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ABSTRACT

FRACTURE HEALING: THE EFFECTS OF LOCAL INSULIN DELIVERY VIA
CALCIUM SULFATE AND TRICALCIUM PHOSPHATE

by
Sarah Elizabeth Buchala

Previous studies have documented the major role played by insulin in osseous healing,

This is the first study to examine local intramedullary insulin delivery to the fracture site

and its effect upon the normal fracture healing process. Preceding results show that when

administered at the fracture site of the impaired fracture healing model of the diabetic BB

Wistar rat, insulin will regulate early cellular proliferation and chondrogenesis and late

mineralized tissue, cartilage content and mechanical strength.

In this study, two novel delivery vehicles have been evaluated for sustained

insulin release in the normal fracture model of the BB Wistar rat. Calcium sulfate and

tri-calcium phosphate have osteoconductive properties that support bone growth. These

materials served as carriers to provide continuous insulin release at the fracture site. The

vehicles were evaluated for insulin content at days 2, 4 and 7 and normalized to the total

systemic protein content of the animal. Calcium sulfate shows an early burst of insulin

release and sustained amounts of insulin throughout the 7 day study. The local treatment

of insulin does not affect the animals' systemic insulin levels. Histomorphometric

analysis shows a significant difference in new bone content in the fracture calluses that

received insulin treatment as compared to control groups. The study concludes that

calcium sulfate could be a promising vehicle for local insulin delivery and improvement

of the fracture healing process in healthy patients.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The following study is an initial attempt to examine the efficacy of local insulin treatment

and its effects upon normal fracture healing parameters. Two novel biocompatible

vehicles will be used for the intramedullary delivery of insulin to a fracture site. Studies

have shown the critical role that insulin plays in fracture healing. This study will

examine the ability of both calcium sulfate and tricalcium phosphate to serve as vehicles

for continuous release of insulin to the fracture site from day 0-7, the inflammatory and

early proliferative phase. We hypothesize that these osteoinductive biomaterials will

sustain a continuous release of insulin.

1.2 Fracture Healing

Vascularization and intricate cellular architecture enables bone to remodel and regenerate

throughout an individual's lifetime. The complex process of fracture healing occurs in

several phases, The early phase of cellular proliferation is initiated by bleeding at the

fracture site. Activated platelets trigger an influx of inflammatory cells. The platelets

secrete signaling factors which lead fibroblasts, endothelial cells and osteoblasts into the

fracture gap. This is the onset of the proliferative phase during which osteoprogenitor

and undifferentiated mesenchymal cells migrate to the fracture site. These cells then

proliferate and ultimately differentiate through either osteogenic or chondrogenic

pathways. The proliferative phase is critical to successful fracture callus formation. The

1
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osteoblasts at the site produce intramembranous bone while chondroblasts temporarily

stabilize the fracture through a cartilaginous intermediate. Endochondral ossification

then mineralizes the intermediate cartilage into woven boned, The final phase of fracture

healing is remodeling. Once remodeling is complete, the new tissue has similar

mechanical and structural properties as the original bone. (Gebauer, 2002)

Figure 1.1 Proliferation phase of fracture healing.
(Source: Li et al. 1999)

1.3 Insulin and its Effect on Fracture Healing

Although this study is among the first to examine insulin treatment in normal fracture

healing, it is not the first time that insulin has been used to promote bone healing. Insulin

has been shown to reverse the complications found between fracture healing and Type I

diabetes mellitus (DM). Type I DM) is an autoimmune disease that disrupts the body's

ability to produce insulin and therefore regulate glucose levels. DM is associated with a

plethora of systemic complications including fracture healing. Clinical and experimental
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documentation has shown a relationship between diabetes and impaired osseous healing

(Macey, 1989; Loder, 1988; Herbsman, 1968; Funk, 2000). Several clinical studies have

documented that the healing time for diabetic patients is approximately twice the length

of non-diabetic patients (Cozen, 1972; Loder, 1988). Animal model experimentation

suggests that the rate of cellular proliferation during fracture healing is drastically

reduced in the spontaneously diabetic BB Wistar rat as compared to the healthy BB

Wistar rats (Tyndall, 2003).

A demonstrable reduction in cellular proliferation is seen in the diabetic fracture

callus (Macey, 1989), including a decrease in collagen synthesis during the early stage of

fracture healing (Spanheimer, 1992; Topping, 1994). Although the cause of these effects

remains unknown, insulin has been shown to play a major role in repairing these

deleterious results. Insulin receptors have been identified in rat osteoblastic cells (Levy,

I986) an in vitro studies show that insulin stimulates nucleotide synthesis of osteoblasts

(Peck, 1970), proliferation of osteoblastic cells (Weiss, I980) and the production of

collagen in fetal rat calvariae ( Kream, 1985). Alternatively, Fiorelli et al. (1994)

demonstrated delayed cartilage formation and reduced ossification in an in vitro study of

an insulin deficient environment.

The UMDNJ Orthopaedic laboratory has used an in vivo model to investigate

insulin's effect on fracture healing in diabetes mellitus (DM). The DM BB Wistar rat

develops diabetes through a selective, autoimmune destruction of the pancreatic β-cells.

These animals have both genetic and immune physiologic factors comparable to type I

DM seen in humans (Beam, 2002). Beam et al. (2002) documented improved fracture

healing parameters in DM BB Wistar rats that received insulin treatment sufficient to
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achieve physiologic blood glucose control. However, that study did not isolate the

effects of insulin upon bone healing. Using the same in vivo model, Gandhi et al. (2005)

showed that local delivery of insulin at the fracture site reversed DM's effect on fracture

healing. The results show that local insulin delivery mediates early and late fracturing

healing parameters. In the early phase of fracture healing, days 0-7, the diabetic group

treated with intramedullary insulin at the fracture site showed a 60% increase in

periosteal and gap callus proliferation when compared to the diabetic group that did not

receive treatment. Gandhi et al. (2005) also showed that the local delivery of insulin did

not affect the animals' systemic blood glucose levels. This would indicate that

intramedullary insulin treatment would not affect the blood glucose levels of a non-

diabetic animal.

Studies conducted by Weiss and Reddi (1980) conclude that the timing of

incorporation of insulin to the fracture site is also important for proper healing. When

insulin is incorporated during proliferation and chondrocyte differentiation (day 0-7),

researchers found that cell proliferation in the diabetic animals increased to 81% that of

the control group. The data suggests that the absence of insulin during the proliferative

phase of healing leads to a decrease in cell proliferation and therefore a decrease in

chondrogenesis. When insulin is administered from days 4-11, mineralization

measurements in the diabetic animals is comparable to that of the control group.

Researchers conclude that insulin is necessary for proliferation, chondrogenesis,

osteogenesis and mineralization.
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In an effort to understand the mechanism by which insulin affects diabetes related

impaired bone formation, a marrow ablation model was studied (Lu et al. 2003). The

bone ablation model mimics intramembranous bone formation. The effect that diabetes

has on bone formation was substantially reversed with insulin treatment. Insulin reversed

the inhibitory effects that diabetes was found to have on the expression of bone matrix

osteocalcin and collagen type I. The results show that diabetic animals do produce

adequate amounts of immature mesenchymal tissue but without the insulin treatment, the

genes that regulate osteoblast differentiation are not adequately expressed.

These studies indicate the ability of insulin to normalize the effect of diabetes on

fracture healing. They also show the important role that insulin plays in both the early

and late parameters of fracture healing. Insulin's therapeutic effect may accelerate both

diabetic and non-diabetic bone healing.

1.4 Ceramics as Bone Graft Substitutes

Ceramics are highly crystalline materials formed by heating non-metallic mineral salts to

high temperature in a process called sintering. The most commonly utilized ceramics in

orthopaedics consist of calcium phosphate and calcium sulfate based ceramics.

The porous nature of these compounds provide an osteoconductive scaffold to which

chemotactic factors, circulating proteins (i.e. osteoinductive growth factors) and cells

(i.e., mesenchymal stem cells) can migrate and adhere. This scaffold provides critical

structure for the progenitor cells to differentiate into functioning osteoblasts. In addition

to being biocompatible and bio-resorbable, the crystalline structure of these ceramics can

be manufactured so that they are very similar to natural bone. The availability of these
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substitutes and the absence of complications that can occur in allograft-induced

immunogenic response or disease conveyance, provide an increasing incentive for their

use. In addition, the surgical complications of retrieving bone from an autologous donor

site are avoided (Arrington, 1996).

1.4.1 General Properties of Bone Substitute Ceramics

Physical properties such as pore size and porosity are critical factors of synthetic bone

graft substitutes, In order for new bone to form as the bone graft is resorbed, blood

vessels must be able to develop in the graft substitute. The pore size of the bone graft

must be large enough to allow this vascular in-growth. Studies have determined that

vascular ingrowth does not occur with pore size smaller than 15-40 microns. Osteoid

tissue forms on bone graft substitutes with pore sizes greater than 100 microns and it was

found that a pore size of 300-500 microns provides ideal vessel and tissue growth. At

one time the pore size was considered to be a critical factor for bone formation with in

these synthetic bone graft substitutes (Kuhne, 1994), but it is now thought to be porosity,

or the interconnectivity of pores, that is critical to the success of the implant (Eggli,

1988). In the absence of adequate interconnectivity, or low porosity, there is low oxygen

tension at the pore apex. The relatively poor oxygen tension hampers the differentiation

of mesenchymal cells towards osteoblast cell lineage, and the cells rather differentiate

into fibrous tissue, cartilage or fat (Nakahara, 1992).
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In vivo degradation of these cements has been another area of active research

focused on making the degradation rate more predictable and closer to rate of new bone

formation. Ideally, a bone graft substitute is expected to resorb as new bone is

synthesized and remodeled. If the rate of resorption is faster than the rate at which new

bone can be laid down, a collapse of structural integrity will occur, On the other hand if

the rate of resorption is slower, impairment of new bone formation will occur (Klein,

1983).

1.4.2 Calcium Sulfate Cement

Calcium sulfate (CaSO4) has been widely used in both medicine and dentistry for bone

regeneration as a graft material and as a barrier in guided tissue regeneration. This

biocompatible material is completely resorbed following implantation. Calcium sulfate

does not evoke a significant immune response. It creates a calcium-rich environment in

the area of implantation which is believed to provide stimulation to osteoblasts, The raw

source of calcium sulfate is abundant and inexpensive. Despite these advantages,

calcium sulfate has never attracted the same degree of research interest as have other

biomaterials. Recently, it has been applied to the areas of periodontology, sinus

augmentation, and orthopedic surgery. In order for calcium sulfate to become a more

widely used biomaterial, research should be directed toward maintaining the

biocompatibility of the material while improving its handling characteristics and strength

(Thomas et al. 2005).
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Peltier did the significant early work on calcium sulfate in bone healing and first

described his experience in a preliminary report in 1959. Later, in 1978 Peltier and Jones

reported their long term follow up results on 26 unicarmel bone cyst of whom 24 healed

without complications.

Calcium sulfate as bone graft substitute is available in two chemical forms:

Calcium sulfate hemihydrate (plaster of paris) and calcium sulfate dihydrate (gypsum).

The latter form, produced after hydration of the hemihydrate form, is chemically stable

and is available in solid shapes like pellets and blocks. The hemihydrate formulation

when mixed with diluent (water, saline or other liquids) undergoes hydration reaction and

forms a putty/paste thereby getting converted into dihydrate form. In this putty form the

calcium sulfate is injectable till it sets in as solid calcium dihyrate (gypsum). The

dihydrate form can be converted back to hemihydrate form by heating it to temperatures

above 100°C, a process known as calcination. Depending upon the rate of heating, use of

pressure while heating and addition of chemical additives during calcination the resulting

hemihydrate forms have different crystal structure and dissolution properties. Presence

of impurities like fluorine in the lattice of crystals can change the crystalline structure and

alter the biological properties of the calcium sulfate. Special care must be maintained

when processing calcium sulfate material in order to produce surgical grade calcium

sulfate with a predictable resorption rate and optimal crystalline structure to provide

osteoconductive medium for new bone growth.

Calcium sulfate resorption mechanism is not well understood but it appears that

resorption occurs by dissolution into surrounding body fluids rather than active

degradation by cellular mechanism (Bucholz, 2002; Pietrzak, 2000). Recently it has
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been suggested the calcium sulfate may not actually be osteoconductive and that new

bone formation occurs as the cement dissolves, acting perhaps just as a bone void filler

(Damien, 1991). The resorption of calcium sulfate in vivo is rapid and thus it is not

suitable for clinical situations where cement is required to provide structural support. If

used alone, it is useful for contained nonstructural defects or as an adjunct to internal

fixation devices to improve their holding strength in bone. Calcium sulfate can also be

used as a carrier for growth factors and bone morphogenic proteins in appropriate clinical

applications. Calcium sulfate's use as a delivery vehicle for growth factors and

antibiotics has not been extensively explored in the clinical setting,

1.4.3 Tricalcium Phosphate Cement

Tricalcium phosphate (TCP) is a porous, ceramic biomaterial that supports bone growth.

Its use as a bone substitute has been well documented. In a study conducted by Rejda et

al. (1977), TCP was used as a ceramic implant. The implant caused a minimal foreign

body reaction, while osteoclastic activity was shown to be involved in biodegradation.

Newly formed bone mineral was deposited directly onto the surface of the ceramic

implant.

Chouteau et al. (2003) examined the osteoconductive effects of porous calcium

phosphates, including TCP. Their work assessed the in vitro interaction of osteoblast and

fibroblast cultures on macroporous calcium-phosphate bone substitutes to analyze the

interaction between cells and bone substitute. Both osteoblast and fibroblast cellular

growth was exponential on the bone substitute. Cells spread on the surface of the material

covering macropores and colonizing the depth of the discs. The study concluded that
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even though the bone substitute was osteoconductive, the results could be improved if

osteoinductive compounds, such as growth factors or osteogenic cells, were incorporated

into the ceramic.

Calcium phosphate exists in three basic ionic combinations with phosphate-

Tribasic (Tricalcium Phosphate), Dibasic (Secondary calcium Phosphate) and

Monobasic. Of these three forms the tri-calcium phosphate (TCP) form is most

commonly used in manufacturing calcium phosphate cements. The chemical composition

of tricalcium phosphate (TCP) is (Ca3(PO4)2. TCP is an amorphous, odorless, tasteless

powder which is insoluble in water, alcohol or acetic acid and soluble in dilute HCl or

HNO3. The calcium to phosphate (Ca:P) molar ratio of TCP is 1.5. TCP is available in

two forms- alpha and beta TCP. Both are high temperature TCPs with a chemical

composition similar to amorphous TCP but are more crystalline than the latter (Termine

et al. 1970). Alpha TCP is more soluble than beta TCP and is a major component of

calcium phosphate cements.

The injectable preparation of calcium phosphate cement is prepared by mixing a

range of calcium phosphates with an aqueous solution. The resulting paste hardens to

form calcium phosphate apatite of low crystalline order and small crystal size similar to

the mineral phase of natural bone.

Brown and Chow (1983) prepared the first calcium phosphate cement that could

be constituted at room temperature by using equimolar mixture of tetracalcium phosphate

and calcium hydrogen phosphate. Initially, dicalcium phosphate dihydrate is formed with

a plate-like morphology which later yields calcium deficient hydroxyapatite. The

reaction is isothermal and avoids cell and tissue damage that would normally occur from
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the heat of the reaction. All modern formulations of cements are set by endothermic

reactions rather than exothermic reactions thereby limiting the potential for local tissue

damage.

Hardening of the cement occurs mostly within the first six hours, yielding an 80%

conversion to hydroxyapatite and a compressive strength of 50-60 MPa. Hardening can

be accelerated with phosphate solution, sodium fluoride, and sodium hydrogen

phosphate. Inclusion of porosity, with the aim to improve the osteoconductivity, can be

introduced by the addition of soluble inclusions such as sucrose, sodium hydrogen

carbonate, sodium hydrogen phosphate (Takagi. 200I). The low temperature of

formation and inherent porosity also permits the addition of antibiotics, or growth factors

that stimulate the differentiation of pre-osteoblastic cells.

Because of composition similar to natural bone apatite, the calcium phosphate

apatite cements undergo more biological degradation compared to calcium sulfate.

Experimental studies on animals have shown that after implantation the cement gets

covered by numerous multinucleated osteoclast like cells which begin to break down the

bone substitute as new bone formation begins. New bone formation by osteoblasts

progresses centripetally along the scaffold provided by the apatite cements (Welch, 2003;

Wiltfang, 2002; Sarkar, 2001). The average time of resorption of cement would depend

on many factors like composition of cement, site of implantation, patients' metabolic rate

and general health. Difficulty exists in comparing individual studies since every study has

its own protocol of obtaining specimens for observing the degradation process.



CHAPTER 2

MATERIALS AND METHODS

2.1 Animal Model

Male BB Wistar rats were obtained from the breeding colony established at the

UMDNJ-New Jersey Medical School Research Animal Facility derived originally from Health

Canada Animal Research Division (Ottawa, Canada). The animals were housed under

controlled environmental conditions and fed ad libitum. All protocols were approved by

the Institutional Animal Care and Use Committee at UMDNJ-New Jersey Medical

School.

The animals were split into two experimental groups. One group received 0.1ml

of calcium sulfate hemihydrate mixed with insulin and injected into the intrmedullary

canal and the other received 0.1ml of tri-calcium phosphate mixed with insulin and

injected into the intramedullary canal. Blood glucose levels (ACCU-CHEK Advantage,

Roche Diagnostics, Indianapolis, IN.) were checked on post surgery days 1 and 3 from

blood obtained from the tail vein of the animal.

2.2 Surgical Procedure

The animal is administered general anesthesia through intraperitoneal injection of

Ketamine (60mg/kg) and Xylazine (8mg/kg). Once sedated, the animal is shaved and

prepped with betadine and 70% alcohol.

A closed mid-diaphyseal fracture was created in the right femur of the animal

using the following modification of the methods described by Bonnarens and Einhorn. A

12
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medial parapatellar incision is made and the patella is dislocated laterally, Once exposed,

an entry hole is created with an 18 gauge needle at the interchondylar notch of the distal

femur. The femur is then reamed. The carrier is then place inside of the intremedullary

canal. A 1 mm Kirschner wire is then placed in the canal. The wire is secured into the

proximal end of the femur to assure stability. The wound was then irrigated and closed

with a 4-0 vicryl suture. The Einhorn fracture machine was then used to create a

unilateral, closed midshaft fracture. X-rays were then taken to determine whether the

fracture was of acceptable configuration. Animals that exhibit non-comminuted,

transverse fractures confirmed by radiograph are used in this study. Post-fracture, the

animals are permitted to ambulate freely.

Figure 2.1 Radiograph of closed fracture.
A closed mid-diaphyseal fracture stabilized by a 1mm Kirschner wire.
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2.3 Delivery System

Insulin was delivered to the fracture site using the carriers tri-calcium phosphate and

calcium sulfate. The carrier materials were first sterilized in glass vials in a convection

oven at 196°C for 6 hours. During the surgery, 0.8 grams of each carrier was mixed with

0.4m1 of ultralente human insulin. Prior to the insertion of the Kirschner wire, 0.Iml of

the mixture was injected into the intramedullary canal of the right femur of the animal.

2.4 Insulin Quantification

The study groups were assigned to days 2, 4 and 7. At the time of sacrifice, blood from

each animal was collected by cardiac puncture and used to determine the systemic insulin

level of the animal. The blood samples were centrifuged at 10,000 rpm for 10 minutes.

The plasma was then collected and stored at -80°C until it was used for testing. The

plasma was used to normalize the local insulin levels within the fracture to the total

systemic protein concentration of the animal using bicinchoninic acid (BCA) assay

(Pierce, Rockford, IL).

Local insulin levels were measured in both the fracture and contralateral femora

in each study group. At the time of sacrifice, both femora of the animal were resected

and the fracture callus and mid-diaphyseal region corresponding to location of the

fracture callus on the contralateral femur were isolated. The callus and corresponding

diaphysis were then flash frozen in liquid nitrogen. The frozen samples were then

pulverized and total protein content was extracted using mammalian protein extraction

reagent (MPER®) (Pierce, Rockford, IL). The extracted protein is then stored in -80°C

until testing.
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Insulin quantification of the samples was performed using a rat/mouse specific

insulin ELIZA kit (EZRMI-13K, Linco Research, Inc., St. Charles, MO). The assay and

analysis were performed in accordance with the manufacturer's instructions. This

specific kit was chosen because of its ability to detect both rat insulin and human insulin,

allowing for the contralateral leg of the animal to serve as the control. The kit was also

able detect insulin in both plasma samples and serum samples made from the callus and

corresponding mid-diaphyseal region of the control leg, This enabled the standardization

of detection of both local and systemic insulin levels in the animal.

2.5 Histomorphometry

To compare the effect of calcium sulfate alone and calcium sulfate combined with insulin

on chondrogenesis and osteogenesis in the fracture callus, histomorphometric analysis

was performed. The animals were separated into two groups. Both groups underwent the

fracture model described in Section 2.2. The control group received 0.1ml of calcium

sulfate mixed with 0.9% saline solution. The experimental group received 0.1ml of

calcium sulfate mixed with ultralente human insulin. The mixtures were injected into the

intramedullary canal of the right femur prior to fracture.

The fractured femora were resected at days 4, 7 and 10. The samples were fixed

with formalin, decalcified, embedded and sectioned using standard histological

techniques. To identify cartilage formation, the sections were stained with Weigerts iron

hematoxylin, biebrich scarlet and aniline blue using Masson's Trichrome Staining

technique. Mineralized tissue appears red-blue and cartilage appears dark blue.
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The areas of cartilage formation as a percentage of total fracture callus were

determined through histomorphometric analysis using Scion Image software (Scion Corp,

Frederick, MD). The fracture callus is defined as the region located on either side of the

cortices, external to the intramedullary marrow cavity. Digital photomicrographs of the

sections were taken using an Olympus BHZ-RFCA microscope (Olympus Optical Co,

Ltd., Shinjuku-ku, Tokyo, Japan).

Figure 2.2 Early fracture callus histology.
Slides were stained with Weigerts iron hematoxylin, biebrich scarlet and aniline blue
according to Masson's Trichrome staining protocol. Muscle tissue appears red, bone
tissue appears dark blue, cartilage appears light blue and nuclei appear black.
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Figure 2.3 Magnification of early fracture callus histology.
Using Masson's Trichrome staining and standard histological techniques the samples are
then viewed as digital photomicrographs. Above: A. Muscle tissue appears red, B. bone
tissue appears dark blue, C. cartilage appears light blue and D. nuclei appear black.
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2.6 Experimental Design

Two separate experiments were conducted in this study, insulin quantification and

histomorphometric analysis, as described in Sections 2.4 and 2.5.

Insulin quantification was the first experiment conducted. The ability of calcium

sulfate and tricalcium phosphate to continuously release insulin to the fracture site from

day 0 to 7 was examined. Twelve animals were used in each experimental group. The

experimental groups were then split into 3 time points, day 2, day 4 and day 7. Four

animals were assigned to each time point. The contralateral femur of the animal served

as the control. The total number of animals for this experiment was 24.

Table 2.1 Insulin Quantification Experimental Design

Group Day 2 Day 4 Day 7

Experimental Calcium Sulfate + Insulin
n=12

n=4 n=4 n=4

Experimental Tricalcium Phosphate + Insulin
n=12

n=4 n=4 n=4

Control Calcium Sulfate
n=12*

n=4* n=4* n=4*

Control Tricalcium Phosphate
n=12*

n=4* n=4* n=4*

Total Number of Animals n=8* n=8* n=8*
n=24*
*The contralateral leg of the animals in the experimental groups served as the control.

The second experiment used histological techniques to examine the direct effect

of insulin upon the parameters of the early fracture callus. Total callus area, cartilage

content and new bone content were compared between the experimental and control
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groups. Again, twelve animals were used in each experimental group and twelve animals

were used in the control group. Both the experimental and control groups were split into

3 time points, day 4, day 7 and day 10. Four animals were assigned to each time point.

The total number of animals for this experiment was 24.

Table 2.2 Histomorphometric Analysis Experimental Design

Group Day 4 Day 7 Day 10

Experimental Calcium Sulfate + Insulin
n=12

n=4 n=4 n=4

Control Calcium Sulfate
n=12

n=4 n=4 n=4

Total Number of Animals n=8 n=8 n=8
n=24

2.7 Statistical Analysis

An analysis was performed on the data in each study using Statistical Analysis Software

9.I (SAS®9 Carry, NC). The experimental and control groups that were assigned the

same time point were analyzed. The groups were found to be independent with normally

distributed sampling distributions and sample means. Once equality of variances was

determined, a t-test was conducted upon the data. A p-value < 0.05 was considered

statistically significant.



CHAPTER 3

RESULTS

3.1 Animal Model — General Health

The fasting blood glucose levels of the animals were measured prior to surgery and again

prior to sacrifice. The levels remained within the range that was expected for normal BB

Wistar rats throughout the duration of the study, Systemic rat insulin levels in both

groups were not affected by the intramedullary insulin delivery systems.

Table 3.1 General Animal Health

	Group	 Blood Glucose (mg/dl) 	 Weight

	

n=12	 Prior to Surgery I Time of Sacrifice 	 g
Insulin Quantification

Calcium Sulfate w/ Insulin 	 83.4 ± 17	 |	 87.2 ± 12.3	 435 ± 26.4
Tricalcium Phosphate w/ Insulin 	 80.7 ± 23 	 | 	 79.8 ± 18 	 417 ± 19

Histology

Calcium Sulfate with Insulin	 74.6f 28	 |	 89f 24.7	 398 ± 32.8
Calcium Sulfate with Saline 	 86.2 ± I6 	 | 	 80.3 ± 19 	 424 ± 29.2 
The data represent average values ± standard deviation.

3.2 Quantification of Insulin

The amount of insulin collected from the fracture sites was normalized to total protein

levels of the individual animal. The total protein levels were determined through a BCA

assay of plasma. Plasma was collected prior to sacrifice at days 2, 4 and 7.

20
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Table 3.2 Plasma Insulin Levels

Group Day 2 Day 4 Day 7

Calcium Sulfate + Insulin
n=4

938 ± 670 400f 25 806 ± 454

Tricalcium Phosphate + Insulin
n=4

442 ± 191 306 ± 131 305 ± 176

Control *
n=6

398

±

 14 381 ± 15 352 ± 11

The data represent average values ± standard deviation in pg/ml.
* Gandhi et al. 2005

The tricalcium phosphate group showed immediate release of insulin upon

injection into the intramedullary canal. All of the time points have similar amounts of

insulin at the fracture site. These levels were not significantly different from the control

group (contralateral leg). The calcium sulfate group shows a burst of insulin release in

the 2 day time point and an increase in the amount of insulin released at day 4 followed

by a smaller quantity left at the fracture site by day 7. Days 2, 4 in the calcium sulfate

group had significantly higher amounts of insulin at the fracture site as compared to the

control groups (p < 0,05).
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Table 3.3 Local Insulin Levels

Post Fracture (pg/ml) Day 2
n=4

Day 4
n=4

Day 7
n=4

Calcium Sulfate Fractured femur 149.5

±

 61.2' 373.6 ± 123 a 45.8 ± 32.7
n=12 Contralateral femur 23.8

±

 14.7 19.7 ± 3,3 31.6 ± 10.9

Tricalcium Phosphate Fractured femur 28.6 ± 9.1 36.8 ± 18.4 29.9 ± 12.1
n=12 Contralateral femur 18.7 ± 3.8 19.7 ± 2.3 23.4 + 6.0

The data represent average values ± standard deviation.
a Represents values significantly greater than groups receiving insulin via TCP and control groups.

Figure 3.1 Average local insulin levels.
Average amount of insulin found locally at the fracture site at days 2, 4 and 7 in the
calcium sulfate, calcium sulfate control, tricalcium phosphate and tricalcium phosphate
control groups. The amount of insulin released by the calcium sulfate carrier was
statistically greater than the amount of insulin released by tricalcium phosphate at days 2
and 4.
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3.3 Histomorphometry

In the first experiment, the calcium sulfate group succeeded in a sustained release of

insulin locally at the fracture site throughout the seven day study. The tricalcium

phosphate did not continuously release insulin throughout the seven day time period and

was not used in the second experiment of the study.

In the second experiment, a histomorphometric analysis was performed on a

group of animals that received calcium sulfate plus insulin at the fracture site and

compared to a group that received calcium sulfate plus saline to serve as the control

group. The femurs were resected at days 4, 7 and 10. The total callus area, percent

cartilage and percent bone that the calluses were comprised of were compared.

The total callus area of the two groups was equivalent at the three time points.

The amount of cartilage found in the calluses was also equivalent. After four days, very

little cartilage was found in the calluses of both groups. At days 7 and 10, both the CaSO 4

with Insulin group and the CaSO 4 with saline group show similar amounts of cartilage

formation.

The amount of new bone content of the fracture calluses was significantly

different in the two groups. The percent new bone content of the calluses treated with

calcium sulfate and insulin were greater than those treated with calcium sulfate alone at

all three time points (p < 0.05). This finding supports earlier studies that show insulin

promotes osteogenic differentiation in the early fracture callus (Lu et al. 2003).



Table 3.4 Histomorphometry

Total Callus Area
mm2

Day 2 Day 4 Day 7 Day 10

CaSO4 + Insulin ---- 8.75 ± 0.8 14.5 ± 5.13 18.5 ± 2.3

CaSO4 + Saline 7.68

±

 2.9 15.83

±

 4.6 13.8 ± 5.5

Systemic Insulin
Beam et al. 2002

0.84 ± 0.2 3,76 ± 1.0 11.5 ± 2.35 ----

Local Insulin
Gandhi et al. 2005

0.96 ± 0.2 4.05 ± 1.13 12.51 ± 3.0 ----

Percent Cartilage Content
(cartilage / total callus area)

Day 2 Day 4 Day 7 Day 10

CaSO4 + Insulin ---- 0 0.04 ± 0.004 0.19

±

 0.17

CaSO4 + Saline ---- 0 0.05 ± 0.014 0.13 ± 0.07

Percent Bone Content
(new bone / total callus area)

Day 2 Day 4 Day 7 Day 10

CaSO4 + Insulin ---- 0.13 ± 0.12a 0.24 ± 0.15 a 0.21 ± 0.06a

CaSO4 + Saline ---- 0.07 ± 0.05 0.12 ± 0.06 0.14 ± 0.01

The data represent average value ± standard deviation.
a Represents values that are statistically higher than control values.
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Percent New Bone Content
(New Bone/Total Callus Area)
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Figure 3.2 Percent new bone content in the fracture callus.
The amount of new bone found in the calluses of the experimental group, calcium
sulfate plus insulin, was statistically greater than the amount of new bone found in the
calluses of the control groups at the 4, 7 and 10 day time point.



CHAPTER 4

CONCLUSION

In this study, the direct effect that insulin plays on the fracture callus and fracture healing

process in normal animals was studied. This initial study is the first to be conducted in a

healthy normoglycemic animal model. Insulin's role in fracture healing has been

examined both in vitro and in vivo, but it's direct and indirect effect upon bone healing

have not been fully determined. It is clear that insulin treatment reverses impaired bone

healing in diabetic animal models. In a diabetic fracture model, systemic blood glucose

control maintained through subcutaneous insulin treatments achieved normalized early

cellular proliferation, chondrogenesis and biomechanical properties of the diabetic

fracture callus (Beam et al. 2002). However, these results do not distinguish between the

indirect actions that insulin has on blood glucose levels and its direct effect upon fracture

healing.

Gandhi et al. (2005) examined the effects of local insulin treatment upon diabetic

fracture healing by administering insulin to the fracture site through the intramedullary

canal. Immediate insulin treatment to the fracture site normalized mineralization, callus

bone content and biomechanical properties in the late diabetic callus indicating that

insulin is critical to the fracture healing process. Gandhi et al. (2005) also showed that

the local delivery of insulin did not affect the animals' systemic blood glucose levels.

This would indicate that intramedullary insulin treatment would not affect the blood

glucose levels of a non-diabetic animal.
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The current study was developed to test the hypothesis that intramedullary insulin

delivery to the fracture site in a normal healthy animal model would improve normal

fracture healing parameters without affecting the systemic insulin levels of the animal.

Research concludes that insulin is necessary in the early proliferation phase of fracture

healing which takes place during the first seven days after fracture (Gandhi et al. 2005).

Although genetic engineering has produced numerous insulin analogs which can sustain

the duration of insulin's effectiveness, the analog (ultralente) with the longest duration of

effectiveness only lasts 24-28 hours. A carrier is necessary to sustain continuous insulin

release for the duration of the proliferative phase and the length of our study. Ultralente

human insulin was combined with carriers calcium sulfate and tricalcium phosphate. The

results of the insulin quantification conducted in this study show that combination of

ultralente insulin with calcium sulfate sustained the efficacy of the insulin for seven days.

This result is consistent with studies that have shown a prolonged release rate of

antibiotics combined with calcium sulfate administered in vivo.

Histomorphometric analysis indicates that the presence of insulin in combination

with the osteoconductive ceramic calcium sulfate promotes osteogenesis in the early

fracture callus. There was significantly more new bone found in the fracture callus when

calcium sulfate combined with insulin is administered locally to the fracture site as

compared with the administration of calcium sulfate alone. Further studies should be

conducted to determine the effects that this novel biocompatible carrier has on the late

parameters of fracture healing, including mineralized tissue content, cartilage content and

mechanical strength.
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Pending its effects upon the late parameters of fracture healing in the normal

animal model, administration of insulin at the fracture site has invaluable indications.

Intramedullary insulin therapy may lead to a reduction in recovery time in patients with

bone deficiencies, such as the elderly and osteoporotic, as well as in healthy individuals.

The relief of pain and restoration of mobility would enhance the quality of life for

patients. Injury time for collegiate and professional athletes can be shortened, allowing

for a quick return to the field. Accelerated fracture healing would reduce medical costs

and prevent long-term disability caused by fracture nonunion.
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