSOH is calculated using [CH₃SSOH- [(H· + CH₃SSO·)]]. Similarly, the bond energy of C—H bond in

CH₃SS(=O)H is calculated using [CH₃SS(=O)H-[(H $^{\cdot}$ + $^{\cdot}$ CH₂SSOH)]] reaction and the bond energy of S—H in CH₃SSOH is calculated using [CH₃SS(=O)H-[(H $^{\cdot}$ + CH₃SS $^{\cdot}$ =O)]] as shown in Table 2.7.

Table 2.7 Bond energy calculation in kcal/mole.

Bond Energy for	B3LYP/6-311G(d,p)	B3LYP/6-311G(3df,2p)	CBSQB3	Average
CH₃SSOH:				
C-H bond	-97.4	-98.65	-97.73	-97.93
O-H bond	-76.23	-76.32	- 73.54	-75.36
$CH_3SS(=O)H$:				
C-H bond	-75.87	-76.04	-77.01	-76.31
S-H bond	-54.70	-53.71	-52.82	-53.74

^{*}average Hf values from Table 2.5 have been used to calculate the bond energy

Thus the bond energy of C—H bond in CH₃SSOH is 97.73 kcal mol⁻¹. And the bond energy of O—H in CH₃SSOH is 75.54 kcal mol⁻¹. Thus the O—H bond is stronger than C—H bond in CH₃SSOH. Similarly, the C—H bond in CH₃SS(=O)H is 77.01 kcal mol⁻¹. And the bond energy of S—H in CH₃SS(=O)H is 52.82 kcal mol⁻¹.

2.3.4 Frequencies and Moment of Inertia

The frequencies and the moment of inertia help to identify the species using spectroscopic methods like FTIR. The list of the frequencies and the moments of inertia of the parent molecules and the corresponding radicals are listed in Table 2.8.

Table 2.8 Frequencies and moments of inertia

	Moment of Inertia, units amu(Bohr) ²			frequencies (cm ⁻)					
Species	I 1	I 2	I 3	a	а	а	а	a	а
CH₃SSOH	203.44971	664.79585	728.21371	112.6	(139.5)*	* 230.4	279.3	448.4	496.2
				680.7	721.9	978.1	983.7	1189.1	1361.1
				1475.1	1491.7	3065.2	3159.2	3177	3763.8
CH ₃ SS(=O)H	217.27895	569.62069	725.95448	99.7	(184.9)	204.9	326.4	405.8	697.1
				831.0	990.2	996.9	1076.0	1100.6	1368.3
				1484.7	1498.8	2350.2	3050.7	3144.4	3166.7
•CH₂SSOH	185.80059	654.61197	711.35111	116.2	(201.3)	221.1	277.2	400.9	460.2
				467.7	722.7	787.1	934.0	1189.6	1409.7
				3169.5	3303.2	3760.6	5		
CH ₃ SS'=O	211.85814	533.28842	720.50403	(51.3)	(115.4)	221.1	353.0	436.4	694.4
				982.2	995.3	1069.7	1365.9	1482.2	493.7
				3062.9	3159.1	3174.	3		

^{*}Frequencies in bold corresponds to torsions that are removed in the SMCPS Analysis

2.3.5 Internal Rotational Potential

The parent CH₃SSOH and corresponding methyl radical *CH₂SSOH has three internal rotors, while CH₃SS'=O and CH₃SS(=O)H have only two. In these disulfide molecules we find the methyl rotors are somewhat similar to those in hydrocarbons with barriers near and below 3 kcal mol⁻¹, and the CS—SO and CSS-OR rotors have barriers near 5 kcal mol⁻¹ or higher. In our entropy analysis, rotors with energy barriers greater than 3.0 kcal are not included in entropy and heat capacity calculations. Rotations about the H₃C—SS bond in CH₃SSOH, the H₃C—SS and CS—SO bonds in CH₃SS'=O, H₃C—SS bond in CH₃SS(=O)H and the H₂C—SS bond in *CH₂SSOH have energy barriers less than 3.0 kcal. Contributions to these internal rotors are calculated with Rotator program [8-10], and used instead of the contribution from the torsion frequency estimation in the Gaussian calculation.

Figure 2.1 Potential energy profile for the H-C—S-(SOH) rotor in CH₃SSOH molecule

Figure 2.2 Potential energy profile for the (CH₃)S—S(OH) rotor in CH₃SSOH molecule

Figure 2.3 Potential energy profile for the (CH₃)SS—(OH) rotor in CH₃SSOH molecule

Figure 2.4 Potential energy profile for CH₂—S(SOH) rotor in 'CH₂SSOH molecule

Figure 2.5 Potential energy profile for S—S rotor in CH₂S--SOH molecule

Figure 2.6 Potential energy profile for the CH_2S -S—O-H rotor in CH_2SSOH molecule

Figure 2.7 Potential energy profile for the H₃C—S(S'=O) rotor in CH₃--SS'=O.

2.8 Potential energy profile for the CH₃-S-S'=O rotor in CH₃SS'=O molecule

Figure 2.9 Potential energy profile for the H₃C—S-S(=O)H rotor in CH₃SS(=O)H molecule

Figure 2.10 Potential energy profile for the H₃C-S—S(=O)H rotor in CH₃SS(=O)H molecule

The C—S rotors studied so far have the barrier near and below 3 kcal mol⁻¹, due to the fact that the methyl rotors being some what similar to those in hydrocarbons, are freely rotating and hence has barriers below 3 kcal mol⁻¹. The barrier energy of the S—S rotor in CH₃SS.=O is also less than 3 kcal mol⁻¹ due to minimum interaction between the methyl group and the O atom of S=O. The potential energy barrier for the S—S rotor in CH₃SSOH, 'CH₂SSOH, and CH₃SS(=O)H and the S—O rotor in CH₃SSOH and .CH₂SSOH is greater than 3 kcal mol⁻¹ at a dihedral angle of around 180° and 360° degrees, primarily due to the severe interaction between methyl group and the O atom.

2.3.6 S°298 and Cp°(T)

Entropy and heat capacity values from vibration, translation and rotation contributions are calculated using SMCPS and the Rotator program. The scaled vibrations and the moment of inertia are from the optimized geometries by B3LYP/6-31G(d,p). A separate internal rotor analysis was carried out prior to running the Rotator program. Refer Table 2.9 for calculated entropy and heat capacities.

Table 2.9 Entropy (S⁰(298)) and Heat Capacity Cp(T)

 $Cp^{c}(T)$ (cal mol⁻¹ K⁻¹) Species S°298 300K 400K 500K 600K 800K 1000K 1500K cal $mol^{-1} K^{-1}$ CH₃SSOH 7426 20.58 27.91 30.93 36.93 23.51 25.93 33.20 *I.R Contribution H-C-S-S 5.407 1.574 1.376 1.259 1.186 1.107 1.068 1.027 Total 79.67 22.15 24.87 27.19 29.10 32.04 34.27 37.96 $CH_3SS(=O)H$ 73.03 17.85 21.11 23.92 26.24 29.81 32.40 36.34 *I.R Contribution H-C-S-S 4.952 2.030 1.813 1.620 1.47 1.297 1 199 1.090 77.982 Total 19.88 22.92 25.54 27.72 31.11 33.60 37.43 •CH₂SSOH 74.27 21.24 23.81 25.61 26.92 28.81 30.21 32.64 IR Contribution S-S—C-H 4.6247 1.51 1.48 1.25 1.09 1.41 1.35 1.18 Total 78.89 22.75 25.29 27.02 28.27 30.06 3139 33.73 CH₃SS•=O 70.01 18.31 20.84 22.85 24.46 26.88 28.68 31.62 I.R Contribution H-C-S-S 5.727 1.06 1.03 1.02 1.01 1.00 1.00 1.00 C-S-S-O 5.613 2.27 2.30 2.16 1.98 1.68 1.48 1.23 81.35 Total 21.64 24.17 26.03 27.45 29.56 31.16 33.85

^{*} I.R contribution is contribution to $S^{\circ}298$ and $Cp^{\circ}(T)$ from internal rotations of the species around the central bond

2.4 Summary

Thermochemical parameters are studied using density functional, ab initio and composite methods in computational chemistry. Enthalpies of formation for CH₃SSOH, CH₃SS(=O)H, CH₃SS:=O and ${}^{\bullet}$ CH₂SSOH are -38.46 (+/-0.2) kcal mol⁻¹, -17.74 (+/-0.2) kcal mol⁻¹, -17.02 (+/-0.2) kcal mol⁻¹ and 7.17 (+/-0.2) kcal mol⁻¹ respectively.

The C—H bond energy of H—CH2SSOH, [CH3SSOH- [(H· + ·CH2SSOH)]] is 97.73 kcal mol-1. The O—H bond energy of CH3SSO—H [CH3SSOH- [(H· + CH3SS:=O)]] is 73.54 kcal mol-1 and in the bond cleavage, the dissociation results in immediate electron re-arrangement to form a sulfur – double bond to the O atom with the radical on the S atom. Similarly, the C—H bond in CH₃SS(=O)H, [CH₃SS(=O)H- [(H· + ·CH₂SSOH)]] is 77.01 kcal mol-1. The S—H bond energy of CH₃SS(=O)H, [CH₃SS(=O)H- [(H· + CH₃SS·=O)]] is 52.82 kcal mol-1 and the bond cleavage results in immediate electron re-arrangement to form a sulfur – double bond to the O atom with the radical on the S atom.

CHAPTER 3

STRUCTURAL AND THERMOCHEMICAL STUDIES ON THE S-S-O BRIDGED SYSTEM IN HSSOH AND HSS(=0)H AND RADICALS CORRESPONDING TO LOSS OF H ATOM

3.1 Introduction

Pyrolysis and mild oxidation of sulfur hydrocarbons is observed in collaborative studies to form solids, presumably higher molecular weight sulfur compounds or polymers through coupling of thiyl radicals form RS—S' bonds [Ref(1a) Xin Zeng, E. Fisher, F. Gouldin and J. W. Bozzelli . Proceedings 5th Joint US Combustion Institute Meeting, Sandiego, Calif, kinetics – 2007. 1b. Xin Zeng, E. Fisher, F. Gouldin and J. W. Bozzelli . Proceedings Eastern States US Combustion Institute Meeting, Charlottesville, Va. kinetics - October 2007.] Sulfur chemistry is also important in atmospheric climate change because both naturally occurring and anthropogenically emitted sulfur compounds form particulate and aerosols in the atmosphere that can reflect solar and absorb infrared radiation. They also affect production of atmospheric haze, acid rain, and may effect ozone depletion and sulfur oxide particles may also act as condensation nuclei for water vapor and enhance global cloudiness. In order to understand this sulfur coupling and to include it in models of sulfur oxidation. aerosol formation, or combustion, it is of value to know the thermochemistry of these hydrocarbons and oxy-hydrocarbons with the –S—S-O linkage.

The primary natural sources of sulfur oxides are volcanic emissions and oxidation of sulfur, the hydrocarbon's - methane thiol and dimethylsulfide, which are produced by in the biosphere and by oceanic phytoplankton. Human impact on the sulfur cycle is primarily in the production of sulfur dioxide (SO₂) from industry (e.g. burning coal) and the internal combustion engine. Sulfur dioxide can precipitate onto surfaces where it can

be oxidized to sulfate in the soil (it is also toxic to some plants), reduced to sulfide in the atmosphere, or oxidized to sulfate in the atmosphere as sulfuric acid, a principal component of acid rain [2]. With the rapid rise of economic development, acid rain has become one of the ten most serious problems which threaten the world environment [3].

The rich inventory of sulfur compounds containing hydrogen and oxygen atoms display only a few known [H, $S_{n. O}]^{0/+/-}$ [24]. The HSO and SOH radicals and their cations and anions are the well known, most simple species of this family [23]. Adams et al. suggested the existence of the SSOH radical as a neutral product of the reaction of S_2^+ some organic acids and alcohols[25]. However, with n=2, only the cation has been observed on a few occasions as a fragment in mass spectra of sulfur species [5].

As a continuation of our interest in sulfur rich compounds, in this paper we have studied the structure, bond energies, internal rotor potentials and the thermochemical properties of the di-sulfur compounds viz. oxatrisulfane (HSSOH) and its reactions to radicals . HSS*=O and *SSOH from loss of H is desirable to help in understanding its effect on environment.

Previous studies

It is widely regarded that oxy acids of sulfur compounds, where sulfur is in one of its lower oxidation states (sulfur can have coordination of 2, 4, or 6) such as isomers of R₂S₂O or RHS₂O have low stability(s1) and we do not know of any compound of composition H₂S₂O being reported. There are however reports of thiosulfinates, RS(=O)SR where HS(=O)SH would be a direct corresponding structure from hydrogen substation for the organic (R) derivative(s)(s2). These RS(=O)SR compounds are sometimes termed thiol-sulfinates and disulfane oxides. The thermochemistry of the

species H2S2O, HRS2O and R2S2O have not been previously studied however there are ab ignition calculations at the HF and MP2 levels for H₂S₂O and Me₂S₂O (references Strudel et al J. Phys Chem (1995) p 5319-26, s3, s4, s5). These studies present some relative energies of structures and project vibration frequencies for possible use in identification should they be synthesized.

There are even fewer studies on oxygenated radicals of the disulfide compounds with only the more simple $HS^{\bullet}(=O)$ and $S^{\bullet}OH$ radicals and their cations and anions somewhat well known [24, 23]. Adams et al. have studied the *SSOH radical as a possible neutral product of the reaction of S_2^+ with some organic acids and alcohols [25], where this cation has been observed on a few occasions as a fragment in mass spectra of sulfur species [26]. de Petris et al [22] have studied relative energies and structures of the $HSS^{\bullet}(=O)$ and $HOSS^{\bullet}$ radicals.

In this work we have studied the structure, bond energies, internal rotor potentials and the thermochemical properties of the di-sulfur compounds viz. hydroxyl disulfane (also termed oxatrisulfane) (HSSOH) and hydrogen dithiosulfanate (HSS(=O)H) plus the radicals, HSS*=O and *SSOH and *SS(=O)H which are formed via loss of H atom from the is desirable to help in understanding its effect on environment. Our enthalpy results are in reasonable agreement with previous calculated relative energy values.

3.2 Calculation Methods

The structure and thermochemical parameters of HSSOH are based on the density functional and composite ab initio levels using Gaussian 03 [6]. Computation levels include B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p). The CBS-QB3 methods are utilized for improved enthalpies and bond energy analysis.

The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p), and CBS-QB3 levels with work reactions that are isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bonding on both sides of an equation, results in a cancellation of calculation error [7] and improves the accuracy for energy analysis. The reported enthalpy values can be compared with the known enthalpies of several molecules in the system to serve as a calibration on the thermochemistry and the Potential Energy (PE) diagram. The accuracy benefit from use of work reactions can also be observed in the good agreement of the DFT results with those of the higher level CBSQB3.

Contributions to $S^{\circ}298$ and $Cp^{\circ}(T)$ of each species are calculated using the "SMCPS" program [8], which incorporates the frequencies, moments of inertia, mass, symmetry, number of optical isomers, from the Gaussian calculation. Torsion frequencies are omitted in the SMCPS [8] calculation, and the "ROTATOR" program [8-10] is used for contributions from internal rotations that are less than 3.0 kcal to $S^{\circ}298$ and $Cp^{\circ}(T)$.

3.3 Results and Discussions

3.3.1 Structure

Structure information for the stable molecules is listed in Table 3.1 with illustrations. The S—S bond distances in HSSOH, HSS(=O)H and HSS*=O are 2.07 A°, 2.2 A° and 2.15 A° respectively. The lowest energy structure for the individual species has been confirmed by comparing the lowest energy dihedral from the internal rotational potential curve with the structural parameter obtained from B3LYP/6-31G(d,p) of the parent molecule as shown in Table 3.2.

The S—O bond in HSSOH and 'SSOH is 1.69A°, while S—O bond distance in HSS'=O exhibits a shorter bond length of 1.51A°. In HSS(=O)H, the S—O bond is also similar to HSS'.=O at 1.49A°. The shorter S--O bond of 1.51A° of in HSS'=O and HSS(=O)H is indicative of the double bond.

Table 3.1 Angles and bond distances from optimized Geometry using B3LYP/6-31G(d,p) $\,$

HSSOH

HSS(=O)H

Table 3.1 continued

	'SSOH			HSS'(=	=O)
R	1 R(1,2)	1.955	. R1	R(1,2)	1.352
R	2 R(2,3)	1.687	R2	R(1,3)	2.149
R.	3 R(3,4)	0.973	R3	R(3,4)	1.515
A	1 A(1,2,3)	110.13	Al	A(2,1,3)	95.99
- A	2 A(2,3,4)	108.55	A2	A(1,3,4)	110.66
D	1 D(1,2,3,4)	-50.53	D1	D(2,1,3,4)	64.63

Table 3.2 Comparison of Lowest Energy Dihedral from PE Curve with Structural Parameter (see Figures 3.1 to 3.5)

Species	Potential curve	Structural Parameter	Dihedral
HSSOH			
	Figure 1	D1 D(2,1,3,4)	-84.01
	Figure 2	D2 D(1,3,4,5)	-85.50
·SSOH	Figure 3	D1 D(1,2,3,4)	-50.53
HSS*=O	Figure 4	D1 D(2,1,3,4)	64.63
HSS(=O)H	Figure 5	D2 D(2,1,3,5)	87.26

Table 3.3 refers to the Mulliken atomic charges for the molecules and their radicals. The S—S and S—O bonds in HSSOH, HSS(=O)H , ·SSOH, and in HSS·=O are all polar covalent bonds. However the degree of polarity is in the order of S=O > S—O > S—S.

HSSOF	I	HSS(=C)H	HSS*=C)	·SSOH		
Atoms	Charges	Atoms	Charges	Atoms	Charges	Atoms	Charges	
1 S	_0 006	1 S	-0.165	1 S	-0.135	1 S	-0.159	

Table 3.3 Mulliken atomic charges for the molecules and their derived radicals

-0.096 -0.165 2 S 0.369 0.090 2 H 0.098 2 H 0.0882 H 3 S 0.225 3 S 0.574 3 S 0.455 3 O -0.550 0.339 4 O -0.556 4 H 0.018 4 O -0.417 4 H 5 H 0.338 5 O -0.518

3.3.2 Heats of Formation and Enthalpies of Reaction

The following work reactions are used to calculate the heat of reaction and enthalpies of formation for HSSOH and HSS(=O)H molecule and their two radicals, HSS:=O and SSOH respectively. The enthalpy calculations are based on the lowest energy conformer.

Work reactions for HSSOH:

HSSOH $C_2H_6 \rightarrow HSSH + CH_3CH_2OH$	(1)
$HSSOH + C_2H_6 \rightarrow HSCH_3 + CH_3SOH$	(2)
$HSSOH + CH_4 \rightarrow HSH + CH_3SOH$	(3)
$HSSOH + CH_3SH \rightarrow CH_3SSH + HSOH$	(4)
HSSOH + HSH → HSSH + HSOH	(5)
HSSOH + CH ₃ SCH ₃ → CH ₃ SSCH ₃ + HSOH	(6)
Work reactions for HSS(=O)H:	
$HSS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H + CH_3SH$	(7)
$HSS(=O)H + CH_4 \rightarrow HSH + CH_3S(=O)H$	(8)
$HSS(=O)H + CH_3SOH \rightarrow CH_3S(=O)H + HSSOH$	(9)
Work reactions for HSS:=O:	

$$HSS=O + CH3OH \rightarrow HSSOH + CH3O (10)$$

$$HSS=O + C_2H_5OH \rightarrow HSSOH + C_2H_5O$$
 (11)

$$HSS = O + CH3SOH \rightarrow HSSOH + CH3S' = O$$
 (12)

$$HSS:=O + HSH \rightarrow HSSH + HS:=O$$
 (13)

$$HSS:=O + CH3S CH3 \rightarrow CH3SSCH3 + HS:=O$$
 (14)

Work reactions for 'SSOH

$$"SSOH + CH_3SCH_3 \rightarrow HSSOH + "CH_2SCH_3$$
 (17)

$$\cdot SSOH + HSH \rightarrow HSSOH + \cdot SH \tag{19}$$

Table 3.4 compares the enthalpies of reaction for the above reactions; one can readily see the similarity in the reaction energies from the different work reactions. It is interesting to note that larger basis set in the B3LYP calculations does not always result in better agreement with the CBS-QB3 value.

Table 3.4 Calculated $\Delta H_{rxn(298)}$ (kcal mol⁻¹) from isodesmic reactions

Isodesmic reaction B31	LYP/6-311G (d, p)	B3LYP/6-311G (3df, 2p)	CBSQB3
Work reactions for HSSOH:			
HSSOH $C_2H_6 \rightarrow HSSH + CH_3CH_2OH$	-2.48	-0.848	0.966
$HSSOH + C_2H_6 \rightarrow HSCH_3 + CH_3SOH$	11.24	12.93	11.86
$HSSOH + CH_4 \rightarrow HSH + CH_3SOH$	9.98	11.32	10.11
$HSSOH + CH_3SH \rightarrow CH3SSH + HSOH$	15.79	16.05	9.69
HSSOH + HSH → HSSH + HSOH	19.23	19.35	19.35
HSSOH + CH ₃ SCH ₃ → CH ₃ SSCH ₃ + HSO	H 14.87	14.69	13.62
Work reactions for HSS(=0)H:			
$HSS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H +$	CH ₃ SH 5.64	7.27	6.27
$HSS(=O)H + CH_4 \rightarrow HSH + CH_3S$	(=O)H 4.38	5.66	4.52
$HSS(=O)H + CH_3OH \rightarrow CH_3S(=O)H$	+ HSOH -5.59	-5.65	-5.58
Work reactions for HSS=0:			
$HSS=O + CH_3OH \rightarrow HSSOH + CH$	I ₃ O· 24.77	30.17	34.35
$HSS=O + C_2H_5OH \rightarrow HSSOH + C_2H_5OH \rightarrow C_2H$	H ₅ O· 26.89	32.43	33.83
$HSS=O + CH_3SOH \rightarrow HSSOH + CH$	$I_3S = O$ -6.19	-5.94	-5.50
HSS.=O + HSH → HSSH + HS'=O	16.99	24.25	17.85
$HSS = O + CH_3S CH_3 \rightarrow CH_3SSCH_3 +$	HS'=O 12.63	19.59	12.12
Work reactions for ·SSOH			
·SSOH + CH₃SH → HSSOH + ·CH	₂ SH 30.27	28.15	29.32
$\text{`SSOH + } C_2H_5SH \rightarrow HSSOH + CH_3$	·CHSH 27.38	25.91	27.83
·SSOH + CH ₃ SCH ₃ → HSSOH + ·CH	H_2SCH_3 29.07	23.63	28.37
·SSOH + $CH_3SH \rightarrow HSSOH + CH_3S$	H 17.40	19.65	20.78
·SSOH + HSH → HSSOH + ·SH	22.53	-24.54	25.53

Table 3.5 compares the heat of formation for the Species under study using various levels of calculations. Overall there is very good agreement in the $\Delta Hf(298)$ values across the calculation methods and down the work reactions. Similar calculations were also run for the reference species whose literature values are listed in table 5.

Table 3.5 Calculated Enthalpies of formation (kcal mol-1) of species in isodesmic work reaction

Isodesmic reaction	B3LYP/6-31G(d,p)	B3LYP/6-311G(3df,2p)	CBSQB3
Enthalpies of Formation of HSSOH:			
HSSOH $C_2H_6 \rightarrow HSSH + CH_3CH_2OH$	-28.85	-30.49	-32.30
$HSSOH + C_2H_6 \rightarrow HSCH_3 + CH_3SOH$	-29.80	-31.49	-30.43
HSSOH + CH ₄ → HSH + CH ₃ SOH	-30.88	-32.23	-31.02
HSSOH + CH₃SH → CH3SSH + HSOH	-38.76	-39.02	-32.66
HSSOH + HSH → HSSH + HSOH	- 37.55	- 37.68	- 37.67
HSSOH + CH ₃ SCH ₃ → CH ₃ SSCH ₃ + HSOH	-38.88	- 38.70	- 37.63
Average	- 34.12	- 34.94	- 33.62
Mean of aver	rages -34.23		
Enthalpies of Formation of HSS(=0)H:			
$HSS(=O)H + C_2H_6 \rightarrow CH_3S(=O)H + CH_3$	SH -10.91	-12.54	-11.54
$HSS(=O)H + CH_4 \rightarrow HSH + CH_3S(=O)I$	H -11.99	-13.27	-12.13
$HSS(=O)H + CH_3SOH \rightarrow CH_3S(=O)H + HS$	SSOH -14.98	-14.93	-14.99
	-12.62	-13.58	-12.88
Mean of avera	ages -13.03		
Enthalpies of Formation of HSS=0:			
HSS·=O + CH₃OH → HSSOH + CH₃O·	-6.52	-11.91	-16.09
$HSS:=O + C_2H_5OH \rightarrow HSSOH + C_2H_5O'$	-8.56	-14.09	-15.44
HSS'=O + CH ₃ SOH → HSSOH + CH ₃ S=C	-12.09	-12.35	-12.78
HSS'=O + HSH → HSSH + HS'=O	-13.12	- 20.37	- 13.97
$HSS'=O + CH_3S CH_3 \rightarrow CH_3SSCH_3 + HS'=$	O -14.44	-21.40	- 13.93
		V 1 20 20 20 20 20 20 20 20 20 20 20 20 20	-14.44

Mean of averages* -15.23

^{*}only include B3LYP/6-311G(3df,2p) and CBSQB3 in the mean.

Table 3.5 continued

Enthalpies of Formation of 'SSOH			
SSOH + CH₃SH → HSSOH + 'CH₂SH	-20.97	-18.86	-20.03
SSOH + $C_2H_5SH \rightarrow HSSOH + CH_3 \cdot CH_3$	HSH -19.59	-18.12	-20.04
SSOH + CH ₃ SCH ₃ → HSSOH + ·CH ₂ S	CH ₃ -20.23	-17.79	-19.24
SSOH + $CH_3SH \rightarrow HSSOH + CH_3SH$	- 15.91	- 18.16	- 19.29
HS· + HOSSH ← HSH + HOSS	-16.31	-17.76	- 21.21
Aver	rage -18.60	- 18.13	-19.96

Table 3.6 lists the enthalpy values of reference species and the literature reference for each.

Table 3.6 Enthalpies of formation (in kcal mol⁻¹) of reference species in work reactions

Species	$\Delta \mathrm{H}^{\mathrm{o}}_{f298}$	Species	$\Delta ext{H}^{ ext{o}}_{f298}$
H [11]	52.1	C ₂ H ₆ [17]	-20.04
CH ₄ [16]	-17.89	HSSH [28]	3.98
CH ₃ SCH ₃ [11]	-8.94	CH₃SH [20]	-5.47
C ₂ H ₅ OH [19]	-56.17	CH₃SOH [14]	-33.9
C ₂ H ₅ SH [12]	-10.99	СН₃ОН [19]	-48.04
·CH ₂ SCH ₃ [12]	33.78	CH₃ ·CHSH	30.64
·CH ₂ SH [13]	37.7	CH ₃ SO· [13]	18.31
C ₂ H ₅ O· [28]	-3.9	CH ₃ O·[18]	4.1
$CH_3S(=O)H$ [21]	-20.6	HSH [22]	-4.9
HSOH [22]	-27.2	CH3O [28]	4.1
HS*=O [28]	-5.0	CH3SSCH3 [28]	-5.75
HS [*] [22]	33.3	HSSOH [this work]	-33.62

Of the above three methods, used in the calculation of enthalpies of formation of several species, B3LYP/6-31G(d,p) did not give satisfactory results due to smaller basis set. The results of B3LYP/6-311++G(3df,2p) are closer to CBS-QB3 composite method. Since we obtain very good agreement with the CBS-QB3 method for all of the work reactions and as the composite CBS-QB3 method has an advantage of utilizing geometry and frequencies calculated at the same level of theory, the CBS-QB3 composite method is recommended for thermo chemical determination on these S-S bridge systems.

3.3.3 Bond Energies

The Bond Energy of S—H bond in HSSOH is calculated using [HSSOH-[(H·+·SSOH)]] reaction and the bond energy of O—H in HSSOH is calculated using [HSSOH-[(H·+HSSO·)]]. Similarly, the Bond Energy of S—H bond in H—SS(=O)H is calculated using [HSS(=O)H-[(H·+·SSOH)]] reaction and the bond energy of S—H in HSS(O)—H is calculated using [HSS(=O)H-[(H·+HSS·=O)]] as shown in Table 3.7.

Table 3.7 Bond energy calculation in kcal/mole

Bond Energy for	B3LYP/6-311G(d,p)	B3LYP/6-311G(3df,2p)	CBSQB3	Average
HSSOH:				
S-H bond	-71.29	-68.91	-65.76	- 68.65
O-H bond	-75.28	-71.02	- 71.28	- 72.52
HSS(=O)H:				
S-H bond (H—SS(O)H)	-49.79	-47.37	-45.02	- 47.39
S-H bond (HSS(O) —H)	-53.78	-49.66	-50.54	- 51.33

^{*}average Hf values from table 2 have been used to calculate the bond energy

Thus the Bond Energy of S—H bond in HSSOH is 65.76 kcal mol⁻¹. And the bond energy of O—H in HSSOH is 71.28 kcal mol⁻¹. Thus the O—H bond is stronger than S—H bond in HSSOH. Similarly, the S—H bond in H—SS (=O) H is 45.02 kcal mol⁻¹. And the bond energy of S—H in HSS (=O) —H is 50.54 kcal mol⁻¹.

3.3.4 Frequencies and Moment of Inertia

The frequencies and the moment of inertia are used to calculate the thermochemical properties entropy and heat capacity as a function of temperature from the formulas for these properties developed using statistical mechanics (ref benson, thermochemical kinetics john wiley and son 1976). The list of the frequencies and the moments of inertia of the parent molecules and the corresponding radicals are listed in Table 3.8.

Table 3.8 Frequencies and moments of inertia

	Moment of Inertia, units amu(Bohr) ²			frequencies (cm ⁻)			
Species	I 1	I 2	I 3	а	а	а	
HSSOH	87.93381	423.37242	493.34687	260.579	397.881	460.475	
				488.944	739.108	884.907	
				1198.369	2627.330	3761.611	
HSS(=O)H	68.52238	462.34677	507.06404	252.672	293.297	408.500	
				710.846	970.726	1079.582	
				1139.184	2353.112	2685.627	
'SSOH	73.90734	386.61948	457.28657	113.768	289.140	619.197	
				(716.891)	1138.732	3740.530	
HSS*=O	65.36502	427.18318	482.59420	134.712	(279.480)	(436.801)	
				779.147	1054.774	2657.625	

3.3.5 Internal Rotation Potential

The stable molecule HSSOH has two internal rotators (HS—SOH and HSS—OH) and barriers to both rotors are high and have two fold or near twofold symmetry. The two barriers for HS—SOH rotation are 11.5 and 10.5, while the two barriers for HSS-OH are both 7.7 kcal mol⁻¹.

^{*}Frequencies in bold corresponds to torsions that are removed in the SMCPS Analysis

The corresponding radicals 'SSOH and HSS'=O have only one rotor each, 'SS—OH and HS—S(=O)H. The internal rotors in these disulfide molecules are more similar to those in hydrocarbons with barriers near and below 3 kcal mol⁻¹. The 'SS—OH rotor has only one barrier at 2.45 with a second very small barrier at 0.1 kcal mol⁻¹. The HS—S(=O)H rotor has two fold potential with barriers are 1.75 and 0.8 kcal mol⁻¹.

Torsion frequencies are used for contributions to entropy and heat capacity from rotors with energy barriers significantly greater than 3 kcal mol⁻. Rotations about The HS--S'=O rotor and 'SS--OH rotor have energy barriers less than 3.0 kcal mol⁻¹ and contributions to these internal rotors are calculated with Rotator program [8-10], and values substituted in place of the value determined from the torsion frequency estimate.

Figure 3.1 Potential energy profile for the HS—SOH) rotor in HSSOH molecule

Figure 3.2 Potential energy profile for the HSS—OH rotor in HSSOH molecule

Figure 3.3 Potential energy profile for S-S—O-H rotor in 'SSOH molecule

Figure 3.4 Potential energy profile for the HS—S'=O rotor in H--SS'=O

Figure 3.5 Potential energy profile for the H-S—S(=O)H rotor in HSS(=O)H molecule

The barrier energy of the S—S rotor in HSSOH and HSS(=O)H and the S—O in HSSOH is greater than 3 kcal mol⁻¹ primarily due to greater level of interaction between the O and H atom. The barriers for the S—S rotors in HSS.=O and S—O in .SSOH are lower than 3 kcal mol⁻¹.

3.3.6 S°298 and Cp°(T)

Entropy and heat capacity values from vibration, translation and rotation contributions are calculated using SMCPS and the Rotator program. The scaled vibrations and the moment of inertia are from the optimized geometries by B3LYP/6-31G(d,p). Entropy

and Cp(T) paramters from the internal rotor analysis was carried using "Rotator" program [8-10]. Refer table 3.9 for calculated entropy and heat capacities.

Table 3.9 Entropy (S^o₍₂₉₈₎) and Heat Capacity Cp(T)

			$Cp^{\circ}(T)$ (cal mol ⁻¹ K ⁻¹)					
Species	S°298 cal mol ⁻¹ K ⁻¹	300K	400K	500K	600K	800K	1000K	1500K
HSSOH *I.R Contribution None	66.41	13.57	15.34	16.58	17.50	18.81	19.76	21.32
Total	66.41	13.57	15.34	16.58	17.50	18.81	19.76	21.32
HSS(=O)H *I.R Contribution None –	66.31	12.90	14.66	16.06	17.19	18.88	20.06	21.77
Total	66.31	12.90	14.66	16.06	17.19	18.88	20.06	21.77
•SSOH I.R Contribution	66.78	11.71	12.85	13.65	14.21	14.95	15.45	16.32
S-S—O-H	3.39	2.19	1.98	1.77	1.61	1.39	1.27	1.12
Total	70.17	13.9	14.83	15.42	15.82	16.34	16.72	17.44
HSS•=O I.R Contribution	67.24	12.09	13.16	13.94	14.51	15.35	15.94	16.80
H-S-S-S	3.20	1.61	1.50	1.39	1.30	1.19	1.13	1.06
Total	70.44	13.7	14.66	15.33	15.81	16.54	1 17.07	17.86

^{*} I.R contribution is contribution to $S^{\circ}298$ and $Cp^{\circ}(T)$ from internal rotations of the species around the central bond.

3.4 Summary

Thermochemical parameters are studied using density functional, and ab initio composite methods in computational chemistry. Enthalpies of formation for HSSOH, HSS(=O)H, HSS=O and 'SSOH are -33.62 (+/-0.2) kcal mol⁻¹, -12.88 (+/-0.2) kcal mol⁻¹, -14.44 (+/-0.2) kcal mol⁻¹ and -19.96 (+/-0.2) kcal mol⁻¹ respectively. The S—H Bond Energy of HSSOH is 65.76 kcal mol⁻¹, and the O-H bond energy is 71.28 kcal mol⁻¹. The O—H bond results because the HSSOH parent undergoes electron re-arrangement upon loss of the HSSO—H hydrogen atom to form the more stable HSS*=O structure. The S—H Bond Energy of H—SS(=O)H is weak at only 45.02 kcal mol⁻¹ and results in the formation of 'SSOH radical by the loss of hydrogen atom, and the S-H bond energy of HSS(=O)—H is very weak at 50.54 kcal mol⁻¹. The very weak S—H bond, upon loss of the HSS(=O)—H hydrogen atom forms a more stable HSS*=O radical.

CHAPTER 4

STRUCTURAL AND THERMOCHEMICAL STUDIES ON S-S-O BRIDGED SYSTEM IN CH₃SSOCH₃ AND RADICALS CORRESPONDING TO LOSS OF H ATOM

4.1 Introduction

Methyl Mercaptan (CH₃SH), dimethyl sulfide (DMS;CH₃SCH₃), dimethyl disulfide (DMDS;CH₃SSCH₃) are the most abundant reduced sulfur compounds in the atmosphere as well as dominant sulfur species in the troposphere released by biogenic sources. Because these compounds are highly reactive in the gas phase, ultimately leading to sulfate, their decomposition has been studied extensively in experimental and field services [27].

The reaction of methylthiyl radical (CH₃S•) with 3O_2 is a potentially important process for both combustion and atmospheric chemistry as a pathway for the exothermic conversion (oxidation) of, CH₃S. This reaction system also serves as a surrogate reaction system for a number of paths in longer chain and substituted thiol radical reactions with molecular oxygen [3]. This CH₃S + O₂ \leftrightarrow CH₃S-OO reaction has a very shallow well, \sim 10 kcal mol⁻¹, which results in a very rapid reverse reaction to back to CH₃S• and a quasi equilibrium. The CH₃S and CH₃SOO can react with hydroperoxides (e.g. HO₂, CH₃SOO.) or OH or NOx to form the CH₃SO moiety, which exists as CH₃S•(=O).

CH₃S'=O has been postulated as one of the key intermediates in the DMS oxidation mechanism. It may play an important role in the formation of acid rain because the bond length of the C—S bond is longer than that in CH₃S. The principal mechanism

of SO_2 formation has been suggested to include a sequence of reactions of the $CH_3S^{\bullet}=O$ radical with O_2 , NO_2 , and O_3 as well as the thermal decomposition of CH_3-SO_2 [5].

It has been shown that the $CH_3SS \bullet = O$ radical can be formed by the reaction $CH_3SS + NO_2 \rightarrow CH_3SS \bullet = O + NO$ and $CH_3SS \bullet = O$ can potentially react with NO_2 to give several products [15]. Until now, however, there has been no theoretical or experimental study on the stability and thermochemical properties of CH_3SSOCH_3 and its radicals. Thus, a detailed knowledge about structure, bond energies, internal rotor potentials and the thermochemical properties of the di sulfur methyl thiols and its reactions to radicals from loss of H is desirable to help in understanding its effect on environment.

In the studies undertaken below it has been observed that one of the radicals of CH₃SSOCH₃, namely CH3SSOC·H2 falls apart upon rotating its internal rotors as seen through Gauss view. Hence this radical may not exist.

4.2 Calculation Method

The structure and thermochemical parameters of CH₃SSOCH₃ are based on the density functional and composite ab initio levels using Gaussian 03 [6]. Computation levels include B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p). The CBS-QB3 methods are utilized for improved energies and analysis.

The enthalpies of formation for stable species are calculated using the total energies at B3LYP/6-31G(d,p), B3LYP/6-311++G(3df,2p), and CBS-QB3 levels with work reactions that are isodesmic in most cases. Isodesmic reactions conserve the number and type of bonds on both sides of an equation. The use of a work reaction with similar bonding on both sides of an equation results in a cancellation of calculation error [7] and improves the accuracy for energy analysis. The reported enthalpy values can be compared with the known enthalpies of several molecules in the system to serve as a calibration on the thermochemistry and the PE diagram. Contributions to S°298 and Cp° (T) of each species are calculated using the "SMCPS" program [8] which incorporates the frequencies, moments of inertia, mass, symmetry, number of optical isomers, from the Gaussian calculation. It also incorporates frequency corrections. Torsion frequencies are omitted in SMCPS [8] calculation, and the "ROTATOR" program [8-10] is used for contributions from internal rotations that are less than 3.0 kcal to S°298 and Cp° (T).

4.3 Results and Discussion

4.3.1 Structure

The S—O bond distance in CH3SSOCH3 is 1.69 A° and 1.68 A° in CH2SSOCH3 and 1.71 A° in CH3SSOC'H2.

The C—S bond in CH3SSOCH3 and CH3SSOCH2 is $1.83~A^\circ$ against the $1.73A^\circ$ in CH2SSOCH3. The C—O bond distance in CH3SSOCH3 and CH2SSOCH3 is $1.43~A^\circ$ and $1.36~A^\circ$, slightly shorter in CH3SSOCH2.

The formation of ${}^{\circ}\text{CH}_2\text{SSOCH}_3$ is accompanied by reduction of the O-C-H bond angle to 107.15 °, while formation of ${}^{\circ}\text{CH}_3\text{SSOC}_{}{}^{}\text{H}_2$ reveals increase in bond angle O-C-H to 118.90 ° compared to the O-C-H bond angle of 111.47 ° in ${}^{\circ}\text{CH}_3\text{SSOCH}_3$ as listed in Table 4.1.

Table 4.1 Angles and bond distances from optimized Geometry using B3LYP/6-31++G(d,p)

CH₃SSOCH₃

CH₂SSOCH₃

CH₃SSOC·H₂

Table 4.1 continued

A(3,1,4)	109.69	A(6,7,8)	111.45	A(1,2,6)	103.87
A(3,1,5)	110.45	A(6,7,9)	105.66	A(2,6,7)	107.15
A(4,1,5)	109.56	A(6,7,10)	111.01	A(6,7,8)	116.41
A(1,2,6)	103.67	A(8,7,9)	109.82	A(7,8,9)	118.90
A(2,6,7)	106.59	A(8,7,10)	109.48	A(7,8,10)	112.86
A(6,7,8)	114.70	A(9,7,10)	109.31	A(9,8,10)	123.04
A(7,8,9)	111.47	D(3,1,2,5)	-149.49	D(3,1,2,6)	58.40
A(7,8,10)	105.75	D(4,1,2,5)	29.84	D(4,1,2,6)	177.39
A(7,8,11)	111.07	D(1,2,5,6)	79.35	D(5,1,2,6)	-64.11
A(9,8,11)	109.44	D(2,5,6,7)	80.84	D(1,2,6,7)	82.45
A(9,10,11)	60.05	D(5,6,7,8)	55.36	D(2,6,7,8)	75.97
D(3,1,2,6)	58.99	D(5,6,7,9)	174.62	D(6,7,8,9)	29.19
D(4,1,2,6)	178.01	D(5,6,7,10)	-66.97	D(6,7,8,10)	-175.47
D(5,1,2,6)	-63.33				
D(1,2,6,7)	81.49				
D(2,6,7,8)	80.44				
D(6,7,8,9)	55.85				
D(6,7,8,10)	175.07				
D8 D(6,7,8,11) -66.48				

The lowest energy structure for the individual species has been confirmed by comparing the lowest energy dihedral from the internal rotational potential curve with the structural parameter obtained from B3LYP/6-31G(d,p) of the parent molecule as shown in Table 4.2. And Table 4.3 refers to the Mulliken atomic charges for the molecules and their radicals

Table 4.2 Comparison of Lowest Energy Dihedral from PE Curve with Structural Parameter (see Figures 4.1 to 4.8)

Table				
Species	Potential curve	Structural Parameter	Dihedral	
CH ₃ SSOCI	H_3	-		
	Figure 1	D(3,1,2,6)	58.99	
		D(4,1,2,6)	178.01	
	Figure 2	D(1,2,6,7)	81.49	
	Figure 3	D(6,7,8,9)	55.85	
		D(6,7,8,10)	175.07	
	Figure 4	D(2,6,7,8)	80.44	
·CH ₂ SSO C	CH_3			
	Figure 5	D(4,1,2,5)	29.84	
	Figure 6	D(1,2,5,6)	79.35	
	Figure 7	D(2,5,6,7)	80.84	
	Figure 8	D(5,6,7,8)	55.36	
		D(5,6,7,9)	174.62	

Table 4.3 Mulliken atomic charges for the molecules and their derived radicals

СН	I ₃ SSOCH ₃	CH ₂ SSOC	CH ₃
Atoms	Charges	Atoms	Charges
1 C	-0.464197	1 C	-0.383294
2 S	0.009295	2 S	0.073155
3 H	0.156638	3 H	0.149426
4 H	0.147390	4 H	0.157543
5 H	0.161376	5 S	0.220501
6 S	0.221644	6 O	-0.512072
7 O	-0.521316	7 C	-0.073593
8 C	-0.072791	8 H	0.117289
9 H	0.114968	9 H	0.129337
10 H	0.125708	10 H	0.121709
11 H	0.121284		

4.3.2 Heats of Formation and Enthalpies of Reaction

The following work reactions are used to calculate the heat of reaction and enthalpies of formation for CH₃SSOCH₃ and its radical, CH₂SSOCH₃. The enthalpy calculations are based on the lowest energy conformer.

Work reactions CH₃SSOCH₃:

$$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SSCH_3 + CH_3CH_2OH$$
 (1)

$$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SC_2H_5 + CH_3SOH$$
 (2)

$$CH_3SSOCH_3 + CH_4 \rightarrow CH_3SCH_3 + CH_3SOH$$
 (3)

Work reactions for CH₂SSOCH₃:

$$CH_2SSOCH_3 + CH_3SH \rightarrow CH_3SSOCH_3 + CH_2SH$$
 (4)

$$CH_2SSOCH_3 + C_2H_5SH \rightarrow CH_3SSOCH_3 + CH_3C \cdot HSH$$
 (5)

$$CH_2SSOCH_3 + CH_3SCH_3 \rightarrow CH_3SSOCH_3 + CH_2SCH_3$$
 (6)

Table 4.4 illustrates the comparative study on enthalpies of reaction for the above reactions. Table 4.5 compares the heat of formation for the Species under study using various levels of calculations. Similar calculations were also run for the reference species whose literature values are listed in table 4.6.

Table 4.4 Calculated ΔH_{rxn298} (kcal mol-1) from isodesmic reactions

Isodesmic reaction	B3LYI	P/6-31G (d, p)	B3LYP/6-311++G (3	df, 2p) CBSQB3
Work reactions for CH ₃ SSOCH ₃ :				
$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SSCH_3$	1 ₃ + CH ₃ CH ₂ OH	-8.11	-7.77	-6.20
$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SC_2H_5$	+ CH ₃ SOH	6.96	6.99	5.41
$CH_3SSOCH_3 + CH_4 \rightarrow CH_3S CH_3$	+ CH ₃ SOH	8.71	9.06	8.67
Work reactions for ·CH ₂ SSOCH ₃ :				
·CH ₂ SSOCH ₃ + CH ₃ SH → CH ₃ SSO	OCH ₃ + ·CH ₂ SH	- 1.32	-1.82	-2.33
\cdot CH ₂ SSOCH ₃ + C ₂ H ₅ SH \rightarrow CH ₃ SS	SOCH ₃ + CH ₃ C·HSF	· 4.21	-4.06	-3.82
·CH ₂ SSOCH ₃ + CH ₃ S CH ₃ → CH ₃ S	SOCH ₃ + ·CH ₂ SCH ₃	-2.52	-3.34	-3.58

Table 4.5 Calculated Enthalpies of formation (kcal mol⁻¹) of species in isodesmic work reaction

Isodesmic reaction	B3LYP/6-31G(d,p)	B3LYP/6-311++G(3df,2p)	CBSQB3
Enthalpies of Formation of CH ₃ SSOCH ₃ :			
$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SSCH_3 + CH_3CH_3$	₂ OH -32.97	-33.31	-35.68
$CH_3SSOCH_3 + C_2H_6 \rightarrow CH_3SC_2H_5 + CH_3SOI$	Н -34.48	-34.51	-33.69
CH ₃ SSOCH ₃ + CH ₄ → CH ₃ S CH ₃ + CH ₃ SOH	-33.66	-34.01	- 33.62
Average	-33.70	-33.94	- 34.33
Mean of aver	eages -33.99		
Enthalpies of Formation of ·CH ₂ SSOCH ₃ :			
CH ₂ SSOCH ₃ + CH ₃ SH → CH ₃ SSOCH ₃ + ·CH ₃	₂ SH 10.79	11.05	11.17
$CH_2SSOCH_3 + C_2H_5SH \rightarrow CH_3SSOCH_3 + CH_3$	₃ C·HSH 12.18	11.78	11.16
CH ₂ SSOCH ₃ + CH ₃ S CH ₃ → CH ₃ SSOCH ₃ + ·CH	H ₂ SCH ₃ 11.54	12.12	11.97
Average	11.50	11.65	11.44
Mean of avera	iges 11.53		

Table 4.6 Enthalpies of formation (in kcal mol-1) of reference species in work reactions

Species	$\Delta { m H}^{ m o}_{f298}$	Species	$\Delta ext{H}^{\circ}_{f298}$
 н[11]	52.1	C ₂ H ₆ [17]	-20.04
CH ₄ [16]	-17.89	CH ₃ SCH ₃ [11]	-8.94
CH ₃ SH [20]	-5.47	C ₂ H ₅ OH [19]	-56.17
CH₃SOH [14]	-33.9	C ₂ H ₅ SH [12]	-10.99
CH ₃ OH [19]	-48.04	·CH ₂ SCH ₃ [12]	33.78
CH ₃ ·CHSH [28]	30.64	·CH ₂ SH [3]	37.7
CH ₃ SSOCH ₃ [this work]	-34.33		

Since we obtain very good agreement with the CBS-QB3 method for all of the work reactions and as the composite CBS-QB3 method has an advantage of utilizing geometry and frequencies calculated at the same level of theory, the CBS-QB3 composite method is recommended for thermo chemical determination on these S-S-Obridge systems.

4.3.3 Bond Energies

The Bond Energy of C—H bond in H—CH₂SSOCH₃ is calculated using [CH₃SSOCH₃-[(H·+·CH₂SSOCH₃)]] reaction as shown in Table 4.7.

Table 4.7 Bond energy calculation in kcal/mole.

Bond Energy for	B3LYP/6-311G(d,p)	B3LYP/6-311G(3df,2p)	CBSQB3	Average
<i>CH₃SSOCH₃:</i> C-H bond	-97.3	-97.69	-97.87	-97.62

^{*}average Hf values from table 2 have been used to calculate the bond energy

4.3.4 Frequencies and Moment of Inertia

The frequencies and the moment of inertia help to identify the species using spectroscopic methods like FTIR. The list of the frequencies and the moments of inertia of the parent molecules and the corresponding radicals are listed in Table 4.8.

Table 4.8 Frequencies and moment of inertia

ľ	Moment of In	ertia, units a	mu(Bohr) ²		free	quencies (cm ⁻)		
Species	I 1	12	I 3	а	а	а	а	а	а
CH ₃ SSOCH ₃	301.07941	1024.63242	1059.36895	79.6	117.7	128.6	173.6	216.3	307.3
				390.0	488.1	672.5	680.4	978.2	982.0
				1024.1	1172.7	1191.7	1360.5	1471.1	474.9
				1491.3	1493.4	1513.5	3028.4	3065.1	3103.0
				3135.0	3159.0	3177.2			
•CH ₂ SSOCH ₃	185.80059	654.6119	711.35111	78.1	115.8	154.3	199.8	217.6	306.6
				381.2	402.3	454.1	676.5	786.8	934.3
				1020.5	1172.4	1190.4	1410.7	1471.6	1493.2
				1511.1	3030.6	3106.0	3138.6	3168.7	3302.0

4.3.5 Internal Rotational Potential

The parent CH₃SSOCH₃ and corresponding methyl radical 'CH₂SSOCH₃ has four internal rotors. While CH₃SSOC•H₂ falls apart to CH₃S=O while rotating the S—O rotor. In these disulfide molecules we find the methyl rotors are somewhat similar to those in hydrocarbons with barriers near and below 3 kcal mol-1, and the CS—SO and CSS-OR rotors have barriers near 5 kcal mol⁻¹ or higher. In our entropy analysis, rotors with energy barriers greater than 3.0 kcal are not included in entropy and heat capacity calculations. Rotations about the H₃C—SS and SO—CH₃ bond in CH₃SSOCH₃, the H₃C—SS and SO—CH₃ bonds in 'CH₂SSOCH₃, have energy barriers less than 3.0 kcal.

used instead of the contribution from the torsion frequency estimation in the Gaussian calculation.

Figure 4.1 Potential energy profile for the H-C—S-(SOC) rotor in CH_3SSOCH_3 molecule

Figure 4.2 Potential energy profile for the (CH3)S—S(OH) rotor in CH_3SSOCH_3H molecule

Figure 4.3 Potential energy profile for the (CH₃SS O—C) rotor in CH₃SSOCH₃ molecule

Figure 4.4 Potential energy profile for CH₃S(S—OC) rotor in CH₃SSOCH₃ molecule

Figure 4.5 Potential energy profile for C—S rotor in 'CH₂—SSOC molecule

Figure 4.6 Potential energy profile for the 'CH2S—SO-C rotor in 'CH₂SSOCH₃ molecule

Figure 4.7- Potential energy profile for the ${}^{\bullet}CH_2S(S-OC)$ rotor in ${}^{\bullet}CH_2SSOCH_3$ molecule

Figure 4.8 Potential energy profile for the 'CH2-SSO—C rotor in 'CH₂SSOCH₃ molecule

The C—S and C—O rotors studied so far has the barrier near and below 3 kcal mol⁻¹, due to the fact that the methyl rotors being some what similar to those in hydrocarbons are freely rotating and hence has barriers below 3 kcal mol⁻¹. The potential energy barrier for the S—S rotor and S—O rotor in CH₃SSOCH₃ and 'CH₂SSOCH₃ is greater than 3 kcal mol⁻¹ at dihedral angle of around 180° and 360 degrees, primarily due to the severe interaction between methyl group and the O atom.

4.3.6 S°298 and Cp°(T)

Entropy and heat capacity values from vibration, translation and rotation contributions are calculated using SMCPS and the Rotator program. The scaled vibrations and the moment of inertia are from the optimized geometries by B3LYP/6-31G(d,p). A separate internal rotor analysis was carried out prior to running the Rotator program. Refer Table 4.9 for calculated entropy and heat capacities.

Table 4.9 Entropy (S⁰(298)) and Cp(T) and Heat Capacity

		Cp°(T) (cal mol ⁻¹ K ⁻¹)						
Species	S°298 cal mol ⁻¹ K ⁻¹	300K	400K	500K	600K	800K	1000K	1500K
CH ₃ SSOCH ₃ *I.R Contribution	78.80	21.93	26.30	30.19	33.51	38.74	42.66	48.83
H-CS-S	5.43	1.55	1.35	1.245	1.176	1.101	1.064	1.02
S-O—CH	5.074	1.93	1.70	1.52	1.39	1.23	1.15	1.07
Total	89.30	25.41	29.35	32.95	36.07	41.07	44.87	50.92
•CH ₂ SSOCH ₃ 1.R Contribution	75.49	18.98	22.69	25.84	28.46	32.55	35.61	40.51
S-SC-H	4.781	1.46	1.37	1.30	1.24	1.16	1.11	1.05
S-OCH	5.09	1.94	1.69	1.50	1.37	1.22	1.15	1.06
Total	85.36	22.38	25.75	28.64	31.07	34.93	37.87	42.62

^{*} *I.R contribution is contribution* to $S^{\circ}298$ and $Cp^{\circ}(T)$ from internal rotations of the species around the central bond.

4.4 Summary

Thermochemical parameters are studied using density functional, and ab initio composite methods in computational chemistry. Enthalpies of formation for CH₃SSOCH₃ and •CH₂SSOCH₃ are -34.33 (+/-0.2) kcal mol⁻¹ and 11.44 (+/-0.2) kcal mol⁻¹ respectively. The C—H bond energy of CH₃SSOCH₃ is 97.62 kcal mol⁻¹. In the studies undertaken below it has been observed that one of the radicals of CH₃SSOCH₃, namely CH₃SSOC·H₂ falls apart upon rotating its internal rotors as seen through Gauss view. Hence this radical may not exist.

APPENDIX A

ADDITIONAL DATA ON ENTROPY

Additional entropy data for species presented in this thesis

Appendix A1 Entropy (S $^{\circ}$) Data for CH $_3$ SSOH, CH $_3$ SS(=O)H, 'CH $_2$ SSOH and CH $_3$ SS'=O

	S°298 (cal mol ⁻¹ K ⁻¹)									
Species	500 K	1200 K	1500 K	2000 K	3000 K	4000 K	5000 K			
CH₃SSOH	85.50	111.23	119.02	129.65	145.46	157.04	166.15			
*I.R Contribution H-C—S-S	6.13	7.120	7.35	7.645	8.053	8.341	8.564			
Total	91.63	118.35	126.37	137.29	153.51		174.71			
CH ₃ SS(=O)H *I.R Contribution	83.74	109.39	117.28	128.03	143.96	155.60	164.74			
H-C—S-S	6.15	7.072	8.54	7.628	8.042	8.311	8.508			
Total	89.89	116.46	125.82	135.66	152.00	163.91	173.25			
•CH₂SSOH LR Contribution	85.64	109.52	116.41	125.70	139.38	149.35	157.18			
S-SC-H	5.39	6.497	6.75	7.054	7.474	7.767	7.991			
Total	91.03	116.02	123.16	132.75	146.85	157.12	165.17			
CH ₃ SS•=O I.R Contribution	78.91	99.75	106.12	114.80	127.67	137.07	144.47			
H-C-S-S	6.26	7.145	7.37	7.654	8.057	8.343	8.565			
C-SS-O	6.79	8.304	8.59	8.928	9.369	9.669	9.897			
Total	91.96	115.20	122.08	131.38	145.09	155.08	162.93			

Appendix A2 Entropy (S°) Data for HSSOH, HSS(=O)H, 'SSOH and HSS'=O

				S°2 (ca	298 1 mol ⁻¹ k ⁻¹		
Species	2000 K	2500 K	3000 K	3500 K	4000 K	4500 K	5000 K
HSSOH *I.R Contribution None	101.44	106.45	110.62	114.19	117.30	120.05	122.53
Total	101.44	106.45	110.62	114.19	117.30	120.05	122.53
HSS(=O)H *I.R Contribution None	101.21	106.30	110.51	114.11	117.24	120.01	122.50
Total	101.21	106.30	110.51	114.11	117.24	120.01	122.50
'SSOH I.R Contribution	94.68	98.47	101.62	104.30	106.64	108.71	110.57
S-SO-H	6.64	6.78	7.07	7.32	7.53	7.72	7.89
Total	101.32	105.25	108.69	111.62	114.17	116.43	118.46
HSS*=O I.R Contribution	95.89	99.76	102.95	105.66	108.02	110.11	111.98
H-S—S-O	5.59	5.82	6.00	6.16	6.29	6.41	6.52
Total	101.48	105.58	108.95	1 11.82	114.31	116.52	118.5

- 1

Appendix A3 Entropy (S°) Data for CH₃SSOCH₃ and CH₂SSO CH₃

	S°298 (cal mol ⁻¹ k ⁻¹							
Species	2000 K	2500 K	3000 K	3500 K	4000 K	4500 K	5000 K	
CH ₃ SSOCH ₃ *I.R Contribution	150.51	162.32	172.24	180.75	188.20	194.82	200.77	
HC-SS	7.65	7.88	8.06	8.21	8.35	8.46	8.57	
SO-CH	7.63	7.86	8.04	8.20	8.33	8.45	8.56	
Total	165.79	178.06	188.34	197.16	204.88	211.73	217.9	
•CH ₂ SSO CH ₃ *I.R Contribution	135.81	145.60	153.81	160.86	167.02	172.50	177.42	
SS-CH	7.07	7.30	7.48	7.64	7.77	7.89	7.99	
SO-CH	7.63	7.86	8.04	8.20	8.33	8.45	8.56	
Total	150.51	160.76	169.33	176.70	183.12	188.84	193.97	

APPENDIX B

ADDITIONAL DATA ON HEAT CAPACITIES

Additional data on heat capacities for species presented in this thesis

Appendix B1 Heat Capacity (Cp(T)) Data for CH_3SSOH , $CH_3SS(=O)H$, CH_2SSOH and $CH_3SS'=O$

	Cp°(T) (cal mol ⁻¹ K ⁻¹								
Species	1200 K	1500 K	2000 K	3000 K	4000 K	5000 K			
CH ₃ SSOH *I.R Contribution	33.91	35.89	37.95	39.84	40.62	41.00			
H-C—S-S	1.046	1.027	1.013	1.002	0.998	0.996			
Total	34.96	36.92	38.96	40.85	41.62	42.00			
CH ₃ SS(=O)H *I.R Contribution	34.32	36.34	38.34	40.08	40.77	41.10			
H-C-S-S	1.140	1.090	1.047	0.989	0.939	0.806			
Total	35.46	37.44	39.39	41.07	41.71	41.91			
*CH ₂ SSOH I.R Contribution	30.21	31.55	32.99	34.37	34.94	35.23			
S-S—C-H	1.135	1.092	1.053	1.022	1.010	1.004			
Total	31.34	32.64	34.04	35.39	35.95	36.23			
CH ₃ SS*=O I.R Contribution	27.71	29.33	0.95	32.39	32.97	33.25			
H-C—S-S	0.998	0.996	0.995	0.994	0.994	0.993			
C-S—S-O	1.347	1.229	1.129	1.055	1.028	1.015			
Total	30.06	31.55	33.08	34.44	34.99	35.26			

Appendix B2 Heat Capacity (Cp(T)) Data for HSSOH, HSS(=0)H, 'SSOH and HSS'=O

				Cp°(T) (cal mol ⁻¹	Cp°(T) (cal mol ⁻¹ K ⁻¹			
Species	2000 K	2500 K	3000 K	3500 K	4000 K	4500 K	5000 K	
HSSOH *I.R Contribution	22.19	22.70	23.01	23.22	23.35	23.45	23.52	
None								
	22.19	22.70	23.01	23.22	23.35	23.45	23.52	
Total								
HSS(=O)H *I.R Contribution	22.57	22.99	23.24	23.39	23.49	23.56	23.62	
None								
Total	22.57	22.99	23.24	23.39	23.49	23.56	23.62	
'SSOH I.R Contribution	16.83	17.15	17.34	17.47	17.56	17.62	17.67	
S-S—C-H	1.02	1.00	1.00	1.00	1.00	1.00	1.00	
Total	17.85	18.15	18.34	18.47	18.56	18.62	18.67	
HSS'=O I.R Contribution	17.21	17.43	17.56	17.64	17.70	17.73	17.76	
H-C—S-S	1.03	1.02	1.01	1.00	1.00	1.00	1.00	
— Total	18.24	18.45	18.57	18.64	18.70	18.73	18.76	

Appendix B3 Heat Capacity (Cp(T)) Data for CH₃SSO CH₃ and CH₂SSOH

 $Cp^{\circ}(T)$ (cal mol-1 K-1 Species 2000 K 2500 K 3000 K3500 K 4000 K 5000 K 4500 K CH₃SSO CH₃ 52.04 53.82 54.89 55.57 56.03 56.35 56.59 *I.R Contribution HC-SS 1.01 0.99 1.00 1.00 0.99 0.99 0.99 SO-CH 1.03 1.02 1.00 1.01 1.00 1.00 1.00 Total 54.08 55.84 56.90 57.56 58.02 58.34 58.58 'CH2SSOH 43.11 44.56 45.44 46.00 46.37 46.64 46.83 *I.R Contribution SS-CH 1.03 1.01 1.01 1.00 1.00 1.00 1.00 SO-CH 1.03 1.02 1.01 1.00 1.00 1.00 1.00 Total 45.17 46.59 47.46 48.00 48.3748.6448.83

APPENDIX C

INPUT FILES FOR SMCPS

Input files to the program SMCPS for the species presented in this thesis

Appendix C1 Input file for CH₃SSOH

```
NAME (name of molecule)
Ch3ssoh
COMMENTS:
b3_631gdp
TEMPERATURE
14 (Number of temperature to be read in)
298 400 500 600 800 900 1000 1200 1500 2000 2500 3000 4000
                                                                  5000
ROTOR
1 number of internal rotors
MOLECULAR WT
 95.97036
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x") C 1 H 4 S 2 O 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                  (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units
203.44971 664.79585 728.21371
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
18
112.6426
                        139.4611
                                                 230.3880
279.2984
                        448.4174
                                                 496,2172
680.7653
                        721.9113
                                                 978.1456
983.6915
                        1189.1481
                                                 1361.0707
1475.0957
                        1491.7125
                                                 3065.2373
3159.1959
                        3177.8225
                                                 3763.8482
```

Appendix C2 Input file for CH₃SS(=O)H

```
NAME (name of molecule)
Ch3ss(=0)h
COMMENTS:
b3_631qdp
TEMPERATURE
14 (Number of temperature to be read in)
298 400 500 600 800 900 1000 1200 1500 2000 2500 3000 4000
                                                               5000
     number of internal rotors
MOLECULAR WT
 95.97036
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
           S 2
                0 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                 (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2
    choice of moment of inertia units
217.27895 569.62069 725.95448
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
18
99.7500
                       184.9095
                                               204.8992
326.4873
                       405.7815
                                               697.0727
831.0269
                       990.1809
                                               996,8946
1076.0499
                                               1368.3658
                       1100.6693
1484.7357
                       1498.8458
                                               2350.2194
3050.7991
                       3144.4502
                                               3166.7281
```

Appendix C3 Input file for •CH₂SSOH

```
NAME (name of molecule)
Ch2ssohR
COMMENTS:
b3_631gdp
TEMPERATURE
     (Number of temperature to be read in)
298 400 500 600 800 900 1000 1200 1500 2000 2500 3000 4000
                                                                    5000
ROTOR
     number of internal rotors
MOLECULAR WT
 94.96253
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
C 1 H 3 S 2
                  0 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                  (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units 185.80059\ 654.61197\ 711.35111
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
15
116.1712
                         201.2926
                                                  221.0928
277.1666
                                                  460.2321
                         400.9334
467.7453
                         722.6752
                                                  787.1176
934.0427
                         1189.5832
                                                  1409.7102
3169.4933
                         3303.2677
                                                  3760.6083
```

Appendix C4 Input file for CH₃SS'=O

```
NAME (name of molecule)
Ch3ssoR
COMMENTS:
b3_631qdp
TEMPERATURE
14 (Number of temperature to be read in)
298 400 500 600 800 900 1000 1200 1500 2000 2500 3000 4000
                                                               5000
     number of internal rotors
MOLECULAR WT
 94.96253
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
           S 2
                 0 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                 (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
     (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2
    choice of moment of inertia units
                      720.50403
211.85814
            533.28842
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
15
51.2706
                       115.4289
                                               221.0911
353.0535
                       436.4048
                                               694.3697
982.2280
1365.9187
                                               1069.7198
                       995.2895
                       1482.2376
                                               1493.6876
3062.9128
                       3159.0875
                                               3174.3031
```

Appendix C5 Input file for HSSOH

```
NAME (name of molecule)
hssoh
COMMENTS:
b3_631gdp
TEMPERATURE
15 (Number of temperature to be read in)
298 300 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
ROTOR
     number of internal rotors
MOLECULAR WT
    81.95471
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
C 0 H 2 S 2
                 0 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                  (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units
 87.93381 423.37242 493.34687
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
9
260.5796
                        397.8812
                                                460.4757
488.9446
                        739.1081
                                                884.9078
1198.3696
                        2627.3301
                                                3761.6117
```

Appendix C6 Input file for HSS(=O)H

```
NAME (name of molecule)
 hss(=0)h
 COMMENTS:
 b3_631qdp
 TEMPERATURE
 14 (Number of temperature to be read in)
   298 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
 ROTOR
              number of internal rotors
 MOLECULAR WT
            81.95471
 OPTICAL ISOMER
MULTIPLICITY
                        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x") (0,0,0) H (0,0) S (0,0) C (0,0) H (0,0) S (0,0) C (0,0) S (0,0) C (0,0) S (0,0) S (0,0) C (0,0) S (0,0) 
 (do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
 !RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                                                   (integer input)
 rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
                  (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units
   87.93381 423.37242 493.34687
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
260.5796
                                                                     397.8812
                                                                                                                                          460.4757
488.9446
                                                                     739.1081
                                                                                                                                          884.9078
1198.3696
                                                                     2627.3301
                                                                                                                                          3761.6117
```

Appendix C7 Input file for SSOH

```
NAME (name of molecule)
ssohR
COMMENTS:
b3_631qdp
TEMPERATURE
14 (Number of temperature to be read in)
298 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
ROTOR
     number of internal rotors
MOLECULAR WT
   80.94688
OPTICAL ISOMER
MULTIPLICITY
         multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x") C 0 H 1 S 2 O 1
(do not put any comments on same line as stoichiometry info) (The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                   (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
(Cpvib
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units
73.90734 386.61948 457.28657
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
 113.7685
                          289.1405
                                                    619.1974
 716.8910
                          1138.7324
                                                     3740.5306
```

Appendix C8 Input file for HSS'=O

```
NAME (name of molecule)
hssor
COMMENTS:
b3_631qdp
TEMPERATURE
14 (Number of temperature to be read in)
298 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
ROTOR
     number of internal rotors
MOLECULAR WT
  80.94688
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
           S 2
                 0 1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                  (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2 choice of moment of inertia units
65.36502 427.18318 482.59420
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
 134.7122
                        279,4806
                                                436.8018
 779.1475
                        1054.7745
                                                2657,6253
```

Appendix C9 Input file for CH₃SSOCH₃

```
NAME (name of molecule)
ch3ssoch3
COMMENTS:
b3_631gdp
TEMPERATURE
15 (Number of temperature to be read in)
298 300 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
     number of internal rotors
MOLECULAR WT
    109.98601
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
           S 2
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                 (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 q \times cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2
     choice of moment of inertia units
 301.07941
              1024.63242
                            1059.36895
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
27
79.6357
                       117.7048
                                               128.6639
173.6857
                       216.3571
                                               307.3042
390.0600
                       488.1642
                                               672.5043
680.4462
                       978.2428
                                               982.0490
1024.1045
                       1172.7697
                                               1191.7839
1360.5481
                       1471.1768
                                               1474.9933
1491.3395
                       1493.4850
                                               1513.5470
3028.4126
                       3065.1286
                                               3103.0219
3135.0324
                       3159.0975
                                               3177.2721
```

Appendix C8 Input file for 'CH₂SSO CH₃

```
NAME (name of molecule)
ch2ssoch3R
COMMENTS:
b3_631qdp
TEMPERATURE
15 (Number of temperature to be read in)
298 300 400 500 600 800 1000 1500 2000 2500 3000 3500 4000 4500 5000
     number of internal rotors
MOLECULAR WT
 108.97818
OPTICAL ISOMER
MULTIPLICITY
        multiplicity of molecular specie of interest
HF298
STOICHIOMETRY (in form of "atom x" "number of atom x")
C 2 H 5
         S 2
                 0.1
(do not put any comments on same line as stoichiometry info)
(The stoichiometry is NOT sorted. Will write to *.lst file as is).
!RSCALING FACTOR (Uses Scott & Radom's scaling factors)
                  (integer input)
rem USCALING FACTOR (User define scaling factors: ZPE, Hvib, Svib,
Cpvib)
      (include decimal input)
MOMENT (1)=10 e-40 g*cm^2 (2)=GHz (3)=amu-Bohr^2 (4)=amu-Angstrom^2
     choice of moment of inertia units
 279.50475
               1002.33060
                             1050.05231
SYMMETRY
NON-LINEAR
FREQ (The format for the frequencies is not important. Units are cm-1)
24
72.0287
                        110.7656
                                                 161.1584
184.4265
                        234.8998
                                                 301.4647
381.4264
                        395.9647
                                                 438.5836
681.6228
                        787.8439
                                                 932.9218
1022.3041
                        1171.4344
                                                 1191.6399
1411.8400
                        1470.7677
                                                 1493.5175
1511.3972
                        3030.7401
                                                 3106.5201
3138.8946
                        3170.4748
                                                 3304.1719
```

APPENDIX D

INPUT FILES FOR INTERNAL ROTOR CONTRIBUTIONS CALCULATED BY ROTATOR PROGRAM

Input files to the program ROTATOR for the species presented in this thesis

Appendix D1 Input file for C-S rotor in CH₃SSOH

```
ir2-ch3ssoh,
    1
              6
                                   0.000000 0.000000
                                                          0.000000
    2
             16
                                   0.000000 0.000000
                                                          1.838330
    3
                                   1.021228 0.000000
              1
                                                          -0.383030
              1
                                                          -0.307335
    4
                                  -0.508696 -0.917731
    5
              1
                                  -0.548965 0.864288
                                                          -0.374868
    6
             16
                                   1.016469
                                              1.717651
                                                          2.331472
    7
              8
                                  -0.105164
                                               2.986051
                                                          2.224826
    8
              1
                                  -0.570658
                                               3.017061
                                                           3.075826
1 2
1 .3
3 4 5
2 3
6 7 8
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
0 0 1
1
300
0.5740
0.0100
                             -6.9454e-3
-0.0346
                             0.0757
0.5484
                             0.0403
0.0284
                             0.0877
-0.0202
                             -2.6755e-3
298. 500.
1200. 1500. 2000.
3000. 4000. 5000.
```

Appendix D2 Input file for C-S rotor in CH₃SS=O

```
ir1-ch3ssoR,
                                                      0.000000
   1
              6
                                0.000000 0.000000
   2
             16
                                0.000000 0.000000
                                                      1.830454
   3
              1
                                1.020883
                                         0.000000 -0.384407
   4
              1
                                         -0.899226
                               -0.527416
                                                      -0.320962
   5
             1
                               -0.538627
                                         0.884769
                                                     -0.349652
   6
             16
                               -0.066573
                                           2.124490
                                                      2.172524
   7
              8
                               -0.668542
                                            2.807590
                                                      0.958915
1 2
1 3
3 4 5
2 2
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
0 0 1
1
300
5
0.1212
-2.6530e-4
                -0.0183
0.0113
                -6.7677e-3
-0.1668
                -2.4959e-3
-0.0109
                 5.0150e-3
9.3293e-4
                 -3.6172e-3
298. 500.
1200. 1500. 2000.
3000. 4000. 5000.
```

Appendix D3 Input file for S-S rotor in CH₃SS'=O

```
ir2-ch3ssoR,
                                                         0.000000
              6
    1
                                    0.000000 0.000000
    2
             16
                                    0.000000 0.000000 1.830655
    3
              1
                                    1.035965 0.000000 -0.349339
    4
              1
                                   -0.531750 -0.871538
                                                         -0.384183
    5
              1
                                   -0.493091
                                              0.918341
                                                          -0.321405
    6
             16
                                    1.859101 -1.028936 2.173626
    7
             8
                                    2.759955 -0.849559
                                                          0.966082
5 2
5 1
7
2 4
1 3 4 5
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
1
300
5
1.4421
-1.4622
                       8.1698e-4
-0.1484
                       -4.4156e-4
0.1195
                       -2.1822e-3
0.0689
                       -4.9195e-3
0.0445
                       -2.0914e-3
298. 500.
1200. 1500. 2000.
3000. 4000. 5000.
```

Appendix D4 Input file for C-S rotor in 'CH2SSOH

```
ir3-ch2ssohR,
7
    1
              6
                                    0.000000
                                                0.000000 0.000000
    2
             16
                                    0.000000
                                                0.000000
                                                           1.727891
    3
             1
                                    0.928753
                                                0.000000 -0.556813
    4
             1
                                   -0.960355 0.010657 -0.501295
    5
             16
                                    1.746443 0.997322
                                                           2.288431
                                    1.430669
    6
              8
                                                2.655766
                                                            2.161474
    7
              1
                                    1.019902
                                                2.926567
                                                            2.998353
2 1
2 3
5 6 7
1 2
3 4
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
1
300
5
0.7447
0.0265
                       0.0148
                       -1.2600e-3
-0.9031
-0.0312
                      0.0111
0.5953
                      -0.0736
7.4927e-3
                       -0.0233
11
298. 500.
1200. 1500. 2000. 2500.
3000. 3500. 4000. 4500. 5000.
```

Appendix D5 Input file for C-S rotor in CH₃SS(=O)H

```
ir1-ch3ss(=0)h,
    1
               6
                                   -1.074665 -0.530778
                                                          -1.441878
             16
                                   -1.060507 -0.548772
    2
                                                          0.388420
    3
              1
                                               -0.537290
                                                           -1.790236
                                    -0.036938
    4
              1
                                   -1.566695 -1.447226
                                                          -1.771518
    5
              1
                                   -1.606279
                                               0.340901
                                                          -1.828391
    6
             16
                                    0.762347
                                               0.621700
                                                           0.662039
    7
              8
                                    1.784969
                                                0.235719
                                                          -0.370436
    8
              1
                                    0.148709
                                                1.775695
                                                          0.197548
1 2
1 3
3 4 5
2 3
6 7 8
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
0 0 1
1
300
5
0.9010
0.0208
                 -0.0224
0.0279
                 -7.3164e-3
0.1599
                 -0.9447
0.0155
                 -5.4215e-3
0.0187
                  0.0240
7
298. 1000.
1100. 1200.
2000. 3000. 5000.
```

Appendix D6 Input file for S-O rotor in SSOH

```
ir1-ssohR,
    1
              16
                                    -0.359636 0.016941 -1.308875
                                    -0.359709 0.018286 0.646419
1.224228 0.016599 1.226978
    2
             16
    3
               8
                                     1.715688 -0.696431 0.783462
    4
              1
3 2
3 1
4
2 1
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
1
300
5
0.8122
-1.1443
                 4.6909e-5
0.4401
                  -8.5452e-4
0.0192
                 1.7297e-4
-0.0189
                 -8.5177e-5
5.9529e-3
              -2.6096e-4
8
298. 500.
1200. 1500. 2000.
3000. 4000. 5000.
```

Appendix D7 Input file for S-S rotor in HSS=O

```
ir1-hssoR,
   1
             16
                           0
                                  -1.303322 -0.372274 0.306457
   2
             1
                          0
                                  -1.233195
                                              0.351112 1.446250
   3
             16
                          0
                                   0.523705
                                              0.372143 -0.544771
                                              -0.043628
   4
                          0
                                   1.713384
                                                         0.295845
             8
1 3
1 1
3 1
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
0 0 1
1
300
0.7811
-0.6056
               1.1455e-3
0.5245
                -2.6605e-4
                1.1607e-4
0.2071
0.0312
                -5.8052e-4
0.0182
               3.0662e-4
2000. 2500
3000. 3500
4000. 4500. 5000.
```

Appendix D8 Input file for C-S rotor in CH₃SSOCH₃

```
ir1-ch3ssoch3,
    1
              6
                                   0.209402
                                             -1.453444
                                                          -1.903967
    2
              16
                                  -0.421660 -1.309025
                                                          -0.182711
    3
              1
                                   1.262092 -1.738978
                                                          -1.902778
    4
              1
                                  -0.383946
                                              -2.235609
                                                          -2.385201
    5
              1
                                   0.070685
                                             -0.511187
                                                          -2.434780
    6
              16
                                   0.790691
                                              0.127566
                                                          0.661873
    7
              8
                                   0.170923
                                              1.625426
                                                           0.182145
    8
              6
                                  -0.956980
                                               2.078528
                                                           0.942631
   9
              1
                                  -0.728948 2.118233
                                                           2.013543
   10
              1
                                  -1.178603 3.083635
                                                          0.574737
                                  -1.827689 1.433330 0.778742
   11
              1
1 2
1 3
3 4 5
2 6
6 7 8 9 10 11
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
0 0 1
1
300
5
0.5385
0.0136
                 -1.5195e-3
9.4083e-3
                 -4.1907e-3
0.5410
                 -0.0745
-0.0116
                 -2.5840e-3
-0.0118
                 2.2126e-4
8
298. 500.
1200. 1500. 2000.
3000. 4000. 5000.
```

Appendix D9 Input file for C-O rotor in CH₃SSOCH₃

```
ir3-ch3ssoch3,
     1
                 6
                                           0.209402
                                                      -1.453444 -1.903967
     2
                16
                                          -0.421660 -1.309025 -0.182711
     3
                 1
                                          1.262092 -1.738978 -1.902778
     4
                 1
                                                      -2.235609
                                          -0.383946
                                                                       -2.385201
     5
                 1
                                          0.070685 -0.511187
                                                                      -2.434780
     6
                16
                                          0.790691 0.127566
                                                                      0.661873
     7
                 8
                                          0.170923
                                                        1.625426
                                                                       0.182145
     8
                                                      2.078528
                 6
                                          -0.956980
                                                                       0.942631

      -0.728948
      2.118233
      2.013543

      -1.178603
      3.083635
      0.574737

      -1.827689
      1.433330
      0.778742

    9
                 1
   10
                 1
   11
                1
7 8
8 3
9 10 11
7 6
1 2 3 4 5 6
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
1
300
5
0.8599
8.8397e-3
                    -2.8943e-3
0.0235
                     -0.0105
0.8130
                     -0.2503
-0.0237
                    5.9197e-3
-9.2276e-3
                   1.6039e-3
7
298. 1000.
1100. 1200.
2000. 3000. 5000.
```

Appendix D10 Input file for C-S rotor in 'CH2SSOCH3

```
ir1-ch2ssoch3,
10
    1
              6
                                  0.876402
                                             1.128235 -1.926119
    2
              16
                                              1.129990 -0.198098
                                  0.866841
    3
              1
                                  1.836991
                                             1.063502 -2.423014
    4
              1
                                 -0.047870
                                             1.179080 -2.488107
    5
             16
                                 -0.941058
                                             0.224030 0.348047
    6
              8
                                 -0.729282
                                             -1.440990
                                                        0.196134
                                             -2.068099
    7
              6
                                 -0.059162
                                                          1.299493
              1
                                             -1.857953
    8
                                 -0.565585
                                                         2.247696
    9
              1
                                 -0.090179
                                             -3.140654
                                                          1.092500
   10
              1
                                  0.984928
                                             -1.741184
                                                          1.362431
1 2
1 2
3 4
2 6
5 6 7 8 9 10
V(x) = A + B * COS(nx) + C * SIN(nx) b3lyp/6-31G(d,p)
1
300
5
0.6432
-0.0684
           0.1407
-0.3282
           -0.6216
0.1448
           -0.0137
-0.1527
           0.3971
-0.0555
           -0.1084
10
298. 500. 1000.
2000. 2500. 3000.
3500. 400. 4500. 5000.
```

Appendix D11 Input file for C-O rotor in 'CH2SSOCH3

```
ir4-ch3ssoch3,
10
    1
              6
                                  0.876402
                                              1.128235 -1.926119
    2
              16
                                  0.866841
                                              1.129990
                                                         -0.198098
    3
              1
                                  1.836991
                                             1.063502 -2.423014
    4
              1
                                 -0.047870
                                             1.179080 -2.488107
    5
              16
                                 -0.941058
                                             0.224030
                                                         0.348047
    6
              8
                                 -0.729282
                                             -1.440990
                                                          0.196134
    7
              6
                                 -0.059162
                                             -2.068099
                                                         1.299493
    8
              1
                                 -0.565585
                                             -1.857953
                                                         2.247696
    9
              1
                                 -0.090179
                                             -3.140654
                                                          1.092500
   10
               1
                                  0.984928
                                             -1.741184
                                                          1.362431
6 7
6 5
5 2 1 3 4
7 3
8 9 10
V(x) = A + B * COS(nx) + C * SIN(nx)  b3lyp/6-31G(d,p)
1
300
5
0.8728
-0.0892
          0.1389
-0.0966
         -0.1439
          0.6430
0.4343
0.0824
          0.0994
-0.0485
           0.0561
10
298. 500. 1000.
2000. 2500. 3000.
3500. 400. 4500. 5000.
```

APPENDIX E

OPTIMIZED Z-MATRIX FROM B3LYP/6-31G (d, p)

Optimized Z-matrix for the species presented in this thesis

Appendix E1 Optimized Z-matrix from B3LYP/6-31G (d, p) for CH_3SSOH, CH_3SS(=O)H, CH_3SS'=O and 'CH_2SSOH

CH ₃ SSOH	CH ₃ SS (=O) H	CH ₃ SS·=O	·CH ₂ SSOH
С	C	С	C
S,1,r21	S,1,B1	S,1,r21	S,1,r21
H,1,r31,2,a312	H,1,B2,2,A1	H,1,r31,2,a312	H,1,r31,2,a312
H,1,r41,2,a412,3,d4123,0	H,1,B3,2,A2,3,D1,0	H,1,r41,2,a412,3,d4123,0	H,1,r41,2,a412,3,d4123
H,1,r51,2,a512,3,d5123,0	H,1,B4,2,A3,4,D2,0	H,1,r51,2,a512,3,d5123,0	S,2,r52,1,a521,3,d5213
S,2,r62,1,a621,3,d6213,0	S,2,B5,1,A4,4,D3,0	S,2,r62,1,a621,3,d6213,0	0,5,r65,2,a652,1,d6521
0,6,r76,2,a762,1,d7621,0	O,6,B6,2,A5,1,D4,0	0,6,r76,2,a762,1,d7621,0	H,6,r76,5,a765,1,d7651
H,7,r87,6,a876,2,d8762,0	H,6,B7,2,A6,1,D5,0	Variables:	Variables:
Variables:	Variables:	r21=1.83078171	r21=1.7278414
r21=1.8383301	B1=1.83044132	r31=1.09084113	r31=1.08287113
r31=1.0906966	B2=1.09465741	r41=1.09075295	r41=1.0833634
r41=1.09336966	B3=1.09116124	r51=1.09311219	r52=2.08774626
r51=1.0903591	B4=1.09171001	r62=2.15321433	r65=1.69295234
r62=2.05589967	B5=2.18349949	r76=1.51683246	r76=0.97078554
r76=1.69654726	B6=1.50357617	a312=110.67512011	a312=120.93898566
r87=0.97048773	B7=1.387087	a412=107.04971634	a412=117.55819478
a312=110.55946989	A1=108.10860497	a512=108.66665978	a521=105.60482961
a412=106.32526784	A2=107.29600786	a621=99.13115752	a652=106.97590872
a512=110.10870109	A3=111.44646049	a762=109.23119195	a765=106.71281175
a621=103.87868449	A4=97.26680918	d4123=120.33493489	d4123=-179.24478202
a762=106.4202714	A5=110.12882626	d5123=-121.44306616	d5213=29.72892473
a876=106.61129892	A6=91.9877312	d6213=91.79484477	d6521=80.45428996
d4123=118.99948802	D1=117.47958913	d7621=24.46236303	d7651=118.45973984
d5123=-122.42227841	D2=120.6304162		
d6213=59.38385256	D3=150.82002628		
d7621=81.93370196	D4=-39.1412079		
d8762=84.948916	D5=69.27499323		

Appendix E2 Optimized Z-matrix from B3LYP/6-31G (d, p) for HSSOH, HSS(=O)H, HSS=O and SSOH

нѕѕон	HSS (=0) H	HSS:=0	·sson
S	S	S	S
H,1,r21	H,1,B1	H,1,r21	S,1,r21
S,1,r31,2,a312	S,1,B2,2,A1	S,1,r31,2,a312	0,2,r32,1,a321
0,3,r43,1,a431,2,d4312,0	H,3,B3,1,A2,2,D1,0	O,3,r43,2,a432,1,d4321,0	H,3,r43,2,a432,1,d4321
H,4,r54,3,a543,1,d5431,0	O,3,B4,1,A3,2,D2,0	Variables:	Variables:
Variables:	Variables:	r21=1.35178851	r21=1.95529458
r21=1.3550719	B1=1.34977143	r31=2.14866759	r32=1.6869813
r31=2.0747551	B2=2.19967835	r43=1.51487236	r43=0.9729604
r43=1.68787042	B3=1.38791536	a312=95.99982656	a321=110.12714298
r54=0.9707062	B4=1.49277934	a432=95.81726132	a432=108.54945343
a312=99.8904746	A1=93.70459039	d4321=-121.80423762	d4321=-50.53127601
a431=106.15843093	A2=85.33722116		
a543=106.89533992	A3=114.04808667		
d4312=-84.0067879	D1=-164.28121575		
d5431=-85.50705504	D2=87.25604374		

Appendix E3 Optimized Z-matrix from B3LYP/6-31G (d, p) for $CH_3SSOCH_3,$ and $^{\circ}CH_2SSOCH_3$

CH ₃ SSOCH ₃	·CH ₂ SSOCH ₃
С	С
S,1,r21	S,1,r21
H,1,r31,2,a312	H,1,r31,2,a312
H,1,r41,2,a412,3,d4123,0	H,1,r41,2,a412,3,d4123,0
H,1,r51,2,a512,3,d5123,0	S,2,r52,1,a521,3,d5213,0
S,2,r62,1,a621,3,d6213,0	0,5,r65,2,a652,1,d6521,0
0,6,r76,2,a762,1,d7621,0	C,6,r76,5,a765,2,d7652,0
C,7,r87,6,a876,2,d8762,0	H,7,r87,6,a876,5,d8765,0
H,8,r98,7,a987,6,d9876,0	H,7,r97,6,a976,5,d9765,0
, , , , , , , , , , , , , , , , , , , ,	
H,8,r108,7,a1087,9,d10879,0	H,7,r107,6,a1076,5,d10765,0
H,8,r118,7,a1187,10,d118710,0	Variables:
Variables:	r21=1.72804774
r21=1.83897105	r31=1.08343336
r31=1.09072811	r41=1.0829097
r41=1.09335654	r52=2.09464516
r51=1.09034582	r65=1.68529392
r62=2.06080372	r76=1.43517514
r76=1.69051346	r87=1.0953148
r87=1.43380858	r97=1.09278651
r98=1.09564018	r107=1.09588254
r108=1.09302485	a312=117.61893671
r118=1.09602587	a412=120.94291261
a312=110.53205938	a521=105.3708621
a412=106.37497653	a652=107.17836951
a512=110.12949396	a765=114.90244465
a621=103.67806846	a876=111.45814609
a762=106.59966892	a976=105.66366857
a876=114.70098195	a1076=111.01804293
a987=111.47863287	d4123=179.33699173
a1087=105.75789719	d5213=-149.49492973
a1187=111.07528011	d6521=79.35793814
d4123=119.01798616	d7652=80.84144456
d5123=-122.33115009	d8765=55.36918582
d6213=58.99815532	d9765=174.62390166
d7621=81.49107467	d10765=-66.97230467
d8762=80.44689271	
d9876=55.85046488	
d10879=119.22800082	
d118710=118.43188017	

APPENDIX F

LIST OF ENERGIES CALCULATED USING B3LYP/6-31G (d, p), B3LYP/6-311++G (3df, 2p) AND CBS-QB3

List of energies for the parent and reference species presented in this thesis

Appendix F1 List of Energies for the Parent Species

Energy in Hartrees

Species	B3LYP/6-31G (d, p)	B3LYP/6-311++G (3df, 2p)	CBS-QB3
CH_3SSOH	-912.0404383	-912.162441	-911.03635
$CH_3SS (=O) H$	-912.0022002	-912:1361146	-911.01168
CH ₃ SS'=O	-911.4252196	-911.5505085	-910.425023
·CH ₂ SSOH	-911.3877641	-911.5131084	-910.383028
HSSOH	-872.7510126	-872.8633697	-871.810461
HSS(=O)H	-872.7144868	-872.8404051	-871.788268
HSS'=O	-872.1359678	-872.2525627	-871.200048
'SSOH	-872.1479125	-872.2608154	-871.207396
CH_3SSOCH_3	-951.3179301	-951.4476475	-950.247667
·CH ₂ SSOCH ₃	-950.6644836	-950.7973246	-949.594152

Appendix F2 List of Energies for the Reference Species

Energy in Hartrees

Species	B3LYP/6-31G (d, p)	B3LYP/6-311++G (3df, 2p)	CBS-QB3
C ₂ H ₆	-79.76083556	-79.78359386	-79.626119
CH_4	-40.476056	-40.4887964	-40.406185
HSH	-399.3730069	-399.4103369	-398.931111
CH ₃ SH	-438.6557805	-438.7025704	-438.148253
CH ₃ OH	-115.6693117	-115.7182667	-115.535673
CH_3SSH	-836.8364619	-836.9194279	-835.902689
CH ₃ SCH ₃	-477.9419497	-477.9982167	-477.370613
CH3SOH	-513.8381582	-513.9237902	-513.269424
C_2H_5OH	-154.9676045	-155.0263811	-154.76488
HSSH	-797.5482012	-797.6219347	-796.67016
CH_3S (=0) H	-513.8105466	-513.9098372	-513.256135
C_2H_5SH	-477.943607	-478.000682	-477.373385
HSOH	-474.5451671	-474.6209277	-474.040578
CH_3SSCH_3	-876.1240896	-876.2172421	-875.118794
$CH_3SC_2H_5$	-517.2295132	-517.2963094	-516.595738
CH3O.	-115.0147854	-115.059384	-114.870514
C_2H_5O .	-154.309699	-154.3638915	-154.100554
$CH_3S = 0$	-513.2329902	-513.3224486	-512.667759
CH_3S .	-438.0249479	-438.0686994	-437.512066
·CH ₂ SH	-438.0044424	-438.0551627	-437.498456
CH_3C ·HSH	-477.2968692	-477.3568315	-476.725965
HS'=O	-473.9336888	-474.0023138	-473.432549
·SH	-398.7340004	-398.7340004	-398.287356
$^{\circ}\text{CH}_2\text{SCH}_3$	-477.2925245	-477.3532173	-476.722804

REFERENCES

- 1. Bates T. S, Lamb B. K, A.Guenther, Dignon J, Stoiber R. E, Sulfur Emissions to the Atmosphere from Natural Sources, Journal of Atmospheric Chemistry, 14, 315-337, 1992.
- 2. Masahiro Utiyama, Tsutoma Fukuyama, Kazuhiko Sakamoto, Hidekazu Ishihara, Atsuyuki Sorimachi, Takeshi Tanonaka, Xuhui Dong, Hao Quan, Wei Wang and Dagang Tang, Atmospheric Environment, Vol 39, Issue 2, January 2005, pp 329-335.
- 3. Li Zhu and J. W. Bozzelli, The Multi-Channel Reaction of CH₃S+3O2: Thermochemistry and kinetic barriers, Journal of Molecular Structure: Thermochem 728 (2005) 147-157.
- 4. Environmental Health Perspectives Volume 102, Number 2, February 1994.
- 5. Xiaoyan Li, Hongmin Fan, Lingpeng Meng, Yanli Zeng, Shijun Zheng, Theoretical Investigation on Stability and Isomerizations of CH(3)SO Isomers., Dec 2007, 111(12) 2343-2350.
- 6. Rubik Asatryan. Joseph W. Bozzelli, John M.Simmie, Thermochemistry for Enthalpies and Reaction Paths of Nitrous Acid Isomers, International Journal of Chemical Kinetics 39: 378-398, 2007.
- 7. Li Zhu and J.W Bozzelli, Reaction Paths, Kinetics and Thermochemical Properties of Thioformyl Radical with O2 Reaction, 5th US combustion meeting, 2007.
- 8. Sheng C, Ph.D. Dissertation. Department of Chemical Engineering, New Jersey Institute of Technology, Newark, NJ, 2002.
- 9. T.H Lay, Krasnoperov, L.N, Venanzi, C.A, Bozzelli, J.W.J.Phys, Chem.1996, 100, 8240.
- 10. Shokhirev N.V, University of Arizona, Tempe, Arizona, http://www.chem.arizona.edu/faculty/walk/nikolai/programs.html#programs.
- 11. Cox J.D, D.D.Wagman, V.A. Medvedev, CODATA key values for Thermodynamics, Hemisphere Publishing Corp., New York, 1984.
- 12. Hynes A. J, Wine P. H, Kinetics and Mechanisms of the Oxidation of Gaseous Sulfur Compounds, in: Gas-Phase Combustion Chemistry, ed. W.C. Gardiner, Jr., 1999, Springer-Verlag, NY, 1999, pp. 343-388.
- 13. F. Jin, J.W.Bozzelli, 2004, CBS-QB3 method, M.S. Thesis in Chemistry, New Jersey Institute of Technology, Newark, NJ, 2003.

- 14. Turecek. F, J. Phys. Chem., 1994, 98, 3701.
- 15. Florent Domine, Timothy P.Murrells, and Carleton J. Howard, Hanes, Kinetics of the Reactions of NO₂ with CH₃S, CH₃SO,CH₃SS and CH₃SSO at 297K and 1 Torr, J.T.J. Phys.Chem. 1990, 94, 2736.
- 16. Chase M.W, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.
- 17. Pittam D.A, Pilcher. G, Measurements of Heats of Combustion by Flame Calorimetry. Part 8.-Methane, ethane, propane, n-butane and 2-methylpropane, J. Chem. Soc. Faraday Trans. 1, 1972, 68, 2224-2229.
- 18. Tsang W, Heats of Formation of Organic Free Radicals by Kinetic Methods in Energetics of Organic Free Radicals, Martinho Simoes, J.A, Greenberg, A, Liebman, J.F., eds., Blackie Academic and Professional, London, 1996, 22-58.
- 19. Green J.H.S, Revision of the values of the heats of formation of normal alcohols, Chem. Ind. (London), 1960, 1215-1216.
- 20. Good W.D, Lacina. J.L, McCullough J.P, Methanethiol and Carbon disulfide: Heats of Combustion and Formation by Rotating-bomb Calorimetry, J. Phys. Chem., 1961, 65, 2229-2231.
- 21. Liming Wang, Jingsong Zhang, Ab initio Calculations on Thermochemistry of CH₃SOxH (x=1-3) and H₂SOy (y=2,3), Journal of Molecular Structure (Theochem) 581 (2002) 129-138.
- 22. Chase M.W, Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951.
- 23. (a) Schurath, U, Weber, M Becker, K.H.J. Chem. Phys. 1977,67,110.(b) Iraqi, M, Goldberg N, Schwarz H.J. Phys. Chem. 1994, 98,2015. (c) Bowie J.H, Stringer M. B, Haynes R. N. Rapid Commun. Mass Spectrom. 1990, 4, 129. (d) O'Hair, R.A.J, Depuy, C.H.Bierbaum, V.M.J. Phys. Chem. 1993,75,7955.
- 24. Giulia de Petris, Marzio Rosi, and Anna Troiani, SSOH and HSSO Radicals: An Experimental and Theoretical Study of $[S_2OH]^{0/+/-}$ species, J. Phys. Chem. A 2007, 111, 6526-6533.
- (a) Decker B.K, Adams N.G. Int. J. Mass Spectrum. Ion Process. 1997, 165/166, 257.
 (b) Decker B.K, Adams N.G, Babcock L.M. Int. J. Mass Spectrom. 1999, 185/186/187, 727.
- 26. (a) Block E, O'Connor, J.J Am. Chem. Soc. 1974, 96, 3921. (b) Schmidth H, Steudel R, Sulzle D, Schwarz H, Inorg. Chem. 1992, 31, 941.
- 27. Justin Jee and Fu-Ming Tao, J. Phys. Chem., 2006, 110, 7682 7689.