Modeling of magnetic field driven simultaneous assembly

Rene David Rivero

New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Other Physics Commons

Recommended Citation
https://digitalcommons.njit.edu/dissertations/243

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be “used for any purpose other than private study, scholarship, or research.” If a user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of “fair use” that user may be liable for copyright infringement.

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select “Pages from: first page # to: last page #” on the print dialog screen
The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
ABSTRACT

MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

by
Rene David Rivero

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a method that offers a non-statistical and deterministic solution to the problem of assembly via batch processing; a hybrid of serial and parallel processing. The technique requires the use of electromagnets as well as soft and hard magnetic materials that are applied to devices and recesses respectively. The MFDSA approach offers the ability to check and correct errors in real-time and is capable of scalable, versatile, and high-yield integration.

Devices, coated with a layer of soft magnetic material, are moved from initial to final positions along predetermined pathways through the action of an array of electromagnets. Various devices, of arbitrary geometries, with different physical and functional properties, are manipulated simultaneously toward specific desired locations and then dropped onto a template under the influence of gravity by weakening the local applied field. Locations on the template correspond to sites on a substrate that contain recesses. When a number of devices have been dropped onto the template, a substrate is pressed onto it and the soft magnetic layers on the devices adhere to the hard magnetic strips in the recesses, completing integration in a single step.
The objectives of this dissertation are the following: to present the MFDSA method; comparing and contrasting it with other extant techniques employed by the semiconductor industry; to discuss key aspects of this solution with respect to the problem of assembly, and to model the calculations involved with determining both device pathways and field interactions that are required to implement the approach. The Fourier Series technique will be used to describe the force of attraction between the device's soft magnetic layer and the recess's hard magnetic strips. Methodology from finite element analysis will be employed to calculate the force exerted on a device by an array of electromagnets. The Swarm Algorithm, which was developed in this work to calculate device pathways, will be presented as a stable, well-defined solution.

Other concepts, such as the magnetic retention factor and the collision cross-section area, will be presented and developed. The solution to the problem of assembly, via the Swarm Algorithm, will be compared and contrasted with other analogous problems found in the literature. The results of these models, including software implementation, will be presented.
MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

by

Rene David Rivero

A Dissertation
Submitted to the Faculty of
New Jersey Institute of Technology
and Rutgers, The State University of New Jersey – Newark
in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Applied Physics

Federated Department of Physics

January 2011
APPROVAL PAGE

MODELING OF MAGNETIC FIELD DRIVEN SIMULTANEOUS ASSEMBLY

Rene David Rivero

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Institution</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Nuggehalli M. Ravindra</td>
<td>Dissertation Advisor</td>
<td>Professor and Chair of Physics, NJIT</td>
<td></td>
</tr>
<tr>
<td>Dr. Michael R. Booty</td>
<td>Committee Member</td>
<td>Professor of Mathematics, NJIT</td>
<td></td>
</tr>
<tr>
<td>Dr. Anthony T. Fiory</td>
<td>Committee Member</td>
<td>Research Professor of Physics, NJIT</td>
<td></td>
</tr>
<tr>
<td>Dr. Martin Schaden</td>
<td>Committee Member</td>
<td>Associate Professor of Physics, Rutgers, The State University of New Jersey – Newark</td>
<td></td>
</tr>
<tr>
<td>Dr. Vitaly Shneidman</td>
<td>Committee Member</td>
<td>Senior University Lecturer of Physics, NJIT</td>
<td></td>
</tr>
</tbody>
</table>
BIOGRAPHICAL SKETCH

Author: Rene David Rivero
Degree: Doctor of Philosophy
Date: January 2011

Undergraduate and Graduate Education:

- Doctor of Philosophy in Applied Physics, New Jersey Institute of Technology, Newark, NJ, 2011
- Master of Science in Applied Physics, New Jersey Institute of Technology, Newark, NJ, 2007
- Bachelor of Science in Applied Physics, New Jersey Institute of Technology, Newark, NJ, 2001

Major: Applied Physics

Presentations and Publications:

To my parents, Rene and Alina Rivero, for taking me out of Cuba.
To my sister, Michelle Nott.
To my advisor, Dr. N. M. Ravindra, for his wisdom and belief in me.
And to those who came before, those who come after.
ACKNOWLEDGMENT

My work in the fields of magnetism and assembly started c. 2005 when I joined the group led by Dr. N. M. Ravindra. Special thanks are given to the other members of the committee: Dr. Michael R. Booty, Dr. Anthony T. Fiory, Dr. Martin Schaden, and Dr. Vitaly Shneidman.

I want to thank my professors at NJIT, especially Dr. John C. Hensel, Dr. Moses Fayngold, and the late Dr. V. A. Goldberg; I wish to be as great an educator to others as they were to me.

I extend my deepest and sincerest thanks to Dr. Sudhakar Shet, the originator of Magnetic Field Assisted Assembly, as well as Dr. Ivan Padron and Vijay Kasisomayajula for their insights.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Serial Assembly</td>
<td>3</td>
</tr>
<tr>
<td>1.2.2 Parallel Assembly - General Manipulation</td>
<td>4</td>
</tr>
<tr>
<td>1.2.3 Parallel Assembly - Mass Manipulation</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4 Magnetism and Assembly</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5 Areas of Improvements</td>
<td>12</td>
</tr>
<tr>
<td>1.3 Magnetic Field Driven Simultaneous Assembly</td>
<td>18</td>
</tr>
<tr>
<td>1.4 Discussion of Magnetic Field Driven Simultaneous Assembly</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Enclosure and Lower/Upper Chambers</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2 Simultaneous Assembly of Devices</td>
<td>22</td>
</tr>
<tr>
<td>1.4.3 Template</td>
<td>23</td>
</tr>
<tr>
<td>1.4.4 Injection Ports</td>
<td>24</td>
</tr>
<tr>
<td>1.4.5 Error-Correction, Dense/Sparse Population, and Integration</td>
<td>26</td>
</tr>
<tr>
<td>1.5 Dissertation Outline</td>
<td>27</td>
</tr>
<tr>
<td>2 BASIC MODELING</td>
<td>28</td>
</tr>
<tr>
<td>2.1 Abstract</td>
<td>28</td>
</tr>
<tr>
<td>2.2 The Limitations of Conventional Parallel Processing</td>
<td>29</td>
</tr>
<tr>
<td>2.2.1 Areas of Refinement</td>
<td>29</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS
(Continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2</td>
<td>Geometric Restrictions .. 30</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Strong and Weak Frustration ... 31</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Moderating the Effect of Frustration 32</td>
</tr>
<tr>
<td>2.3</td>
<td>A Solution to Frustration ... 33</td>
</tr>
<tr>
<td>2.4</td>
<td>Basic Soft/Hard Magnetic Field Modeling 35</td>
</tr>
<tr>
<td>2.5</td>
<td>Discussion ... 41</td>
</tr>
<tr>
<td>3</td>
<td>ADVANCED MODELING .. 47</td>
</tr>
<tr>
<td>3.1</td>
<td>Abstract ... 47</td>
</tr>
<tr>
<td>3.2</td>
<td>The Rules of Assembly .. 48</td>
</tr>
<tr>
<td>3.2.1</td>
<td>First Rule ... 49</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Second Rule ... 50</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Third Rule ... 51</td>
</tr>
<tr>
<td>3.3</td>
<td>Magnetic Field Interaction Modeling 51</td>
</tr>
<tr>
<td>3.3.1</td>
<td>The Array ... 54</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Device ... 54</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Other Parameters ... 55</td>
</tr>
<tr>
<td>3.3.4</td>
<td>The Basic Size Unit .. 57</td>
</tr>
<tr>
<td>3.4</td>
<td>Main Calculators ... 58</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Biot-Savart Law ... 61</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Induced Magnetic Field .. 63</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.4.3</td>
<td>63</td>
</tr>
<tr>
<td>3.4.4</td>
<td>64</td>
</tr>
<tr>
<td>3.4.5</td>
<td>64</td>
</tr>
<tr>
<td>3.5</td>
<td>65</td>
</tr>
<tr>
<td>3.6</td>
<td>68</td>
</tr>
<tr>
<td>3.7</td>
<td>73</td>
</tr>
<tr>
<td>3.7.1</td>
<td>74</td>
</tr>
<tr>
<td>3.7.2</td>
<td>75</td>
</tr>
<tr>
<td>3.7.3</td>
<td>76</td>
</tr>
<tr>
<td>3.7.4</td>
<td>77</td>
</tr>
<tr>
<td>3.8</td>
<td>78</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>4.1</td>
<td>80</td>
</tr>
<tr>
<td>4.2</td>
<td>82</td>
</tr>
<tr>
<td>4.3</td>
<td>84</td>
</tr>
<tr>
<td>4.4</td>
<td>86</td>
</tr>
<tr>
<td>4.4.1</td>
<td>86</td>
</tr>
<tr>
<td>4.4.2</td>
<td>87</td>
</tr>
<tr>
<td>4.4.3</td>
<td>88</td>
</tr>
<tr>
<td>4.5</td>
<td>92</td>
</tr>
</tbody>
</table>

4 MAGNETIC FIELD INTERACTION MODEL

4.1 Overview

4.2 Parameters

4.3 Composite Simpson's Rule

4.4 Algorithms

4.4.1 Magnetic Field Calculations

4.4.2 Energy Calculations

4.4.3 Force Field Calculations

4.5 The Collision Cross-Section Area Calculation
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Friction</td>
<td>94</td>
</tr>
<tr>
<td>4.7 Discussion</td>
<td>98</td>
</tr>
<tr>
<td>5 THE SWARM ALGORITHM</td>
<td>106</td>
</tr>
<tr>
<td>5.1 Overview</td>
<td>106</td>
</tr>
<tr>
<td>5.2 Physical and Abstract Parameters</td>
<td>108</td>
</tr>
<tr>
<td>5.3 Boundary Conditions and Driving Force Analogies</td>
<td>109</td>
</tr>
<tr>
<td>5.4 The Grid/Membrane</td>
<td>111</td>
</tr>
<tr>
<td>5.5 Decision Tables</td>
<td>112</td>
</tr>
<tr>
<td>5.5.1 P-Table</td>
<td>113</td>
</tr>
<tr>
<td>5.5.2 Q-Table</td>
<td>114</td>
</tr>
<tr>
<td>5.5.3 Null Movement</td>
<td>115</td>
</tr>
<tr>
<td>5.6 Safety Valves</td>
<td>115</td>
</tr>
<tr>
<td>5.7 Algorithm</td>
<td>119</td>
</tr>
<tr>
<td>5.8 Discussion</td>
<td>120</td>
</tr>
<tr>
<td>6 CONCLUSIONS AND FUTURE DIRECTIONS</td>
<td>125</td>
</tr>
<tr>
<td>6.1 Conclusions</td>
<td>125</td>
</tr>
<tr>
<td>6.2 Future Directions</td>
<td>126</td>
</tr>
<tr>
<td>APPENDIX A DEVICE/RECESS FORCE DERIVATION</td>
<td>128</td>
</tr>
<tr>
<td>APPENDIX B SWARM APPLICATION CODE</td>
<td>144</td>
</tr>
<tr>
<td>APPENDIX C MAGSTAT APPLICATION CODE</td>
<td>195</td>
</tr>
<tr>
<td>Chapter</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>221</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table	Page
1.1 Summary of Parallel Assembly Techniques with Gravitational Force | 13
1.2 Summary of Parallel Assembly Techniques with Capillary, Type I Forces | 14
1.3 Summary of Parallel Assembly Techniques with Capillary, Type II Forces | 15
1.4 Summary of Parallel Assembly Techniques with Surface Tension Forces | 16
1.5 Summary of Parallel Assembly Techniques with Electric and Magnetic Forces | 17
2.1 Parallel Processing Techniques and Strong/Weak Frustration | 33
3.1 A Table of Magnetic Materials and Properties | 73
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>An illustration of a typical pick and place robot</td>
<td>3</td>
</tr>
<tr>
<td>1.2</td>
<td>An illustration of the wafer bonding technique to fabricate Capacitive Micromachined Ultrasonic Transducers (CMUTs)</td>
<td>5</td>
</tr>
<tr>
<td>1.3</td>
<td>An illustration of the epitaxial lift-off technique</td>
<td>6</td>
</tr>
<tr>
<td>1.4</td>
<td>An illustration of the fluidic self-assembly technique</td>
<td>8</td>
</tr>
<tr>
<td>1.5</td>
<td>An illustration of the Magnetically Assisted Statistical Assembly (MASA) technique</td>
<td>9</td>
</tr>
<tr>
<td>1.6</td>
<td>An illustration of the Magnetic Field Assisted Assembly (MFAA) technique to integrate components into an IC wafer</td>
<td>10</td>
</tr>
<tr>
<td>1.7</td>
<td>An illustration of the method investigated at Singapore consists of a combination of self-assembly via external magnetic array and vibration</td>
<td>11</td>
</tr>
<tr>
<td>1.8</td>
<td>An illustration of the Magnetic Field Driven Simultaneous Assembly (MFDSA) technique showing a cross-section of the approach</td>
<td>19</td>
</tr>
<tr>
<td>1.9</td>
<td>A top-down view of the Magnetic Field Driven Simultaneous Assembly (MFDSA) that illustrates the simultaneity of the technique</td>
<td>20</td>
</tr>
<tr>
<td>1.10</td>
<td>A schematic view showing the template with a device placed incorrectly</td>
<td>25</td>
</tr>
<tr>
<td>1.11</td>
<td>A schematic view showing the template with a device placed incorrectly</td>
<td>25</td>
</tr>
<tr>
<td>1.12</td>
<td>A cross-section view of the Magnetic Field Driven Simultaneous Assembly that illustrates the integration of devices into recesses in the substrate</td>
<td>26</td>
</tr>
<tr>
<td>2.1</td>
<td>Comparison of Assembly Iterations</td>
<td>35</td>
</tr>
<tr>
<td>2.2</td>
<td>A schematic of the system's physical parameters</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>The effect of soft thickness and hard thickness on the force at contact</td>
<td>43</td>
</tr>
<tr>
<td>2.4</td>
<td>The effect of displacement and hard thickness on the force</td>
<td>45</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>3.4</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>3.10</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>3.11</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>3.12</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>3.13</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF FIGURES
(Continued)

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2</td>
<td>A comparison of analytical (red line) versus calculated (blue box) fields at various points along the negative z-axis</td>
<td>99</td>
</tr>
<tr>
<td>4.3</td>
<td>CCA versus Weight with friction factor variation</td>
<td>102</td>
</tr>
<tr>
<td>4.4</td>
<td>CCA versus Weight with current variation</td>
<td>103</td>
</tr>
<tr>
<td>4.5</td>
<td>CCA versus Weight with turn variation</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>CCA versus Weight with BSU variation</td>
<td>105</td>
</tr>
<tr>
<td>5.1</td>
<td>A basic 10 x 10 grid</td>
<td>111</td>
</tr>
<tr>
<td>5.2</td>
<td>A view of the P Table</td>
<td>112</td>
</tr>
<tr>
<td>5.3</td>
<td>A view of the Q Table</td>
<td>114</td>
</tr>
<tr>
<td>5.4</td>
<td>Density is a measure of local population/occupation</td>
<td>117</td>
</tr>
<tr>
<td>5.5</td>
<td>A graphic representation of the optimized path-length configuration</td>
<td>118</td>
</tr>
<tr>
<td>5.6</td>
<td>The ill-posed system</td>
<td>121</td>
</tr>
<tr>
<td>5.7</td>
<td>The well-posed system</td>
<td>121</td>
</tr>
<tr>
<td>5.8</td>
<td>The ill-posed system plotted for trigger device values of 10 and 20</td>
<td>122</td>
</tr>
<tr>
<td>5.9</td>
<td>The well-posed system plotted for trigger device values of 10 and 20</td>
<td>123</td>
</tr>
<tr>
<td>6.1</td>
<td>A schematic showing the method of assembly using programmable magnets</td>
<td>127</td>
</tr>
<tr>
<td>A.1</td>
<td>A cross-section of the system involving soft magnetic layers and hard magnetic strips</td>
<td>128</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is proposed as a method to integrate devices utilizing a combination of electromagnetic and gravitational fields. It is a non-statistical, fully deterministic and controllable parallel assembly technique with error-correction. It is a versatile system capable of scaling and high-yield integration.

Devices of arbitrary geometries, with different physical properties and functionalities, are coated with a layer of soft magnetic material. They are moved from initial to final positions through the action of an array of electromagnets. They are advanced, simultaneously, toward specific desired locations and then populated onto the template under the influence of gravity. Specific desired locations on the template correspond to recesses on the substrate where devices are intended to be placed and that already contain strips of hard magnetic material.

An error-correction algorithm is invoked to check the placements of devices that have been populated on top of the template prior to insertion. The substrate is pressed onto the template and devices are inserted into recesses. Devices are secured within recesses by the magnetic attraction between the devices' soft magnetic layer and the recess' hard magnetic strips [1].
1.2 Background

The current state of device integration technology is able to produce solid state devices, circuits and systems from components that are made of a variety of materials. The standard toolkit for device integration consists mainly of bulk and surface silicon micromachining, laser-micromachining, and other lithographic techniques. As an example, compound semiconductor devices tend to be created monolithically from the substrate [2].

The ability to integrate components into systems is valued by industry due to its significant applications. Trends indicate that future generations of Micro Electro Mechanical Systems (MEMS), Lab on a Chip (LOC), System on a Chip (SOC), XYZ on a Chip, Systems-in-Package (SIP), sensors, and actuators will be integrated along with other components onto wafers to form powerful and complex systems [3]. Enormous interest lies in integrating components with CMOS technologies in order to increase the number of functions on-wafer and, ultimately, to reduce power requirements, costs, sizes, and weights of systems [2].

Toward that end, methods need to be developed to enable the assembly of components into systems with dissimilar materials or even materials with incompatible physical properties. However, combining materials brings with it difficulties, among which are mismatches between lattice and thermodynamic properties, such as, for example, the very large differences in thermal expansion coefficients of silicon and III-V compounds used with optics [4]. The development of heterogeneous, small and large scale, and room-temperature parallel integration techniques is critical in order to realize low-cost, high-density systems [2].
1.2.1 Serial Assembly

A standard integration strategy, in the industry, is the 'pick and place' serial assembly approach (see Figure 1.1). The method encounters immediate and insurmountable constraints with respect to speed and cost. It is slow to use in situations that involve the assembly of a large number of components with high precision tolerances. It is unable to deal with situations where devices adhere onto the mechanism of assembly. A variety of parallel assembly techniques are being investigated and introduced to combat these limitations [5].

Figure 1.1 An illustration of a typical pick and place robot. A pick and place system needs to be customized prior to use. First, it is required to fit the environment where it will be used. Second, it is specialized to perform the task it is intended to do [6].
1.2.2 Parallel Assembly - General Manipulation

As the dimensions of micro-electrical, micro-optical, and micro-mechanical components and systems decrease, there is a need for technologies that simplify the effective processing of assembly. Several approaches have been proposed for such assembly. They include selective area growth, wafer bonding, and epitaxial lift-off. All of these approaches have inherent drawbacks and issues that limit their applicability.

An alternative, non-assembly method of integration is selective area growth. The technique involves the growth of GaAs or InP devices directly onto silicon. It is limited by lattice and thermal mismatches between GaAs or InP devices and silicon; further, devices grown on silicon are not comparable in functionalities or even integrity to devices grown on a lattice and thermally matched substrate. Additionally, growing GaAs or InP onto silicon is inherently difficult and costly and is limited to small areas [7-10].

The method of wafer bonding involves the transfer of a primary layer onto a secondary wafer (see Figure 1.2). The primary layer and secondary wafer are bonded together and processed into devices. The technique's major drawback is the thermal expansion coefficient mismatches when the layer and the wafer are comprised of different kinds of materials [11-13].
Figure 1.2 An illustration of the wafer bonding technique to fabricate Capacitive Micromachined Ultrasonic Transducers (CMUTs). (a) First thermal oxidation step and cavity definition with photolithography. (b) Second thermal oxidation to create the insulation. (c) Silicon direct bonding of the patterned prime wafer to the un-patterned Silicon on Insulator (SOI) wafer. (d) Removal of the handle and the Buried Oxide (BOX) of the SOI wafer to release the membranes. (e) Ground contact definition, electrode deposition and patterning. (f) Element definition by photolithography [14].

Another method is epitaxial lift-off (see Figure 1.3). An epitaxial layer is released out of the substrate. The epitaxial layer, supported by a membrane, is bonded onto the substrate by van der Waals forces. Devices can be processed either before or after the transfer of the layer depending on the requirements of the process. The technique suffers from various disadvantages, including the handling of potentially extremely thin layers, which is difficult, and the alignment of the devices onto circuitries, which is tedious [15-18].
Figure 1.3 An illustration of the epitaxial lift-off technique. (1) GaAs epitaxial wafer. (2) Photoresist is spun-on. (3) Photoresist is patterned and developed. (4) Cross section showing the re-entrant sidewalls of resist windows. (5) Metal deposition. (6) Photoresist lift-off leaves metal behind [19].

1.2.3 Parallel Assembly - Mass Manipulation

An approach to parallel assembly is to integrate components without individual, device-by-device manipulation. Systems that follow this paradigm include vector potential parts manipulation, DNA and electrophoresis assisted assembly, and fluidic self-assembly.

The vector potential parts manipulation method permits the alignment of devices by using electromagnets to direct and insert units. Components must be charged in order to use electromagnets effectively. Such charges may damage devices and substrates. The DNA and electrophoresis assisted assembly uses two sets of matching DNA-like polymer films. Films are formed onto devices and deposited into recesses. As a result, devices adhere into recesses only if the films' DNA patterns match. However, the polymers are fragile and the process is costly and ineffective with respect to time [20-21].
The fluidic self-assembly method substitutes geometric patterns for DNA patterns (see Figure 1.4). Devices, etched as trapezoids, fit into recesses with matching physical geometry. Separate individual devices are aligned and inserted into the substrate passively through the aid of a fluid without individual device-by-device manipulation. The technique requires devices to be formed with a specific type of shape, which may be costly to achieve. The process of assembly itself is random; therefore, it is not guaranteed to yield a 100% complete and accurate assembly within a single iteration [4].
Figure 1.4 An illustration of the fluidic self-assembly technique. (a) Molecular Beam Epitaxy (MBE) growth structure with 1µm AlAs etch-stop layer. (b) Trapezoidal GaAs mesa definition. (c) Bonding to intermediate substrate with wax. (d) Top-side ring contact metallization. (e) Solution containing the GaAs blocks dispensed over patterned Si substrate. (f) Si substrate with GaAs, light-emitting diodes (LED) integrated by fluidic self-assembly [4].
1.2.4 Magnetism and Assembly

Other methods utilize magnetism to moderate the randomness of fluidic self-assembly.

The Magnetically Assisted Statistical Assembly (MASA), developed at the Massachusetts Institute of Technology (Cambridge, Massachusetts), adds layers of magnetic materials deposited onto devices and into recesses (see Figure 1.5). The fluid carries devices over recesses and the interactions between the layers cause devices to adhere into recesses [23].

![Figure 1.5 An illustration of the Magnetically Assisted Statistical Assembly (MASA) technique. (a) The processed integrated circuit (IC) wafer with prepared recesses. (b) The p-side down vertical-cavity surface-emitting laser (VCSEL) wafer with pillars etched in a close-packed array. (c) Assembly of freed nanopillars into the recesses on the IC wafer. (d) After completion of device processing and integration [24].](image)

The Magnetic Field Assisted Assembly (MFAA), proposed by the team at the New Jersey Institute of Technology (Newark, New Jersey), removes the fluid of MASA and inserts an external magnetic field to help devices to reach recesses (see Figure 1.6) [2, 25].
Figure 1.6 An illustration of the Magnetic Field Assisted Assembly (MFAA) technique to integrate components into an IC wafer [2].

A third method pursued at the Institute of Microelectronics (Singapore) involves an array of magnets placed below the substrate. The array drives devices (which have been coated with a layer of soft magnetic material) toward recesses. A vibration is given to the substrate to help finalize the assembly (see Figure 1.7) [26].
Figure 1.7 An illustration of the method investigated at Singapore consists of a combination of self-assembly via external magnetic array and vibration [26].
1.2.5 Areas of Improvements

Areas of research and development involve a fine-tune of the fluidic self-assembly methods to increase their yields. Techniques, investigated by the Alien Technology Corporation, alter standard fluidic self-assembly method by introducing asymmetric device/recess geometry. The effect of asymmetry is that devices tend to correct their orientations as they fall into recesses [27].

The work of Zheng et al. employs special auxiliary sites along the substrate to reorient devices as the fluid carries them into recesses [28]. The work of Lin et al. combines asymmetric device/recess geometry and surface tension effects to drive a self-correcting, self-assembly type of integration between devices and recesses [29].

These refinements are not free of important and limiting issues. The standard fluidic self-assembly method and its variants, including MASA and the method investigated at Singapore, are statistical and do not guarantee a 100% yield after a single iteration. Additionally, fluid and non-fluid based methods such as MFAA suffer from issues with respect to frustration, which involves devices in competition with each other to reach recesses. The insertion of devices into recesses is subject to other random effects; for example, components may enter at various angles, which may be impossible to correct without further assembly steps [30].
Table 1.1 Summary of Parallel Assembly Techniques with Gravitational Force

<table>
<thead>
<tr>
<th>Authors</th>
<th>Demonstration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohn, et al.</td>
<td>1000 hexagons into lattice</td>
<td>not reported</td>
<td>31</td>
</tr>
<tr>
<td>Yeh and Smith // Fonstad</td>
<td>GaAs LED's, GaAs/AlA's RTD's & VCSEL's</td>
<td>100% yield in 2.5min w. 1mm x 1.2mm x 235μm size blocks & 90% in 15min w. 150μm x 150μm x 35μm size blocks</td>
<td>4, 24, 25</td>
</tr>
<tr>
<td>Sangjun and Bohringer</td>
<td>2D & 3D dry assembly w. orientation uniqueness</td>
<td>100% yield in 5min (2 x redundant parts & 10% packing density) & 81% yield (1.5 x redundant parts & 40% packing density)</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2D & 3D dry assembly w. orientation uniqueness</td>
<td>95% yield w. rotational orientation error of 17deg & translational error of ±5μm</td>
<td>35</td>
</tr>
<tr>
<td>Baskaran, et al.</td>
<td>catalyst enhanced dry assembly process: parts - 800μm x 800μm x 50μm & catalysts - 2mm x 2mm x 0.5mm</td>
<td>20 - 50% reduction in acceleration & up to 4 x increase in number of activated parts</td>
<td>36</td>
</tr>
</tbody>
</table>

Source: Adapted from [37]. w. = with
Table 1.2 Summary of Parallel Assembly Techniques with Capillary, Type I Forces

<table>
<thead>
<tr>
<th>Authors</th>
<th>Demonstration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tien, et al.</td>
<td>3D mm-scale circuit boards</td>
<td>not reported</td>
<td>38</td>
</tr>
<tr>
<td>Gracias, et al.</td>
<td>mm-sized polyhedra into helical aggregates w. 1-4 isolated electrical circuits</td>
<td>not reported</td>
<td>39</td>
</tr>
<tr>
<td>Jacobs, et al.</td>
<td>cylindrical display - 113 GaAlA's LED's - 280μm x 280μm x 200μm</td>
<td>assembly of 1500 chips w. 98% yield in 3min (5000 redundant parts)</td>
<td>40</td>
</tr>
<tr>
<td>Srinivasan, et al.</td>
<td>hexagonal micromirrors (464μm dia & 200μm thick) onto microactuators - binding site 200μm dia</td>
<td>fill factor of 95% (7 binding sites)</td>
<td>41, 42</td>
</tr>
<tr>
<td></td>
<td>Si parts onto Si and quartz substrates - 150μm x 150μm x 15μm - 400μm x 400μm x 50μm</td>
<td>100% yield in 1min (array of 98 parts), w. 0.3deg rotational misalignment</td>
<td>43</td>
</tr>
<tr>
<td>Scott, et al.</td>
<td>helical & toroidal inductors (450μm x 950μm) on CMOS wafers</td>
<td>90% yield</td>
<td>44</td>
</tr>
<tr>
<td>Xiaorong, et al.</td>
<td>surface mount LED's</td>
<td>not reported</td>
<td>45</td>
</tr>
<tr>
<td>Fang and Bohringer // Jiandong, et al.</td>
<td>PZT's (4mm square) on pump chamber on 4" substrate</td>
<td>not reported</td>
<td>46, 47</td>
</tr>
<tr>
<td>Sheng-Hsiung, et al.</td>
<td>released DRIE comb drives on SOI wafers (1mm x 1mm x 200μm), substrate - 4x4 array</td>
<td>93% yield in 30s w. 100 components</td>
<td>48</td>
</tr>
<tr>
<td>Lee, et al.</td>
<td>3D assembly of 20μm - 100μm parts</td>
<td>not reported</td>
<td>49</td>
</tr>
<tr>
<td>Morris and Parviz</td>
<td>limitations on molten allowable size</td>
<td>97% yield for 100μm sized components & 80% yield for 40μm size components & 15% yield for 20μm size components</td>
<td>50, 51</td>
</tr>
<tr>
<td>Onoe, et al.</td>
<td>selective bonding - 3D sequential micro self assembly of 10μm components & microchain in two steps</td>
<td>1st step - 70% yield in 60min, 2nd step - 10% yield in 720min; max length of microchain - 6 units</td>
<td>52-54</td>
</tr>
<tr>
<td>Zheng and Jacobs // Kneel, et al.</td>
<td>selective bonding - assembly of 300μm sized LED's (36 red, green & yellow) & Si dies w. 72 interconnects</td>
<td>not reported</td>
<td>55, 56</td>
</tr>
</tbody>
</table>

Source: Adapted from [37]. w. = with; Type I = no shape recognition
<table>
<thead>
<tr>
<th>Authors</th>
<th>Demonstration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zheng and Jacobs</td>
<td>AlGaN/GaN LED's (380μm x 330μm)</td>
<td>95% yield in 2min</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>heterogeneous assembly of 3 non-identical chips - GaAs, Si, & GaP (200μm - 500μm)</td>
<td>not reported</td>
<td></td>
</tr>
<tr>
<td>Wei, et al. // Zheng, et al.</td>
<td>sequential assembly of 3 components - 600 LED's of 200μm size onto carries & encapsulation units onto carries</td>
<td>100% yield in 2min for LED's & 97% yield for encapsulation units</td>
<td>58-60</td>
</tr>
<tr>
<td>Zheng, et al.</td>
<td>angular & lateral orientation - parts 500μm - 2mm</td>
<td>angular orientation - 3deg, lateral orientation - 19μm</td>
<td>60</td>
</tr>
<tr>
<td>Knuesel, et al.</td>
<td>assembly of ultra small chips (20μm in length) & angular orientation using alignment pedestals</td>
<td>not reported</td>
<td>61</td>
</tr>
<tr>
<td>Fang and Bohringer</td>
<td>Si parts (790μm x 790μm x 330μm)</td>
<td>99% yield in 2min for 1000 receptor sites</td>
<td>62, 63</td>
</tr>
<tr>
<td>Fang and Bohringer // Jiandong and Bohringer // Fang, et al.</td>
<td>semi dry self assembly process (semi DUO-SPASS) w. orientation uniqueness (1-2mm square parts)</td>
<td>95% - 99% yield in 3min translational & rotational misalignment - 0.25mm & 18deg respectively</td>
<td>64-66</td>
</tr>
<tr>
<td>Jiandong and Bohringer // Fang and Bohringer</td>
<td>completely dry self assembly process (DUO-SPASS) w. orientation uniqueness (102mm square parts)</td>
<td>98% yield in 10min w. 50% redundant parts translational & rotational misalignment - 20μm & 2deg respectively</td>
<td>65, 67</td>
</tr>
<tr>
<td>Saeedi, et al. // Stauth and Parviz</td>
<td>heterogeneous assembly of FET's, diffusion resistors (100μm - 300μm)</td>
<td>97% yield in 3min for FET's & diffusion resistors</td>
<td>68, 69</td>
</tr>
<tr>
<td>Saeedi, et al</td>
<td>micro display - LED's (320μm)</td>
<td>65% yield for LED display</td>
<td>68, 70</td>
</tr>
<tr>
<td>Kim, et al. // Hosokawa, et al.</td>
<td>fluorescence detection units (3x3 array)</td>
<td>not reported</td>
<td>71, 72</td>
</tr>
</tbody>
</table>

Source: Adapted from [37]. w. = with; Type II = shape recognition
Table 1.4 Summary of Parallel Assembly Techniques with Surface Tension Forces

<table>
<thead>
<tr>
<th>Authors</th>
<th>Demonstration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fang and Bohringer</td>
<td>2D assembly of 100 components made of polyimide & polysilicon of 400μm size</td>
<td>not reported</td>
<td>62</td>
</tr>
<tr>
<td>Syms and Yeatman</td>
<td>3D assembly of hinged microstructures</td>
<td>97% yield in 1min</td>
<td>73</td>
</tr>
<tr>
<td>Green, et al. // Syms</td>
<td>3D assembly of hingeless microstructures</td>
<td>97% yield in 1min</td>
<td>74, 75</td>
</tr>
<tr>
<td>Syms</td>
<td>micro-otpomechanical torsion mirror scanner</td>
<td>not reported</td>
<td>76-78</td>
</tr>
<tr>
<td></td>
<td>refractive collimating microlens arrays</td>
<td>not reported</td>
<td>79</td>
</tr>
<tr>
<td>Dahlman and Yeatman // Dahlman, et al.</td>
<td>integration of high Q inductors on IC's</td>
<td>99% yield in 5min</td>
<td>80-83</td>
</tr>
</tbody>
</table>

Source: Adapted from [37]. w. = with
Table 1.5 Summary of Parallel Assembly Techniques with Electric and Magnetic Forces

<table>
<thead>
<tr>
<th>Authors</th>
<th>Demonstration</th>
<th>Results</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tien, et al. // Grzybowski, et al.</td>
<td>10um size gold disks on Si substrate, 2types of spheres in an ordered lattice</td>
<td>not reported</td>
<td>84, 85</td>
</tr>
<tr>
<td>Bohringer, et al.</td>
<td>surface mount capacitors & diodes (0.75mm - 2mm)</td>
<td>4 surface mount capacitors assembled in 30sec</td>
<td>86, 87</td>
</tr>
<tr>
<td>Nakakubo and Shimoyama</td>
<td>3D assembly of Si microstructures - 100μm concave & convex cubes</td>
<td>60% yield in 5min with 300 parts of each kind</td>
<td>88</td>
</tr>
<tr>
<td>Iwase and Shimoyama // Iwase, et al.</td>
<td>3D assembly of hinged microstructures, 3D assembly of 600μm x 800μm x 4.5μm plates & 800μm long rectangular tetrahedrons</td>
<td>not reported</td>
<td>89-91</td>
</tr>
<tr>
<td>Grzybowski, et al. // Grzybowski and Whitesides</td>
<td>mm-scale magnetic disks</td>
<td>not reported</td>
<td>92, 93</td>
</tr>
<tr>
<td>Boncheva and Whitesides</td>
<td>assembly of planar elastomeric sheets into 3D objects and electrical circuit with LED's</td>
<td>3min for folding of sheets into an electrical circuit sphere</td>
<td>94</td>
</tr>
<tr>
<td>Fonstad // Rumpler, et al.</td>
<td>integration of semiconductor devices w. IC's</td>
<td>not reported</td>
<td>95, 96</td>
</tr>
<tr>
<td>Shet, et al.</td>
<td>assembly of GaAs or InP devices on semi-process or processes wafers w. integrated circuits</td>
<td>not reported</td>
<td>2, 99</td>
</tr>
<tr>
<td>Ramadan, et al.</td>
<td>parts of 1mm x 1mm x 0.5mm size w. electroplated CoNiP (1μm)</td>
<td>not reported</td>
<td>26</td>
</tr>
</tbody>
</table>

Source: Adapted from [37].
1.3 Magnetic Field Driven Simultaneous Assembly

The Magnetic Field Driven Simultaneous Assembly (MFDSA) contrasts all proposed parallel assembly techniques by seeking a non-statistical, deterministic solution to the problem of assembly.

MFDSA is a dry and not a wet process. It employs an array of electromagnets to drive the assembly process. It removes restrictions involving geometry, size and shape, including issues regarding orientation and symmetry/asymmetry. It is a room temperature process and therefore materials with different lattice and thermal properties can be integrated without physical damage. It uses programmed rather than random pathways and, therefore, is able to achieve a 100% yield after a single iteration. The only special preparation required to use MFDSA involves adding layers and strips of soft and hard magnetic material to devices and recesses respectively.

MFDSA adds soft and hard magnetic material on devices and in recesses respectively. The hard magnetic strips retain devices within recesses. The soft magnetic layers allow an array of electromagnets to direct the motions of devices.

An array of electromagnets suspends devices against the underside of a membrane and carries them toward their destinations. At the appropriate final locations, fields are weakened and devices are populated onto the template where they are kept temporarily. The template allows the method to correct errors if they arise. To complete the process, the substrate is pressed onto the template; devices adhere into recesses through the attraction between soft and hard magnetic materials.
Figure 1.8 An illustration of the Magnetic Field Driven Simultaneous Assembly (MFDSA) technique showing a cross-section of the approach [1].
Figure 1.9 A top-down view of the Magnetic Field Driven Simultaneous Assembly (MFDSA) that illustrates the simultaneity of the technique [1].
1.4 Discussion of Magnetic Field Driven Simultaneous Assembly

1.4.1 Enclosure and Lower/Upper Chambers

The process of assembly is controlled within the enclosure (see Figure 1.8). The enclosure is encircled with the injection ports that are situated at intervals about its perimeter and through which devices enter (see Figure 1.9). The enclosure is divided by the membrane into two chambers. The lower chamber contains devices, substrate, and template and should be in vacuum. The upper chamber contains an array of electromagnets. The membrane itself is kept rigid between these chambers by a suitable construction or framework.

The upper chamber contains an array of electromagnets along with a function to cool its elements, such as a heat sink or a heat bath. It contains various other leads that connect the equipment to an external control unit, which programs each and every element of the array of electromagnets. The array produces localized magnetic fields that can be varied in magnitude, direction, and forces and can be used to manipulate the positions of devices along the underside of the membrane. Optionally, the elements of the electromagnetic array may terminate with materials shaped into geometries that intensify and localize their magnetic fields. Also, the elements of the electromagnetic array may contain internal auxiliary mechanisms to aid the dislodging of devices away from the membrane toward the template.

The membrane separates the upper and lower chambers of the enclosure. The purpose of the membrane is two-fold; first, to protect devices from damage that may be caused through direct physical contact with the electromagnetic array; second, to provide a surface across which devices are moved.
The lower chamber is where devices are injected, positioned, and inserted into the substrate. Although not depicted in the figures, the lower chamber contains various electronic components, which are connected to and controlled by an external control unit. Such components would be the following: accuracy control sensors and mechanisms, pressure and temperature regulators, and other real-time sensing feedback equipment required to facilitate assembly.

1.4.2 Simultaneous Assembly of Devices

Devices are coated with a layer of soft magnetic material; the permeability of the material and the thickness of the layer are to be such that it allows an array of electromagnets to suspend the component against gravity while minimizing its contribution to its weight as a whole.

Devices enter the enclosure through the injection ports and are held against the underside of the membrane by an array of electromagnets. The array generates localized magnetic fields that engulf each and every device at the membrane. These fields are generated at certain rates, at certain paths and draw devices from initial to final positions immediately above matched recess sites at the template. The process of assembly consists of manipulation of multiple devices independently provided such that the localized magnetic fields are short-ranged with respect to dimensions of devices and that devices are separated beyond distances referred to as Collision Cross-Section Areas (CCAs) (see Figure 1.9).
Devices are advanced toward their final desired locations and are then disengaged from the membrane by weakening the localized magnetic field below a threshold. Each and every device requires a minimum strength of the localized magnetic field to keep it suspended against gravity and if that field is weakened below that threshold, they fall. In the absence of an atmosphere, they land without deflection onto the template (see Figure 1.8). Note that sticktion is only an issue with devices of very light masses and sizes; modifications to the apparatus would be required to overcome sticktion if it arises.

1.4.3 Template

The template is a magnetically passive construction upon which devices are populated temporarily. Locations on the template correspond to matched recess sites along the substrate. Essentially, they serve as a negative of the substrate. The orientation of the template can be altered and the distance between the membrane and the template can be varied. The template can be a sheet, a strip, or a collection attached to a mechanism that switches among different templates. The template can be a single piece of material or composed of interchangeable and/or interlocked parts.
1.4.4 Injection Ports

The injection ports are located at intervals about the perimeter of the enclosure. They can be operated either mechanically or electromagnetically. They connect the enclosure to the bins (not depicted by the figures) which contain devices prior to assembly. Note that the bins may contain either one type of device or a known and/or controllable pattern of devices and are to be kept evacuated to preserve the vacuum of the enclosure. The interface between the injection ports and the enclosure is a partition that maintains the integrity of the vacuum within the enclosure.
Figure 1.10 A schematic view showing the template with a device placed incorrectly. An error within a densely populated template will be difficult to fix because there are many devices around the error that would be affected [100].

Figure 1.11 A schematic view showing the template with a device placed incorrectly. An error within a sparsely populated template will not be difficult to fix because there are few devices around the error that could be affected [100].
1.4.5 Error-Correction, Dense/Sparse Population, and Integration

If devices are not populated onto the template within a certain allowable tolerance, then an error-correction algorithm is activated (see Figures 1.10 and 1.11). The template is raised toward the membrane and the array activates above those devices that were not properly populated. These devices reattach onto the membrane and may be repositioned within tolerance.

To complete assembly, the template may be densely or sparsely populated by devices (see Figures 1.10 and 1.11). In the case where the template is densely or fully populated, then integration is completed through a single insertion step. In the case where the template is sparsely or partially populated, then integration is accomplished through stages. Whether the assembly is accomplished by densely or sparsely populated variations (controlled by the fraction of devices which have been dropped onto the template), the integration requires that the substrate is placed in contact with the template; for example, by pressing or rolling (see Figure 1.12).

Figure 1.12 A cross-section view of the Magnetic Field Driven Simultaneous Assembly (MFDSA) that illustrates the integration of devices into recesses in the substrate [1].
On the substrate, devices are physically secured into recesses by the attraction of soft magnetic layers and hard magnetic strips between devices and recesses respectively.

1.5 Dissertation Outline

Chapter 1 is an introduction to serial and parallel assembly methods including their history, status, and trends. It thoroughly presents and discusses an overview of the Magnetic Field Driven Simultaneous Assembly technique.

Chapter 2 discusses previously published work involving the development of Magnetic Field Driven Simultaneous Assembly.

Chapter 3 outlines advanced, unpublished work about the magnetic interaction model and the Swarm Algorithm, covering many core concepts including the Collision Cross-Section Area, the role of friction and the Magnetic Retention Factor.

Chapter 4 presents an in-depth development of the magnetic interaction model as well as a summary of comparative results.

Chapter 5 presents the Swarm Algorithm, which is used to calculate the pathways that are required by the devices as they move from initial to final positions, along with the results of several cases.

Chapter 6 is devoted to the conclusions of the study and recommendations for future work.
CHAPTER 2
BASIC MODELING

2.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a parallel assembly technique that emerged out of advances in research and development regarding the standard fluidic self-assembly method and its variants. It is a synthesis of such approaches as the Magnetically Assisted Statistical Assembly (MASA), developed at the Massachusetts Institute of Technology (Cambridge, Massachusetts), and the Magnetic Field Assisted Assembly (MFAA), proposed by the team at the New Jersey Institute of Technology (Newark, New Jersey). The feature that sets the MFDSA technique separate and apart from its predecessors is an emphasis on deterministic assembly as opposed to a reliance on statistical assembly.

In a deterministic process, the pathways that devices follow as they move from initial to final positions, including the rate at which they are injected, populated, and inserted, need to be calculated. In a statistical process, these device-by-device, move-by-move details are ignored because randomness dictates the act of assembly as devices seek recesses. For example, in fluidic self-assembly, devices are carried by the fluid; the pathways they take, their success or failure to locate a recess, and whether they enter it correctly or incorrectly is random (strong frustration). Further, they may be clumped together or they may be scattered away; in either case, they do not participate in assembly (weak frustration).
The ostensible advantage of statistical techniques over deterministic methods is that they are 'quick and dirty'; therefore, they do not require solutions to the problem of assembly. Its ease-of-use is invalidated, however, by such factors as device/recess requirements, strong and weak frustration, and the fact that a single iteration of the approach is not enough to achieve high-yield integration. Yet, while a deterministic method does require solutions to the problem of assembly that a statistical technique is free to ignore, that aspect of its implementation is ultimately the cause of its flexibility, scalability, and high-yield gain.

2.2 The Limitations of Conventional Parallel Processing

2.2.1 Areas of Refinement

All refinements to fluidic self-assembly have been attempts to moderate its randomness. Two models have been developed to achieve that goal. First, to control the way that devices enter recesses (strong frustration). Second, to increase the probability that devices enter recesses (weak frustration).

Techniques, investigated at the Alien Technology Corporation, alter the standard fluidic self-assembly method through the introduction of asymmetric device/recess geometry. The effect of the asymmetry is to correct the orientations of devices while they fall into recesses [27]. The work of Zheng et al. adds special auxiliary sites about the surface of the wafer to allow the fluid to correct the orientations of devices while they advance toward recesses [28]. The work of Lin et al. combines asymmetric device/recess geometry and surface tension effects to drive a self-correcting, self-assembly type of integration of devices into recesses [29].
Another refinement is the MASA method of Cheng et al. [30]. The objective of the MASA approach is to increase the probability of assembly by aiding devices along their otherwise random search of recesses. It is accomplished by adding soft and hard magnetic materials onto devices and into recesses respectively. As they are carried by the fluid, the magnetic attractions between those soft and hard magnetic layers drive devices in the direction of recesses. The attraction retains devices inside recesses thus counteracting a tendency of the fluid to dislodge already assembled components.

2.2.2 Geometric Restrictions

The inability to integrate various devices of different types, geometries, and sizes onto a single substrate is an issue that remains intractable with respect to the standard fluidic self-assembly method and its variants. The conventional parallel assembly methodology is useful if and only if all of the devices, to be integrated, are identical. This restriction is fundamental and is due to the fact that the act of assembly is random, i.e., a square device would be just as likely to reach a square recess as a circular recess. If that restriction is not enacted, then, clumps of devices of various geometries could be competing for a recess even if it is incompatible; further, smaller devices could be entering larger recesses, which creates potentially irreversible defects especially if an approach like MASA is used.
2.2.3 Strong and Weak Frustration

The examples above represent the two facets of frustration.

Strong frustration arises when there is a mismatch between device and recess, including errors caused by a misaligned (or distorted) insertion. It is 'strong' because these errors are 'permanent', i.e., difficult if not impractical to correct without destroying the assembly already completed.

Weak frustration manifests when there is a competition among a number of devices (of similar or dissimilar types) for access to a single recess. It is 'weak' because it is an error of the process, not of the assembly. It is temporary and due to the medium carrying the devices; clumps of devices may appear and then scatter as the fluid carries them across the surface of the substrate.

The conventional parallel assembly paradigm addresses the strong side of frustration by prohibiting variation in type, geometry, and size. Essentially, all devices are identical, all recesses are identical, and are built to match. For example, fluidic self-assembly demands that devices and recesses are built with matching trapezoidal geometry (see Figure 1.4); devices enter recesses if and only if they approach with a certain orientation, any other orientation and those misalignments are carried away by the fluid [4].
2.2.4 Moderating the Effect of Frustration

The MFAA technique, as proposed by Shet et al. [2], exemplifies an attempt to circumvent the issue of frustration and remove the device type, geometry, and size restrictions imposed by the other parallel assembly methods. It employs ideas from MASA, specifically, the soft magnetic layer on devices and the hard magnetic strips in recesses. It adds a novelty that transforms it into a different, more deterministic than statistical approach, namely, an external magnetic field to direct devices into recesses as they move along the surface of the substrate.

The external magnetic field represents a fundamental conceptual advancement over the standard fluidic self-assembly method and its variants. It is the tool through which the nature of assembly shifts from statistical to deterministic; however, it fails to address the issue of frustration thoroughly. It does improve strong frustration, as the field is able to direct the pathways devices take to reach recesses. It does not improve weak frustration, as devices are able to clump about recesses.

The MFAA technique is able to resolve the limitation imposed on device type, geometry, and size. To achieve that practicality requires the assembly of the largest devices first, the next largest devices second, and so forth until the smallest devices are last. It requires several iterations to achieve a complete assembly; each type of device would be its own iteration.
Table 2.1 Parallel Processing Techniques and Strong/Weak Frustration

<table>
<thead>
<tr>
<th>Technique</th>
<th>Frustration</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidic Self-Assembly</td>
<td>strong and weak</td>
<td>devices and recesses must be symmetric [4]</td>
</tr>
<tr>
<td>Zheng, Lin Refinement</td>
<td>weak</td>
<td>uses sites/forces to address strong frustration [28, 29]</td>
</tr>
<tr>
<td>MASA</td>
<td>strong and weak</td>
<td>magnetism is used to retain devices into recesses [24]</td>
</tr>
<tr>
<td>MFAA</td>
<td>weak</td>
<td>magnetism is used to drive assembly [25]</td>
</tr>
</tbody>
</table>

2.3 A Solution to Frustration

The MFDSA technique, developed by Rivero et al. [5], addresses frustration and other fundamental limitations of extant parallel assembly methods. It emphasizes total and indiscriminant simultaneity as it is capable of assembling a wide variety of devices at any given time. The template, upon which devices are populated and then inserted into the substrate, divides the assembly into stages; therefore, it is a batch processing approach, a hybrid of serial and parallel assembly. While this may appear to be a regression, however, the advantage of the template is manifold, including the ability to check and correct errors in placement before the actual integration of devices into recesses occurs.

The MFDSA technique eliminates the issue of frustration. The standard fluidic self-assembly method and its variants do not control the act of assembly; where the devices enter and exit, the directions they take and the recesses they seek are examples of its unpredictability; thus, its randomness is the cause of its frustration. The determinism of MFDSA is the opposite of the statistics of fluidic self-assembly; therefore, it does not suffer the effect of frustration.
Implementing a non-statistical regime of assembly is the key to eliminate all forms of frustration. It can be accomplished if and only if there is a plan for where devices enter and exit, the order of devices, and the pathways they take toward recesses. It requires another level of preparation embodied by the solution to the problem of assembly itself, which will be presented as the Swarm Algorithm (SA).

The batch processing approach is a trade-off that allows a high-yield with a single iteration of the system, a throughput matched only by 'pick and place'. Figure 2.1 illustrates a comparison of pure serial, pure parallel and hybrid batch assembly techniques. It is based on an attempt to assemble a hundred components onto a grid of ten by ten squares where each component and each square is identical. Pure parallel assembly attempts to integrate all components simultaneously. Pure serial assembly integrates each and every component individually. Hybrid assembly integrates a number of devices on a per-batch basis until all of the devices have been integrated.
2.4 Basic Soft/Hard Magnetic Field Modeling

The point of intersection between MFAA, MASA, and MFDSA involves the retention force between devices and recesses given by the interaction of soft and hard magnetic materials. A detailed discussion of that interaction is required to understand the force involved and how it can be maximized.
Figure 2.2 A schematic of the system's physical parameters. The regions are as follows: Region I is the device (of permeability μ_0), Region II is the soft magnetic layer (of permeability μ_s and thickness b), Region III is the 'air' between the device and the recess (of permeability μ_0 and variable displacement d), Region IV is the hard magnetic strip (of permeability μ_h, thickness a, and width αL), Region V is the 'air' gap between the strips (of permeability μ_0, thickness a, and width $(1-\alpha)L$), and Region VI is the substrate (of permeability μ_0).

The parameters of the device/recess system are summarized by Figure 2.2. The soft magnetic layer is uniform and coats the bottom of the device. The thickness of the layer is b and is of permeability μ_s (Region II). The hard magnetic strips are patterned evenly with a periodic size scale at the bottom of the recess. The thickness of the strip is a and is of permeability μ_h (Regions IV and V). L is the periodic size scale of the pattern, where αL is the width of the strip, and $(1-\alpha)L$ is the width of the gap; α is a parameter with a range of $0 \leq \alpha \leq 1$. The variable displacement between the layer and the strips is d in the y-axis (Region III). Note that the simplification of the problem is that the devices and recess extend indefinitely from end to end in the x-axis; also Region I represents the body of the device and Region VI represents the wafer.
An approach to the model that gives an estimate of the attraction between the layer and the strips will be developed below. Since there are no current sources and no electric fields or charges, Maxwell's equations reduce to:

$$\nabla \times \mathbf{H} = 0 \text{ and } \nabla \cdot \mathbf{B} = 0$$

Therefore, there exists a magnetostatic potential, \(\varphi \), such that \(\mathbf{H} = -\text{grad} \ \varphi \) everywhere. Considering linear, isotropic relations between the magnetic field \(\mathbf{H} \) and the magnetic induction \(\mathbf{B} \), then:

$$\mathbf{B} = \mu_0 \mathbf{H}$$

$$\mathbf{B} = \mu_s \mathbf{H}$$

$$\mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M}_0)$$

where, \(\mu_s \) is the permeability of the soft magnetic layer and \(\mathbf{M}_0 \) is the known permanent magnetization of the strips. Equation 2.2 is valid in air, Equation 2.3 is valid in the soft magnetic layer, and Equation 2.4 is valid in the hard magnetic strips.

Generally, \(\varphi \) satisfies the Poisson's equation, with source term \(\text{div} \ \mathbf{M}_0 \). The magnetization, \(\mathbf{M}_0 = \mathbf{M}_0 \mathbf{y} \), is considered constant, with \(\mathbf{y} \) as the unit normal vector in the y-axis, so that the source term is zero and Poisson's equation becomes Laplace's equation.
\[\nabla^2 \phi = 0 \quad (2.5) \]

The boundary conditions at the interfaces between the air and either the soft or the hard magnetic material follows from Equation 2.1, which implies that, at an interface, the tangential components of \(\mathbf{H} \) and the normal components of \(\mathbf{B} \) are continuous.

In terms of the potential, \(\phi \), using Equations 2.2-4, we have the condition that \(\phi \) is continuous at the interfaces \(y = a + d \) (the bottom surface of the soft magnetic layer) and \(y = a + b + d \) (the top surface of the soft magnetic layer):

\[\mu_0 \partial_y \phi|_A = \mu_0 \partial_y \phi|_S \quad (2.6) \]

At the vertical sides, \(x = 0, x = \alpha L \) and \(x = (1 - \alpha)L \) of the hard magnetic strips:

\[\partial_x \phi|_A = \partial_x \phi|_H \quad (2.7) \]

At the horizontal sides, \(0 < x < \alpha L, y = 0 \) and \(y = a \) of the hard magnetic strips:

\[\partial_y \phi|_A - \partial_y \phi|_H = -M_0 \quad (2.8) \]

where, the A, S, H denote the evaluation at the air, soft or hard interfaces.

The only forcing or inhomogeneity term in the model to calculate \(\phi \) comes from the boundary condition at Equation 2.8.
The problem is periodic, with period L in the x-axis, and can be solved by constructing a Fourier Series in each of the regions shown in Figure 2.2 and then applying the continuity and boundary conditions at the interfaces with the extra condition that \(\phi \) is constant as \(y \) goes to \(\pm \infty \). These conditions lead to a linear algebraic system for the coefficients that can be found in closed form.

An expression for the force acting on the soft magnetic layer in response to the magnetization of the hard magnetic strips follows by evaluating the integral of the Maxwell stress-tensor over the layer's top and bottom surfaces. The general expression of the force is:

\[
F = \mu \int_{\partial \Omega} H(H \cdot \hat{n}) - \frac{1}{2} (H \cdot H) \hat{n} \, dS
\]

(2.9)

where, \(\partial \Omega \) is a surface immediately outside of the region of interest, \(\mathbf{n} \) is the outward unit normal vector and \(\mu \) is the local permeability. Then, in terms of \(\phi \),

\[
F = \frac{\mu_0}{2} \left(\int_{\text{top}} \partial_y \phi^2 - \partial_x \phi^2 \, dx - \int_{\text{bottom}} \partial_y \phi^2 - \partial_x \phi^2 \, dx \right) \hat{y}
\]

(2.10)

where the integrals over the top and bottom surfaces are evaluated at \(y = a + d \) and \(y = a + b + d \) respectively with \(0 \leq x \leq L \).
When the constructed Fourier Series is substituted into φ of Equation 2.10, the expression for force is given by:

\[
F = -\frac{\mu_0 L}{2} \sum_{n=1}^{\infty} \frac{M_n^2}{\pi^2 n^2} \left(1 - \cos(2\pi n \alpha)\right) e^{-4\pi n d_L} \left(1 - e^{-2\pi n a_L}\right)^2 \frac{\sinh \left(\frac{2\pi n b}{L} \right)}{\sinh \left(\frac{2\pi n b}{L} - \ln \left(\frac{\mu_S + \mu_0}{\mu_S - \mu_0}\right)\right)} \hat{y} \tag{2.11}
\]

The terms with $n > 1$ drop rapidly to zero leaving the most significant term as the $n = 1$ term.

\[
F = -\frac{\mu_0 L M_1^2}{2} \left(1 - \cos(2\pi \alpha)\right) e^{-4\pi d_L} \left(1 - e^{-2\pi a_L}\right)^2 \frac{\sinh \left(\frac{2\pi b}{L} \right)}{\sinh \left(\frac{2\pi b}{L} - \ln \left(\frac{\mu_S + \mu_0}{\mu_S - \mu_0}\right)\right)} \hat{y} \tag{2.12}
\]

The force is strong short-ranged and weak long-ranged. It falls to zero rapidly beyond a distance of $d/L > 0.5$, which is reflected by its use in MASA as a bond to keep devices and recesses together. While the device and the recess are assembled mechanically, when the magnetic materials make contact, they are secured in place as long as $|F| \geq |W|$, where W is the weight of the device.
2.5 Discussion
The force expressed through Equation 2.12 is maximized when \(\alpha = 0.5 \); it follows after a
derivative, \(dF/d\alpha \), is set to zero. The extrema within the range of \(\alpha \) are 0, 0.5 and 1;
however, \(\alpha = 0 \) and \(\alpha = 1 \) lead to a force equal to zero. When \(\alpha = 0 \), \(F \) is zero, which
follows because \(\alpha = 0 \) is equivalent to a hard magnetic strip without a width. When \(\alpha = 1 \),
\(F \) is zero, again, that is because \(\alpha = 1 \) implies a uniform hard magnetic layer and a
uniform potential; as force is related to the gradients of potentials, a constant potential
yields a zero force.

The ratio of hyperbolic sines, which cannot explode to infinity, yields a condition
that relates the soft magnetic layer’s thickness and permeability:

\[
\mu_s > \mu_0 \frac{e^{2\pi b}}{e^{2\pi L} - 1} + 1
\]

or:

\[
\frac{b}{L} > \frac{1}{2\pi} \ln \left(\frac{\mu_s + \mu_0}{\mu_s - \mu_0} \right)
\]
The relationships expressed by Equations 2.13-14 limit the lowest values of thickness and permeability, which lead to a physically valid solution and will be important to the Magnetic Retention Factor (MRF) developed later. Two behaviors should be noted. First, when μ_S is significantly larger than μ_0, then the logarithm term is effectively zero and the hyperbolic sine ratio is unity. Second, when b/L is significantly larger than the logarithm term, then, again, the hyperbolic sine ratio is unity. In either case, neither the thickness nor the permeability of the soft magnetic layer contributes to the force, a fact that is reflected by Figure 2.3.
Figure 2.3 The effect of soft thickness and hard thickness on the force at contact (d/L = 0). This plot was found for a situation where $\alpha = 0.5$ and the relative permeability of the soft magnetic layer is 500. The scaled soft thickness (b/L, y-axis) and hard thickness (a/L, x-axis) varies from 0 to 1. The plot shows the scaled force (numbers within the plot) remaining virtually constant at any given scaled hard thickness through a range of scaled soft thickness values. (Note blue region is minimum, green to yellow is increasing force values.)
With respect to total scaled force output, the scaled soft magnetic thickness (b/L) is not as important a factor as the scaled hard magnetic thickness (a/L). As depicted by Figures 2.4 and 2.5, however, upon contact, i.e., d/L = 0, the scaled force is maximized at a/L = 0.8; a thickness greater than that value does not increase the force. That is because the force is stronger at the edges and weaker at the flat (or uniform) areas. Increasing the thickness leads to a situation where there is more flat area than edge area; eventually, only the edges on the top contribute, as the edges on the bottom will be too far away. Cutting the hard magnetic layer into a pattern maximizes the force of attraction by increasing the number of edges where the force is strong.
Figure 2.4 The effect of displacement and hard thickness on the force. This plot was found for a situation where $\alpha = 0.5$, the scaled soft thickness (b/L) is 1, and the relative permeability of the soft magnetic layer is 500. The scaled displacement $(d/L, y$-axis) varies from 0 to 0.25. The scaled hard thickness $(a/L, x$-axis) varies from 0 to 1. The plot shows that the scaled force (numbers within the plot) at contact $(d/L = 0)$ saturates as a/L increases. (Note blue region is minimum, green to yellow is increasing force values.)
Figure 2.5 A plot of force at contact vs. hard thickness. This plot was found for a situation where $\alpha = 0.5$, the scaled soft thickness (b/L) is 1, and the relative permeability of the soft magnetic layer is 500. The scaled hard thickness (a/L, x-axis) varies from 0 to 1. The plot shows that the scaled force (y-axis) at contact ($d/L = 0$) saturates at about $a/L = 0.8$.
CHAPTER 3
ADVANCED MODELING

3.1 Abstract

The Magnetic Field Driven Simultaneous Assembly (MFDSA) is a complex problem to study due to its various layers of abstraction. MFDSA is divided into two general areas in order to model the topic efficiently and effectively. The first area is the magnetic field interaction between the array of electromagnets and devices. The second area is the calculation of pathways that devices are required to follow from initial to final positions.

The array/device interaction is the mechanism that drives the process of assembly. The magnetic field suspends devices below the membrane and above the template; it moves them from initial to final positions. The magnetic field interaction model calculates the forces involved with suspension and motion. Friction is a component of the motion and is factored into the algorithm. Additionally, such concepts as the Collision Cross-Section Area (CCA) and the rules of assembly are developed as prerequisites to achieve a successful hybrid assembly solution.

The pathways are determined by the Swarm Algorithm (SA) coined, developed, and encoded by the author. SA is an abstraction that separates the array/device interaction from the motion; however, certain features are connected to real, physical aspects like space, time, and the CCA. The goal is to extract the solution of the problem of assembly as a sequence of predetermined, precalculated 'quantized' (discrete and step-wise) movements which would be translated into real, physical movements.

Finally, MFDSA itself is compared and contrasted with topics from other branches of science.
3.2 The Rules of Assembly

The rules of assembly must be followed to assure that the MFDSA method does not fail. They are logical, as opposed to empirical, and follow from a consideration for the physical act of assembly. The magnetic field interaction model and SA as developed incorporate these rules within their algorithms.

![Diagram showing two devices, A and B, moving along the membrane simultaneously. To conform to the first rule of assembly, devices A and B must be kept a certain minimum lateral distance apart.](image)

Figure 3.1 A diagram showing two devices, A and B, which are moving along the membrane simultaneously. To conform to the first rule of assembly, devices A and B must be kept a certain minimum lateral distance apart.
3.2.1 First Rule

Devices, as they move along the membrane, cannot collide physically with each other. Following this rule prevents weak frustration. The effect of this rule is that MFDSA maintains a low device density (defined as the number of devices within an area of the membrane). Devices are kept at a minimum lateral distance to avoid collision and to yield freedom of movement (see Figure 3.1); this combination of factors prevent the conditions that give rise to weak frustration. The minimum lateral distance is given by the CCA calculation of the magnetic field interaction model. The low device density is implemented by SA.

![Figure 3.2](image)

Figure 3.2 A diagram showing two devices, A and B, which are moving along the membrane simultaneously. The concentric colored circles around devices are a representation of the magnitude of the fields; red is the strongest region, blue is the weakest region. To conform to the second rule of assembly, the fields manipulating devices A and B must be kept a certain minimum lateral distance apart.
3.2.2 Second Rule

Fields, that suspend and move a device, cannot interact with any other device (see Figure 3.2). If there were to be a 'collision' between fields, then the result would be non-linear and uncorrectable interference among devices. The MFDSA approach is deterministic, therefore, requires detailed, step-by-step control over the process of assembly. Allowing fields that act on a device to effect other nearby devices would be equivalent to the introduction of chaos. The CCA is calculated to account for the extents of the device and the field together.

![Diagram of devices A and B]

Figure 3.3 A diagram showing two devices, A and B; A is on the template while B is on the membrane. The concentric colored half-circles around device B are a representation of the magnitude of the fields; red is the strongest region, blue is the weakest region. To conform to the third rule of assembly, the fields manipulating device B must be kept a certain minimum lateral distance apart from device A.
3.2.3 Third Rule

Fields, suspending and moving a device, cannot interact with devices already populated at the template (see Figure 3.3). Following this rule prevents strong frustration. If a device is misaligned on the template, then it will be misaligned in the recess as they reflect each other. Collisions, whether they are physical or magnetic, represent an encroachment of chaos that MFDSA seeks to eliminate. The CCA is applied vertically as well as horizontally with respect to the plane of the device.

3.3 Magnetic Field Interaction Modeling

The task of the model is to calculate the interactions between the array of electromagnets and the soft magnetic layer of the device. The field, induced within the layer by the array, is used to calculate energy and force. The mathematics employed are numerical integration via the Composite Simpson's Rule and finite element analysis.

The array of electromagnets are modeled as a two dimensional lattice (any regular, repeating arrangement) with a constant period length termed the Basic Size Unit (BSU); see Figure 3.4. The elements of the array occupy the positive z region of space above the xy-plane of the membrane; the ends of the elements, which are considered to be air core solenoids, adjoin the xy-plane. The soft magnetic layer, and the device attached onto it, occupy the negative z region of space below the xy-plane of the membrane; the surface of the device adjoins the xy-plane. The membrane is the xy-plane and serves only to restrict the z component of motion as the device is suspended and moved. (See Figure 3.5.) The membrane is considered to be thin and inflexible (idealization) and does not contribute to magnetism in either the elements or the devices.
Figure 3.4 A top-down view of the array of electromagnets, the membrane, and the device. The array is depicted by a square lattice of circles (blue) with constant period length. (The circles are the elements and reflect their relative size.) The device is represented by a square (yellow). P_n is the vector from the origin to the n^{th} element of the array. O is the vector from the origin to the center of the layer at the top of the device. $R_n = O - P_n$.
Figure 3.5 A side view of the array of electromagnets, the membrane, and the device. The elements of the array are solenoids that occupy the positive z region of space and are separated by a constant period length, 1 BSU, from center to center. The device occupies the negative z region of space and; \mathbf{O} is the vector from the origin to the center of the layer (black) at the top of the device (gray).
3.3.1 The Array

The model is designed to admit cases where the array is uniform, where each and every element is unique with respect to its individual physical properties, and any mixture of those two extremes. The model only calculates field, energy, and force generated at points beyond the location of the elements; therefore, to achieve simplicity without loss of generality, they will be air core solenoids. The properties required to define a single element of the array are: \mathbf{R}_n, the position vector of the element (pointing from the origin to the center of its circular cross-section area), L, the length, N, the number of turns, I the current applied, I_{max}, the maximum value of current the element allows, and, a, the radius.

3.3.2 The Device

The model considers the soft magnetic layer to be rectangular. The size of the layer is independent of the size of the array; further, it is free to be located anywhere at the negative z region of the xy-plane, even at locations beyond the array. The parameters that define the layer are: \mathbf{O}, the vector from the origin to the center of the top of the layer, x_{max}, y_{max}, and z_{max}, which define the extent of the layer, N, the number of segments that x, y, and z will be partitioned into, and χ_m, the susceptibility of the layer; additionally, the friction and weight of the device are required.
3.3.3 Other Parameters

The device's soft magnetic layer volume is divided into N^3 cubes of differential volume Δx, Δy, and Δz, where:

\[
\Delta x = \frac{x_{\text{max}}}{N}
\]

\[
\Delta y = \frac{y_{\text{max}}}{N}
\]

\[
\Delta z = \frac{z_{\text{max}}}{N}
\]

Each individual cube is parameterized by the ijk indexes: i for x-space, j for y-space, k for z-space; see Figures 3.6-7. The model employs the center of the cube when calculating field, energy, and force at that cube. The ijk indexes can be converted to x_i, y_j, and z_k coordinates via:

\[
x_i = \left(x_0 - \frac{x_{\text{max}}}{2}\right) + \Delta x \left(i + \frac{1}{2}\right)
\]

\[
y_j = \left(y_0 - \frac{y_{\text{max}}}{2}\right) + \Delta y \left(j + \frac{1}{2}\right)
\]

\[
z_k = -z_{\text{max}} + \Delta z \left(k + \frac{1}{2}\right)
\]
where, \(x_0\) and \(y_0\) (and \(z_0 = 0\)) represent the components of the \(\mathbf{O}\) vector. It is seen that \(x\) ranges from \(x_0 - x_{\text{max}}\) to \(x_0 + x_{\text{max}}\), \(y\) ranges from \(y_0 - y_{\text{max}}\) to \(y_0 + y_{\text{max}}\), and \(z\) ranges from 0 to \(-z_{\text{max}}\). The uniqueness of the \(z\) range reflects the fact that the device abuts the negative side of the xy-pane and extends into the negative \(z\) region of space.

Figure 3.6 A top-down view of a layer at the xy-plane, divided into 12 segments in \(x\) and 11 segments in \(y\). The \(dx\) and \(dy\) indicate the width of the segments. The yellow square represents the 11,8,0 (at the xy-plane \(k = 0\)) differential cube. \(\mathbf{O}\) is a vector from the origin to the center of the 11,8,0 differential cube.
Figure 3.7 A side view of a layer at the xz-plane, divided into 12 segments in x and 5 segments in z. The dx and dz indicate the width of the segments. The yellow square represents the 8,0,1 (at the xz-plane j = 0) differential cube. \(\mathbf{O} \) is a vector from the origin to the center of the 8,0,1 differential cube.

3.3.4 The Basic Size Unit

The BSU is relevant only when the array is a regular, periodic lattice, although it may be defined for a non-regular array. The BSU is the period length of the array, which is defined as the center-to-center distance between elements (see Figure 3.5). Alternatively, if the array is irregular, i.e., the elements of the array are arranged in a non-repeating pattern, the square of the BSU is the smallest possible constant value of area that encompasses all of the elements without overlaps. If the array is packed, i.e., the separation between elements of the array tends to zero, then the BSU approaches the threshold theoretical limit of 2a, where a is the radius of the element.

The BSU, which must be given to the magnetic field interaction model as a parameter, is used to calculate the size of the CCA. It is also the direct physical link between the SA’s abstract view of space and the real physical space.
3.4 Main Calculators

The Biot-Savart law is used to calculate the field of the array at the layer. As depicted by Figures 3.8 and 3.9, the elements are solenoids of length L, turns N, and radius a, located at the positive z region of space. The field is evaluated at the point of interest x_i, y_j, and z_k, at the center of the ijk differential cube. The field's x, y, and z components are solved numerically by the Composite Simpson's Rule applied to a two variable system; the variables are η and φ, where η represents the turns and ranges from 0 to N and φ represents the angle and ranges from 0 to 2π.
Figure 3.8 The setup of the Biot-Savart law for the solenoid field at point x,y,z. The solenoid occupies the positive z region of space. The point x,y,z is at the negative z regions of space. a is the radius of the solenoid. L/N is the density of length per turn. $\mathbf{P}_1 = (L/N) \eta z$, $\mathbf{P}_2 = a \cos(\varphi) \mathbf{x} + a \sin(\varphi) \mathbf{y}$, $\mathbf{O} = xx + yy + zz$, and $\mathbf{R} = \mathbf{O} - \mathbf{P}_1 - \mathbf{P}_2$.
Figure 3.9 An illustration of the $d\mathbf{L}$ vector. The current flows through the turn along the length of the solenoid. The radius is a, the angle is θ, and $d\theta$ is the differential change in angle. $d\mathbf{L} = -a \sin(\theta) d\mathbf{x} + a \cos(\theta) d\mathbf{y}$
3.4.1 Biot-Savart Law

The Biot-Savart Law, specialized for the solenoid, is [101]:

$$\vec{B} = \frac{\mu}{4\pi} I \int \int \frac{d\vec{L} \times \vec{R}}{|\vec{R}|^3} \, d\eta \tag{3.7}$$

where, μ is the permeability at the point of interest, I is the current in the element, \vec{R} is the distance vector between the element and the point of interest (see Figure 3.8) and $d\vec{L}$ is a segment of arc (see Figure 3.9).

The x, y, and z components of the field are [101]:

$$B_x = \frac{\mu}{4\pi} I a \int \int \frac{(z - \Delta\eta)\cos\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(ax\cos\phi + a\sin\phi + \Delta\eta z))^\frac{3}{2}} \, d\phi \, d\eta \tag{3.8}$$

$$B_y = \frac{\mu}{4\pi} I a \int \int \frac{(z - \Delta\eta)\sin\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(ax\cos\phi + a\sin\phi + \Delta\eta z))^\frac{3}{2}} \, d\phi \, d\eta \tag{3.9}$$

$$B_z = \frac{\mu}{4\pi} I a \int \int \frac{a - x\cos\phi - y\sin\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(ax\cos\phi + a\sin\phi + \Delta\eta z))^\frac{3}{2}} \, d\phi \, d\eta \tag{3.10}$$

where, x, y, and z are the components of \vec{R}, a is the radius of the element, and Δ is the ratio of length, L, per turn, N. The limits of integration for ϕ is 0 to 2π and for η is 0 to N.
Let \(f \) be a function of variables \(A \) and \(B \), where \(A \) ranges from 0 to \(A_{\text{max}} \) and \(B \) ranges from 0 to \(B_{\text{max}} \). The step-sizes are \(h_A \) and \(h_B \), with the indexes \(i \) and \(j \), ranging from 0 to \(n_A \) and 0 to \(n_B \); therefore, \(A_i = 0 + h_A i \) and \(B_j = 0 + h_B j \).

The Simpson's Rule approach is applied to \(f \) on \(A \) [102]:

\[
F(B) = \frac{h_A}{3} \left(f(0, B) + 2 \sum_{i=1}^{\frac{n_A}{2} - 1} f(A_{2i}, B) + 4 \sum_{i=1}^{\frac{n_A}{2}} f(A_{2i-1}, B) + f(A_{\text{max}}, B) \right)
\]

(3.11)

then applied to \(F_0 \) on \(B \):

\[
G = \frac{h_B}{3} \left(F(0) + 2 \sum_{j=1}^{\frac{n_B}{2} - 1} F(B_{2j}) + 4 \sum_{j=1}^{\frac{n_B}{2}} F(B_{2j-1}) + F(B_{\text{max}}) \right)
\]

(3.12)

thus:

\[
\int_0^{A_{\text{max}}} \int_0^{B_{\text{max}}} f(A, B) dAdB \approx G
\]

(3.13)

To find the field within the region occupied by the soft magnetic layer is a two-step process. First, the layer is divided into \(N^3 \) differential cubes indexed by \(ijk \). Second, the field contributions from each and every element of the array is calculated at each and every \(ijk \) differential cube.
3.4.2 Induced Magnetic Field

The magnetization, \(\mathbf{m} \), of the soft magnetic layer due to the field is given by [101]:

\[
\mathbf{m} = \frac{1}{\mu_0 1 + \chi_m} v \mathbf{B}
\]

(3.14)

where, \(\chi_m \) is the susceptibility of the layer and \(v \) is the volume within which the field acts.

This expression is parameterized for the \(ijk \) differential cube as:

\[
\mathbf{m}_{ijk} = \frac{1}{\mu_0 1 + \chi_m} \Delta x \Delta y \Delta z \mathbf{B}_{ijk}
\]

(3.15)

3.4.3 Energy

The energy of the field acting on the layer is given by [101]:

\[
U = -\mathbf{m} \cdot \mathbf{B}
\]

(3.16)

or, parameterized for the \(ijk \) differential cube:

\[
U_{ijk} = -\frac{1}{\mu_0 1 + \chi_m} \Delta x \Delta y \Delta z |\mathbf{B}_{ijk}|^2
\]

(3.17)
3.4.4 Forces

The force of the field acting on the layer is given by [101]:

\[\bar{F} = \nabla (\bar{m} \cdot \bar{B}) \]

(3.18)

or, parameterized for the \(ijk \) differential cube:

\[\bar{F}_{ijk} \frac{1}{\mu_0 (1 + \chi_m)} \Delta x \Delta y \Delta z \nabla |\bar{B}_{ijk}|^2 \]

(3.19)

3.4.5 Friction

Device weight and friction need to be considered as they affect the acceleration, therefore, the motion. The \(z \)-component of the force exerted at the layer by the array must be such that \(|F_z| > |W| \), where \(W \) is the weight; otherwise, the device falls off of the membrane. Also, for the device to move in either the \(x \) or \(y \) direction, \(|F_x| > |F_z| \mu \) or \(|F_y| > |F_z| \mu \) respectively, where \(\mu \) is the coefficient of friction.

Let \(F \) be the applied force at the layer by the array and \(|F_z| \mu \) be the force of friction; acceleration is:

\[a = \frac{g}{W} (F \pm |F_z| \mu) \]

(3.20)
3.5 Collision Cross-Section Area Calculator

The first phase is to determine the least amount of field required to suspend a weight of \(W \eta \), where \(W \) is the weight of the soft magnetic layer and \(\eta \) is a factor related to the effect of friction (\(\eta \geq 1 \)) and is a parameter of the calculation. The second phase is to seek the points where the magnitude of the field is \(B_{\text{max}} \sigma \), where \(B_{\text{max}} \) is the maximum value of the field within the soft magnetic layer and \(\sigma \) is a parameter of the calculation (\(0 \leq \sigma \leq 1 \)). The distance from the center of the soft magnetic layer to these points is used to calculate the CCA.

First, the positions and the constructions of the soft magnetic layer and the array are altered respectively. The center of the layer is placed at the origin. The array is built symmetrically about the origin with the zeroth element at the origin above the center of the soft magnetic layer. The array's period length is still the BSU.

Second, the parameter \(\Delta \), which controls the number of elements that are activated, is set to zero. All of the elements about the origin whose distance from the origin is equal to or lesser than \(\Delta \cdot \text{BSU} \) are ramped up to \(I_{\text{max}} \alpha \) where \(I_{\text{max}} \) is the element's maximum current tolerance and \(\alpha \) is a parameter of the calculation set between 0 and 1. The field within the soft magnetic layer is calculated; then the force is calculated. If \(|F_z| < |W| \eta \), then, \(\Delta \) is incremented by 1 and the next ring of elements are activated. The loop stops as soon as \(|F_z| > |W| \eta \).
Third, the currents applied to the elements are reduced by a factor of $1/\alpha$, until the least amount of field required to suspend $W \eta$ is achieved. This step is important for two reasons: first, it reduces the CCA size to a reasonable and manageable value and, second, by reducing the field and the force it exerts, it also reduces unwanted contributions due to friction (which is due to the normal force $|F_z|\mu$) and prevents the elements from employing currents that are too strong for too long.

Fourth, the maximum magnitude of the field is found within the soft magnetic layer. The field in the air around the device on the xy-plane is sampled about the x and y axis. Starting at the edge of the layer, the process samples the field and stops when it finds the point on the x and y axis where the magnitude of the field is equal to or lesser than $B_{\text{max}} \sigma$. The largest value of length, either from the x or y axis, is chosen; it is converted to BSU and rounded to the next odd integer; it is the delta value (delta is not Δ, delta has the dimensions of length, Δ is related to the number of activated elements) through which the CCA is calculated as (see Figure 3.10):

$$CCA = 2 \text{ delta} + 1$$ \hspace{1cm} (3.21)

While the CCA is the actual size, in BSU, of the area reserved for the device, delta is the parameter that is given to SA. The CCA is always overestimated by 1 BSU to allow the fine turning of position that may be required to accurately place a device on the template (and in the substrate).
The effect of hysteresis is not considered by this algorithm; it is a static model and does not consider dynamic or second order effects. The CCA as considered by the algorithm admits both static and kinetic friction; however, as static friction is stronger than kinetic friction, it is advisable to use static friction and not kinetic friction when formulating the value of η.

![Diagram showing the difference between delta and CCA](image)

Figure 3.10 An illustration depicting the difference between the delta parameter and the CCA value. The CCA is the length of the square around the device. The delta is the distance between the center and the edge. (The scale of the grid is 1 BSU). The relationship between CCA and delta is $\text{CCA} = 2 \times \text{delta} + 1$.
3.6 Magnetic Retention Factor

Because $|F_z|$ must be equal to or greater than the weight, it follows that the force of friction $|F_z|\mu$ is also proportional to the weight. A way to minimize $|F_z|$, and by extension, friction, and to reduce the size of the CCA (which is also proportional to weight) is to minimize the mass of the device. MFDSA is a passive tool to integrate devices into recesses; it cannot mandate how device/recess pairs are to be designed. The only avenue left to optimize the system is to reduce the soft magnetic layer's contribution to the weight.

The concept called the Magnetic Retention Factor (MRF) is proposed as a method to characterize the material used to fabricate the soft magnetic layer in order to chose the material that maximizes the magnetization while reducing its contribution to weight.

The addition of hard and soft magnetic material is a feature of MFDSA that is necessary to achieve assembly, yet thereafter, it represents a permanent passive component retained within the system. The goal is to minimize the impact of those materials. Aside from increasing friction, the layer increases the total weight of the system, especially the device itself. The heavier the device, the stronger the applied magnetic field needs to be both when the array suspends and moves it and when the recess retains it. Lighter devices reduce the effect of friction, the CCA, and require weaker or fewer amounts of hard magnetic materials.
A concise and abstract consideration of the MRF follows. The test electromagnet is a solenoid with an air core of radius r, length L, and turns N; a current of I flows through it. The test soft magnetic layer, at the top of the device, is a cylinder with a radius r, thickness t, volume v, and susceptibility χ_m. The solenoid and the device are on-axis without separation.

Figure 3.11 A schematic demonstrating the test model of interest. A device (with a layer of soft magnetic material) is suspended against gravity by the core of the electromagnet. A membrane of negligible thickness separates device and core. The device and the core are shown with equal radius.
Basic electromagnetic theory gives an approximate expression for force given at a situation as found in Figure 3.11 as [101]:

\[F = 2 \frac{1}{\mu_0} \frac{\chi_m}{1 + \chi_m r} v B^2 \]

(3.22)

where, B is the field induced in the soft magnetic layer; secondary interactions between the solenoid and the device are ignored.

The force must be equal to the weight, W, of the device at the very least. The weight itself is split into two components: \(W_d \) is the weight of the bare device without a layer and \(W_l \) is the weight of the layer alone.

\[B = \sqrt{(W_d + W_l) \frac{1}{2v} \frac{1}{\mu_0} \frac{1 + \chi_m}{\chi_m}} \]

(3.23)
Figure 3.12 Applied Magnetic Field vs. Device Weight (a graph of Equation 3.23) showing its application to four types of materials (Ferroxcube III, 2-81 Permalloy, iron, and Supermalloy) modeled as layers 10μm thick with a radius of 50μm. The device weight varies from 0 to 2nN. The calculated applied magnetic fields range from 1.2 to 1.9mT.

Figure 3.12 summarizes the results of Equation 3.23 for a soft magnetic layer with thickness 10μm and radius 50μm for each of the following materials: Ferroxcube III, 2-81 Permalloy, iron, and Supermalloy. Note that the abscissa is only the bare device weight, \(W_d \), and when it is equal to zero, there is still a \(W_l \) which requires an induced magnetic field to suspend. Given the parameters of Table 3.1, Ferroxcube III is the material that requires the least magnetic field to support the total weight of the device.
The MRF is introduced as a way to determine those materials that generate the greatest magnetization while contributing the least weight to the system. MRF is defined as:

\[
MRF = \frac{1}{\rho} \frac{\chi_m}{\mu_0} \frac{1}{1 + \chi_m}
\]

(3.24)

where, \(\rho \) is the material's mass density. Since \(W_1 = \rho v \), Equation 3.24 follows from Equation 3.23 where the soft magnetic layer volume \(v \) and radius \(r \) are fixed. MRF is simply a function of material properties; for the materials considered in Table 3.1 the susceptibility, \(\chi_m \), is larger than unity; therefore, MRF is dependent on mass density.

Table 3.1 gives values of MRF of several magnetic materials. It further demonstrates what is shown in Figure 3.12 and confirms the interpretation given for MRF. The Ferroxcube III has the largest value of MRF while iron yields the smallest value of MRF.

A further connection can be made between the permeability of the soft magnetic layer and the thickness required to adhere to the hard magnetic strips as found in Equations 2.13-14. A relationship developed between MRF and \(b/L \), the scaled soft magnetic layer thickness, is:

\[
\frac{b}{L} \geq \frac{1}{2\pi} \ln \left(\frac{2}{\rho \mu_0 MRF} - 1 \right)
\]

(3.25)
Table 3.1 A Table of Magnetic Materials and Properties.

<table>
<thead>
<tr>
<th>Material</th>
<th>μ_r</th>
<th>ρ</th>
<th>MRF</th>
<th>b/L</th>
<th>T_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferroxcube III</td>
<td>1000</td>
<td>5000</td>
<td>159.0</td>
<td>0.0005</td>
<td>~135</td>
</tr>
<tr>
<td>2-81 Permalloy</td>
<td>125</td>
<td>7800</td>
<td>101.2</td>
<td>0.0027</td>
<td>460</td>
</tr>
<tr>
<td>Iron</td>
<td>200</td>
<td>7880</td>
<td>100.5</td>
<td>0.0017</td>
<td>622</td>
</tr>
<tr>
<td>Supermalloy</td>
<td>100000</td>
<td>8770</td>
<td>90.7</td>
<td>0.0003</td>
<td>400</td>
</tr>
</tbody>
</table>

Source: Adapted from [103-107].

Note: the Curie Temperature (T_C) imposes a limit with respect to further thermal processing unless the wafer is secured with a protective layer or film; beyond T_C, the materials are not magnetic and the integration could be destroyed.

3.7 Outline of the Swarm Algorithm

The Swarm Algorithm (SA) represents the other half of the MFDSA modeling program. SA is an iterative solution to the problem of assembly. It calculates the pathways devices need to follow as they travel from initial to final positions. SA is invoked prior to assembly; its output is the complete process reduced to step-by-step, 'quantized' movements.

The output is fed into the external control unit, along with such data as device mass, friction, size, and delta, which is used to convert the abstract solution into a real-time solution. The external control unit translates the movements into instructions that operate the array and that manipulate the field accordingly thereby moving devices. The actual methodology of translation is a problem with respect to engineering that further research and development is intended to address.

It is important to reiterate that SA is an abstraction of the problem.
3.7.1 Space and Time Abstractions

SA attempts to solve the simultaneous hybrid assembly process by imposing a sequential approach to calculate movement. The apparent sizes of devices is in fact the CCA, and, the grid-size is equal to 1 BSU. The 'space', as in distances from grid point to grid point, is connected to a true distance via the BSU.

The most important abstraction, however, cannot be easily reconciled and that is SA’s notion of time. The analog of time is the step (STP), which is not a unique temporal duration. There does not exist a factor to convert steps into seconds like the BSU converts grid-size into meters. To SA, the step is an interval of iteration within which a set of movement occurs simultaneously. Although SA only moves devices 1 BSU length per step, devices of various inertias and frictions require different accelerations to displace that 1 BSU length. Ultimately, they require different times to displace their 1 BSU movement. It is possible to convert steps into seconds only on a step-per-step basis; it is found by calculating the time required for the slowest device with the weakest acceleration to move a distance of 1 BSU.

At a step, all of the movement occurs simultaneously; however, the fastest devices and the slowest devices complete their 1 BSU movements at different durations. The fastest devices actually spend a fraction of a step at rest delayed until the slowest devices complete their motion. The external control unit is required to wait until all devices complete their motion in order to advance. The effect is that the simultaneity of the assembly is not achieved by continuous motion but by grainy, quantized motion; it must be accomplished that way to keep control of the process and prevent occurrences of collision and frustration events.
3.7.2 Final Position Offsets

Another layer of abstraction includes the exact position of devices. The important rule of thumb is that the actual geometric center of a device is kept at the center of the CCA. When SA prescribes to move a device from grid to grid, it shifts the location of the CCA and the device by 1 BSU; before and after the motion, the centers of the device and the CCA coincide. To verify the positions of devices to ensure that they indeed always move by the 1 BSU distance, sensors are employed on the membrane to measure pressure and other effects which reveal the location of a device; algorithms within the external control unit would be able to follow the devices by keeping track of their sensors.

Related to the step-by-step motions of devices is the issue of the final position. The final position on the template represents the final position in the substrate. It may appear that the centers of the grids need to correspond with or align to the recess, which would be a subtle way that MFDSA constrains the design of wafers.

This difficulty is eliminated with the inclusion of offsets. Offsets are a way to fine-tune, if necessary, the final positions of devices. Offsets are fractional values of BSU and may be either positive or negative denoting the direction for the position to be corrected prior to dropping the device onto the template (see Figure 3.13). The actual offset value that can be reached is limited by the dexterity of the array; however, it simply needs to be within the allowable placement tolerance and is subject to the error checking/correction algorithm of MFDSA. When a device is brought into its final position, an additional set of motion in invoked, controlled by the offset values, which change the final position to its true desired value. The CCA is deliberately over-estimated to allow for these offset corrections without violating the rules of assembly.
Figure 3.13 An illustration of the final position offsets. The CCA is outlined by the large square. The device is given by the small square. When the device reaches its final position it may be necessary to fine-tune that location by fractional BSU motions in either the x or y directions. The offsets allow the device to be placed at a location that corresponds to the recess.

3.7.3 Boundary Conditions, Driving Functions, and Other Parameters

The order of devices as they enter the enclosure functions in a way analogous to a driving force. The initial and final positions of devices are equivalent to the boundary conditions. The number of devices that actually enter from step to step is controlled by a pair of parameters: the maximum device and the trigger device values. The maximum device value controls the maximum number of devices that are moved on the grid at any given step. The trigger device value controls when an insertion is invoked; essentially, after a certain number of devices have been populated on top of the template, the insertion will be triggered. When the number of active devices left on the grid plus the populated devices on the template is equal to the trigger value, then no new devices are added to the enclosure until insertion is triggered.
3.7.4 The P and Q Tables

SA determines how to move devices simultaneously by constructing the pathways iteratively from step to step. The active devices on the grid are placed in a cue and are processed, sequentially, from first to last as prescribed by order of entry. For each device at a step, SA generates the P and Q Tables. These tables contain answers to logical yes/no questions out of which motion will be decided. The P-Table is first. The Q-Table is second if and only if the P-Table fails to yield a movement.

The P-Table is concerned with the long range motion and avoids frustration by choosing pathways that are not blocked. The Q-Table is mostly a short-sided view and circumvents frustration by avoiding motions into areas with high device density.

The pathways created by SA are composed of five discrete or 'quantized' 1 BSU movements whose units are: up, down (along the horizontal plane's y-direction), left, right (along the horizontal plane's x-direction), and null (diagonal movement is not allowed). Null is a special kind of movement indicating no movement; it is a safety valve designed to keep the method from failing. If all devices yield null motion, then the method is said to fail. As with an ordinary differential equation, the problem of assembly may be ill-posed and SA will not converge to solution. Typically, this occurs if there are more larger devices than smaller devices present at a given step or if devices are attempting to move through or around crowded areas to reach their destinations. These failures can be resolved by changing maximum and trigger device values and altering the order of device entry.
3.8 Discussion

In conjunction with the problem of assembly tackled by SA are a class of problems called 'parking lot' problems. The literature that exists regarding the parking lot problem is mainly concerned with optimizing the distribution of spaces given a parking lot of fixed shape and area [108]. Further, no formulation of the parking lot problem, or the solution to that problem, attempts to describe how exactly the cars move to obtain their spot [109-110]. The details of the placement of cars into spaces to fill a parking lot (the pathways) is ignored. Such details, if discussed, are left as random or based on the first-come, first-served paradigm. This is justified because, in general, all cars and all spaces are interchangeable [109].

The MFDSA is a tool for assembly. It does not impose any conditions regarding how devices and recess are distributed about a wafer; the pattern of the distribution is arbitrary. The initial and final positions are fixed boundary conditions that must be specified and not random. MFDSA is not a first-come, first-served method where devices are scattered onto the nearest recesses that will accept them. The MFDSA problem is about the minutiae of assembly itself. It is concerned with the choices of motion the devices are required to follow to attain their final desired positions.

MFDSA is also not analogous to the problem of obtaining travel directions with a global positioning system (GPS) navigator.
When a GPS determines a route, it does not take into account the way that cars need to maneuver about immediate real-time traffic or how to deal with other roadway obstacles that suddenly appear. Instead it compiles a series of 'turn here, turn there' directions which may be somewhat analogous to the output of SA but there are two areas of difference.

First, there are fixed immovable roadways with fixed directional flows; there are no fixed pathways in SA; the entire grid is open to motion in all directions. Second, there are no reverses in GPS navigation, the car is always on drive, moving forward and forward, even as it makes left or right turns; in SA, devices can go backward if required. The GPS is very much a reduced 1D problem whereas the MFDSA solves the full 2D problem.
CHAPTER 4
MAGNETIC FIELD INTERACTION MODEL

4.1 Overview

A numerical, magnetostatic approach is developed to model the magnetic field interaction between the array of electromagnets and the soft magnetic layer. The model contains functions that calculate magnetic field, energy, force field, and net force. A combination of array and layer definitions are required to complete the calculations.

The model requires two major inputs, the definitions of the array of electromagnets and the soft magnetic layer. It does not impose restrictions with respect to size and location of the array and the layer. The only constraints are that the array is above the xy-plane and the layer is below the xy-plane. The feedback between the elements of the array is ignored as that effect is concerned with torques and repulsive/attractive forces within the array that do not act on the layer. The material of the layer is assumed to be linear.

The xy-plane at $z = 0$ represents the location of the membrane, which separates the array of electromagnets and the soft magnetic layer. While the actual, physical membrane is finite, the model does not impose any limit with respect to the size of the xy-plane. A further set of simplifications are that its thickness is negligible and its susceptibility is zero.
The model is free to deal with any condition regarding the structure of the array of electromagnets. It may be homogenous, inhomogeneous, and a mixture of those extrema. If the array is homogenous then it is a regular, repeating 2D lattice, with a constant period length called the Basic Size Unit (BSU). If the array is inhomogeneous, then it is more amorphous than crystalline; the square of the BSU is the smallest constant area that encompasses each and every element without overlap (there could be gaps). The BSU of a dense array approaches the limit of D, the diameter of the element. (Note: the model allows non-homogenous array distributions as part of its overall design generality and does not reflect what would be ordinarily employed by the MFDSA technique.)

The array is considered to be an air core solenoid; it can be adjusted to admit a core; however, it is omitted for simplicity without too great a loss to generality. The properties that define the n^{th} element are: \mathbf{R}_n, the vector of position pointing from the origin to the center of its bottom circular cross-section area, L, the length, N, the number of turns, I the current supplied, I_{max}, the maximum value of current the element allows, and, a, the radius.

The layer is considered to be a rectangle. The properties that define the layer are: \mathbf{O}, the vector of position pointing from the origin to the center of its top area, x_{max}, y_{max}, and z_{max}, which specify the size of the layer, N, the partitions it will be broken into along the x, y, and z axis, and χ_m, the susceptibility.
4.2 Parameters

The x_{max}, y_{max}, and z_{max} are divided by the N to obtain the step-sizes:

\[
\Delta x = \frac{x_{\text{max}}}{N} \quad (4.1)
\]

\[
\Delta y = \frac{y_{\text{max}}}{N} \quad (4.2)
\]

\[
\Delta z = \frac{z_{\text{max}}}{N} \quad (4.3)
\]

The Δx, Δy, and Δz define the volume of the differential cube. A differential cube is indexed by ijk, where i, j, and k range from 0 to $N - 1$ such that there will be a total of N^3 cubes within the layer.

O is the vector from the origin to the center of the top of the layer; however, the model requires O'_{ijk}, the position vector from the origin to the center of the ijk differential cube. If $O = x_o x + y_o y + z_o z$, then:

\[
O'_{ijk-x} = \left(x_o - \frac{x_{\text{max}}}{2}\right) + \Delta x \left(i + \frac{1}{2}\right) \quad (4.4)
\]

\[
O'_{ijk-y} = \left(y_o - \frac{y_{\text{max}}}{2}\right) + \Delta y \left(j + \frac{1}{2}\right) \quad (4.5)
\]
where, the 1/2 factor reflects the fact that the terminus of the O'_{ijk} vector is the center of the ijk differential cube. Any point within the ijk differential cube could be chosen as the point of interest; for symmetry and to avoid vertexes and surfaces, the center is chosen. The components of the O'_{ijk} vector range in x from $x_0 - x_{max} / 2$ to $x_0 + x_{max} / 2$, in y from $y_0 - y_{max} / 2$ to $y_0 + y_{max} / 2$, and in z from 0 to z_{max}.

$R_{n,ijk}$ is the vector from the center of the n^{th} element to the center of the ijk differential cube; it is defined as $R_{n,ijk} = O'_{ijk} - R_n$. If $R_n = x_n x + y_n y + 0 z$, then:

\[
R_{n,ijk-x} = \left(x_0 - \frac{x_{max}}{2}\right) + \Delta x \left(i + \frac{1}{2}\right) - x_n \equiv x
\]

(4.7)

\[
R_{n,ijk-y} = \left(y_0 - \frac{y_{max}}{2}\right) + \Delta y \left(j + \frac{1}{2}\right) - y_n \equiv y
\]

(4.8)

\[
R_{n,ijk-z} = -z_{max} + \Delta z \left(k + \frac{1}{2}\right) \equiv z
\]

(4.9)

P_n is the vector from the origin to a segment of current within the n^{th} element. It is a combination of two vectors. First, a vertical vector that describes the height with respect to the number of turns. Second, a polar vector that describes a segment of current.
\[P_n = a \cos \varphi \hat{x} + a \sin \varphi \hat{y} + \Delta \eta \hat{z} \] \hspace{1cm} (4.10)

where, \(\varphi \) is from 0 to \(2\pi \), \(\Delta \) is the ratio of length per turn, and \(\eta \) is from 0 to \(N \).

\(\mathbf{R'}_{n,ijk} \) is the displacement vector from the segment of current within the \(n^{th} \) element to the center of the \(ijk \) differential cube; it is required to compute the magnetic field vector at the \(ijk \) differential cube.

\[\mathbf{R'}_{n,ijk} = (x - a \cos \varphi) \hat{x} + (y - a \sin \varphi) \hat{y} + (z - \Delta \eta) \hat{z} \] \hspace{1cm} (4.11)

d\(L \) is the vector that defines the arc of current along a loop within the solenoid:

\[dL = -a \sin \varphi d\varphi \hat{x} + a \cos \varphi d\varphi \hat{y} \] \hspace{1cm} (4.12)

4.3 Composite Simpson's Rule

At the center of the magnetic field interaction model is the Biot-Savart law. The field's components, in \(x \), \(y \), and \(z \), are to be calculated with respect to the \(n^{th} \) element and the \(ijk \) differential cube. The net field at an \(ijk \) differential cube will be found by adding the contributions of the elements onto that \(ijk \) differential cube. The vector field will be found through the volume of the layer, i.e., a total of \(N^3 \) centers of \(ijk \) differential cubes.

The Biot-Savart law, specialized to fit a solenoid, is [101]:
\[
\bar{B} = \frac{\mu}{4\pi} I \int \frac{d\bar{L} \times \bar{R}}{|\bar{R}|^3} d\eta
\] (4.13)

where, \(\mathbf{R} \) is \(\mathbf{R}'_{n,ijk} \) (Equation 4.11) and \(d\mathbf{L} \) is as defined by Equation 4.12.

The components of the field are [101]:

\[
B_x = \frac{\mu}{4\pi} I a \int \int \frac{(z - \Delta\eta)\cos\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(\alpha\cos\phi + \alpha\sin\phi + \Delta\eta z))^3} \, d\phi \, d\eta
\] (4.14)

\[
B_y = \frac{\mu}{4\pi} I a \int \int \frac{(z - \Delta\eta)\sin\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(\alpha\cos\phi + \alpha\sin\phi + \Delta\eta z))^3} \, d\phi \, d\eta
\] (4.15)

\[
B_z = \frac{\mu}{4\pi} I a \int \int \frac{a - \alpha\cos\phi - \alpha\sin\phi}{(x^2 + y^2 + z^2 + a^2 + (\Delta\eta)^2 - 2(\alpha\cos\phi + \alpha\sin\phi + \Delta\eta z))^3} \, d\phi \, d\eta
\] (4.16)

The solutions of Equations 4.14-16 are analytical only at a few, specific cases. The model must be able to calculate fields at any given point; therefore, a numerical quadrature scheme must be invoked to proceed further. The Composite Simpson’s Rule is developed as that scheme.

Let \(f \) be a function of variables \(A \) (from 0 to \(A_{\text{max}} \)) and \(B \) (from 0 to \(B_{\text{max}} \)), with step-sizes \(h_A \) and \(h_B \) such that \(A_i = 0 + h_A \, i \) (i from 0 to n) and \(B_j = 0 + h_B \, j \) (j from 0 to m). The integral of \(f \) over \(A \) and \(B \) is [102]:

\[
\int A \int B f(x, y, z) \, dx \, dy \, dz
\]
\[\int \int f(A, B) dAdB = \frac{h_A h_B}{3} \]

\[\times \left[f(0, 0) + f(A_{\text{max}}, 0) + f(0, B_{\text{max}}) + f(A_{\text{max}}, B_{\text{max}}) \right. \]

\[+ 2 \sum_{i=1}^{n} f(A_{2i}, 0) + f(A_{2i}, B_{\text{max}}) + 2 \sum_{j=1}^{m} f(0, B_{2j}) + f(A_{\text{max}}, B_{2j}) \]

\[+ 4 \sum_{i=1}^{n} f(A_{2i-1}, 0) + f(A_{2i-1}, B_{\text{max}}) + 4 \sum_{j=1}^{m} f(0, B_{2j-1}) + f(A_{\text{max}}, B_{2j-1}) \]

\[+ 4 \sum_{i=1}^{n-1} \sum_{j=1}^{m} f(A_{2i}, B_{2j}) + 8 \sum_{i=1}^{n-1} \sum_{j=1}^{m} f(A_{2i-1}, B_{2j-1}) + 8 \sum_{i=1}^{n-1} \sum_{j=1}^{m-1} f(A_{2i-1}, B_{2j}) \]

\[+ 16 \sum_{i=1}^{n} \sum_{j=1}^{m} f(A_{2i-1}, B_{2j-1}) \]

The functions of Equations 4.14-16 are substituted in place of f.

4.4 Algorithms

4.4.1 Magnetic Field Calculations

Due to the size of the array of electromagnets, and the volume of the soft magnetic layer, the magnetic field calculator is slow to converge computationally. The function evaluates the net magnetic field at the \(ijk \) differential cube as a result of the entire array. It is general to regions occupied by the layer (where \(\chi_m \neq 0 \)) and the vacuum (where \(\chi_m = 0 \)). The convergence of the calculation is controlled by the SR2 parameter; SR2 determines the number of partitions used by the numerical integration scheme, hence, its tolerance and error.
The algorithm is summarized as:

for i, j, k = 0 to N - 1
 find the O_{ijk} vector
 set the B_{ijk} vector to zero
for n = 1 to M
 find the $R_{n,ijk}$ vector
 calculate the $B_{n,ijk}$ vector
 update B_{ijk} by $B_{n,ijk}$
loop n
loop i, j, k

4.4.2 Energy Calculations

The energy between a soft magnetic material and an applied field is given by [101]:

$$U = -\vec{m} \cdot \vec{B}$$

where, \vec{m} is the induced magnetization at the layer and \vec{B} is the field.

Assuming that the material is linear and that the field is weaker than stronger, then the magnetization of the layer is a function of \vec{B}:

$$\vec{m} = \frac{\chi_m}{\mu_0 (1 + \chi_m)} v \vec{B}$$

where, v is the volume of the layer.
Substituting Equation 4.19 into Equation 4.18 and expanding B:

$$U = -\frac{\chi_m}{\mu_0(1 + \chi_m)} \nu \left(B_x^2 + B_y^2 + B_z^2 \right)$$ \hspace{1cm} (4.20)

or, parameterized for the ijk differential cube:

$$U_{ijk} = -\frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta y \Delta z \left(B_{ijk-x}^2 + B_{ijk-y}^2 + B_{ijk-z}^2 \right)$$ \hspace{1cm} (4.21)

The algorithm is summarized as:

for $i, j, k = 0$ to $N - 1$

 calculate the U_{ijk} from B_{ijk} and parameters

loop

4.4.3 Force Field Calculations

The force between a soft magnetic material and an applied field is given by [101]:

$$F = \nabla(\bar{m} \cdot \bar{B})$$ \hspace{1cm} (4.22)

where, \bar{m} is the induced magnetization at the layer and \bar{B} is the field.
Substituting Equation 4.19 into 4.22 and expanding B:

\[
F = \nabla \left(\frac{\chi_m}{\mu_0(1 + \chi_m)} v \left(B_x^2 + B_y^2 + B_z^2 \right) \right)
\] \hspace{1cm} (4.23)

which is expanded into the x, y, and z components as:

\[
F_x = \frac{\chi_m}{\mu_0(1 + \chi_m)} v \frac{d}{dx} \left(B_x^2 + B_y^2 + B_z^2 \right)
\] \hspace{1cm} (4.24)

\[
F_y = \frac{\chi_m}{\mu_0(1 + \chi_m)} v \frac{d}{dy} \left(B_x^2 + B_y^2 + B_z^2 \right)
\] \hspace{1cm} (4.25)

\[
F_z = \frac{\chi_m}{\mu_0(1 + \chi_m)} v \frac{d}{dz} \left(B_x^2 + B_y^2 + B_z^2 \right)
\] \hspace{1cm} (4.26)

or, parameterized for the ijk differential cube:

\[
F_{ijk-x} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta y \Delta z \left(B_{i+j-k-x} \frac{d}{dx} B_{i+j-k-x} + B_{i+j-k-y} \frac{d}{dx} B_{i+j-k-y} + B_{i+j-k-z} \frac{d}{dx} B_{i+j-k-z} \right)
\] \hspace{1cm} (4.27)

\[
F_{ijk-y} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta y \Delta z \left(B_{i+j-k-x} \frac{d}{dy} B_{i+j-k-x} + B_{i+j-k-y} \frac{d}{dy} B_{i+j-k-y} + B_{i+j-k-z} \frac{d}{dy} B_{i+j-k-z} \right)
\] \hspace{1cm} (4.28)
A backward in space scheme is employed to represent the gradient operator:

\[
F_{ijk-z} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta y \Delta z \left(B_{ijk-x} \frac{d}{dz} B_{ijk-x} + B_{ijk-y} \frac{d}{dz} B_{ijk-y} + B_{ijk-z} \frac{d}{dz} B_{ijk-z} \right)
\] (4.29)

\[
F_{ijk-x} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta y \Delta z \left(B_{ijk-x} (B_{ijk-x} - B_{i-1jk-x}) + B_{ijk-y} (B_{ijk-y} - B_{i-1jk-y})
+ B_{ijk-z} (B_{ijk-z} - B_{i-1jk-z}) \right)
\] (4.30)

\[
F_{ijk-y} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta z \left(B_{ijk-x} (B_{ijk-x} - B_{ij-1k-x}) + B_{ijk-y} (B_{ijk-y} - B_{ij-1k-y})
+ B_{ijk-z} (B_{ijk-z} - B_{ij-1k-z}) \right)
\] (4.31)

\[
F_{ijk-z} = 2 \frac{\chi_m}{\mu_0(1 + \chi_m)} \Delta x \Delta y \left(B_{ijk-x} (B_{ijk-x} - B_{ijk-1-x}) + B_{ijk-y} (B_{ijk-y} - B_{ijk-1-y})
+ B_{ijk-z} (B_{ijk-z} - B_{ijk-1-z}) \right)
\] (4.32)

where, again, the \(ijk \) range from 0 to \(N - 1 \).
With respect to the x and y components of the force, the boundary conditions will be cyclical, i.e., i, j = -1 is i, j = N - 2. With respect to the z component, however, the force is clamped to zero at k = -1. A cyclic type of boundary condition is not imposed at the z component of the force due to the fact that the force is significantly different between the end-points of the k-range. The k = N - 1 is closest to the array and yields the strongest value of field and force while the k = 0 is farthest to the array and yields the weakest value of field and force. Without clamping the force at k = -1 to zero, the calculation returns an artificially strong value of force which skews the net force calculations.

The algorithm for the force at the \(ijk \) differential cube is summarized as:

for i, j, k = 0 to N - 1

calculate the \(F_{ijk} \) from the \(B_{ijk} \) and parameters

if k = 0 then set \(F_{ijk} \) to zero

loop

The algorithm for the net force is summarized as:

set the \(F \) vector to zero

for i, j, k = 0 to N - 1

update \(F \) by \(F_{ijk} \)

loop
4.5 The Collision Cross-Section Area Calculations

The Collision Cross-Section Area (CCA) is calculated by a function of the model. This function requires the weight and friction of the layer. Additionally, it requires the array of electromagnets to be built symmetrically about the origin, with a zeroth element at the origin. The definition of the soft magnetic layer does not need to be altered; rather, the function shifts its position such that its center is at the origin.

The CCA calculation is a sequence that involves computing fields and adjusting forces. The CCA value is the buffer that surrounds the layer, which is implemented in order to enforce the three rules of assembly and to allow the offset final position. Beyond weight and friction, several other parameters specific to the calculation are required: η, the weight and friction factor ($\eta \approx 1 + \mu$, where μ is friction), α, the current ramp up/down factor ($0 < \alpha \leq 1$), and σ, the maximum field tolerance ($0 < \sigma \leq 1$).

The algorithm is divided into three phases:

First Phase, Δ parameter estimate
1. set the array symmetrically about the origin
2. set the layer at the origin
3. set the Δ parameter to zero
4. loop:
 - set the elements $\Delta \times$ BSU from the origin to a current of $I_{\text{max}} \alpha$
 - calculate the B_{ijk}, F_{ijk}, and F of the layer
 - if $|F_z| < |W| \eta$ then increment the delta parameter by 1
 - if $|F_z| \geq |W| \eta$ then exit loop
Second Phase, delta parameter fine-tune

1. loop:
 - reduce the currents of the elements by a factor of α
 - calculate the B_{ijk}, F_{ijk}, and F of the layer
 - if $|F_z| < |W|$ then exit loop

2. increase the currents of the elements by a factor of α

Third Phase, CCA value

1. scan the B_{ijk} at the surface of the layer ($k = N - 1$)

2. find the maximum field magnitude, B_{max}

3. at the positive x edge:
 - move outward along the axis
 - sample the field magnitude until the field is $B_{\text{max}} \sigma$ (distance is x')

4. at the positive y edge:
 - move outward along the axis
 - sample the field magnitude until the field is $B_{\text{max}} \sigma$ (distance is y')

5. select the larger of the x', y' distances

6. convert distance to BSU, round to the next largest integer

7. set distance as the value of the delta parameter

8. the CCA value is $2 \times \Delta + 1$

The first phase is an estimate of the Δ parameter. The elements are activated with a maximum value of current. The field and force are calculated to ensure that the layer is supported by that configuration. If it is not supported, then another batch of elements are activated. If it is supported, then it moves onto the second phase.
The second phase is a fine-tune of the Δ parameter. The currents of the elements are reduced systematically until the force it generates is just enough to support the layer. The reduction of current leads to the reduction of force and field. The result is two-fold. First, the current will be minimized therefore minimizing the heat generated by the array. Second, the overall delta and CCA values will be shortened into a value that is feasible.

The third phase actually calculates the true delta parameter and CCA value. The field is sampled at locations beyond the edges at the x and y axis until the value of field is below a threshold. The larger of the x and y distances is chosen as the basis of the new delta parameter. The CCA value is calculated out of the delta parameter. The CCA value is always larger by at least 1 BSU to ensure that neither physical nor magnetic collisions occur and to allow the offset final position.

4.6 Friction

The z component of the net force, F_z, is the action that keeps the layer attached to the membrane. It is also the normal force of contact between the layer and the membrane; therefore, the force of friction is:

$$f = |F_z|\mu$$ \hspace{1cm} (4.33)
Figure 4.1 A schematic of the forces and torques acting on the layer (gray box). The layer's length is L and thickness is T. F_n is the force acting to move the layer toward the left. F_z is the normal contact force between the layer and the membrane (black line). The pivot is the point (yellow circle) at the edge toward the direction of motion. F_n and F_z generate torques on the pivot which may or may not flip the layer.

F_z should be greater than the weight, W, to factor the effect of friction. If F_z is not greater than W, then the device could be flipped. A layer intended to move along the direction n encounters friction at the edge closest to the direction n. Let L be the length of the layer, from edge to edge, along the direction n, T be the thickness of the layer, and F_n be the force moving the layer toward the direction n: then, $F_z \frac{L}{2}$ is the torque acting at the edge rotating the layer toward the membrane and $F_n \frac{D}{2}$ is the torque acting at the edge flipping the layer (see Figure 4.1).
The device will not flip if:

\[|F_z| > |F_n| \frac{T}{L} \]

If \(F_n \) is \(F_{x,y} - |F_z| \mu \), where \(F_{x,y} \) is the field generated force in x or y and \(|F_z| \mu \) is the friction, then:

\[|F_z| > |F_{x,y}| \frac{1}{\frac{L}{T} + \mu} \]

If \(F_z \) is \(W \sigma \), then:

\[\sigma > \frac{|F_{x,y}|}{|W|} \frac{1}{\frac{L}{T} + \mu} \]

The \(F_{x,y} \) represents a force that acts to move the device in the x or y direction. The Swarm Algorithm (SA) returns 'quantized' motion, up, down, left, and/or right, diagonal motion is not allowed. The \(F_{x,y} \) is moderated by friction, \(f \), into \(F_n \), which represents the actual, physical acceleration that displaces the device.
To move the device either in the x or y direction, the opposite component force must be zero. The left/right motion (along the x axis) requires F_y to be zero. The up/down motion (along the y axis) requires F_x to be zero. Directed motion of the kind is possible through a symmetric adjustment of the currents in the elements within the device's CCA and the elements at the destination.

To stop the device, the z component of the field is increased so that the friction eliminates the motion across a given distance:

$$|F_z| = \frac{1}{2} \frac{|W| V^2}{g \mu d}$$

(4.37)

where, V is the velocity of the device at the moment where the deceleration is to be triggered and d is the distance across which the deceleration is to act.

The acceleration, in general, is:

$$a = \frac{g}{|W|} (|F_{x,y}| - |F_z| \mu)$$

(4.38)
4.7 Discussion

The magnetic field interaction model is calibrated with respect to a known, analytical solution involving the field and force along the axis of a solenoid.

The magnetic field along the z-axis of a solenoid is:

\[B = \frac{\mu_0 I N}{2 L} \left(\frac{z - L}{\sqrt{a^2 + (z - L)^2}} - \frac{z}{\sqrt{a^2 + z^2}} \right) \] \hspace{1cm} (4.39)

where, \(I \) is the current, \(N \) is the number of turns, \(L \) is the length and \(a \) is the radius.

The magnetic force along the z-axis of a solenoid is:

\[F = 2 \frac{\chi_m}{\mu_0 (1 + \chi_m)} V \left(\frac{\mu_0 I N}{2 L} \right)^2 \left(\frac{z - L}{\sqrt{a^2 + (z - L)^2}} - \frac{z}{\sqrt{a^2 + z^2}} \right) \left(\frac{1}{(a^2 + (z - L)^2)^{3/2}} - \frac{1}{(a^2 + z^2)^{3/2}} \right) \] \hspace{1cm} (4.40)

where, \(V \) is the volume of the layer.
Figure 4.2 A comparison of analytical (red line) versus calculated (blue box) fields at various points along the negative z-axis. The solenoid's parameters are: L, length, 0.20m, N, turns, 50, I, current, 0.005mA. The SR2 MagStat parameter was 50 (SR2 controls the sizes of the partitions used with the Composite Simpson's Rule).

As depicted in Figure 4.2, the analytical and calculated solutions agree.
The CCA calculator of the magnetic field interaction model yields the exact numerical value; however, it is a tedious operation to perform with devices that are either too large or too heavy and arrays that are weaker rather than stronger. A CCA approximation is developed through a ratio that combines device and array properties. First, the device contribution is the product of the total weight, friction factor, and layer area. Second, the array contribution is the product of the maximum contact force, the square of the CCA value, and the BSU area. An additional factor is included to account for the ratio of layer to BSU areas.

\[R = F_0 A_{BSU} CCA^2 f^2 \] \hspace{1cm} (4.41)

where, \(F_0 \) is the maximum contact force of the solenoid, \(A_{BSU} \) is the area of the BSU, and \(f^2 \) is a factor that accounts for the ratio of device to BSU area. The product of \(F_0 \) and the square of the CCA value is approximately equal to the net force of attraction of the activated array elements. (The square of the CCA value represents the total number of activated array elements.) The square of the \(f \) value is unity when the layer area is less than the BSU area or BSU area divided by layer area when device layer is greater than the BSU area. An \(f \) value less than unity is balanced by a larger CCA value in order to keep the ratio balanced.
where, \(W \) is the total weight of the device and layer, \(A_{\text{Layer}} \) is the area of the layer and \(\sigma \) is the friction factor.

Equations 4.41-42 are combined to yield the expression for the CCA value:

\[
CCA \approx \frac{1}{f} \sqrt{\frac{W \sigma A_{\text{Layer}}}{F_0 A_{\text{BSU}}}}
\]

The CCA value given by Equation 4.43 is to be rounded to the next, odd integer and increased by two. See Figures 4.3-6 for the results of Equation 4.43.
Figure 4.3 CCA versus Weight with friction factor variation. The friction factor varies from 1 to 4. Array parameters are: L = 0.05m, N = 250, I = 250mA, and BSU = 0.01m. The devices are solids of various areas and thickness; device is silicon and layer is Ferroxcube III. As the friction factor increases, the CCA value increases; it is because more and more elements are required to produce the required attraction. Note that, for devices of weights below 5N, the CCA values are 3, 5, 7, and 9, in agreement with the CCA calculator.
Figure 4.4 CCA versus Weight with current variation. The current varies from 50mA to 200mA. Array parameters are: L = 0.05m, N = 250, and BSU = 0.01m. The devices are solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the friction factor is unity. As the current increases, the CCA value decreases; it is because, as the elements become stronger, fewer are needed to produce the attraction.
Figure 4.5 CCA versus Weight with turn variation. The turn varies from 50 to 200. Array parameters are: \(L = 0.05 \text{m} \), \(N = 250 \), \(I = 250 \text{mA} \), and \(\text{BSU} = 0.01 \text{m} \). The devices are solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the friction factor is unity. As the turn increases, the CCA value decreases; it is because, as the elements become stronger, fewer are needed to produce the attraction.
Figure 4.6 CCA versus Weight with BSU variation. The BSU varies from 0.002m to 0.008m. Array parameters are: $L = 0.05m$, $N = 250$, and $I = 250mA$. The devices are solids of various areas and thickness; device is silicon and layer is Ferroxcube III; the friction factor is unity. As the BSU increases, the CCA value decreases and vice-versa; it is because the CCA value is measured in units of BSU and as the BSU size varies, the CCA value is affected accordingly (and linearly).
CHAPTER 5
THE SWARM ALGORITHM

5.1 Overview

The Swarm Algorithm (SA) is a method to calculate pathways of devices, which are constrained to fit within the area of a grid, given known initial and final positions. The technique prevents collisions among devices by constructing a buffer called the Collision Cross-Section Area (CCA). The CCA of a device is not allowed to overlap the CCA of any other device. SA is iterative and, therefore, employs a device-by-device, move-by-move paradigm to extract a solution. It rejects shortest paths in favor of shortest steps required to achieve assembly.

SA yields the solution to the problem of assembly as a sequence of movement, which is to be enacted, simultaneously, at each and every step (STP) of the process. The 'quantized' values of movements are: left/right along the x-axis, up/down along the y-axis, and null. Null is a directive to keep the device static. The movements are displacements of, exactly, a Basic Size Unit (BSU).

A device travels either left/right or up/down (on the horizontal xy plane of the grid) and displaces a distance of a BSU as measured against the initial and the final positions of the center. To achieve a fine-tuned absolute final position, i.e., the ultimate alignment with the recess of the substrate, the device may be moved by an offset. The magnitudes of offsets are to be of values less than a BSU. The sizes of CCAs are inflated to allow devices the ability to adjust within their buffer.
The grid, i.e., the representation of the membrane, is composed of squares 1 BSU x 1 BSU. The BSU relates SA's concept of length to real, physical length. The BSU is the period length of the array of electromagnets.

SA computes movements through a device-by-device, move-by-move iteration, which emphasizes configurations and surroundings. Pathways are calculated by taking into account the device's current and final positions. SA's goal is a parallel solution found through a serial operation. To converge to a solution, the boundary conditions (specified by the device's initial and final positions) and the driving force (specified by device's order of entry into the system) need to be well-posed. Informal, empirical rules are demonstrated to assist with the design of a well-posed problem.

It is important to note that SA is not intended to be used 'live' during the act of assembly. Such a use of SA could be impractical as a set of boundary conditions and driving forces may not yield a solution. Instead, it is to be invoked as a phase of preprocessing.

The output of SA is a list of movement organized by step and then by device. It is designed to be loaded into the memory of an external control unit. The list of movement is to be translated into commands that control the array as required. Devices are moved simultaneously; the process of assembly consists of the conversion from abstract, iterative calculations to real, physical motions.
The step is analogous to a time. The physical temporal duration of a step varies throughout the assembly. The duration of a step is set by the time required of the slowest device to displace a BSU. To SA, all movement within a step is considered to be simultaneous even though the fastest devices will not be moving during the entirety of step. Only the slowest devices move continuously as the fastest devices wait intermittently.

5.2 Physical and Abstract Parameters

Aside from the boundary conditions and the driving forces, three other parameters characterize the SA problem: n, the size of the grid (n x n), maximum, the maximum device, and trigger, the trigger device. The actual, physical size of a unit is a BSU, where the BSU is the period length of the array of electromagnets. Maximum limits the number of devices that are active on the grid. Trigger limits the number of devices that are passive on the template.

Let "total" be the number of devices that are to be assembled. The ratio of maximum to total determines the assembly factor. An assembly factor of unity indicates pure parallel processing where all of the devices are assembled together. A value that tends to zero (as total tends to infinity) indicates pure serial processing, where assembly is on a device-by-device basis. SA, as implemented, will always converge to a solution given an assembly factor of zero. Its ability to solve a hybrid assembly process depends on how well-posed the boundary conditions and driving forces are stated.
Note that the grid is finite at n x n and that the device is inflated via its CCA. Therefore, geometry imposes a limit regarding how many devices may be entered onto the grid in spite of the values of the parameters. The SA method, as implemented, contains a check that prevents injecting devices if there is not enough space available.

The maximum and trigger values control the rate at which the process halts to do an error check/correction and insertion (of devices into recesses). The grid is to be empty to allow the error check/correction algorithm to act as the array will be used to fix misalignments if they emerge. The maximum and trigger parameters act in unison to free the grid of devices prior to the error check/correction and insertion. SA, as implemented, prevents a device from entering the system if the active (on grid) devices (controlled by maximum) plus the inactive (on template) devices (controlled by trigger) is equal to trigger. The effect is that when the number of inactive devices approaches trigger, devices do not enter the system and those already at the grid are processed and dropped, leaving it empty.

5.3 Boundary Conditions and Driving Forces Analogies

The combination of boundary conditions and driving forces are critical inputs to the SA method and take the form of a list: the device and the cue list.
The device list enumerates the initial and final positions as well as the offsets and other properties such as mass, friction, size, and CCA. SA is abstract, except with respect to CCA; mass, friction, and size are included only to assist the external control unit's translation from movement to action. The initial and final positions, size, and CCA are in units of BSU and must be positive. The offset, used to fine-tune position, are fractions of BSU and may be either positive or negative (along x and y) depending on the intended direction of adjustment.

The cue list determines the orders that the devices are injected into the system; it controls the iteration of SA and is not circumventable or adjustable during the calculations.
Figure 5.1 A basic 10 x 10 grid. The grid is composed of two areas: the perimeter (red boxes) which is the forbidden zone and the field (white boxes) which is where the devices are free to move.

5.4 The Grid/Membrane

To SA, the grid is the membrane where the size of a unit is defined to be a BSU, the period length of the array of electromagnets.

The grid is a mirror of the template and the substrate: the final position at the grid corresponds to a location on the template and a recess in the substrate.
Only certain parts of the grid are free to admit a device. The interior of the grid, from coordinates (1, 1) to (n, n), is referred to as the field. The perimeter of the grid is referred to as the forbidden zone. A device enters the enclosure and reaches the forbidden zone. There, it waits until the final insertion into the field. SA, as implemented, restricts backward (or any other kind of motion) that leads a device in the field to the forbidden zone. The forbidden zone must be free to admit devices. See Figure 5.1.

5.5 Decision Tables

The SA approach issues a movement based on the results of the P and Q Tables.

Figure 5.2 A view of the P Table. The device is dark purple. The exit is light purple. The P Table constructs two test pathways: a left/right (green) and an up/down (yellow). The lengths of these paths are determined by the displacements between current and desired positions.
5.5.1 P Table

The P Table examines two orthogonal pathways: a single up/down and a single left/right track. Note: it evaluates only up/down or left/right pathways. The P Table is far-sighted yet does not plan ahead.

The P Table is compiled for up/down and left/right pathways as determined by a device's current location and final position (see Figure 5.2). It contains the vector displacement value of the track, which will be used to opt between up or down, left or right movement. It adds the answers to two yes/no questions. First, is the displacement equal to zero? Second, is the pathway blocked?

SA chooses the shortest, non-zero pathway that is not blocked. If two or more pathways are available, then the precedent is up, down, left, and right. If all pathways fail, then the P Table issues a null movement and SA shifts onto the Q Table.
5.5.2 Q Table

The Q Table examines the perimeter of the device. It evaluates up, down, left, and right. The Q Table is short-sighted yet does not negate a movement.

The Q Table is compiled for up, down, left, and right as determined by the device's current location; final position is ignored (see Figure 5.3). It examines the density of a pathway. It includes the answers to three yes/no questions. First, is a direction blocked? Second, is a direction forbidden? Third, does the direction negate the last, known movement?
SA chooses the direction that is not blocked and forbidden, that does not undo the last, known movement, and that leads to the lowest density. If two or more directions are available, then the precedent is up, down, left, and right. If all directions fail then the Q Table issues a null movement and SA does not alter the device's position.

5.5.3 Null Movement

The goal of SA is to move devices from step to step as they seek their final destinations. If the boundary conditions and driving forces are not well-posed, then frustration will be allowed to enter the system. If a device is stuck due to frustration, then SA issues that device a null movement to indicate that it will not be moved at that step. SA fails when all of the devices are issued a null movement. SA passes when all of the devices are inserted.

5.6 Safety Valves

SA, as implemented, incorporates a set of safety valves the goal of which is to ensure that the boundary conditions and driving forces are well-posed and that it yields a solution.

The device list is checked against four criteria. First, the initial position must be at the perimeter of the field excluding its corners. Second, the final position must be within the field and must be unique. Third, the magnitude of the offset must be fractional units of BSU. Fourth, device mass, friction, size, and CCA must be equal to or greater than zero; additionally, the CCA is bounded by:
\[CCA \leq \sqrt{n} \] (5.1)

where, \(n \) is the size of the grid.

The cue list is checked to ensure that its contents refer to devices with properly inputted positions, offsets, and parameters.

Additionally, devices enter the grid if and only if the full area they occupy is free. They may move into the field. They may not move into the forbidden zone. To prevent frustration at the field/forbidden interface, the density of the forbidden zone is twice that of the field zone as a bias (see Figure 5.4).
Figure 5.4 Density is a measure of local population/occupation. A device (dark purple) is surrounded by: three empty field grids (tan), occupied device grids (light purple), and three forbidden grids (red). The density is 7; the empty field grids are 0 per grid, the occupied device grids is 1 per grid, and the forbidden grids are 2 per grid. The inflation of the forbidden grids is designed to keep devices away from that area of the grid.

SA is not able to detect all errors. Care must be placed on the design of the device and cue list as well as the max and trig parameters. In general, the fewer the number of devices, the greater the likelihood of a solution. It is preferable to have more small and fewer large devices in terms of CCA at any given step. Setting trigger greater than maximum assures a fast solution. Also, the length that a device needs to travel from initial to final positions should not be larger than half the length of the grid; therefore, devices that enter at a side of the grid should be taken only to those spaces closest to that side (see Figure 5.5).
Figure 5.5 A graphic representation of the optimized path-length configuration. The grid is divided by two main diagonals into four areas (tan, green, blue, and purples). Devices that enter through an X-colored area of the grid ought to be given final positions within that X-colored area; for example, green to green, purple to purple, etc.
5.7 Algorithm

A simplified version of the SA algorithm follows; various internal steps are omitted.

set variables t_count and w_count to zero (t_count is the total number of devices to be assembled; w_count is the total number of devices already assembled)

loop:

A. if possible, inject devices

B. set variables active to injected and killed to zero (active is the number of devices waiting to be moved on the grid; killed is the number of devices that were not able to be moved)

C. for each active/injected device:

 1. create P and Q Tables

 2. if P Table is not null, issue that movement

 3. if P Table is null:

 a. if Q Table is not null, issue that movement

 b. if Q Table is null:

 1. issue that movement

 2. decrement active by unity

 3. increment killed by unity

 4. if device reached final position:

 a. issue drop directive

 b. increment t_count by unity

 c. decrement active by unity

 d. decrement killed to zero
D. if killed is equal to or greater than active, SA failed, end

E. if w_count is equal to total, SA passed, end

F. if t_count is equal to trig:
 1. issue error/insert directive
 2. increment w_count by t_count
 3. decrement t_count to zero

5.8 Discussion
The modeling of two systems will be compared; first, an ill-posed problem, second, a well-posed problem. Both systems involve twenty devices with identical initial positions. For the ill-posed system, shown in Figure 5.6, the final positions are random. For the well-posed system, shown in Figure 5.7, the final positions are within the areas indicated by Figure 5.5.
The ill-posed system. A group of twenty devices (represented by colors where each device is a color) start at the perimeter and move toward their final positions within the field. The system is ill-posed because the final positions are random and their displacements (distance from initial to final positions) are on average greater than half the length of the grid.

The well-posed system. A group of twenty devices (represented by colors where each device is a color) start at the perimeter and move toward their in-area final positions within the field. The system is well-posed because the final positions are within their immediate initial regions and their displacements (distance from initial to final positions) are on average equal to or lesser than half the length of the grid.
The systems were compiled under various conditions. First, the trigger device value was alternated between 10 and 20; trigger device controls the rate of insertions. Second, the maximum device value was changed, continuously, from 1 to 20; maximum device controls how many devices are active, simultaneously, on the grid. Figures 5.8 and 5.9 represent the result of the Swarm Algorithm given those systems and its conditions.

Figure 5.8 The ill-posed system plotted for trigger device values of 10 and 20. The total STP value, the number of steps required to complete assembly, varied from 152 for maximum device equal to 1 to 46 (for trigger = 10) and 29 (for trigger = 20) for maximum device equal to 20. At the serial process limit, the STP is equal to 152. At the parallel process limit, the STP is 46 for trigger = 10 and 29 for trigger = 20.
The ill-posed system (see Figures 5.6 and 5.8) contains a bottle-neck caused by the random mixture of different sized devices and scattered final positions; the bottle-neck is a condition where the current placement of a device forbids the movement of other, nearby devices already on the grid. After a maximum device value of 10, the STP is fairly constant for both trigger device values; an STP, or step, is an iteration of the method. The bottle-neck must be overcome in order to complete assembly; thereafter, assembly continues more or less identically.

Figure 5.9 The well-posed system plotted for trigger device values of 10 and 20. The total STP, the number of steps required to complete assembly, varied from 67 for maximum device equal to 1 to 11 for maximum device equal to 20. At the serial process limit, the STP is equal to 67. At the parallel process limit, the STP is 11.
The well-posed system (see Figures 5.7 and 5.9), however, is not bottle-necked; the placement of a device does not prevent the movement of other, nearby devices. The serial processing and parallel processing limit are identical irrespective of the trigger value, indicating that a well-posed system is scalable. The amount of steps (or total STP) required to complete assembly is also consistently lower at both processing limits.

Note that the order of entry (driving force) and the initial positions (the first part of the boundary condition) are identical with the ill-posed and well-posed systems. The key differences are the final positions (the second part of the boundary condition). For the ill-posed system, the final positions were random throughout the field. For the well-posed system, the final positions were constrained to be within the corresponding perimeter to area sectors as depicted by Figure 5.5.
CHAPTER 6
CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Conclusions

The goals of the models presented by this dissertation were: first, to calculate pathways, second, to calculate magnetic field interaction, third, to calculate the attraction between devices and recesses, and, fourth, to maximize that attraction while minimizing its contribution to weight.

The Swarm Algorithm method, introduced, developed, and coded in this thesis, demonstrated that deterministic, simultaneous assembly is viable. An informal set of rules were developed to assist the creation of well-posed combinations of boundary conditions and driving forces. A software toolkit was created to implement the Swarm Algorithm technique and it was used to model a variety of systems.

The magnetic field interaction model was presented and compared to a system with a known, analytic solution. The method was used to demonstrate the fields and forces required to manipulate various example devices and arrays. Additionally, the Collision Cross-Section Area was calculated for those examples.

The device/recess force was derived. It was used to model the attraction between soft and hard magnetic materials that retain devices and recesses respectively. It showed that the force of attraction was weak beyond a certain, critical distance; therefore, inclusion of such magnetic material will not affect the functioning of the substrate.

The Magnetic Retention Factor was a useful tool in conjunction with the engineering of the Magnetic Field Assisted Assembly.
6.2 Future Directions

The study of the Magnetic Field Driven Simultaneous Assembly method is incomplete without a significant amount of research and development with respect to its implementation.

The magnetic field interaction model introduced by this dissertation needs to be generalized to admit the dynamics of field and device responses. The device/recess force needs to be extended from one to two dimensions, including arbitrary geometries of devices and recesses.

It should be noted that the Swarm Algorithm is already dynamic. Improvements that could be implemented include: the ability to adjust boundary conditions and driving forces to prevent the failure of the algorithm and the addition of other auxiliary tables to calculate true, deep-sighted movement. Although not an improvement that would be useful to the problem of assembly, the Swarm Algorithm is extendable to n dimensional space and to any set of movement.

The important area of research and development is the engineering of the method.

First, the method of injection must be developed. A device may be contained either in bins or on tapes and then fed into the system. The act of injection is required to maintain the integrity of vacuum in the enclosure. Injection, whether through bins or tapes, ought to be efficient; therefore, the work to implement bins or tapes may not impose too great a burden to time and cost.
Second, the function of the array of electromagnets must be explored. The methodology to translate 'movement' into real, physical manipulation is to be developed. Various other aspects of the array, regarding its construction and arrangement, including the way it would be controlled must be explored as it effects the act of assembly.

Additionally, work involving the other magnetic field based methods proposed by the team at the New Jersey Institute of Technology should be pursued. It includes the Magnetic Field Assisted Assembly (MFAA) and the Method of Assembly Using An Array of Programmable Magnets (see Figure 6.1) [111].

Figure 6.1 A schematic showing the method of assembly using programmable magnets. A hybrid of Magnetic Field Assisted Assembly and Magnetic Field Driven Simultaneous Assembly, it remains a work in progress [111].
The following appendix is a derivation of Equation 2.11; see Figure A.1 for explanation of terms.

Figure A.1 A cross-section of the system involving soft magnetic layers and hard magnetic strips. \(R_1 \) is the device, \(R_2 \) is the soft magnetic layer, \(R_3 \) is air-gap, \(R_4 \) and \(R_5 \) are the hard magnetic strip and the gap, and \(R_6 \) is the substrate. The soft magnetic layer's thickness is \(b \). The hard magnetic strip's thickness is \(a \). The air-gap distance is \(d \). The period length of the strip/gap pattern is \(L \) where \(\alpha L \) is the width of the hard magnetic strip.

The expression for the force is:

\[
\vec{F} = \mu_0 \int_{a}^{L} \varphi_x \varphi_y \hat{x} + \frac{1}{2} \left(\varphi_y^2 - \varphi_x^2 \right) \hat{y} \, dx - \mu_0 \int_{0}^{L} \varphi_x \varphi_y \hat{x} + \frac{1}{2} \left(\varphi_y^2 - \varphi_x^2 \right) \hat{y} \, dx \tag{A.1}
\]
The following are the simplified magnetic potentials:

\[\varphi_1 = \sum_{n=1}^{\infty} e^{-\Delta_n (y-(d+b))} (a_n \cos \Delta_n x + b_n \sin \Delta_n x) \] \((A.2) \)

\[\varphi_2 = \sum_{n=1}^{\infty} (a_n^1 \cosh \Delta_n (y-d) + a_n^2 \sinh \Delta_n (y-d)) \cos \Delta_n x \]
\[+ \sum_{n=1}^{\infty} (\beta_n^1 \cosh \Delta_n (y-d) + \beta_n^2 \sinh \Delta_n (y-d)) \sin \Delta_n x \] \((A.3) \)

\[\varphi_3 = \sum_{n=1}^{\infty} (\gamma_n^1 \cosh \Delta_n y + \gamma_n^2 \sinh \Delta_n y) \cos \Delta_n x \]
\[+ \sum_{n=1}^{\infty} (\delta_n^1 \cosh \Delta_n y + \delta_n^2 \sinh \Delta_n y) \sin \Delta_n x \] \((A.4) \)

\[\varphi_4 = \varphi_5 = \sum_{n=1}^{\infty} (\rho_n^1 \cosh \Delta_n y + \rho_n^2 \sinh \Delta_n y) \cos \Delta_n x \]
\[+ \sum_{n=1}^{\infty} (\omega_n^1 \cosh \Delta_n y + \omega_n^2 \sinh \Delta_n y) \sin \Delta_n x \] \((A.5) \)

\[\varphi_6 = \sum_{n=1}^{\infty} e^{\Delta_n (y+a)} (c_n \cos \Delta_n x + d_n \sin \Delta_n x) \] \((A.6) \)

where:

\[\Delta_n = \frac{2\pi}{L} n \] \((A.7) \)
Through Equations A.2-6 (and derivatives), with the boundary condition that
\(-\hat{n} \cdot \nabla \varphi|_0 = -\hat{n} \cdot \nabla \varphi|_1 + \hat{n} \cdot \vec{M}_0\), relations are found among the constants.

\[
\alpha_n^1 \cosh \Delta_n b + \alpha_n^2 \sinh \Delta_n b = a_n \tag{A.8}
\]

\[
\beta_n^1 \cosh \Delta_n b + \beta_n^2 \sinh \Delta_n b = b_n \tag{A.9}
\]

\[
\alpha_n^1 \sinh \Delta_n b + \alpha_n^2 \cosh \Delta_n b = -\frac{1}{\varepsilon} a_n \tag{A.10}
\]

\[
\beta_n^1 \sinh \Delta_n b + \beta_n^2 \cosh \Delta_n b = -\frac{1}{\varepsilon} b_n \tag{A.11}
\]

\[
\gamma_n^1 \cosh \Delta_n b + \gamma_n^2 \sinh \Delta_n b = a_n^1 \tag{A.12}
\]

\[
\delta_n^1 \cosh \Delta_n b + \delta_n^2 \sinh \Delta_n b = \beta_n^1 \tag{A.13}
\]

\[
\gamma_n^1 \sinh \Delta_n b + \gamma_n^2 \cosh \Delta_n b = \varepsilon a_n^2 \tag{A.14}
\]

\[
\delta_n^1 \sinh \Delta_n b + \delta_n^2 \cosh \Delta_n b = \varepsilon \beta_n^2 \tag{A.15}
\]

\[
\gamma_n^1 = \rho_n^1 \tag{A.16}
\]

\[
\delta_n^1 = \omega_n^1 \tag{A.17}
\]
\[\gamma_n^2 - \rho_n^2 = \frac{a_n}{\Delta_n} \]
(A.18)

\[\delta_n^2 - \omega_n^2 = \frac{b_n}{\Delta_n} \]
(A.19)

\[\rho_n^1 \cosh \Delta_n a - \rho_n^2 \sinh \Delta_n a = c_n \]
(A.20)

\[\omega_n^1 \cosh \Delta_n a - \omega_n^2 \sinh \Delta_n a = d_n \]
(A.21)

\[\rho_n^1 \sinh \Delta_n a - \rho_n^2 \cosh \Delta_n a + c_n = \frac{a_n}{\Delta_n} \]
(A.22)

\[\omega_n^1 \sinh \Delta_n a - \omega_n^2 \cosh \Delta_n a + d_n = \frac{b_n}{\Delta_n} \]
(A.23)

where:

\[\varepsilon = \frac{\mu}{\mu_0} \]
(A.24)
The constants of Equations A.8-23 must be solved in terms of \tilde{a}_n, \tilde{b}_n which will be determined by the system. Equations A.8-23 represent simple, linear systems that are solved algebraically as:

\begin{align}
\alpha_n^1 &= a_n \left(\cosh \Delta_n b + \frac{1}{\varepsilon} \sinh \Delta_n b \right) \\
\alpha_n^2 &= -a_n \left(\frac{1}{\varepsilon} \cosh \Delta_n b + \sinh \Delta_n b \right) \\
\beta_n^1 &= b_n \left(\cosh \Delta_n b + \frac{1}{\varepsilon} \sinh \Delta_n b \right) \\
\beta_n^2 &= -b_n \left(\frac{1}{\varepsilon} \cosh \Delta_n b + \sinh \Delta_n b \right) \\
\gamma_n^1 &= \alpha_n^1 \cosh \Delta_n d - \varepsilon \alpha_n^2 \sinh \Delta_n d \\
\gamma_n^2 &= -\alpha_n^1 \sinh \Delta_n d + \varepsilon \alpha_n^2 \cosh \Delta_n d \\
\delta_n^1 &= \beta_n^1 \cosh \Delta_n d - \varepsilon \beta_n^2 \sinh \Delta_n d \\
\delta_n^2 &= -\beta_n^1 \sinh \Delta_n d + \varepsilon \beta_n^2 \cosh \Delta_n d \\
\rho_n^1 &= \gamma_n^1 \\
\rho_n^2 &= \gamma_n^2 - \frac{\tilde{a}_n}{\Delta_n}
\end{align}
Adding Equations A.20 and A.22, simplifying the cosh/sinh terms:

\[\omega_n^1 = \delta_n^1 \]
\[\omega_n^2 = \delta_n^2 - \frac{\bar{b}_n}{\Delta_n} \]

(A.35)

(A.36)

Substituting Equations A.33-34, rearranging terms:

\[(\rho_n^1 - \rho_n^2) e^{\Delta_n a} = \bar{a}_n \frac{\Delta_n}{\Delta_n} \]

(A.37)

Substituting Equations A.29-30, simplifying and rearranging terms:

\[(\gamma_n^1 - \gamma_n^2) e^{\Delta_n a} = \bar{a}_n \frac{\Delta_n}{\Delta_n} (e^{\Delta_n a} - 1) \]

(A.38)

Substituting Equations A.25-26, simplifying and rearranging terms:

\[a_n \left(2 \cosh \Delta_n b + \left(\frac{1}{\varepsilon} + \varepsilon \right) \sinh \Delta_n b \right) = \bar{a}_n \frac{\Delta_n}{\Delta_n} e^{-\Delta_n d} (e^{\Delta_n a} - 1) \]

(A.40)
Adding Equations A.21 and A.23, simplifying the cosh/sinh terms:

\[
(\omega_n^1 - \omega_n^2) e^{\Delta_n a} = \frac{\bar{b}_n}{\Delta_n}
\]

(A.41)

Substituting Equations A.35-36, rearranging terms:

\[
(\delta_n^1 - \delta_n^2) e^{\Delta_n a} = \frac{\bar{b}_n}{\Delta_n} (e^{\Delta_n a} - 1)
\]

(A.42)

Substituting Equations A.31-32, simplifying and rearranging terms:

\[
\beta_n^1 - \varepsilon \beta_n^2 = \frac{\bar{b}_n}{\Delta_n} e^{-\Delta_n a} (e^{\Delta_n a} - 1)
\]

(A.43)

Substituting Equations A.27-28, simplifying and rearranging terms:

\[
b_n \left(2 \cosh \Delta_n b + \left(\frac{1}{\varepsilon} + \varepsilon \right) \sinh \Delta_n b \right) = \frac{\bar{b}_n}{\Delta_n} e^{-\Delta_n a} (e^{\Delta_n a} - 1)
\]

(A.44)

Equations A.40 and A.44 are simplified as:

\[
a_n = \bar{a}_n \sigma
\]

(A.45)

\[
b_n = \bar{b}_n \sigma
\]

(A.46)
where:

\[\sigma = \frac{1}{\eta \Delta_n} e^{-\Delta_n a} (e^{-\Delta_n a} - 1) \] \hspace{1cm} (A.47)

\[\eta = 2 \cosh \Delta_n b + \left(\frac{1}{\varepsilon} + \varepsilon \right) \sinh \Delta_n b \] \hspace{1cm} (A.48)

With Equations A.45-46, Equations A.25-32 are rewritten as:

\[\alpha_n^1 = \bar{a}_n \sigma \left(\cosh \Delta_n b + \frac{1}{\varepsilon} \sinh \Delta_n b \right) \] \hspace{1cm} (A.49)

\[\alpha_n^2 = -\bar{a}_n \sigma \left(\frac{1}{\varepsilon} \cosh \Delta_n b + \sinh \Delta_n b \right) \] \hspace{1cm} (A.50)

\[\beta_n^1 = \bar{b}_n \sigma \left(\cosh \Delta_n b + \frac{1}{\varepsilon} \sinh \Delta_n b \right) \] \hspace{1cm} (A.51)

\[\beta_n^2 = -\bar{b}_n \sigma \left(\frac{1}{\varepsilon} \cosh \Delta_n b + \sinh \Delta_n b \right) \] \hspace{1cm} (A.52)

\[\gamma_n^1 = \bar{a}_n \sigma \left(e^{\Delta_n d} \cosh \Delta_n b + \left(\frac{1}{\varepsilon} \cosh \Delta_n d + \varepsilon \sinh \Delta_n d \right) \sinh \Delta_n b \right) \] \hspace{1cm} (A.53)

\[\gamma_n^2 = -\bar{a}_n \sigma \left(e^{\Delta_n d} \cosh \Delta_n b + \left(\varepsilon \cosh \Delta_n d + \frac{1}{\varepsilon} \sinh \Delta_n d \right) \sinh \Delta_n b \right) \] \hspace{1cm} (A.54)
\[\delta_n^1 = \bar{b}_n \sigma \left(e^{\Delta_n d} \cosh \Delta_n b + \left(\frac{1}{\varepsilon} \cosh \Delta_n d + \varepsilon \sinh \Delta_n d \right) \sinh \Delta_n b \right) \]
(A.55)

\[\delta_n^2 = -\bar{b}_n \sigma \left(e^{\Delta_n d} \cosh \Delta_n b + \left(\varepsilon \cosh \Delta_n d + \frac{1}{\varepsilon} \sinh \Delta_n d \right) \sinh \Delta_n b \right) \]
(A.56)

Let R and S be defined as:

\[R = e^{\Delta_n d} \cosh \Delta_n b + \left(\frac{1}{\varepsilon} \cosh \Delta_n d + \varepsilon \sinh \Delta_n d \right) \sinh \Delta_n b \]
(A.57)

\[S = e^{\Delta_n d} \cosh \Delta_n b + \left(\varepsilon \cosh \Delta_n d + \frac{1}{\varepsilon} \sinh \Delta_n d \right) \sinh \Delta_n b \]
(A.58)

then:

\[S^2 - R^2 = \left(\varepsilon - \frac{1}{\varepsilon} \right) \left(2 \cosh \Delta_n b + \left(\frac{1}{\varepsilon} + \varepsilon \right) \sinh \Delta_n b \right) \sinh \Delta_n b \]
(A.59)

\[\frac{1}{\eta^2} (S^2 - R^2) = \frac{\sinh \Delta_n b}{\sinh \left(\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right) \right)} \]
(A.60)

also:

\[a_n^2 + b_n^2 = (\bar{a}_n^2 + \bar{b}_n^2) \frac{1}{\eta^2} \frac{1}{\Delta_n^2} e^{-2\Delta_n d} (1 - e^{\Delta_n a})^2 \]
(A.61)
The \bar{a}_n, \bar{b}_n constants are found by a Fourier Series of the magnetization of the hard magnetic strip, whose function is:

\[
M(x) = \begin{cases} M_0 & 0 \leq x \leq aL \\ 0 & x > aL \end{cases}
\] \hspace{1cm} (A.62)

\[
\bar{a}_0 = \frac{1}{L} \int_0^L M(x) dx = \frac{1}{L} \int_0^{aL} M_0 dx = aM_0
\] \hspace{1cm} (A.63)

\[
\bar{a}_n = \frac{2}{L} \int_0^L M(x) \cos \Delta_n x dx = \frac{2}{L} \int_0^{aL} M_0 \cos \Delta_n x dx = \frac{1}{n\pi} M_0 \sin 2\pi an
\] \hspace{1cm} (A.64)

\[
\bar{b}_n = \frac{2}{L} \int_0^L M(x) \sin \Delta_n x dx = \frac{2}{L} \int_0^{aL} M_0 \sin \Delta_n x dx = \frac{1}{n\pi} M_0 (1 - \cos 2\pi an)
\] \hspace{1cm} (A.65)

\[
\bar{a}_n^2 + \bar{b}_n^2 = \frac{2}{n^2 \pi^2} M_0^2 (1 - \cos 2\pi an)
\] \hspace{1cm} (A.66)

Substituting Equation A.66 into Equation A.61:

\[
a_n^2 + b_n^2 = \frac{2}{n^2 \pi^2} M_0^2 (1 - \cos 2\pi an) \frac{1}{n^2 \Delta_n^2} e^{-2\Delta_n a} (1 - e^{-\Delta_n a})^2
\] \hspace{1cm} (A.67)
The general form of the potential is:

$$\varphi = \sum_{n=1}^{\infty} (P_n \cos \Delta_n x + Q_n \sin \Delta_n x)$$

(A.68)

$$\partial_x \varphi = \sum_{n=1}^{\infty} \Delta_n (-P_n \sin \Delta_n x + Q_n \cos \Delta_n x)$$

(A.69)

$$\partial_y \varphi = \sum_{n=1}^{\infty} (P'_n \cos \Delta_n x + Q'_n \sin \Delta_n x)$$

(A.70)

The general form of the force is:

$$\bar{F} = F_x \hat{x} + F_y \hat{y}$$

(A.71)

$$F_x = \pm \mu_0 \int_0^L \partial_x \varphi \partial_y \varphi \, dx = \pm \frac{\mu_0}{2} L \sum_{n=1}^{\infty} \Delta_n (Q_n P'_n - P_n Q'_n)$$

(A.72)

$$F_y = \pm \mu_0 \int_0^L (\partial_y \varphi^2 - \partial_x \varphi^2) \, dx = \pm \frac{\mu_0}{4} L \sum_{n=1}^{\infty} (P'_n^2 + Q'_n^2 - \Delta_n^2 P_n^2 - \Delta_n^2 Q_n^2)$$

(A.73)

$$\bar{F} = \pm \frac{\mu_0}{2} L \sum_{n=1}^{\infty} \left(\Delta_n (Q_n P'_n - P_n Q'_n) \hat{x} + \frac{1}{2} (P'_n^2 + Q'_n^2 - \Delta_n^2 P_n^2 - \Delta_n^2 Q_n^2) \hat{y} \right)$$

(A.74)
The force on the soft magnetic layer \((R_2) \) due to the hard magnetic strips \((R_4 \text{ and } R_5) \) is the difference between the force at \(R_3 \) at the lower boundary of the layer and the force at \(R_1 \) at the upper boundary of the layer.

\[
\bar{F}_2 = \bar{F}_3|_{y=d} - \bar{F}_1|_{y=d+b} \tag{A.75}
\]

At \(R_1 \), the \(P_n \) and \(Q_n \) constants are:

\[
P_n = a_n e^{-\Delta_n (y - (d+b))} \tag{A.76}
\]

\[
P'_n = -\Delta_n a_n e^{-\Delta_n (y - (d+b))} \tag{A.77}
\]

\[
Q_n = b_n e^{-\Delta_n (y - (d+b))} \tag{A.78}
\]

\[
Q'_n = -\Delta_n b_n e^{-\Delta_n (y - (d+b))} \tag{A.79}
\]
Equations A.76-79 are evaluated at the boundary, \(y = d + b \), as:

\[
P_n = a_n \tag{A.80}
\]

\[
P'_n = -\Delta_n a_n \tag{A.81}
\]

\[
Q_n = b_n \tag{A.82}
\]

\[
Q'_n = -\Delta_n b_n \tag{A.83}
\]

\[
P_1 = \frac{\mu_0 L}{2} \sum_{n=1}^{\infty} \left(\Delta_n (-b_n a_n + a_n b_n) \hat{x} + \frac{1}{2} (\Delta_n^2 a_n^2 + \Delta_n^2 b_n^2 - \Delta_n^2 a_n^2 - \Delta_n^2 b_n^2) \hat{y} \right) = 0 \tag{A.84}
\]
At R_3, the P_n and Q_n constants are:

\[P_n = \gamma_n^1 \cosh \Delta_n a + \gamma_n^2 \sinh \Delta_n a \]
(A.85)

\[P'_n = \Delta_n (\gamma_n^1 \sinh \Delta_n a + \gamma_n^2 \cosh \Delta_n a) \]
(A.86)

\[Q_n = \delta_n^1 \cosh \Delta_n a + \delta_n^2 \sinh \Delta_n a \]
(A.87)

\[Q'_n = \Delta_n (\delta_n^1 \sinh \Delta_n a + \delta_n^2 \cosh \Delta_n a) \]
(A.88)

\[Q_n P'_n - P_n Q'_n = \Delta_n (\delta_n^1 \gamma_n^2 - \delta_n^2 \gamma_n^1) \]
(A.89)

Substituting Equations A.57-58 into Equation A.53-56:

\[\gamma_n^1 = \bar{a}_n \sigma R \]
(A.90)

\[\gamma_n^2 = -\bar{a}_n \sigma S \]
(A.91)

\[\delta_n^1 = \bar{b}_n \sigma R \]
(A.92)

\[\delta_n^2 = -\bar{b}_n \sigma S \]
(A.93)
Substituting Equations A.90-93 into Equation A.89:

\[Q_n P'_n - P_n Q'_n = \Delta_n \left(-\bar{b}_n \sigma \bar{a}_n \sigma S + \bar{b}_n \sigma S \bar{a}_n \sigma R \right) = 0 \quad (A.94) \]

\[P_n'^2 + Q_n'^2 - \Delta_n^2 P_n^2 - \Delta_n^2 Q_n^2 = \Delta_n^2 \left(-\gamma_n^1 - \gamma_n^2 + \delta_n^1 + \delta_n^2 \right) \quad (A.95) \]

Substituting Equations A.90-93 into Equation A.95:

\[P_n'^2 + Q_n'^2 - \Delta_n^2 P_n^2 - \Delta_n^2 Q_n^2 = \Delta_n^2 \sigma^2 \left(\bar{a}_n^2 + \bar{b}_n^2 \right) (S^2 - R^2) \quad (A.96) \]

\[\bar{F}_3 = -\frac{\mu_0}{2} L \sum_{n=1}^{\infty} \left(0\hat{x} + \frac{1}{2} \Delta_n^2 \sigma^2 \left(\bar{a}_n^2 + \bar{b}_n^2 \right) (S^2 - R^2) \hat{y} \right) \quad (A.97) \]

Substituting Equation A.47 into Equation A.97:

\[\bar{F}_3 = -\frac{\mu_0}{4} L \sum_{n=1}^{\infty} \left(\Delta_n^2 \frac{1}{\gamma_n} \frac{1}{2} e^{-2\Delta_n d} (1 - e^{-\Delta_n d})^2 \left(\bar{a}_n^2 + \bar{b}_n^2 \right) (S^2 - R^2) \hat{y} \right) \quad (A.98) \]

Substituting Equation A.60 into Equation A.98:

\[\bar{F}_3 = -\frac{\mu_0}{4} L \sum_{n=1}^{\infty} \left(e^{-2\Delta_n d} (1 - e^{-\Delta_n d})^2 \left(\bar{a}_n^2 + \bar{b}_n^2 \right) \frac{\sinh \Delta_n b}{\sinh \left(\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right) \right)} \hat{y} \right) \quad (A.99) \]
Substituting Equation A.66 into Equation A.99:

\[
\bar{F}_3 = -\frac{\mu_0 M_0^2}{2\pi^2} L \sum_{n=1}^{\infty} \left(\frac{1}{n^2} (1 - \cos 2\pi an) e^{-2\Delta_n d} (1 - e^{-\Delta_n a})^2 \frac{\sinh \Delta_n b}{\sinh (\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right))} \right) \tag{A.100}
\]

Substituting Equations A.84 and A.100 into Equation A.75:

\[
\bar{F}_2 = -\frac{\mu_0 M_0^2}{2\pi^2} L \sum_{n=1}^{\infty} \left(\frac{1}{n^2} (1 - \cos 2\pi an) e^{-2\Delta_n d} (1 - e^{-\Delta_n a})^2 \frac{\sinh \Delta_n b}{\sinh (\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right))} \right) \tag{A.101}
\]

The Equation A.101 is maximized when \(\alpha = 0.5\); at that \(\alpha\) the terms of the summation are 0 when \(n\) is even and 2 when \(n\) is odd.

\[
\bar{F}_2 = -\frac{\mu_0 M_0^2}{\pi^2} L \sum_{n=odd}^{\infty} \left(\frac{1}{n^2} e^{-2\Delta_n d} (1 - e^{-\Delta_n a})^2 \frac{\sinh \Delta_n b}{\sinh (\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right))} \right) \tag{A.102}
\]

The \(n = 1\) term dominates the summation; therefore:

\[
\bar{F}_2 = -\frac{\mu_0 M_0^2}{\pi^2} L e^{-2\Delta_n d} (1 - e^{-\Delta_n a})^2 \frac{\sinh \Delta_n b}{\sinh (\Delta_n b + \ln \left(\frac{\varepsilon + 1}{\varepsilon - 1} \right))} \tag{A.103}
\]
APPENDIX B

SWARM APPLICATION CODE

The complete Swarm Algorithm program written in freeBASIC; [112] the application is divided into modules MAIN, DECLIB, APPLIB, CMPLIB, GUILIB, MODLIB, ZCOMPILE, ZEIPORT, ZLISTANB, ZPROJECT, and ZRECORD.

MAIN is the central function that controls all other functions; links to all other modules

DECLIB contains structure definitions, variable definitions, and sub/function prototypes

APPLIB contains functions that define and maintain the program's file system and databases; used by all modules

- build_idxA builds list of projects, 1st phase
- build_idxB builds list of projects, 2nd phase
- build_dlp builds list of project data
- load loads records from file
- save saves records to file
- sift sifts records based on sift keys
- sort sorts records based on sort keys
- free returns next free record number
- mkcda converts A-code into displayable data
- mkcdz converts Z-code into displayable data
- mkdrp adds * to device symbol if dropped
- mkgnw toggles between grid and window mode
- pack initializes record data

CMPLIB contains functions that define the Swarm Algorithm; used by the ZPROJECT module

- build_ptable constructs the P Table
- build_qtable constructs the Q Table
- grid_000 resets the grid array
- grid_add inserts device to grid array
- grid_sub removes device from grid array
- grid_upd updates the grid array
- stack_add inserts device to stack array
- stack_sub removes device from stack array
- dense calculates density
- scan_ptable obtains decision from the P Table
- scan_qtable obtains decision from the Q Table
- switch resolves Up/Down, Left/Right from P Table
- test tests if a device can be added to stack
- text$ converts device number to letter
GUILIB contains functions that define and maintain the program's graphical user interface; used by all modules

- prompt_list_A defines the input list screen
- prompt_list_B defines the output list screen
- prompt_main defines the main screen
- prompt_project defines the project screen
- record_list_A1 displays input/lst record data
- record_list_A2 displays input/dev record data
- record_list_B displays output/prc record data
- record_main1 displays main project list data
- record_main2 displays main project file data
- record_project1 displays project grid data
- record_project2 displays project file data
- record_project3 displays project device data

MODLIB contains various low-level functions used by the program's high-level functions; used by all modules

- export_devl exports the dev input list
- export_lstl exports the lst input list
- export_prcl exports the prc output list
- export_raw exports input/dev/lst data to raw format
- export_stat exports statistics
- import_dev imports dev data from raw format
- import_lst imports lst data from raw format
- check_dev integrity - if lst item is valid
- check_fin integrity - if final location is valid
- check_gns integrity - if lst item is unique
- check_ini integrity - if initial location is valid
- check_mfsd integrity - if properties are valid
- check_off integrity - if offset location is valid
- check_sng integrity - if final location is unique

ZCOMPILE is the main body that controls the Swarm Algorithm; used by the ZPROJECT module

ZEIPORT maintains the data import and export functions; used by the ZPROJECT and ZLISTANB modules

- zexport the export function
- zimport the import function
- zprntscrn the print screen function

ZLISTANB maintains the input and output lists; used by the ZPROJECT module

- zlist_A function that displays input data
- zlist_B function that displays output data

ZPROJECT maintains the project's main functions; links to the ZLISTANB, ZEIPORT, and ZCOMPILE modules

- proj_grid sets up device data
- proj_trace sets up trace function
- proj_stack sets up stack data
ZRECORD maintains the program's database (the project list and the input/output lists); used by the ZPROJECT, ZCOMPILE, and MAIN modules

- zrecord_dnl: controls the input data records
- zrecord_mfdsa: controls the project records
- zrecord_prc: controls the output data records
- zreset: resets the project input/output records
MAIN Module:

defshort a-z
#include "zbasic.bi"
#include ".dec_lib_.bi"
#include ".app_lib_.bi"
#include ".gui_lib_.bi"
#include ".mod_lib_.bi"
#include ".cmp_lib_.bi"
#include ".zlistAnB_.bi"
#include ".zeiport_.bi"
#include ".zrecord_.bi"
#include ".zcompile_.bi"
#include ".zproject_.bi"

RGBA0(MAIN,1)=0: RGBA0(MAIN,2)=15
RGBA0(FRAM,1)=0: RGBA0(FRAM,2)=15
RGBA0(ACT1,1)=14: RGBA0(ACT1,2)=0
RGBA0(ACT2,1)=0: RGBA0(ACT2,2)=14
RGBA0(MENU,1)=0: RGBA0(MENU,2)=15
RGBA0(ERRL,1)=15: RGBA0(ERRL,2)=8
RGBA0(WIRE,1)=0: RGBA0(WIRE,2)=15
RGBA0(DOSX,1)=15: RGBA0(DOSX,2)=0

ZCMD 1,"MFDA-v3.IDX","B",PASS
if lof(1)=0 then gosub initialize
load 1,0,"IDXA"
Zi

gosub main_start
gosub main_fresh
gosub main_prompt
gosub main_record1
gosub main_record2

do
CTRL$=2HEAD$("MENU: Add-A Edit-E Del-D Mode- [C/Z] Reset-R [ENT] [ESC]",Z_ARU$+Z_ARD$+Z_ARL$+Z_ARR$+Z_ARH$+Z_ARE$+Z_PGU$+Z_PGD$+Z_SPC$+"AED"+
Z_UND$+"R"+Z_ENT$+Z_ESC$)
select case CTRL$
case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$,Z_ARH$,Z_ARE$,Z_PGU$,Z_PGD$:
 ZSYS f0,f1,f2,36,IDX(0,0),CTRL$
gosub main_record1
gosub main_record2
case Z_SPC$:
 gosub main_start
 gosub main_fresh
 gosub main_prompt
 gosub main_record1
 gosub main_record2
case "A":
zrecord_mfdsa 1,0,"A"
gosub main_start
gosub main_fresh
gosub main_prompt
gosub main_record1
gosub main_record2
case "E", "D", Z_UND$, "R", Z_ENT$:
 if IDX(0,0)<0 then
 select case CTRL$
 case "E":
 zrecord_mfdsa 1,IDX(0,f0),"E"
gosub main_record1
gosub main_record2
case "D":
 zrecord_mfdsa 1,IDX(0,f0),"D"
gosub main_start
gosub main_fresh
gosub main_prompt
gosub main_record1
gosub main_record2
case Z_UND$:
 zrecord_mfdsa 1,IDX(0,f0),Z_UND$
gosub main_record1
gosub main_record2
case "R":
 zreset IDX(0,f0)
gosub main_record1
gosub main_record2
case Z_ENT$:
 zproject IDX(0,f0)
gosub main_prompt
gosub main_record1
gosub main_record2
 end select
 end if
 end select
 case Z_ESC$:
 exit do
 end select
end loop
save 1,0,"IDXA"
ZCMD 1,"","",FAIL
end
initialize:
idxA.a_record=0
idxA.r_record=0
idxA.m_record=32767
save 1,0,"IDXA"
return

main_start:
build_idxA 1,0
build_idxB 1,0
sort 0
return
main_fresh:
ZSYS f0,f1,f2,36,IDX(0,0),Z_ARH$
return

main_prompt:
prompt_main "Index"
return

main_record1:
record_main1 f0,f1,f2,0
return

main_record2:
record_main2 IDX(0,f0)
return
DECLIB Module:

type idxASpace
 a_record as short
 r_record as short
 m_record as short
end type
dim shared idxA as idxASpace

type idxBSpace
 fmfdsa as string*9
 fname as string*32
 cntrl as string*1
end type
dim shared idxB(32767) as idxBSpace

type mfdsaSpace
 acode as short
 zcode as short
 n as short
 m as short
 t as short
 t_dev as short
 t_lst as short
 t_prc as short
 t_stp as short
 c_dte as string*10
 c_tme as string*8
end type
dim shared mfsda(32767) as mfdsaSpace

type devSpace
 dev_n as short
 ini_x as short
 ini_y as short
 fin_x as short
 fin_y as short
 off_x as single
 off_y as single
 mass as single
 fric as single
 size as single
 delta as short
 cntrl as string*1
end type
dim shared dev(32767) as devSpace

type lstSpace
 lst_n as short
 dev_n as short
 cntrl as string*1
end type
dim shared lst(32767) as lstSpace
type prcSpace
 prc_n as short
 dev_n as short
 stp_n as short
 text as string*8
 move as short
 ini_x as short
 ini_y as short
 fin_x as short
 fin_y as short
 t_cnt as short
 w_cnt as short
end type
dim shared prc(32767) as prcSpace

type stackSpace
 dev_n as short
 dev_s as string*1
 delta as short
 move as short
 cur_x as short
 cur_y as short
 fin_x as short
 fin_y as short
 cntrl as short
end type
dim shared stack(32767) as stackSpace

type ptableSpace
 null as short
 blck as short
 leng as short
end type
dim shared ptable(2) as ptableSpace

type qtableSpace
 forb as short
 blck as short
 dense as short
 move as short
 upd_x as short
 upd_y as short
end type
dim shared qtable(4) as qtableSpace

dim shared grid(1024,1024) as short,IDX(8,32767) as short,g as short,max_dev as short,trg_dev as short,tot_dev as short,cur_dev as short,tot_prc as short
const GF=0
const GB=1
const XK=2
const XF=2
const XB=-2
const LR=1
const UD=2
const LD=3
const NL=0
const UP=1
const DN=2
const LT=3
const RT=4

declare sub build_idxA(...)
declare sub build_idxB(...)
declare sub build_dlp(...)
declare sub load(...)
declare sub save(...)
declare sub sift(...)
declare sub sort(...)
declare function free(...)
declare function mkcda$(...)
declare function mkcdz$(...)
declare function mkdrp$(...)
declare function mkgnw$(...)
declare function pack(...)
declare sub prompt_list_A(...)
declare sub prompt_list_B(...)
declare sub prompt_main(...)
declare sub prompt_project(...)
declare sub record_list_A1(...)
declare sub record_list_A2(...)
declare sub record_list_B(...)
declare sub record_main1(...)
declare sub record_main2(...)
declare sub record_project1(...)
declare sub record_project2(...)
declare sub record_project3(...)
declare sub export_devl(...)
declare sub export_lstl(...)
declare sub export_prcl(...)
declare sub export_raw(...)
declare sub export_stat(...)
declare sub import_dev(...)
declare sub import_lst(...)
declare function check_dev(...)
declare function check_fin(...)
declare function check_gns(...)
declare function check_ini(...)
declare function check_mfsd(...)
declare function check_off(...)
declare function check_sng(...)

declare sub build_ptable(...)
declare sub build_qtable(...)
declare sub grid_000(...)
declare sub grid_add(...)
declare sub grid_sub(...)
declare sub grid_upd(...)
declare sub stack_add(...)
declare sub stack_sub(...)

declare function dense(...)
declare function scan_ptable(...)
declare function scan_qtable(...)
declare function switch(...)
declare function symbol$(...)
declare function test(...)
declare function text$(...)

declare sub proj_grid(...)
declare sub proj_trace(...)
declare function proj_stack(...)

declare sub zlist_A(...)
declare sub zlist_B(...)

declare sub zexport(...)
declare sub zimport(...)
declare sub zprntscrn(...)

declare sub zrecord_dnl(...)
declare sub zrecord_mfdsa(...)
declare sub zrecord_prc(...)
declare sub zreset(...)

declare sub zcompile(...)
declare sub zproject(...)
APPLIB Module:

sub build_idxA(n,u)
 IDX(u,0)=0
 for z0=1 to idxA.a_record
 load n,z0,"IDXB"
 if idxB(z0).cntrl<>"*" then
 IDX(u,0)=IDX(u,0)+1
 IDX(u,IDX(u,0))=z0
 end if
 save n,z0,"IDXB"
 end for
next z0
end sub

sub build_idxB(n,u)
 for z0=1 to IDX(u,0)
 ZCMD 100,IDX(u,z0).f.mfdsa,"B",PASS
 load 100,IDX(u,z0),"MFDSA"
 save 100,IDX(u,z0),"MFDSA"
 ZCMD 100,"","",FAIL
 end for
next z0
end sub

sub build_dlp(n,u,zmax,CTRL$)
 IDX(u,0)=0
 for z0=1 to zmax
 load n,z0,CTRL$
 if (CTRL$<>"DEV") or (CTRL$="DEV" and dev(z0).cntrl<>"") then
 if (CTRL$<>"LST") or (CTRL$="LST" and lst(z0).cntrl<>"") then
 IDX(u,0)=IDX(u,0)+1
 IDX(u,IDX(u,0))=z0
 end if
 end if
 end for
next z0
end sub

sub load(n,k,CTRL$)
 select case CTRL$
 case "IDXA":
 seek #n,1
 ZGET n,tpx$,2: idxA.a_record=cvshort(tpx$)
 ZGET n,tpx$,2: idxA.r_record=cvshort(tpx$)
 ZGET n,tpx$,2: idxA.m_record=cvshort(tpx$)
 case "IDXB":
 seek #n,426*(k-1)+10
 ZGET n,idxB(k).fmfdsa,9
 ZGET n,idxB(k).fname,32
 ZGET n,idxB(k).cntrl,1
case "MFDSA":
 seek #n, 1
 ZGET n, tpx$, 2: mfsa(k).acode = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).zcode = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).n = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).m = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).t = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).t_dev = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).t_lst = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).t_prc = cvshort(tpx$)
 ZGET n, tpx$, 2: mfsa(k).t_stp = cvshort(tpx$)
 ZGET n, tpx$, 10: mfsa(k).c_dte = tpx$
 ZGET n, tpx$, 8: mfsa(k).c_tme = tpx$
 case "DEV":
 seek #n, 66*(k-1)+1+36
 ZGET n, tpx$, 2: dev(k).dev_n = cvshort(tpx$)
 ZGET n, tpx$, 2: dev(k).ini_x = cvshort(tpx$)
 ZGET n, tpx$, 2: dev(k).ini_y = cvshort(tpx$)
 ZGET n, tpx$, 2: dev(k).fin_x = cvshort(tpx$)
 ZGET n, tpx$, 2: dev(k).fin_y = cvshort(tpx$)
 ZGET n, tpx$, 4: dev(k).off_x = cvs(tpx$)
 ZGET n, tpx$, 4: dev(k).off_y = cvs(tpx$)
 ZGET n, tpx$, 4: dev(k).mass = cvs(tpx$)
 ZGET n, tpx$, 4: dev(k).fric = cvs(tpx$)
 ZGET n, tpx$, 4: dev(k).size = cvs(tpx$)
 ZGET n, tpx$, 2: dev(k).delta = cvshort(tpx$)
 ZGET n, tpx$, 1: dev(k).cntrl = tpx$
 case "LST":
 seek #n, 66*(k-1)+34+36
 ZGET n, tpx$, 2: lst(k).lst_n = cvshort(tpx$)
 ZGET n, tpx$, 2: lst(k).dev_n = cvshort(tpx$)
 ZGET n, tpx$, 1: lst(k).cntrl = tpx$
 case "PRC":
 seek #n, 66*(k-1)+39+36
 ZGET n, tpx$, 2: prc(k).prc_n = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).dev_n = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).stp_n = cvshort(tpx$)
 ZGET n, tpx$, 8: prc(k).text = tpx$
 ZGET n, tpx$, 2: prc(k).move = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).ini_x = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).ini_y = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).fin_x = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).fin_y = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).t_cnt = cvshort(tpx$)
 ZGET n, tpx$, 2: prc(k).w_cnt = cvshort(tpx$)
end select
end sub

sub save(n, k, CTRL$)
 select case CTRL$
 case "IDXA":
 seek #n, 1
 ZPUT n, mkshort$(idxA.a_record), 2
 ZPUT n, mkshort$(idxA.r_record), 2
 ZPUT n, mkshort$(idxA.m_record), 2
case "IDX":
 seek #n,42*(k-1)+10
 ZPUT n,idxB(k).fmfdsa,9
 ZPUT n,idxB(k).fname,32
 ZPUT n,idxB(k).cntrl,1
case "MFDSA":
 seek #n,1
 ZPUT n,mkshort$(mfdsa(k).acode),2
 ZPUT n,mkshort$(mfdsa(k).zcode),2
 ZPUT n,mkshort$(mfdsa(k).n), 2
 ZPUT n,mkshort$(mfdsa(k).m), 2
 ZPUT n,mkshort$(mfdsa(k).t), 2
 ZPUT n,mkshort$(mfdsa(k).t_dev),2
 ZPUT n,mkshort$(mfdsa(k).t_lst),2
 ZPUT n,mkshort$(mfdsa(k).t_prc),2
 ZPUT n,mkshort$(mfdsa(k).t_stp),2
 ZPUT n,mfdsa(k).c_dte, 10
 ZPUT n,mfdsa(k).c_tme, 8
case "DEV":
 seek #n,66*(k-1)+1+36
 ZPUT n,mkshort$(dev(k).dev_n), 2
 ZPUT n,mkshort$(dev(k).ini_x), 2
 ZPUT n,mkshort$(dev(k).ini_y), 2
 ZPUT n,mkshort$(dev(k).fin_x), 2
 ZPUT n,mkshort$(dev(k).fin_y), 2
 ZPUT n,mks$(dev(k).off_x), 4
 ZPUT n,mks$(dev(k).off_y), 4
 ZPUT n,mks$(dev(k).mass), 4
 ZPUT n,mks$(dev(k).fric), 4
 ZPUT n,mks$(dev(k).size), 4
 ZPUT n,mkshort$(dev(k).delta),2
 ZPUT n,dev(k).cntrl, 1
end sub

end select
sub sift(u1,u2)
 IDX(u2,0)=0
 for z0=1 to IDX(u1,0)
 if (HASH0$(0)="") or (HASH0$(0)<>'"' and prc(IDX(u1, z0)).prc_n=cvshort(HASH0$(0))) then
 if (HASH0$(1)="") or (HASH0$(1)<>'"' and prc(IDX(u1, z0)).dev_n=cvshort(HASH0$(1))) then
 if (HASH0$(2)="") or (HASH0$(2)<>'"' and prc(IDX(u1, z0)).stp_n=cvshort(HASH0$(2))) then
 if (HASH0$(3)="") or (HASH0$(3)<>'"' and prc(IDX(u1,z0)).text=cvshort(HASH0$(3))) then
 if (HASH0$(4)="") or (HASH0$(4)<>'"' and prc(IDX(u1,z0)).move=cvshort(HASH0$(4))) then
 if (HASH0$(5)="") or (HASH0$(5)<>'"' and prc(IDX(u1,z0)).ini_x=cvshort(HASH0$(5))) then
 if (HASH0$(6)="") or (HASH0$(6)<>'"' and prc(IDX(u1,z0)).ini_y=cvshort(HASH0$(6))) then
 if (HASH0$(7)="") or (HASH0$(7)<>'"' and prc(IDX(u1,z0)).fin_x=cvshort(HASH0$(7))) then
 if (HASH0$(8)="") or (HASH0$(8)<>'"' and prc(IDX(u1,z0)).fin_y=cvshort(HASH0$(8))) then
 if (HASH0$(9)="") or (HASH0$(9)<>'"' and prc(IDX(u1,z0)).t_cnt=cvshort(HASH0$(9))) then
 if (HASH0$(10)="") or (HASH0$(10)<>'"' and prc(IDX(u1,z0)).w_cnt=cvshort(HASH0$(10))) then
 IDX(u2,0)=IDX(u2,0)+1
 IDX(u2,IDX(u2,0))=IDX(u1,z0)
 end if
 end if
 end if
 end if
 end if
 end if
 end if
 end if
 end if
 end if
 next z0
end sub

sub sort(u)
 zgap=IDX(u,0) \ 2
 do
 CTRL=FAIL
 zmax=IDX(u,0)
 do
 CTRL=PASS
 for z0=1 to zmax-zgap
 tpa$=ZSORT$(idxB(IDX(u,z0)).fname)+ZSORT$(idxB(IDX(u,z0)).fmfdsa)
tpb$ = ZSORT$(idxB(IDX(u, z0 + zgap)).fname) +
 ZSORT$(idxB(IDX(u, z0 + zgap)).fmfdsa)
if tpa$ > tpb$ then
 CTRL = FAIL
 zmin = z0
 swap IDX(u, z0), IDX(u, z0 + zgap)
end if
next z0
zmax = zmin
loop until CTRL <> FAIL
zgap = zgap \ 2
loop until zgap <= 0
end sub

function free()
 if idxA.a_record <> idxA.r_record then
 for z0 = 1 to idxA.a_record
 if idxB(z0).cntrl = "*" then
 idxA.a_record = idxA.a_record + 0
 idxA.r_record = idxA.r_record + 1
 return z0
 end if
 end for
 next z0
 else
 if idxA.a_record <> idxA.m_record then
 idxA.a_record = idxA.a_record + 1
 idxA.r_record = idxA.r_record + 1
 return idxA.a_record
 end if
 end if
 return 0
end function

function mkcda$(CTRL)
 select case CTRL
 case FAIL: return "READONLY"
 case PASS: return " INSERT
 end select
end function

function mkcdz$(CTRL)
 select case CTRL
 case FAIL: return "FAIL"
 case PASS: return "PASS"
 end select
end function

function mkdrp$(CTRL)
 select case CTRL
 case FAIL: return "Y"
 case PASS: return "N"
 end select
end function
function mkgnw$(CTRL)
 select case CTRL
 case 1: return "WINDOW"
 case 2: return "GRID"
 end select
end function

function pack(n,tpx$,zmax,CTRL$)
 select case CTRL$
 case "MFDSA"
 tpx = free
 if tpx<>0 then
 idxB(tpx).f = ZTEXT$(str$(tpx),"0",5,"R")
 idxB(tpx).fname = #
 idxB(tpx).cntrl = "MFDSA"
 mfdsa(tpx).acode = PASS
 mfdsa(tpx).zcode = FAIL
 mfdsa(tpx).n = 10
 mfdsa(tpx).m = 0
 mfdsa(tpx).t = 0
 mfdsa(tpx).t_dev = 0
 mfdsa(tpx).t_lst = 0
 mfdsa(tpx).t_prc = 0
 mfdsa(tpx).t_stp = 0
 mfdsa(tpx).c_dte = date$
 mfdsa(tpx).c_tme = time$
 ZCMD 100,idxB(tpx).f,"B",PASS
 save 100,tpx,"MFDSA"
 ZCMD 100,\",\",FAIL
 end if
 case "DEV","LST","PRC"
 tpx = ZCOMP(zmax<>32767,zmax+1,0)
 if tpx<>0 then
 select case CTRL$
 case "DEV"
 dev(tpx).dev_n = tpx
 dev(tpx).ini_x = 0
 dev(tpx).ini_y = 0
 dev(tpx).fin_x = 0
 dev(tpx).fin_y = 0
 dev(tpx).off_x = 0
 dev(tpx).off_y = 0
 dev(tpx).mass = 0
 dev(tpx).fric = 0
 dev(tpx).size = 0
 dev(tpx).delta = 0
 dev(tpx).cntrl = "*"
 save n,tpx,"DEV"
 end case
 case "LST"
 lst(tpx).lst_n = tpx
 lst(tpx).dev_n = 0
 lst(tpx).cntrl = "*"
 save n,tpx,"LST"
 end case
 end if
 end select
end function
case "PRC":
 ptc(tpx).prc_n=tpx
 ptc(tpx).dev_n=0
 ptc(tpx).stp_n=0
 ptc(tpx).text=tpx$
 ptc(tpx).move=0
 ptc(tpx).ini_x=0
 ptc(tpx).ini_y=0
 ptc(tpx).fin_x=0
 ptc(tpx).fin_y=0
 ptc(tpx).t_cnt=0
 ptc(tpx).w_cnt=0
 save n,tpx,"PRC"
 zmax=tpx
end select
end if
end select
return tpx
end function
CMPLIB Module:

sub build_ptable(j)
 ptable(LR).leng=stack(j).fin_x-stack(j).cur_x
 if ptable(LR).leng=0 then ptable(LR).null=PASS else
 ptable(LR).null=FAIL
 if (stack(j).cur_y=0) or (stack(j).cur_y=g+1) then
 ptable(LR).blck=PASS
 else
 ptable(LR).blck=FAIL
 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+
 stack(j).delta
 for x0=stack(j).cur_x+sgn(ptable(LR).leng)*
 (stack(j).delta+1) to stack(j).fin_x step
 sgn(ptable(LR).leng)
 if grid(x0,y0)<=GF then ptable(LR).blck=PASS: exit
 for
 next x0
 next y0
end if

 ptable(UD).leng=stack(j).fin_y-stack(j).cur_y
 if ptable(UD).leng=0 then ptable(UD).null=PASS else
 ptable(UD).null=FAIL
 if (stack(j).cur_x=0) or (stack(j).cur_x=g+1) then
 ptable(UD).blck=PASS
 else
 ptable(UD).blck=FAIL
 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+
 stack(j).delta
 for y0=stack(j).cur_y+sgn(ptable(UD).leng)*
 (stack(j).delta+1) to stack(j).fin_y step
 sgn(ptable(UD).leng)
 if grid(x0,y0)>GF then ptable(UD).blck=PASS: exit
 for
 next y0
 next x0
end if
end sub

sub build_qtable(j)
 qtable(UP). upd_x=stack(j).cur_x
 qtable(UP). upd_y=stack(j).cur_y+1
 if (abs(grid(qtable(UP). upd_x,qtable(UP). upd_y))=XK) or
 (qtable(UP). upd_y>=g+1) then qtable(UP). forb=PASS else
 qtable(UP). forb=FAIL
 qtable(UP). blck=FAIL
 for z0=qtable(UP). upd_x-stack(j).delta to qtable(UP). upd_x+
 stack(j).delta
 if (abs(grid(z0,qtable(UP). upd_y))=XK) or (grid(z0,
 qtable(UP). upd_y)=GB) then qtable(UP). blck=PASS: exit
 for
 next z0
 if stack(j). move=DN then qtable(UP). move=PASS else
 qtable(UP). move=FAIL
 qtable(UP). dense=dense(j,qtable(UP). upd_x,qtable(UP). upd_y)
qtable(DN). upd_x = stack(j). cur_x
qtable(DN). upd_y = stack(j). cur_y
if (abs(grid(qtable(DN). upd_x, qtable(DN). upd_y)) = XK) or
 (qtable(DN). upd_y < 0) then qtable(DN). forb = PASS else
qtable(DN). forb = FAIL
qtable(DN). blck = FAIL
for z0 = qtable(DN). upd_x - stack(j). delta to qtable(DN). upd_x + stack(j). delta
 if (abs(grid(z0, qtable(DN). upd_y)) = XK) or (grid(z0, qtable(DN). upd_y) = GB) then qtable(DN). blck = PASS; exit for
next z0
if stack(j). move = UP then qtable(DN). move = PASS else
qtable(DN). move = FAIL
qtable(DN). dense = dense(j, qtable(DN). upd_x, qtable(DN). upd_y)

qtable(LT). upd_x = stack(j). cur_x
qtable(LT). upd_y = stack(j). cur_y
if (abs(grid(qtable(LT). upd_x, qtable(LT). upd_y)) = XK) or
 (qtable(LT). upd_x < 0) then qtable(LT). forb = PASS else
qtable(LT). forb = FAIL
qtable(LT). blck = FAIL
for z0 = qtable(LT). upd_y - stack(j). delta to qtable(LT). upd_y + stack(j). delta
 if (abs(grid(qtable(LT). upd_x, z0)) = XK) or
 (grid(qtable(LT). upd_x, z0) = GB) then qtable(LT). blck = PASS; exit for
next z0
if stack(j). move = RT then qtable(LT). move = PASS else
qtable(LT). move = FAIL
qtable(LT). dense = dense(j, qtable(LT). upd_x, qtable(LT). upd_y)

qtable(RT). upd_x = stack(j). cur_x
qtable(RT). upd_y = stack(j). cur_y
if (abs(grid(qtable(RT). upd_x, qtable(RT). upd_y)) = XK) or
 (qtable(RT). upd_x > g + 1) then qtable(RT). forb = PASS else
qtable(RT). forb = FAIL
qtable(RT). blck = FAIL
for z0 = qtable(RT). upd_y - stack(j). delta to qtable(RT). upd_y + stack(j). delta
 if (abs(grid(qtable(RT). upd_x, z0)) = XK) or
 (grid(qtable(RT). upd_x, z0) = GB) then qtable(RT). blck = PASS; exit for
next z0
if stack(j). move = LT then qtable(RT). move = PASS else
qtable(RT). move = FAIL
qtable(RT). dense = dense(j, qtable(RT). upd_x, qtable(RT). upd_y)
end sub
sub grid_000()
 erase grid
 for x0=0 to g+1
 for y0=0 to g+1
 grid(x0, y0) = XF
 if x0>=1 and x0<=g then
 if y0>=1 and y0<=g then
 grid(x0, y0) = GF
 end if
 end if
 next y0
 next x0
end sub

sub grid_add(j)
 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+
 stack(j).delta
 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+
 stack(j).delta
 if x0>=0 and x0<=g+1 then
 if y0>=0 and y0<=g+1 then
 if grid(x0, y0) = XF then grid(x0, y0) = XB
 if grid(x0, y0) = GF then grid(x0, y0) = GB
 end if
 end if
 next y0
 next x0
end sub

sub grid_sub(j)
 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+
 stack(j).delta
 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+
 stack(j).delta
 if x0>=0 and x0<=g+1 then
 if y0>=0 and y0<=g+1 then
 if grid(x0, y0) = XB then grid(x0, y0) = XF
 if grid(x0, y0) = GB then grid(x0, y0) = GF
 end if
 end if
 next y0
 next x0
end sub

sub grid_upd()
 grid_000
 for j=1 to max_dev
 if stack(j).cntrl=PASS then
 grid_add j
 end if
 next j
end sub
sub stack_add(n, stp, t_cnt, w_cnt)
 for j=1 to max_dev
 if stack(j).cntrl<>PASS then
 if test(lst(IDX(2, cur_dev+1)).dev_n)<>FAIL then
 if cur_dev<tot_dev then
 cur_dev=cur_dev+1
 stack(j).dev_n=lst(IDX(2, cur_dev)).dev_n
 stack(j).dev_s=symbol$(lst(IDX(2, cur_dev)).dev_n)
 stack(j).delta=dev(lst(IDX(2, cur_dev)).dev_n).delta
 stack(j).move=NL
 stack(j).cur_x=dev(lst(IDX(2, cur_dev)).dev_n).ini_x
 stack(j).cur_y=dev(lst(IDX(2, cur_dev)).dev_n).ini_y
 stack(j).fin_x=dev(lst(IDX(2, cur_dev)).dev_n).fin_x
 stack(j).fin_y=dev(lst(IDX(2, cur_dev)).dev_n).fin_y
 stack(j).cntrl=PASS
 zrecord_prc n, stp, j,"*!INJT!*", t_cnt, w_cnt
 exit for
 end if
 end if
 end if
 next j
end sub

sub stack_sub(j)
 stack(j).dev_n=0
 stack(j).dev_s=""
 stack(j).delta=0
 stack(j).move=NL
 stack(j).cur_x=0
 stack(j).cur_y=0
 stack(j).fin_x=0
 stack(j).fin_y=0
 stack(j).cntrl=FAIL
end sub

function dense(j, cur_x, cur_y)
 tpx=0
 for x0=cur_x-(stack(j).delta+1) to cur_x+(stack(j).delta+1)
 for y0=cur_y-(stack(j).delta+1) to cur_y+(stack(j).delta+1)
 if x0>=0 and x0<=g+1 then
 if y0>=0 and y0<=g+1 then
 tpx=tpx+grid(x0, y0)^2
 end if
 end if
 next y0
 next x0
 return tpx
end function
function scan_ptable()
 tpx=NL
 for z0=LR to UD
 if ptable(z0).null=FAIL then
 if ptable(z0).blck=FAIL then
 tpx=tpx+z0
 end if
 end if
 next z0
 if tpx=LD then if abs(ptable(LR).leng)<abs(ptable(UD).leng) then tpx=LR else tpx=UD
 return tpx
end function

function scan_qtable()
 tpx=NL
 for z0=UP to RT
 if qtable(z0).forb=FAIL then
 if qtable(z0).blck=FAIL then
 if qtable(z0).move=FAIL then
 if (tpx=NL) or (tpx<>NL and qtable(z0).dense<qtable(tpx).dense) then tpx=z0
 end if
 end if
 end if
 next z0
 return tpx
end function

function switch(CTRL)
 tpx=NL
 select case CTRL
 case LR: if ptable(CTRL).leng<0 then tpx=LT else tpx=RT
 case UD: if ptable(CTRL).leng<0 then tpx=DN else tpx=UP
 end select
 return tpx
end function

function symbol$(CTRL)
 return chr$(asc("A")+(CTRL mod 26)-1))
end function
function test(CTRL)
 tpx=PASS
 for x0=dev(CTRL).ini_x-dev(CTRL).delta to dev(CTRL).ini_x+
 dev(CTRL).delta
 for y0=dev(CTRL).ini_y-dev(CTRL).delta to dev(CTRL).ini_y+
 dev(CTRL).delta
 if x0>=0 and x0<=g+1 then
 if y0>=0 and y0<=g+1 then
 if (grid(x0,y0)=XB) or (grid(x0,y0)=GB) then tpx
 =FAIL: exit for
 end if
 end if
 next y0
 next x0
 return tpx
end function

function text$(CTRL)
 tpx$="NL"
 select case CTRL
 case UP: tpx$="UP"
 case DN: tpx$="DN"
 case LT: tpx$="LT"
 case RT: tpx$="RT"
 end select
 return tpx$
end function

sub proj_grid(CTRL)
 erase grid
 for j=1 to CTRL
 for x0=stack(j).cur_x-stack(j).delta to stack(j).cur_x+
 stack(j).delta
 for y0=stack(j).cur_y-stack(j).delta to stack(j).cur_y+
 stack(j).delta
 grid(x0,y0)=j
 next y0
 next x0
 next j
end sub

sub proj_trace(k,x0,y0)
 if grid(x0,y0)<>0 then
 for z0=1 to mfdsa(k).t_prc
 if prc(z0).dev_n=stack(grid(x0,y0)).dev_n then
 if grid(prc(z0).fin_x,prc(z0).fin_y)=0 then
 grid(prc(z0).fin_x,prc(z0).fin_y)=grid(x0,y0)
 end if
 end if
 next z0
 end if
end sub
function proj_stack(k,CTRL)
 tpx=0
 for z0=1 to mfdsa(k).t_prc
 if prc(z0).stp_n=CTRL then
 select case prc(z0).text
 case "MOVEMENT":
 tpx=tpx+1
 stack(tpx).dev_n=prc(z0).dev_n
 stack(tpx).dev_s=symbo$(prc(z0).dev_n)
 stack(tpx).delta=dev(prc(z0).dev_n).delta
 stack(tpx).move=prc(z0).move
 stack(tpx).cur_x=prc(z0).fin_x
 stack(tpx).cur_y=prc(z0).fin_y
 stack(tpx).fin_x=dev(prc(z0).dev_n).fin_x
 stack(tpx).fin_y=dev(prc(z0).dev_n).fin_y
 stack(tpx).cntrl=PASS
 case "!*DROP!*":
 stack(tpx).cntrl=FAIL
 end select
 end if
 next z0
 return tpx
end function
GUILIB Module:

sub prompt_list_A(tpx$, tpa, tpb)
 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // List: "+tpx$","",
 "" "Error/Message"
 ZWINDS "List ",5,3,40,10,tpa
 14,40,113,tpb
endo sub

sub prompt_list_B(tpx$)
 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // List: "+tpx$","",
 "" "Error/Message"
 ZWINDOWS " Prc # Dev # Stp # Instruct MV
 5,3,40,124,WIRE
endo sub

sub prompt_main(tpx$)
 ZWINDOWM "MFDSA-Swarm Algorithm,v3 // Main: "+tpx$","",
 "" "Error/Message"
 ZWINDS "Project(s) " ,5,3,40,36,ACT1
 ZWINDS "Summary", 5,40,40,87,ACT2
 ZPRINT "Project Information ",9,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "=*=",10,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "File MFDSA- " ,12,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "File Name- " ,13,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "File Mode- " ,14,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Comp Date- " ,16,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Comp Time- " ,17,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Comp Stat- " ,18,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Simulator Information ",22,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "=*=",23,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Grid nxn- " ,25,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Max Dev- " ,26,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Trg Dev- " ,27,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Misc. Information ",31,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "=*=",32,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
 ZPRINT "Total Dev- " ,34,42,RGB0(WIRE,2),
 RGB0(WIRE,1)
ZPRINT " Total Lst- ",35,42,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Total Prc- ",36,42,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Total Stp- ",37,42,RGBA0(WIRE,2),
RGBA0(WIRE,1)
end sub

sub prompt_project(tpx$)
ZWINDOWM "MFDSA-Swarm Algorithm,v3 // Project: "+tpx$, "", "" "Error/Message"
ZWINDOWS " Project -Grid/View",5,3,40,40,ACT1
ZWINDOWS "Detail(s)-Simulator",5,44,20,83,ACT2
ZWINDOWS "Detail(s)- Misc. ",25,44,20,83,ACT2
ZWINDOW_G 8,32,4,40
ZPRINT "Grid Size (n,n) [,]",34,6,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT "Cur. Pos. (X,Y) [,]",36,6,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT "Cur. Stp. [/]",39,6,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT "Display Mode: ",41,6,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Project Information ",9,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT "====================== ",10,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " File MFDSA- ",11,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " File Name- ",12,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " File Mode- ",13,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Comp Date- ",14,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Comp Time- ",15,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Comp Stat- ",16,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Simulator Information ",18,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT "====================== ",19,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Grid nnn- ",20,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Max Dev- ",21,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Trg Dev- ",22,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Device- [Symbol:] ",29,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Cur. Pos.-[,] ",31,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Ini. Pos.-[,] ",32,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Fin. Pos.-[,] ",33,46,RGBA0(WIRE,2),
RGBA0(WIRE,1)
ZPRINT " Off. Pos.=[,] ",34,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
ZPRINT " Mass- ",36,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
ZPRINT " Fric- ",37,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
ZPRINT " Size- ",38,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
ZPRINT " Delta- ",39,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
ZPRINT " Dropped?-",41,46,RGBA0(WIRE, 2),RGBA0(WIRE,1)
end sub

sub record_list_A1(f0,f1,f2)
 for z0=f1 to f2
 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)
 locate 8+(z0-f1),4
 print using " #####! "; lst(z0).dev_n; lst(z0).cntrl
 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)
 next z0
end sub

sub record_list_A2(f0,f1,f2)
 for z0=f1 to f2
 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)
 locate 8+(z0-f1),15
 print using " #####,###,#####,###,#####,###,#####,###,#####,###,#####,#### ,--
 dev(z0).dev_n; dev(z0).cntrl; dev(z0).ini_x;
 dev(z0).ini_y; dev(z0).fin_x; dev(z0).fin_y; dev(z0).off_x;
 dev(z0).off_y; dev(z0).mass; dev(z0).fric; dev(z0).size; dev(z0).delta
 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)
 next z0
end sub

sub record_list_B(f0,f1,f2,u)
 for z0=f1 to f2
 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)
 locate 8+(z0-f1),4
 print using " \
 \
 \
 \
 \
 \
 \\ " ; prc(IDX(u,z0)).prc_n; prc(IDX(u,z0)).dev_n;
 prc(IDX(u,z0)).stp_n; prc(IDX(u,z0)).text;
 text$(prc(IDX(u,z0)).move); prc(IDX(u,z0)).ini_x;
 prc(IDX(u,z0)).ini_y; prc(IDX(u,z0)).fin_x; prc(IDX(u, z0)).fin_y; prc(IDX(u,z0)).t_cnt; prc(IDX(u,z0)).w_cnt
 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)
 next z0
end sub
sub record_main1(f0,f1,f2,u)
 for z0=f1 to f2
 if z0=f0 then color RGBA0(MAIN,2),RGBA0(MAIN,1)
 locate 8+(z0-f1),4
 print using "" \
 ""; idxB(IDX(u, z0)).fname
 if z0=f0 then color RGBA0(MAIN,1),RGBA0(MAIN,2)
 next z0
end sub

sub record_main2(k)
 locate 12,57
 print using "\"; idxB(k).fmfdsa
 locate 13,57
 print using "\"; idxB(k).fname
 locate 14,57
 print using "\"; mkcda$(mfdsa(k).acode)
 locate 16,57
 print using "\"; mfdsa(k).c_dte
 locate 17,57
 print using "\"; mfdsa(k).c_tme
 locate 18,57
 print using "\"; mkcdz$(mfdsa(k).zcode)
 locate 25,57
 print using "#####"; mfdsa(k).n
 locate 26,57
 print using "#####"; mfdsa(k).m
 locate 27,57
 print using "#####"; mfdsa(k).t
 locate 34,57
 print using "#####"; mfdsa(k).t_dev
 locate 35,57
 print using "#####"; mfdsa(k).t_lst
 locate 36,57
 print using "#####"; mfdsa(k).t_prc
 locate 37,57
 print using "#####"; mfdsa(k).t_stp
end sub

sub record_project1(k,t0,f0,f1,f2,g0,g1,g2,CTRL)
 color RGBA0(MAIN,1),RGBA0(MAIN,2)
 for z0=f1 to f2
 for a0=g1 to g2
 select case grid(z0,a0)
 case is<>0:
 color 0,10
 if z0=f0 and a0=g0 then color 0,14
 locate (31-(a0-g1)*2),(5+(z0-f1)*3)
 print stack(grid(z0,a0)).dev_s+chr$(asc(""))*(
 (stack(grid(z0,a0)).cntrl+1));
 if z0=f0 and a0=g0 then color 0,10
 case is=0:
 color 0,10
 if z0=f0 and a0=g0 then color 0,14
 locate (31-(a0-g1)*2),(5+(z0-f1)*3)
 print stack(grid(z0,a0)).dev_s+chr$(asc(""))*(
 (stack(grid(z0,a0)).cntrl+1));
 end select
 next a0
end sub
case is=0:
 color 0,15
 if z0=f0 and a0=g0 then color 0,14
 locate (3l-(a0-g1)*2),(5+(z0-f1)*3)
 print " ";
 if z0=f0 and a0=g0 then color 0,15
end select
if ((z0=0 or z0=mdsa(k).n+1) and (a0>=0 and a0<=
 mdsa(k).n+1)) or ((a0=0 or a0=mdsa(k).n+1) and (z0
>=0 and z0<=mdsa(k).n+1)) then
 color 4,4
 if z0=f0 and a0=g0 then color 0,14
 locate (31-(a0-g1)*2),(5+(z0-f1)*3)
 print " ";
 if z0=f0 and a0=g0 then color 4,4
end if
next a0
next z0
color RGBA0(MAIN,1),RGBA0(MAIN,2)
locate 34,24
print using "#####"; mdsa(k).n
locate 34,30
print using "#####"; mdsa(k).n
locate 36,24
print using "#####"; f0
locate 36,30
print using "#####"; g0
locate 38,24
print using "#####"; t0
locate 38,30
print using "#####"; mdsa(k).t_stp
locate 41,20
print using "\ "; mkgnw$(CTRL)
end sub

sub record_project2(k)
locate 11,59
print using "\ "; idxB(k).fmdsa
locate 12,59
print using "\ "; idxB(k).fname
locate 13,59
print using "\ "; mkcda$(mdsa(k).acode)
locate 14,59
print using "\ "; mdsa(k).c_dte
locate 15,59
print using "\ "; mdsa(k).c_tme
locate 16,59
print using "\ "; mkcdz$(mdsa(k).zcode)
locate 20,59
print using "#####"; mdsa(k).n
locate 21,59
print using "#####"; mdsa(k).m
locate 22,59
print using "#####"; mdsa(k).t
end sub
sub record_project3(k)
 locate 29,59
 print using "#####"; stack(k).dev_n
 locate 29,73
 print using "!"; stack(k).dev_s
 locate 31,60
 print using "#####"; stack(k).cur_x
 locate 31,67
 print using "#####"; stack(k).cur_y
 locate 32,60
 print using "#####"; dev(stack(k).dev_n).ini_x
 locate 32,67
 print using "#####"; dev(stack(k).dev_n).ini_y
 locate 33,60
 print using "#####"; stack(k).fin_x
 locate 33,67
 print using "#####"; stack(k).fin_y
 locate 34,60
 print using "#####"; dev(stack(k).dev_n).off_x
 locate 34,67
 print using "#####"; dev(stack(k).dev_n).off_y
 locate 36,59
 print using "#####"; dev(stack(k).dev_n).mass
 locate 37,59
 print using "#####"; dev(stack(k).dev_n).fric
 locate 38,59
 print using "#####"; dev(stack(k).dev_n).size
 locate 39,59
 print using "#####"; stack(k).delta
 locate 41,59
 print using "!"; mkdrp$(stack(k).cntrl)
end sub
MODLIB Module:

sub export_devl(n,u)
print n,""
print n," Dev # (ini-X,ini-Y)<=>(fin-X,fin-Y)/(off-X,
off-Y) Mass Fric Size Delta "
print n,"--
--
for z0=1 to IDX(u,0)
 print n,using " ##### ####_ #### ####_
#.###_ #.###_ ##.####^^^^ ##.####^^^^ ##.####^^^^
"; dev(IDX(u,z0)).dev_n; dev(IDX(u,z0)).ini_x;
dev(IDX(u,z0)).ini_y; dev(IDX(u,z0)).fin_x; dev(IDX(u,
z0)).fin_y; dev(IDX(u,z0)).off_x; dev(IDX(u,z0)).off_y;
dev(IDX(u,z0)).mass; dev(IDX(u,z0)).fric; dev(IDX(u,
z0)).size; dev(IDX(u,z0)).delta
next z0
print n,"--
--
print n,"" end sub

sub export_lstl(n,u)
print n,""
print n," Lst # Dev # "
print n,"---------------"
for z0=1 to IDX(u,0)
 print n,using " ##### ##### "; lst(IDX(u,z0)).lst_n;
 lst(IDX(u,z0)).dev_n
next z0
print n,"---------------"
print n,"" end sub

sub export_prcl(n,u)
print n,""
pnt n," Prc # Dev # Stp # Instruct MV
(ini-X,ini-Y) <== (fin-X,fin-Y) T-Count W-Count "
print n,"--
--
for z0=1 to IDX(u,0)
 print n,using " ##### ##### ##### ##.####_;
 prc(IDX(u,z0)).prc_n; prc(IDX(u,z0)).dev_n;
 prc(IDX(u,z0)).stp_n; prc(IDX(u,z0)).text;
text$(prc(IDX(u,z0)).move); prc(IDX(u,z0)).ini_x;
 prc(IDX(u,z0)).ini_y; prc(IDX(u,z0)).fin_x; prc(IDX(u,
z0)).fin_y; prc(IDX(u,z0)).t_cnt; prc(IDX(u,z0)).w_cnt
next z0
print n,"--
--
print n,"" end sub
sub export_raw(n,k,u1,u2,u3)
 write #n,mfsda(k).n,mfsda(k).m,mfsda(k).t,IDX(u1,0),IDX(u2,0)
 for z0=1 to IDX(u1,0)
 print #n,dev(IDX(u1,z0)).ini_x,dev(IDX(u1,z0)).ini_y,
 dev(IDX(u1,z0)).fin_x,dev(IDX(u1,z0)).fin_y,dev(IDX(u1, z0)).off_x,dev(IDX(u1,z0)).off_y,dev(IDX(u1,z0)).mass,
 dev(IDX(u1,z0)).fric,dev(IDX(u1,z0)).size,dev(IDX(u1, z0)).delta
 next z0
 for z0=1 to IDX(u2,0)
 print #n,lst(IDX(u2,z0)).dev_n
 next z0
end sub

sub export_stat(n,k,u1,u2,u3)
 print #n,"
 print #n," Dev # N.Lng C.Lng C.Stp C/N Ratio n^2
 print #n," Ratio MAX Ratio Vel. Drg. Wait "
 print #n,"--
 tot_n_lng=0
 tot_c_lng=0
 tot_c_stp=0
 tot_c_nll=0
 for z0=1 to IDX(u1,0)
 n_lng=abs(dev(IDX(u1,z0)).fin_x-dev(IDX(u1,z0)).ini_x)
 +abs(dev(IDX(u1,z0)).fin_y-dev(IDX(u1,z0)).ini_y)
 c_lng=0
 c_stp=0
 c_nll=0
 for a0=1 to IDX(u3,0)
 if prc(IDX(u3,a0)).dev_n=dev(IDX(u1,z0)).dev_n then
 select case prc(IDX(u3,a0)).text
 case "MOVEMENT":
 select case prc(IDX(u3,a0)).move
 case is<>NL: c_lng=c_lng+1
 case is=NL: c_nll=c_nll+1
 end select
 c_stp=c_stp+1
 case "!*DROP!*":
 exit for
 end select
 end if
 next a0
 tot_n_lng=tot_n_lng+n_lng
 tot_c_lng=tot_c_lng+c_lng
 tot_c_stp=tot_c_stp+c_stp
 tot_c_nll=tot_c_nll+c_nll
 ratio_1=c_lng/n_lng
 ratio_n=1/mfsda(k).n/mfsda(k).n
 ratio_m=1/mfsda(k).m
 vel=c_lng/c_stp
 drg=c_nll/c_stp
 next z0
end sub
print #n,using " ####### ####### ####### ####### #######
 ####### ####### ####### #######";
devidx(u1,z0)).dev_n; n_lng; c_lng; c_stp; ratio_1!
 ratio_n1; ratio_m!; vel!; drg!; c_nll
next z0
print #n,"--

 ratio_1! = tot_c_lng / tot_n_lng
 ratio_n! = ratio_1! / mfsda(k).n
 ratio_m! = ratio_1! / mfsda(k).m
 vel! = tot_c_lng / tot_c_stp
 drg! = tot_c_nll / tot_c_stp
print #n,using " ####### ####### ####### #######
 ####### ####### ####### #######";
tot_n_lng; tot_c_lng; tot_c_stp; ratio_1!; ratio_n!; ratio_m!
 vel!; drg!; tot_c_nll
print #n,"" print #n,using " Proc Step=>####"; mfsda(k).t_prc
print #n,using " Time Step=>####"; mfsda(k).t_stp
print #n,using " Proc/Time=>####"; mfsda(k).t_prc/mfsda(k).t_stp
print #n,"" print #n,using " Grid nxn=> ####"; mfsda(k).n
print #n,using " Max Dev=> ####"; mfsda(k).m
print #n,using " Trg Dev=> ####"; mfsda(k).t
print #n,"" end sub

sub import_dev(n1,n2,k,zmax)
for z0=1 to zmax
 input #n2,ini_x,ini_y,fin_x,fin_y,off_x!,off_y!,mass!,
 fric!,size!,delta
 tpx=pack(n1,"",mfsda(k).t_dev,"DEV")
 if tpx<>0 then
 dev(tpx).dev_n=tpx
 dev(tpx).ini_x=ini_x
 dev(tpx).ini_y=ini_y
 dev(tpx).fin_x=fin_x
 dev(tpx).fin_y=fin_y
 dev(tpx).off_x=off_x!
 dev(tpx).off_y=off_y!
 dev(tpx).mass=mass!
 dev(tpx).fric=fric!
 dev(tpx).size=size!
 dev(tpx).delta=delta
 dev(tpx).cntrl="*
 save n1,tpx,"DEV"
 end if
next z0
end sub
sub import_lst(n1,n2,k,zmax)
 for z0=1 to zmax
 input n2,dev_n
 tpx=pack(n1,"",mfdsa(k).t_lst,"LST")
 if tpx<>0 then
 lst(tpx).lst_n=tpx
 lst(tpx).dev_n=dev_n
 lst(tpx).ctrl="*"
 save n1,tpx,"LST"
 end if
 next z0
end sub

function check_dev(k,dev_n)
 tpx=FAIL
 if dev_n>0 then
 if dev_n<=mfdsa(k).t_dev then
 if dev(dev_n).ctrl<>'*' then
 tpx=PASS
 end if
 end if
 end if
 return tpx
end function

function check_fin(k,cur_x,cur_y)
 tpx=FAIL
 if cur_x>0 and cur_x<mfdsa(k).n+1 then
 if cur_y>0 and cur_y<mfdsa(k).n+1 then
 tpx=PASS
 end if
 end if
 return tpx
end function

function check_gns(k1,k2,dev_n)
 tpx=PASS
 for z0=1 to mfdsa(k1).t_lst
 if z0<>k2 then
 if lst(z0).dev_n=dev_n then
 tpx=FAIL
 exit_for
 end if
 end if
 next z0
 return tpx
end function
function check_ini(k, cur_x, cur_y)
 tpx = FAIL
 if cur_x == 0 and (cur_y > 0 and cur_y < mfsda(k).n + 1) then tpx = PASS
 if cur_x == mfsda(k).n + 1 and (cur_y > 0 and cur_y < mfsda(k).n + 1) then tpx = PASS
 if cur_y == 0 and (cur_x > 0 and cur_x < mfsda(k).n + 1) then tpx = PASS
 if cur_y == mfsda(k).n + 1 and (cur_x > 0 and cur_x < mfsda(k).n + 1) then tpx = PASS
 return tpx
end function

function check_mfsd(k, mass!, fric!, size!, delta)
 tpx = FAIL
 if mass! >= 0 then
 if fric! >= 0 then
 if size! >= 0 then
 if delta >= 0 and delta <= (mfsda(k).n ^ (1/2) - 1) / 2 then
 tpx = PASS
 end if
 end if
 end if
 end if
 return tpx
end function

function check_off(off_x!, off_y!)
 tpx = FAIL
 if abs(off_x!) < 1 then
 if abs(off_y!) < 1 then
 tpx = PASS
 end if
 end if
 return tpx
end function

function check_sng(k1, k2, cur_x, cur_y)
 tpx = PASS
 for z0 = 1 to mfsda(k1).t_dev
 if z0 <> k2 then
 if dev(z0).cntrl <> "*" then
 if dev(z0).fin_x = cur_x then
 if dev(z0).fin_y = cur_y then
 tpx = FAIL
 exit for
 end if
 end if
 end if
 end if
 next z0
 return tpx
end function
ZCOMPILE Module:

sub zcompile(n,k)
 if mfdsa(k).acode<>FAIL then
 if mfdsa(k).n<>0 then
 if mfdsa(k).m<>0 then
 if mfdsa(k).t<>0 then
 if IDX(1,0)<0 then
 if IDX(2,0)<0 then
 if IDX(3,0)=0 then
 g =mfdsa(k).n
 max_dev=mfdsa(k).m
 trg_dev=mfdsa(k).t
 stp =1
 cur_dev=0
 tot_dev=IDX(2,0)
 cur_prc=0
 tot_prc=0
 t_cnt =0
 w_cnt =0
 erase stack
 for j=1 to max_dev
 stack_add n,stp,t_cnt,w_cnt
 next j
 grid_upd
 do
 active_dev=0
 killed_dev=0
 for j=1 to max_dev
 if stack(j).cntrl=PASS then
 active_dev=active_dev+1
 killed_dev=killed_dev+0
 build_ptable j
 CTRL=scan_ptable
 select case CTRL
 case LR,UD:
 stack(j).move=switch(CTRL)
 zrecord_prc n,stp,j,"MOVEMENT",t_cnt,w_cnt
 case NL:
 build_qtable j
 CTRL=scan_qtable
 select case CTRL
 case NL,UP,DN,LT,RT:
 stack(j).move=CTRL
 zrecord_prc n,stp,j,"MOVEMENT",t_cnt,w_cnt
 if CTRL=NL then
 active_dev=active_dev+0
 killed_dev=killed_dev+1
 end if
 end select
 end do
 end select
 end if
 end if
 end if
 end if
 end if
 end if
end sub
if stack(j).cur_x = stack(j).fin_x then
 if stack(j).cur_y = stack(j).fin_y then
 active_dev = active_dev - 1
 killed_dev = killed_dev * 0
 w_cnt = w_cnt + 0
 t_cnt = t_cnt + 1
 stack(j).move = NL
 zrecord_prc n, stp, j, "*!DROP!*", t_cnt, w_cnt
 stack_sub j
 end if
end if
next j
if killed_dev = active_dev and active_dev <> 0 then
 zrecord_prc n, stp, 0, "*!FAIL!*", t_cnt, w_cnt
 mfsda(k).zcode = FAIL
 exit do
end if
if w_cnt = tot_dev and tot_dev <> 0 then
 zrecord_prc n, stp, 0, "*!PASS!*", t_cnt, w_cnt
 mfsda(k).zcode = PASS
 exit do
end if
if active_dev = 0 then
 w_cnt = w_cnt + t_cnt
 t_cnt = t_cnt * 0
 zrecord_prc n, stp, -1, "*!ERR.!*", t_cnt, w_cnt
 zrecord_prc n, stp, -1, "*!INS.!*", t_cnt, w_cnt
 for j = 1 to max_dev
 stack_add n, stp, t_cnt, w_cnt
 next j
end if
if (active_dev + t_cnt) < trg_dev then
 stack_add n, stp, t_cnt, w_cnt
end if
grid_upd
stp = stp + 1
loop
 mfsda(k).t_prc = tot_prc
 mfsda(k).t_stp = stp
 mfsda(k).c_dte = date$
 mfsda(k).c_tme = time$
end if
end if
end if
end if
end sub
ZEIPORT Module:

sub zexport(k,u1,u2,u3)
 CTRL$=ZHEAD$("Select Export Type: Dev-List-1 Lst-list-2 Prc-List-3 Statistic-4 RAW-5 [ESC]","12345"+
 Z_ESC$
 if CTRL$<>Z_ESC$ then
 ZGFILE f1$
 if f1$="" then
 ZCMD 200,f1$,"0",PASS
 select case CTRL$
 case "1": export_devl 200,u1
 case "2": export_lstl 200,u2
 case "3": export_prcl 200,u3
 case "4": export_stat 200,k,u1,u2,u3
 case "5": export_raw 200,k,u1,u2,u3
 end select
 ZCMD 200,"","",FAIL
 end if
 end if
end sub

sub zimport(n,k)
 load n,k,"MFDSA"
 if mfsa(k).t_dev=0 then
 if mfsa(k).t_lst=0 then
 if mfsa(k).t_prc=0 then
 ZGFILE f1$
 if f1$="" then
 ZCMD 200,f1$,"I",PASS
 input #200,mfsa(k).n,mfsa(k).m,mfsa(k).t,zmax1,zmax2
 if zmax1*zmax2<>0 then
 import_dev n,200,k,zmax1
 import_lst n,200,k,zmax2
 end if
 ZCMD 200,"","",FAIL
 end if
 end if
 end if
 end if
 save n,k,"MFDSA"
end sub

sub zprntscrn()
 ZGFILE f1$
 if f1$="" then bsave f1$+.BMP",0
end sub
ZLISTANB Module:

sub zlist_A(n,k)
gosub zlist_A_start
gosub zlist_A_fresh1
gosub zlist_A_fresh2
gosub zlist_A_prompt
gosub zlist_A_record1
gosub zlist_A_record2
do
 CTRL$=ZHEAD$("MENU: Add-A Edit-E Del-D Mode-
 [C/Z] Export-X PrntScrn-P [ESC]",Z_ARU$+Z_ARD$+
 Z_ARL$+Z_ARR$+Z_ARH$+Z_ARE$+Z_PGU$+Z_PGD$+
 Z_SPC$+Z_TAB$+"AED"+Z_UND$+"XP"+Z_ESC$)
 select case CTRL$
 case Z_ARU$,Z_ARD$,Z_ARL$,Z_ARR$,Z_ARH$,Z_ARE$,Z_PGU$,Z_PGD$:
 select case CTRL
 case 1: ZSYS f0,f1,f2,36,mfdsa(k).t_lst,CTRL$
 case 2: ZSYS g0,g1,g2,36,mfdsa(k).t_dev,CTRL$
 end select
 gosub zlist_A_record1
 gosub zlist_A_record2
 case Z_SPC$:
 gosub zlist_A_start
 gosub zlist_A_fresh1
 gosub zlist_A_fresh2
 gosub zlist_A_prompt
 gosub zlist_A_record1
 gosub zlist_A_record2
 case Z_TAB$:
 select case CTRL
 case 1: CTRL=2: tpa=ACT2: tpb=ACT1
 case 2: CTRL=1: tpa=ACT1: tpb=ACT2
 end select
 gosub zlist_A_prompt
 gosub zlist_A_record1
 gosub zlist_A_record2
 case "A":
 zrecord_dnl n,k,0,0,0,0,"A"
 gosub zlist_A_fresh1
 gosub zlist_A_fresh2
 gosub zlist_A_prompt
 gosub zlist_A_record1
 gosub zlist_A_record2
 case "X":
 zexport k,1,2,4
 case "P":
 zprntscrn
case "E","D", Z_UND$:
 if (CTRL=1 and mfdsa(k).t_lst<>0) or (CTRL=2 and mfdsa(k).t_dev<>0) then
 select case CTRL$
 case "E":
 select case CTRL
 case 1: zrecord_dnl n,k,f0,f1,f2,1,"E"
 case 2: zrecord_dnl n,k,g0,g1,g2,2,"E"
 end select
 gosub zlist_A_record1
 gosub zlist_A_record2
 case "D":
 select case CTRL
 case 1: zrecord_dnl n,k,f0,0,0,0,"D"
 case 2: zrecord_dnl n,k,g0,0,0,2,"D"
 end select
 gosub zlist_A_record1
 gosub zlist_A_record2
 case Z_UND$:
 select case CTRL
 case 1: zrecord_dnl n,k,f0,0,0,0,Z_UND$
 case 2: zrecord_dnl n,k,g0,0,0,2,Z_UND$
 end select
 gosub zlist_A_record1
 gosub zlist_A_record2
 end select
 end if
 case Z_ESC$:
 exit do
 end select
 loop
 exit sub
zlist_A_start:
CTRL=1: tpa=ACT1: tpb=ACT2
return

zlist_A_fresh1:
ZSYS f0,f1,f2,36,mfdsa(k).t_lst,Z_ARH$
return

zlist_A_fresh2:
ZSYS g0,g1,g2,36,mfdsa(k).t_dev,Z_ARH$
return

zlist_A_prompt:
prompt_list_A "D&L Input "+["+idxB(k).fmfdsa+"],tpa,tpb
return

zlist_A_record1:
record_list_A1 f0,f1,f2
return

zlist_A_record2:
record_list_A2 g0,g1,g2
return
end sub
sub zlist_B(n,k)
 ZCLEAR
 gosub zlist_B_start
 gosub zlist_B_fresh1
 gosub zlist_B_fresh2
 gosub zlist_B_prompt
 gosub zlist_B_record
 do
 select case CTRL$
 case Z_PGU$, Z_PGD$:
 ZSYS f0,f1,f2,mfdsa(k).t_dev+1,mfdsa(k).t_dev+1,CTRL$
 gosub zlist_B_fresh2
 gosub zlist_B_prompt
 gosub zlist_B_record
 case Z_ARU$, Z_ARD$, Z_ARL$, Z_ARR$, Z_ARH$, Z_ARE$:
 ZSYS g0,g1,g2,36,IDX(8,u),CTRL$
 gosub zlist_B_record
 case Z_SPC$:
 gosub zlist_B_start
 gosub zlist_B_fresh1
 gosub zlist_B_fresh2
 gosub zlist_B_prompt
 gosub zlist_B_record
 case "X":
 zexport k,1,2,8
 case "P":
 zprntscrn
 case Z_ESC$:
 exit do
 end select
 loop
 exit sub
zlist_B_start:
 return
zlist_B_fresh1:
 ZSYS f0,f1,f2,mfdsa(k).t_dev+1,mfdsa(k).t_dev+1,Z_ARH$
 return
zlist_B_fresh2:
 if f0-1<>0 then HASH0$(1)=mkshort$(f0-1) else ZCLEAR
 sift 4,8
 ZSYS g0,g1,g2,36,IDX(8,u),Z_ARH$
 return
zlist_B_prompt:
 prompt_list_B "*P* Output "+["+idxB(k).fmfdsa+]"+
 D:"+ZTEXT$(str$(f0-1),"0",5,"R")
 return
zlist_B_record:
record_list_B g0,g1,g2,g
return
end sub
sub zproject(k)
ZCMD 100, idxB(k) .fmfdsa, "B", PASS
load 100, k, "MFDSA"
gosub zproject_start
gosub zproject_fresh1
gosub zproject_fresh2
gosub zproject_prompt
gosub zproject_record1
gosub zproject_record2
gosub zproject_record3
do
CTRL$=ZHEAD$("MENU: D&L Input-A *P* Output -B
Compile-C Export-X Import-M Trace-T PrntScrn
-P [ESC]", Z_ARU$+Z_ARD$+Z_ARL$+Z_ARR$+Z_ARH$+
Z_ARE$+Z_PGU$+Z_PGDS$+Z_SPSS$+Z_TABS$+"ABCXMTP"+
Z_ESCS$)
select case CTRL$
case Z_ARU$, Z_ARD$, Z_ARL$, Z_ARR$:
 select case CTRL
 case 1: gosub zproject_ctrl_space1
 case 2: gosub zproject_ctrl_space2
dis select
gosub zproject_prompt
gosub zproject_record1
gosub zproject_record2
gosub zproject_record3
case Z_ARH$, Z_ARE$, Z_PGU$, Z_PGDS$:
 gosub zproject_ctrl_time
 gosub zproject_fresh2
gosub zproject_prompt
gosub zproject_record1
gosub zproject_record2
gosub zproject_record3
case Z_SPSS$:
 gosub zproject_start
gosub zproject_fresh1
gosub zproject_fresh2
gosub zproject_prompt
gosub zproject_record1
gosub zproject_record2
gosub zproject_record3
case Z_TABS$:
 select case CTRL
 case 1: CTRL$=2
 case 2: CTRL$=1
dis select
gosub zproject_record1
gosub zproject_record2
gosub zproject_record3
case "A":
 zlist_A 100,k
 gosub zproject_prompt
 gosub zproject_record1
 gosub zproject_record2
 gosub zproject_record3

case "B":
 zlist_B 100,k
 gosub zproject_prompt
 gosub zproject_record1
 gosub zproject_record2
 gosub zproject_record3

case "C":
 zcompile 100,k
 gosub zproject_start
 gosub zproject_fresh1
 gosub zproject_fresh2
 gosub zproject_prompt
 gosub zproject_record1
 gosub zproject_record2
 gosub zproject_record3

case "X":
 zexport k,1,2,4

case "M":
 zimport 100,k

case "T":
 proj_trace k,f0,g0
 gosub zproject_prompt
 gosub zproject_record1
 gosub zproject_record2
 gosub zproject_record3

case "P":
 zprntscrn

case Z_ESC$:
 exit do
end select

loop
save 100,k,"MFDSA"
ZCMD 100, "", "", FAIL
exit sub

zproject_start:
build_dlp 100,1,mfdsa(k).t_dev,"DEV"
build_dlp 100,2,mfdsa(k).t_lst,"LST"
build_dlp 100,4,mfdsa(k).t_prc,"PRC"
CTRL=1
return

zproject_fresh1:
t0=1: tl=1: t2=mfdsa(k).t_stp: tsize=1: tleng=t2
f0=0: fl=0: f2=mfdsa(k).n+1: fsize=12: fleng=f2: if f2>fsize then
f2=fsize-1

g0=0: gl=0: g2=mfdsa(k).n+1: gsize=12: gleng=g2: if g2>gsize then
g2=gsize-1
return
zproject_fresh2:
 proj_grid proj_stack(k,t0)
 return

zproject_prompt:
 prompt_project "["+idxB(k).fmfdsa+"]"
 return

zproject_record1:
 record_project1 k,t0,f0,f1,f2,g0,g1,g2,CTRL
 return

zproject_record2:
 record_project2 k
 return

zproject_record3:
 record_project3 grid(f0,g0)
 return

zproject_ctrl_time:
 select case CTRL$
 case Z_ARH$: t0=t1
 case Z_ARE$: t0=t2
 case Z_PGU$: if t0<t2 then t0=t0+1
 case Z_PGDS: if t0>t1 then t0=t0-1
 end select
 return

zproject_ctrl_space1:
 select case CTRL$
 case Z_ARU$: if g0<g2 then g0=g0+1
 case Z_ARD$: if g0>g1 then g0=g0-1
 case Z_ARL$: if f0>f1 then f0=f0-1
 case Z_ARR$: if f0<f2 then f0=f0+1
 end select
 return

zproject_ctrl_space2:
 select case CTRL$
 case Z_ARU$: if g2<g1 then g2=g2+1: g1=(g2-gsize)+1: if g0<g1 then g0=g1
 case Z_ARD$: if g1>0 then g1=g1-1: g2=(g1+gsize)-1: if g0>g2 then g0=g2
 case Z_ARL$: if f1>0 then f1=f1-1: f2=(f1+fsize)-1: if f0>f2 then f0=f2
 case Z_ARR$: if f2<f1 then f2=f2+1: f1=(f2-fsize)+1: if f0<f1 then f0=f1
 end select
 return
end sub
ZRECORD Module:

```c
sub zrecord_dnl(n, k, f0, f1, f2, CTRL, CTRL$)
  if mfdsa[k].acode<>FAIL then
    select case CTRL$
    case "A":
      f0=pack(n,"",mfdsa(k).t_lst,"LST")
      f0=pack(n,"",mfdsa(k).t_dev,"DEV")
    case "E":
      select case CTRL
      case 1:
        load n,f0,"LST"
        dev_n=val(ZINPUT$(str$(lst(f0).dev_n),5,5,8+(f0-f1),5,RGBOA(MAIN,2),RGBOA(MAIN,1)))
        if check_dev(k,dev_n)<>FAIL then
          if check_gns(k,f0,dev_n)<>FAIL then
            lst(f0).dev_n=dev_n
          end if
        end if
        save n,f0,"LST"
      case 2:
        CTRL$=ZHEAD$("Select Edit Type:   Ini-X,Ini-Y-1
Mass/Fric/Size/Delta-4   (ESC")","1234"+Z_ESC$)
        if CTRL$<>Z_ESC$ then
          load n,f0,"DEV"
          select case CTRL$
          case "1":
            ini_x=val(ZINPUT$(str$(dev(f0).ini_x),4,4,8+(f0-f1),26,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            ini_y=val(ZINPUT$(str$(dev(f0).ini_y),4,4,8+(f0-f1),33,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            if check_ini(k,ini_x,ini_y)<>FAIL then
              dev(f0).ini_x=ini_x
              dev(f0).ini_y=ini_y
            end if
          case "2":
            fin_x=val(ZINPUT$(str$(dev(f0).fin_x),4,4,8+(f0-f1),45,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            fin_y=val(ZINPUT$(str$(dev(f0).fin_y),4,4,8+(f0-f1),52,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            if check_fin(k,fin_x,fin_y)<>FAIL then
              if check_sng(k,f0,fin_x,fin_y)<>FAIL then
                dev(f0).fin_x=fin_x
                dev(f0).fin_y=fin_y
              end if
            end if
          case "3":
            off_x=val(ZINPUT$(str$(dev(f0).off_x),5,5,8+(f0-f1),61,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            off_y=val(ZINPUT$(str$(dev(f0).off_y),5,5,8+(f0-f1),68,RGBOA(MAIN,2),RGBOA(MAIN,1)))
            if check_off(off_x!,off_y!)<>FAIL then
              dev(f0).off_x=off_x!
              dev(f0).off_y=off_y!
            end if
          end case
        end if
    end select
  end if
end sub
```
case "4":
mass! = val(ZINPUT$(str$(dev(f0).mass), 11, 11, 8 + (f0-f1), 76, RGBA0 (MAIN, 2), RGBA0 (MAIN, 1)))
fric! = val(ZINPUT$(str$(dev(f0).fric), 11, 11, 8 + (f0-f1), 89, RGBA0 (MAIN, 2), RGBA0 (MAIN, 1)))
size! = val(ZINPUT$(str$(dev(f0).size), 11, 11, 8 + (f0-f1), 102, RGBA0 (MAIN, 2), RGBA0 (MAIN, 1)))
delta= val(ZINPUT$(str$(dev(f0).delta), 4, 4, 8 + (f0-f1), 119, RGBA0 (MAIN, 2), RGBA0 (MAIN, 1)))
if check_mfsd(k, mass!, fric!, size!, delta) <> FAIL then
 dev(f0).mass = mass!
 dev(f0).fric = fric!
 dev(f0).size = size!
 dev(f0).delta = delta
end if
end select
save n, f0, "DEV"
end if
end select
case "D":
select case CTRL

case 1:
load n, f0, "LST"
lst(f0).lst_n = lst(f0).lst_n
lst(f0).dev_n = 0
lst(f0).cntrl = "*"
save n, f0, "DEV"

for z0 = 1 to mfsd(k).t_lst
 if lst(z0).dev_n = dev(f0).dev_n then
 zrecord_dnl n, k, z0, 0, 0, 1, "D"
 end if
next z0
end select
case Z_UND$:
 select case CTRL
 case 1:
 load n,f0,"LST"
 if dev(lst(f0).dev_n).cntrl="#" then
 select case lst(f0).cntrl
 case ":" : lst(f0).cntrl="#"
 case ":" : lst(f0).cntrl="*
 end select
 end if
 save n,f0,"LST"
 case 2:
 if check_ini(k,dev(f0).ini_x,dev(f0).ini_y)<FAIL then
 if check_fin(k,dev(f0).fin_x,dev(f0).fin_y)<FAIL then
 if check_sng(k,f0,dev(f0).fin_x,dev(f0).fin_y)<FAIL then
 if check_off(dev(f0).off_x,dev(f0).off_y)<FAIL then
 load n,f0,"DEV"
 select case dev(f0).cntrl
 case ":" : dev(f0).cntrl="#
 case ":" : dev(f0).cntrl="*
 for z0=1 to mfsda(k).t_lst
 if lst(z0).dev_n=dev(f0).dev_n then
 load n,z0,"LST"
 lst(z0).cntrl=dev(f0).cntrl
 save n,z0,"LST"
 end if
 next z0
 end select
 save n,f0,"DEV"
 end if
 end if
 end if
 end if
 end select
end if
end sub
sub zrecord_mfdsa(n,k,CTRL$)
 if k<>0 then load n,k,"IDXB"
 select case CTRL$
 case "A":
 k=pack(n,"MFDSA00000",idxA.a_record,"MFDSA")
 if k<>0 then
 prompt_main "Add Project"
 record_main2 k
 tpx$=ZINPUT$(idxB(k).fname,32,32,13,57,RGBA0(MAIN,2),RGBA0(MAIN,1))
 if trim$(tpx$)<"" then idxB(k).fname=tpx$
 end if
 case "E":
 if mfdsa(k).acode<>FAIL then
 prompt_main "Edit Project"
 record_main2 k
 CTRL$=ZHEAD$("Select Edit Type: File Name-1 Grid nxn-2 Max Dev-3 Trg Dev-4 [ESC]","1234"+Z_ESC$)
 if CTRL$<>Z_ESC$ then
 ZCMD 100,idxB(k).fmfdsa,"B",PASS
 end if
 save 100,k,"MFDSA"
 ZCMD 100,""","",FAIL
 end if
 end select
end if
case "D":
if mfdsa(k).acode<>FAIL then
 prompt_main "Del Project"
 record_main2 k
 CTRL$=ZHEAD$("WARNING!! DEL CANNOT BE REVERSED!!
 CONTINUE? Y-1 N-2 [ESC]","12"+Z_ESC$)
 if CTRL$="1" then
 idxA.a_record=idxA.a_record-0
 idxA.r_record=idxA.r_record-1
 idxB(k).fmfdsa=""
 idxB(k).fname=""
 idxB(k).cntrl="*"
 kill "MFDSA"+ZTEXT$(str$(tpx),"0",5,"R")
 end if
end if

if k<>0 then save n,k,"IDXBR"
end sub

sub zrecord_prc(n,stp,j,tpx$,t_cnt,w_cnt)
 cur_prc=pack(n,tpx$,tot_prc,"PRC")
 select case j
 case is<=0:
 prc(cur_prc).dev_n=-1
 prc(cur_prc).stp_n=stp
 prc(cur_prc).move=NL
 case is> 0:
 prc(cur_prc).dev_n=stack(j).dev_n
 prc(cur_prc).stp_n=stp
 prc(cur_prc).move=stack(j).move
 end select
 if j>0 then
 prc(cur_prc).ini_x=stack(j).cur_x
 prc(cur_prc).ini_y=stack(j).cur_y
 grid_sub j
 select case stack(j).move
 case UP: stack(j).cur_y=stack(j).cur_y+1
 case DN: stack(j).cur_y=stack(j).cur_y-1
 case LT: stack(j).cur_x=stack(j).cur_x-1
 case RT: stack(j).cur_x=stack(j).cur_x+1
 end select
 grid_add j
 prc(cur_prc).fin_x=stack(j).cur_x
 prc(cur_prc).fin_y=stack(j).cur_y
end if
prc(cur_prc).t_cnt=t_cnt
prc(cur_prc).w_cnt=w_cnt
save n,cur_prc,"PRC"
end sub

sub zreset(k)
 if mfdsa(k).acode<>FAIL then
 CTRL$=ZHEAD$("WARNING!! RESET CANNOT BE REVERSED!!
 CONTINUE? Y-1 N-2 [ESC]","12"+Z_ESC$)
 if CTRL$="1" then
 CTRL$=ZHEAD$("Select Reset Type: D&L Input-1 *P*
 Output-2 [ESC]","12"+Z_ESC$)
 if CTRL$<>Z_ESC$ then
 ZCMD 100,idxB(k).fmfsa,"B",PASS
 ZCMD 200,"MFDSA00000","B",PASS
 load 100,k,"MFDSA"
 select case CTRL$
 case "1":
 mfdsa(k).acode=PASS
 mfdsa(k).zcode=FAIL
 mfdsa(k).t_dev=0
 mfdsa(k).t_lst=0
 mfdsa(k).t_prc=0
 mfdsa(k).t_stp=0
 mfdsa(k).c_dte=date$
 mfdsa(k).c_tme=time$
 case "2":
 mfdsa(k).acode=PASS
 mfdsa(k).zcode=FAIL
 mfdsa(k).t_dev=mfdsa(k).t_dev
 mfdsa(k).t_lst=mfdsa(k).t_lst
 mfdsa(k).t_prc=0
 mfdsa(k).t_stp=0
 mfdsa(k).c_dte=date$
 mfdsa(k).c_tme=time$
 end select
 for z0=1 to mfdsa(k).t_dev
 load 100,z0,"DEV"
 save 200,z0,"DEV"
 next z0
 for z0=1 to mfdsa(k).t_lst
 load 100,z0,"LST"
 save 200,z0,"LST"
 next z0
 save 200,k,"MFDSA"
 ZCMD 200","","FAIL
 ZCMD 100","","FAIL
 kill idxB(k).fmfsa
 name "MFDSA00000",idxB(k).fmfsa
 end if
 end if
 end if
end sub
APPENDIX C

MAGSTAT APPLICATION CODE

The complete MagStat program written in freeBASIC [112]; the application is divided into modules MAIN, TYPE, VECT, FILE, CALB, CALU, CALF, CALS, and CALCCA.

MAIN controls all functions and modules
command_break decodes the inputted line
command_parse executes the inputted line
command_ready obtains the inputted line

TYPE contains data type structure, variable, and function definitions

VECT contains functions that define and maintain the vector data structure and its functions
xVect initializes a vector
aVect adds two vectors
sVect subtracts two vectors
mVect multiplies a vector by a scalar
dVect divides a vector by a scalar
dProd the dot product of two vectors
xProd the cross product of two vectors
magRt returns the magnitude of a vector
angRt returns the angle of a vector
magSt sets the magnitude of a vector
nrmSt normalizes a vector

FILE contains the functions that define the file system’s input and output functions; used by the MAIN module
load_file_ema loads the array data file
load_file_sml loads the layer data file
out1d_r outputs "y v. x" plot, scalar input
out1d_v outputs "y v. x" plot, vector input
out2d_r outputs "surface" plot, scalar input
out2d_v outputs "surface" plot, vector input
read_data_r reads scalar data from file
read_data_v reads vector data from file
save_file_ema saves the array data file
save_file_sml saves the layer data file
write_data_r writes scalar data to file
write_data_v writes vector data to file
CALB contains the functions that calculate the magnetic field; used by the CALCCA and MAIN modules

- f_D calculates the denominator factor
- f_N calculates the numerator factor
- f_X calculates the magnetic field x-component
- f_Y calculates the magnetic field y-component
- f_Z calculates the magnetic field z-component
- B_{INT} integrates the magnetic field components
- B_{CAL} calculates the magnetic field
- f_B magnetic field calculator

CALU contains the functions that calculate the energy; used by the MAIN module

- U_{CAL} calculates the magnetic energy
- f_U magnetic energy calculator

CALF contains the functions that calculate the magnetic force; used by the CALCCA and MAIN modules

- F_{CAL} calculates the magnetic force
- f_F magnetic force calculator

CALS contains the functions that calculate the total force; used by the CALCCA and MAIN modules

- S_{CAL} calculates the total force
- f_S total force calculator

CALCCA contains the functions that calculate the exact CCA; used by the MAIN module

- BF_{CAL} calculates the magnetic field and force
- I_{rampD} decreases the element current
- I_{rampU} increases the element current
- I_{setup} initializes the element current
- swap_e sets up the array data
- swap_s sets up the layer data
- f_{CCA} CCA calculator
MAIN Module:

defint a-z
#define declarefunc declare function
#define declarevoid declare sub
#define func function
#define void sub
#define global dim shared
#define cvr cvd
#define mkr mkd
#define cvn cvi
#define mkn mki
#define real double
#define nmbr integer
#define char string

option base 1

#include "type.bi"
#include "vect.bi"
#include "file.bi"
#include "calB.bi"
#include "calU.bi"
#include "calF.bi"
#include "calS.bi"
#include "calCCA.bi"

global AX$, BX$(0 to 10)

cls
print "=================================="
print " *** MFDSA - MagStat ***
print " Build Ver. #3.0 (in freeBASIC)
print " Completed - 2010-10-18
print " Program by Rene David Rivero
print "==================================

print
print
do
 command_ready tp0$
 command_break tp0$, AX$, BX$()
 command_parse AX$, BX$(
 print
loop until AX$ = "Q"
void command_break(tp0$, AX$, BX$())
 tp0 = instr(tp0$, " ")
 if tp0 = 0 then tp0 = len(tp0$) + 1
 AX$ = trim$(mid$(tp0$, 1, tp0 - 1))
 tp0$ = trim$(mid$(tp0$, tp0 + 1))
 if tp0$ <> "" then
 BX$(0) = mkn(0)
 do
 BX$(0) = mkn(cvn(BX$(0)) + 1)
 tp0 = instr(tp0$, ",")
 if tp0 = 0 then tp0 = len(tp0$) + 1
 BX$(cvn(BX$(0))) = trim$(mid$(tp0$, 1, tp0 - 1))
 tp0$ = trim$(mid$(tp0$, tp0 + 1))
 loop until tp0$ = ""
 end if
end void

void command_parse(AX$, BX$())
 select case AX$
 case "NEW":
 erase ema, sml
 eMax = 0
 sMax = 0
 TOL = 10e-12
 sigma1 = 0.95
 sigma2 = 0.05
 omega0 = 0.50
 alpha0 = 1
 sr2 = 50
 case "LOADEMA":
 if cvn(BX$(0)) = 1 then load_file_ema BX$(1)
 case "SAVEEMA":
 if cvn(BX$(0)) = 1 then save_file_ema BX$(1)
 case "EMA":
 if cvn(BX$(0)) = 9 then
 ema(val(BX$(1))).R0 = nullV
 ema(val(BX$(1))).R1.x = val(BX$(2))
 ema(val(BX$(1))).R1.y = val(BX$(3))
 ema(val(BX$(1))).R1.z = val(BX$(4))
 ema(val(BX$(1))).L = val(BX$(5))
 ema(val(BX$(1))).N = val(BX$(6))
 ema(val(BX$(1))).LN = ema(val(BX$(1))).L /
 ema(val(BX$(1))).N
 ema(val(BX$(1))).I0 = 0
 ema(val(BX$(1))).I1 = val(BX$(7))
 ema(val(BX$(1))).Im = val(BX$(8))
 ema(val(BX$(1))).a = val(BX$(9))
 magSt ema(val(BX$(1))).R0
 magSt ema(val(BX$(1))).R1
 end if
case "EMA?":
 if cvn(BX$(0)) = 2 then
 print "EMA R1.x R1.y R1.z L N I1 Im a "
 print "--"
 for Z = val(BX$(1)) to val(BX$(2))
 print using "### +#.##^^^^ +#.##^^^^ +#.##^^^^ #.##^^^^
 #.##^^^^ #.##^^^^ #.##^^^^"; Z; ema(Z).R1.x;
 ema(Z).R1.y; ema(Z).R1.z; ema(Z).L; ema(Z).N; ema(Z).I1;
 ema(Z).Im; ema(Z).a
 next Z
 print "--"
 end if

case "EMAX":
 if cvn(BX$(0)) = 1 then eMAX = val(BX$(1))

case "EBSU":
 if cvn(BX$(0)) = 1 then eBSU = val(BX$(1))

case "LOADSML":
 if cvn(BX$(0)) = 1 then load_file_sml BX$(1)

case "SAVESML":
 if cvn(BX$(0)) = 1 then save_file_sml BX$(1)

case "SML":
 if cvn(BX$(0)) = 10 then
 sml(val(BX$(1))).R0 = nullV
 sml(val(BX$(1))).R1.x = val(BX$(2))
 sml(val(BX$(1))).R1.y = val(BX$(3))
 sml(val(BX$(1))).R1.z = val(BX$(4))
 sml(val(BX$(1))).M.x = val(BX$(5))
 sml(val(BX$(1))).M.y = val(BX$(6))
 sml(val(BX$(1))).M.z = val(BX$(7))
 sml(val(BX$(1))).N = val(BX$(8))
 sml(val(BX$(1))).MN = dVect(sml(val(BX$(1))).M,
 sml(val(BX$(1))).N)
 sml(val(BX$(1))).W = val(BX$(9))
 sml(val(BX$(1))).x0 = 0
 sml(val(BX$(1))).x1 = val(BX$(10))
 magSt sml(val(BX$(1))).R0
 magSt sml(val(BX$(1))).R1
 magSt sml(val(BX$(1))).M
 magSt sml(val(BX$(1))).MN
 end if

case "SML?":
 if cvn(BX$(0)) = 2 then
 print "SML R1.x R1.y R1.z M.x M.y M.z N W x1 "
 print "--"
 end if
for Z = val(BX$(1)) to val(BX$(2))
 print using "### +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^ +.##^^^"; Z; sml(Z).R1.x; sml(Z).R1.y; sml(Z).R1.z; sml(Z).M.x; sml(Z).M.y; sml(Z).M.z; sml(Z).N; sml(Z).W; sml(Z).x1
next Z
print "--
---------------------------"
end if
case "SMA$:X":
 if cvn(BX$(0)) = 1 then sMAX = val(BX$(1))
case "SMA$:X?":
 print sMAX
case "SBS$:U":
 if cvn(BX$(0)) = 1 then sBSU = val(BX$(1))
case "SBS$:U?":
 print sBSU
case "TOL":
 if cvn(BX$(0)) = 1 then TOL = val(BX$(1))
case "TOL?":
 print TOL
case "SR2":
 if cvn(BX$(0)) = 1 then sr2 = val(BX$(1))
case "SR2?":
 print sr2
case "SIGMA$:1":
 if cvn(BX$(0)) = 1 then sigma1 = val(BX$(1))
case "SIGMA$:1?":
 print sigma1
case "SIGMA$:2":
 if cvn(BX$(0)) = 1 then sigma2 = val(BX$(1))
case "SIGMA$:2?":
 print sigma2
case "OMEGA$:0":
 if cvn(BX$(0)) = 1 then omega0 = val(BX$(1))
case "OMEGA$:0?":
 print omega0
case "ALPHA$:0":
 if cvn(BX$(0)) = 1 then alpha0 = val(BX$(1))
case "ALPHA$:0?":
 print alpha0
case "B":
 if cvn(BX$(0)) = 2 then f_B BX$(1), sml(val(BX$(2)))
case "U":
 if cvn(BX$(0)) = 3 then f_U BX$(1), BX$(2), sml(val(BX$(3)))
case "P":
 if cvn(BX$(0)) = 3 then f_P BX$(1), BX$(2), sml(val(BX$(3)))
case "S":
 if cvn(BX$(0)) = 3 then f_S BX$(1), BX$(2), sml(val(BX$(3)))
case "CCA":
 if cvn(BX$(0)) = 2 then f_CCA BX$(1), sml(val(BX$(2)))
case "1DR":
 if cvn(BX$(0)) = 6 then out1d_r BX$(1), BX$(2), BX$(3), val(BX$(4)), val(BX$(5)), sml(val(BX$(6)))
case "1DV":
 if cvn(BX$(0)) = 7 then out1d_v BX$(1), BX$(2), BX$(3),
 BX$(4), val(BX$(5)), val(BX$(6)), sml(val(BX$(7)))
case "2DR":
 if cvn(BX$(0)) = 5 then out2d_r BX$(1), BX$(2), BX$(3),
 val(BX$(4)), sml(val(BX$(5)))
case "2DV":
 if cvn(BX$(0)) = 6 then out2d_v BX$(1), BX$(2), BX$(3),
 BX$(4), val(BX$(5)), sml(val(BX$(6)))
case "FEED":
 if cvn(BX$(0)) = 1 then
 open BX$(1) for input as #100
 do
 line input #100, tp0$
 command_break tp0$, AX$, BX$()
 if AX$ <> "FEED" then command_parse AX$, BX$()
 loop until AX$ = "END" or EOF(100)
 close #100
 end if
 case "END":
 case "Q":
 end select
 end void

void command_ready(tp0$)
 print "Ready : ";
 line input tp0$
 tp0$ = ucase$(trim$(tp0$))
end void
TYPE Module:

type ema_space
 R0 as vect
 R1 as vect
 L as real
 N as real
 LN as real
 I0 as real
 I1 as real
 Im as real
 a as real
end type

global ema(32767) as ema_space, eMAX as nmbr, eBSU as real

type sml_space
 R0 as vect
 R1 as vect
 M as vect
 N as real
 MN as vect
 W as real
 x0 as real
 x1 as real
end type

global sml(32767) as sml_space, sMAX as nmbr, sBSU as real

global PI as real, u0 as real, TOL as real, sigma1 as real, sigma2 as real, omega0 as real, alpha0 as real, sr2 as nmbr

PI = 3.14159
u0 = 1.25663 * 10^(-6)
TOL = 10e-12
sigma1 = 0.95
sigma2 = 0.05
omega0 = 0.50
alpha0 = 1
sr2 = 50

decclare void load_file_ema(...)
decclare void load_file_sml(...)
decclare void out1d_r(...)
decclare void out1d_v(...)
decclare void out2d_r(...)
decclare void out2d_v(...)
decclare void read_data_r(...)
decclare void read_data_v(...)
decclare void save_file_ema(...)
decclare void save_file_sml(...)
decclare void write_data_r(...)
decclare void write_data_v(...)
declarefunc f_D(...) as real
declarefunc f_N(...) as real
declarefunc f_X(...) as real
declarefunc f_Y(...) as real
declarefunc f_Z(...) as real
declarefunc B_INT(...) as vect
declarefunc B_CAL(...) as vect
declarevoid f_B(...)

declarefunc U_CAL(...) as real
declarevoid f_U(...)

declarefunc F_CAL(...) as vect
declarevoid f_F(...)

declarefunc S_CAL(...) as vect
declarevoid f_S(...)

declarefunc BF_CAL(...) as vect
declarevoid I_rampD(...)
declarevoid I_rampU(...)
declarevoid I_setup(...)
declarevoid swap_e(...)
declarevoid swap_s(...)
declarevoid f_CCA(...)

declarevoid command_break(...)
declarevoid command_parse(...)
declarevoid command_ready(...)
VECT Module:

type vect
 x as real
 y as real
 z as real
 m as real
end type

declarefunc xVect(...) as vect
declarefunc aVect(...) as vect
declarefunc sVect(...) as vect
declarefunc mVect(...) as vect
declarefunc dVect(...) as vect
declarefunc dProd(...) as real
declarefunc xProd(...) as vect
declarefunc magRt(...) as real
declarefunc angRt(...) as vect
declarevoid magSt(...)
declarevoid nrmSt(...)

global unitI as vect, unitJ as vect, unitK as vect, nullV as vect
unitI = xVect(1, 0, 0)
unitJ = xVect(0, 1, 0)
unitK = xVect(0, 0, 1)
nullV = xVect(0, 0, 0)

global lengR as nmbr, lengN as nmbr, lengV as nmbr
lengR = len(real)
lengN = len(nmbr)
lengV = len(vect)

func xVect(x as real, y as real, z as real) as vect
 redim tp0 as vect
 tp0.x = x
 tp0.y = y
 tp0.z = z
 magSt tp0
 return tp0
end func

func aVect(A as vect, B as vect) as vect
 redim tp0 as vect
 tp0.x = A.x + B.x
 tp0.y = A.y + B.y
 tp0.z = A.z + B.z
 magSt tp0
 return tp0
end func
func sVect(A as vect, B as vect) as vect
 redim tp0 as vect
 tp0.x = A.x - B.x
 tp0.y = A.y - B.y
 tp0.z = A.z - B.z
 magSt tp0
 return tp0
end func

func mVect(A as vect, B as real) as vect
 redim tp0 as vect
 tp0.x = A.x * B
 tp0.y = A.y * B
 tp0.z = A.z * B
 magSt tp0
 return tp0
end func

func dVect(A as vect, B as real) as vect
 redim tp0 as vect
 tp0.x = A.x / B
 tp0.y = A.y / B
 tp0.z = A.z / B
 magSt tp0
 return tp0
end func

func dProd(A as vect, B as vect) as real
 redim tp0 as real
 tp0 = A.x * B.x + A.y * B.y + A.z * B.z
 return tp0
end func

func xProd(A as vect, B as vect) as vect
 redim tp0 as vect
 tp0.x = A.y * B.z - A.z * B.y
 tp0.y = A.z * B.x - A.x * B.z
 tp0.z = A.x * B.y - A.y * B.x
 magSt tp0
 return tp0
end func

func magRt(A as vect) as real
 return dProd(A, A) ^ (1/2)
end func

func angRt(A as vect) as vect
 return xVect(atn(A.y / A.x), atn(A.z / A.y), atn(A.x / A.z))
end func

void magSt(A as vect)
 A.m = dProd(A, A) ^ (1/2)
end void

void nrmSt(A as vect)
 A = dVect(A, magRt(A))
end void
FILE Module:

```c
void load_file_ema(file$)
    open file$ for input as #1
    input #1, eMAX
    input #1, eBSU
    for Z = 1 to eMAX
        input #1, ema(Z).R1.x, ema(Z).R1.y, ema(Z).R1.z, ema(Z).L, 
        ema(Z).N, ema(Z).I1, ema(Z).Im, ema(Z).a 
        ema(Z).R0 = nullV 
        ema(Z).LN = ema(Z).L / ema(Z).N 
        ema(Z).I0 = 0 
        magSt ema(Z).R0 
        magSt ema(Z).R1 
    next Z
    close #1
end void

void load_file_sml(file$)
    open file$ for input as #1
    input #1, sMAX
    input #1, sBSU
    for Z = 1 to sMAX
        input #1, sml(Z).R1.x, sml(Z).R1.y, sml(Z).R1.z, sml(Z).M.x, 
        sml(Z).M.y, sml(Z).M.z, sml(Z).N, sml(Z).W, sml(Z).x1 
        sml(Z).R0 = nullV 
        sml(Z).x0 = 0 
        magSt sml(Z).R0 
        magSt sml(Z).R1 
        magSt sml(Z).M 
        magSt sml(Z).MN 
    next Z
    close #1
end void

void out1d_r(fileI$, fileO$, l$, arg1 as nmbr, arg2 as nmbr, s as sml_space)
    redim R as real 
    open fileI$ for binary as #1 
    open fileO$ for output as #2 
    select case l$ 
        case "X":
            for i = 0 to s.N - 1 
                read_data_r R, 1, s.N, i, arg1, arg2 
                print #2, i, R 
            next i 
        case "Y":
            for j = 0 to s.N - 1 
                read_data_r R, 1, s.N, arg1, j, arg2 
                print #2, j, R 
            next j 
    end select 
end void
```
case "Z":
 for k = 0 to s.N - 1
 read_data_r R, 1, s.N, arg1, arg2, k
 print #2, k, R
 next k
end select
close #2
close #1
end void

void out1d_v(fileI$, fileO$, l$, mode$, arg1 as nmbr, arg2 as nmbr, s as sml_space)
 redim V as vect
 open fileI$ for binary as #1
 open fileO$ for output as #2
 select case l$
 case "X":
 for i = 0 to s.N - 1
 read_data_v V, 1, s.N, i, arg1, arg2
 select case mode$
 case "X": print #2, i, V.x
 case "Y": print #2, i, V.y
 case "Z": print #2, i, V.z
 case "M": print #2, i, V.m
 end select
 next i
 case "Y":
 for j = 0 to s.N - 1
 read_data_v V, 1, s.N, arg1, j, arg2
 select case mode$
 case "X": print #2, j, V.x
 case "Y": print #2, j, V.y
 case "Z": print #2, j, V.z
 case "M": print #2, j, V.m
 end select
 next j
 case "Z":
 for k = 0 to s.N - 1
 read_data_v V, 1, s.N, arg1, arg2, k
 select case mode$
 case "X": print #2, k, V.x
 case "Y": print #2, k, V.y
 case "Z": print #2, k, V.z
 case "M": print #2, k, V.m
 end select
 next k
 end select
 close #2
close #1
end void
void out2d_r(fileI$, fileO$, p$, arg as nmbr, s as sml_space)
 redim R as real
 open fileI$ for binary as #1
 open fileO$ for output as #2
 select case p$
 case "XY":
 for i = 0 to s.N - 1
 for j = 0 to s.N - 1
 read_data_r R, 1, s.N, i, j, arg
 print #2, R,
 next j
 print #2, ""
 next i
 case "XZ":
 for i = 0 to s.N - 1
 for k = 0 to s.N - 1
 read_data_r R, 1, s.N, i, arg, k
 print #2, R,
 next k
 print #2, ""
 next i
 case "YZ":
 for j = 0 to s.N - 1
 for k = 0 to s.N - 1
 read_data_r R, 1, s.N, arg, j, k
 print #2, R,
 next k
 print #2, ""
 next j
 end select
 close #2
 close #1
end void

void out2d_v(fileI$, fileO$, p$, mode$, arg as nmbr, s as sml_space)
 redim V as vect
 open fileI$ for binary as #1
 open fileO$ for output as #2
 select case p$
 case "XY":
 for i = 0 to s.N - 1
 for j = 0 to s.N - 1
 read_data_v V, 1, s.N, i, j, arg
 select case mode$
 case "X": print #2, V.x,
 case "Y": print #2, V.y,
 case "Z": print #2, V.z,
 case "M": print #2, V.m,
 end select
 next j
 print #2, ""
 next i
 end select
 close #2
 close #1
end void
case "XZ":
 for i = 0 to s.N - 1
 for k = 0 to s.N - 1
 read_data_v V, 1, s.N, i, arg, k
 select case mode$
 case "X": print #2, V.x,
 case "Y": print #2, V.y,
 case "Z": print #2, V.z,
 case "M": print #2, V.m,
 end select
 next k
 print #2, ""
next i

case "YZ":
 for j = 0 to s.N - 1
 for k = 0 to s.N - 1
 read_data_v V, 1, s.N, arg, j, k
 select case mode$
 case "X": print #2, V.x,
 case "Y": print #2, V.y,
 case "Z": print #2, V.z,
 case "M": print #2, V.m,
 end select
 next k
 print #2, ""
next j
end select
close #2
close #1
end void

void read_data_r(R as real, n as nmbr, size as real, i as nmbr, j as nmbr, k as nmbr)
 seek #n, 1 + lengN + i * lengR * (size ^ 0) + j * lengR * (size ^ 1) + k * lengR * (size ^ 2)
 R = cvr(input$(lengR, #n))
end void

void read_data_v(V as vect, n as nmbr, size as real, i as nmbr, j as nmbr, k as nmbr)
 seek #n, 1 + lengN + i * lengV * (size ^ 0) + j * lengV * (size ^ 1) + k * lengV * (size ^ 2)
 V.x = cvr(input$(lengR, #n))
 V.y = cvr(input$(lengR, #n))
 V.z = cvr(input$(lengR, #n))
 V.m = cvr(input$(lengR, #n))
end void
void save_file_ema(file$)
open file$ for output as #1
print #1, eMAX
print #1, eBSU
for Z = 1 to eMAX
 print #1, ema(Z).R1.x, ema(Z).R1.y, ema(Z).R1.z, ema(Z).L,
 ema(Z).N, ema(Z).I1, ema(Z).Im, ema(Z).a
next Z
close #1
end void

void save_file_sml(file$)
open file$ for output as #1
print #1, sMAX
print #1, sBSU
for Z = 1 to sMAX
 print #1, sml(Z).R1.x, sml(Z).R1.y, sml(Z).R1.z, sml(Z).M.x,
 sml(Z).M.y, sml(Z).M.z, sml(Z).N, sml(Z).W, sml(Z).x1
next Z
close #1
end void

void write_data_r(R as real, n as nmbr, size as real, i as nmbr,
j as nmbr, k as nmbr)
 seek #n, 1 + lengN + i * lengR * (size ^ 0) + j * lengR * (size
 ^ 1) + k * lengR * (size ^ 2)
 tp0$ = mkr(R): put #n, , tp0$
end void

void write_data_v(V as vect, n as nmbr, size as real, i as nmbr,
j as nmbr, k as nmbr)
 seek #n, 1 + lengN + i * lengV * (size ^ 0) + j * lengV * (size
 ^ 1) + k * lengV * (size ^ 2)
 tp0$ = mkr(V.x): put #n, , tp0$
 tp0$ = mkr(V.y): put #n, , tp0$
 tp0$ = mkr(V.z): put #n, , tp0$
 tp0$ = mkr(V.m): put #n, , tp0$
end void
CALB Module:

func f_D(V as vect, a as real, b as real, e as ema_space, s as sml_space) as real
redim R as real
R = ((e.a ^ (2)) + (V.m ^ (2)) + ((e.LN * b) ^ (2)) - 2 * (e.a * V.x * cos(a) + e.a * V.y * sin(a) + e.LN * V.z * b)) ^ (3/2)
return R
end func

func f_N(V as vect, a as real, b as real, e as ema_space, s as sml_space) as real
redim R as real
R = u0 * (1 + s.x1) * e.I1 * e.a / 4 / PI
return R
end func

func f_X(V as vect, a as real, b as real, e as ema_space, s as sml_space) as real
redim R as real
R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (V.z - e.LN * b) * cos(a)
return R
end func

func f_Y(V as vect, a as real, b as real, e as ema_space, s as sml_space) as real
redim R as real
R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (V.z - e.LN * b) * sin(a)
return R
end func

func f_Z(V as vect, a as real, b as real, e as ema_space, s as sml_space) as real
redim R as real
R = f_N(V, a, b, e, s) / f_D(V, a, b, e, s) * (e.a - V.x * cos(a) - V.y * sin(a))
return R
end func

func B_INT(R as vect, e as ema_space, s as sml_space) as vect
redim V as vect, g as real, h as real
g = 2 * PI / sr2
h = 1 / sr2
V = xVect(0, 0, 0)
V.x = f_X(R, 0, 0, e, s) + f_X(R, 2 * PI, 0, e, s) + f_X(R, 0, e.N, e, s) + f_X(R, 2 * PI, e.N, e, s)
for j = 1 to sr2 / 2 - 1
V.x = V.x + 2 * (f_X(R, (2 * j) * g, 0, e, s) + f_X(R, (2 * j) * g, e.N, e, s))
next j
for k = 1 to sr2 * e.N / 2 - 1
V.x = V.x + 2 * (f_X(R, 0, (2 * k) * h, e, s) + f_X(R, 2 * PI, (2 * k) * h, e, s))
next k
for j = 1 to sr2 / 2
 V.x = V.x + 4 * (f_X(R, (2 * j - 1) * g, 0, e, s) + f_X(R, (2 * j - 1) * g, e.N, e, s))
next j
for k = 1 to sr2 * e.N / 2
 V.x = V.x + 4 * (f_X(R, 0, (2 * k - 1) * h, e, s) + f_X(R, 2 * PI, (2 * k - 1) * h, e, s))
next k
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2 - 1
 V.x = V.x + 4 * f_X(R, (2 * j) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2
 V.x = V.x + 8 * f_X(R, (2 * j - 1) * g, (2 * k - 1) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2 - 1
 V.x = V.x + 8 * f_X(R, (2 * j) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2 - 1
 V.x = V.x + 16 * f_X(R, (2 * j - 1) * g, (2 * k - 1) * h, e, s)
 next k
next j
V.x = g * h / 9 * V.x
if abs(V.x) <= TOL then V.x = 0
V.y = f_Y(R, 0, 0, e, s) + f_Y(R, 2 * PI, 0, e, s) + f_Y(R, 0, e.N, e, s) + f_Y(R, 2 * PI, e.N, e, s)
for j = 1 to sr2 / 2 - 1
 V.y = V.y + 2 * (f_Y(R, (2 * j) * g, 0, e, s) + f_Y(R, (2 * j) * g, e.N, e, s))
next j
for k = 1 to sr2 * e.N / 2 - 1
 V.y = V.y + 2 * (f_Y(R, 0, (2 * k) * h, e, s) + f_Y(R, 2 * PI, (2 * k) * h, e, s))
next k
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2
 V.y = V.y + 4 * (f_Y(R, (2 * j - 1) * g, 0, e, s) + f_Y(R, (2 * j - 1) * g, e.N, e, s))
 next k
next j
for k = 1 to sr2 * e.N / 2
 V.y = V.y + 4 * (f_Y(R, 0, (2 * k - 1) * h, e, s) + f_Y(R, 2 * PI, (2 * k - 1) * h, e, s))
next k
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2 - 1
 V.y = V.y + 4 * f_Y(R, (2 * j) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2
 V.y = V.y + 8 * f_y(R, (2 * j) * g, (2 * k - 1) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2 - 1
 V.y = V.y + 8 * f_y(R, (2 * j - 1) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2
 V.y = V.y + 16 * f_y(R, (2 * j - 1) * g, (2 * k - 1) * h, e, s)
 next k
next j
V.y = g * h / 9 * V.y
if abs(V.y) <= TOL then V.y = 0
V.z = f_z(R, 0, 0, e, s) + f_z(R, 2 * PI, 0, e, s) + f_z(R, 0, e.N, e, s) + f_z(R, 2 * PI, e.N, e, s)
for j = 1 to sr2 / 2 - 1
 V.z = V.z + 2 * (f_z(R, (2 * j) * g, 0, e, s) + f_z(R, (2 * j) * g, e.N, e, s))
next j
for k = 1 to sr2 * e.N / 2 - 1
 V.z = V.z + 2 * (f_z(R, 0, (2 * k) * h, e, s) + f_z(R, 2 * PI, (2 * k) * h, e, s))
next k
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2
 V.z = V.z + 4 * (f_z(R, (2 * j - 1) * g, 0, e, s) + f_z(R, (2 * j - 1) * g, e.N, e, s))
 next k
next j
for k = 1 to sr2 * e.N / 2
 V.z = V.z + 4 * (f_z(R, 0, (2 * k - 1) * h, e, s) + f_z(R, 2 * PI, (2 * k - 1) * h, e, s))
next k
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2 - 1
 V.z = V.z + 4 * f_z(R, (2 * j) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2 - 1
 for k = 1 to sr2 * e.N / 2
 V.z = V.z + 8 * f_z(R, (2 * j) * g, (2 * k - 1) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2 - 1
 V.z = V.z + 8 * f_z(R, (2 * j - 1) * g, (2 * k) * h, e, s)
 next k
next j
for j = 1 to sr2 / 2
 for k = 1 to sr2 * e.N / 2
 V.z = V.z + 16 * f_z(R, (2 * j - 1) * g, (2 * k - 1) * h, e, s)
 next k
next j
V.z = g * h / 9 * V.z
if abs(V.z) <= TOL then V.z = 0
magSt V
return V
end func

func B_CAL(R as vect, s as sml_space) as vect
redim V as vect
V = xVect(0, 0, 0)
for Z = 1 to eMAX
 V = aVect(V, B_INT(sVect(R, ema(Z).R1), ema(Z), s))
next Z
magSt V
return V
end func

void f_B(file$, s as sml_space)
redim V as vect
open file$ for binary as #1
seek #1, 1: tp$ = mkn(s.N): put #1, , tp$
for i = 0 to s.N - 1
 for j = 0 to s.N - 1
 for k = 0 to s.N - 1
 V = xVect(0, 0, 0)
 V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)
 V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)
 V.z = (s.R1.z - (s.M.z / 1)) + s.MN.z * (k + 0.5)
 magSt V
 write_data_v B_CAL(V, s), 1, s.N, i, j, k
 next k
 next j
next i
close #1
end void
CALU Module:

```
func U_CAL(V as vect, s as sml_space) as real
    redim R as real
    R = -s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.y * s.MN.z * V.m * V.m
    return R
end func

void f_U(fileI$, fileO$, s as sml_space)
    redim V as vect
    open fileI$ for binary as #1
    open fileO$ for binary as #2
    seek #2, 1: tp$ = mkn(s.N): put #2, , tp$
    for i = 0 to s.N - 1
        for j = 0 to s.N - 1
            for k = 0 to s.N - 1
                read_data_v V, 1, s.N, i, j, k
                write_data_r U_CAL(V, s), 2, s.N, i, j, k
            next k
        next j
    next i
    close #2
    close #1
end void
```
CALK Module:

```plaintext
func F_CAL(R as vect, A as vect, B as vect, C as vect, s as sml_space) as vect
  redim V as vect
  V = xVect(0, 0, 0)
  V.x = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.y * s.MN.z * (R.x * (R.x - A.x) + R.y * (R.y - A.y) + R.z * (R.z - A.z))
  if abs(V.x) <= TOL then V.x = 0
  V.y = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.z * (R.x * (R.x - B.x) + R.y * (R.y - B.y) + R.z * (R.z - B.z))
  if abs(V.y) <= TOL then V.y = 0
  V.z = 2 * s.x1 / (u0 * (1 + s.x1)) * s.MN.x * s.MN.y * (R.x * (R.x - C.x) + R.y * (R.y - C.y) + R.z * (R.z - C.z))
  if abs(V.z) <= TOL then V.z = 0
  magSt V
  return V
end func

void f_F(fileI$, fileO$, s as sml_space)
  redim V as vect, A as vect, B as vect, C as vect
  open fileI$ for binary as #1
  open fileO$ for binary as #2
  seek #2, 1: tp$ = mkn(s.N): put #2, , tp$
  for i = 0 to s.N - 1
    for j = 0 to s.N - 1
      for k = 0 to s.N - 1
        read_data_v V, 1, s.N, i, j, k
        if i = 0 then read_data_v A, 1, s.N, s.N - 2, j, k else
          read_data_v A, 1, s.N, i - 1, j, k
        if j = 0 then read_data_v B, 1, s.N, i, s.N - 2, k else
          read_data_v B, 1, s.N, i, j - 1, k
        if k = 0 then read_data_v C, 1, s.N, i, j, 0 else
          read_data_v C, 1, s.N, i, j, k - 1
        write_data_v F_CAL(V, A, B, C, s), 2, s.N, i, j, k
      next k
    next j
  next i
  close #2
  close #1
end void
```
CALS Module:

```plaintext
func S_CAL(n as nmbr, s as sml_space) as vect
    redim V as vect, R as vect
    V = xVect(0, 0, 0)
    for i = 0 to s.N - 1
        for j = 0 to s.N - 1
            for k = 0 to s.N - 1
                read_data_v R, n, s.N, i, j, k
                V.x = V.x + R.x
                if abs(V.x) <= TOL then V.x = 0
                V.y = V.y + R.y
                if abs(V.y) <= TOL then V.y = 0
                V.z = V.z + R.z
                if abs(V.z) <= TOL then V.z = 0
            next k
        next j
    next i
    magSt V
    return V
end func

void f_S(fileI$, fileO$, s as sml_space)
    redim V as vect
    open fileI$ for binary as #1
    open fileO$ for output as #2
    V = S_CAL(1, s)
    print #2, "** Net Force Calculator **"
    print #2, "--------------------------"
    print #2, "Fx -> "; V.x
    print #2, "Fy -> "; V.y
    print #2, "Fz -> "; V.z
    print #2, "|F| -> "; V.m
    close #2
    close #1
end sub
```
CALCCA Module:

```plaintext
func BF_CAL(n1 as nmbr, n2 as nmbr, s as sml_space) as vect
    redim V as vect, A as vect, B as vect, C as vect
    seek #n1, 1: tp$ = mkn(s.N): put #n1, , tp$
    for i = 0 to s.N - 1
        for j = 0 to s.N - 1
            for k = 0 to s.N - 1
                V = xVect(0, 0, 0)
                V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)
                V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)
                V.z = (s.R1.z - (s.M.z / 2)) + s.MN.z * (k + 0.5)
                magSt V
                write_data_v B_CAL(V, s), n1, s.N, i, j, k
            next k
        next j
    next i
    seek #n2, 1: tp$ = mkn(s.N): put #n2, , tp$
    for i = 0 to s.N - 1
        for j = 0 to s.N - 1
            for k = 0 to s.N - 1
                read_data_v V, n1, s.N, i, j, k
                if i = 0 then read_data_v A, 1, s.N, s.N - 2, j, k else
                    read_data_v A, 1, s.N, i - 1, j, k
                if j = 0 then read_data_v B, 1, s.N, i, s.N - 2, k else
                    read_data_v B, 1, s.N, i, j - 1, k
                if k = 0 then read_data_v C, 1, s.N, i, j, 0 else
                    read_data_v C, 1, s.N, i, j, k - 1
                write_data_v F_CAL(V, A, B, C, s), n2, s.N, i, j, k
            next k
        next j
    next i
    V = S_CAL(n2, s)
    return V
end func

void I_rampD(dlt as nmbr, s as sml_space)
    for Z = 1 to eMAX
        if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or
            (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then
            ema(Z).I1 = ema(Z).I1 * omega0
        else
            ema(Z).I1 = 0
        end if
    next Z
end void
```
void I_rampU(dlt as nmbr, s as sml_space)
 for Z = 1 to eMAX
 if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or
 (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then
 ema(Z).I1 = ema(Z).I1 / omega0
 else
 ema(Z).I1 = 0
 end if
 next Z
end void

void I_setup(dlt as nmbr, s as sml_space)
 for Z = 1 to eMAX
 if (abs(ema(Z).R1.x - s.R1.x) / eBSU <= dlt) or
 (abs(ema(Z).R1.y - s.R1.y) / eBSU <= dlt) then
 ema(Z).I1 = ema(Z).Im * sigma1
 else
 ema(Z).I1 = 0
 end if
 next Z
end void

void swap_e()
 for Z = 1 to eMAX
 swap ema(Z).I0, ema(Z).I1
 next Z
end void

void swap_s(s as sml_space)
 swap s.R0.x, s.R1.x
 swap s.R0.y, s.R1.y
 swap s.R0.z, s.R1.z
 swap s.R0.m, s.R1.m
end void

void f_CCA(file$, s as sml_space)
 redim V as vect, xMAX as real, yMAX as real, cnt as nmbr, dlt
 as nmbr, CCA as nmbr
 cnt = -1
 dlt = -1
 CCA = 0
 swap_e
 swap_s s
 open "CCA-B.txt" for binary as #1
 open "CCA-F.txt" for binary as #2
 open file$ for output as #3
 do
 dlt = dlt + 1
 I_setup dlt, s
 V = BF_CAL(1, 2, s)
 loop until (abs(V.z) >= s.W * alpha0 or dlt = 1000)
 I_setup dlt, s
 do
 cnt = cnt + 1
 I_rampD dlt, s
 V = BF_CAL(1, 2, s)
 loop until (abs(V.z) < s.W * alpha0 or cnt = 1000)
I_rampU dlt, s
sBSU = 0
for i = 0 to s.N - 1
 for j = 0 to s.N - 1
 for k = 0 to s.N - 1
 V = xVect(0, 0, 0)
 V.x = (s.R1.x - (s.M.x / 2)) + s.MN.x * (i + 0.5)
 V.y = (s.R1.y - (s.M.y / 2)) + s.MN.y * (j + 0.5)
 V.z = (s.R1.z - (s.M.z / 1)) + s.MN.z * (k + 0.5)
 magSt V
 V = B_CAL(V, s)
 if abs(V.m) > abs(sBSU) then sBSU = V.m
 next k
 next j
next i
swap s.x0, s.x1
i = -1; j = -1; k = 0
do
 i = i + 1
 V = xVect(0, 0, 0)
 V.x = (s.M.x / 2) + s.MN.x * (i + 0.5)
 V.y = 0
 V.z = -s.MN.z * 0.5
 magSt V
 V = B_CAL(V, s)
loop until (abs(V.m) < abs(sBSU) * sigma2)
xMAX = abs((s.M.x / 2) + s.MN.x * (i + 0.5))
do
 j = j + 1
 V = xVect(0, 0, 0)
 V.x = 0
 V.y = (s.M.y / 2) + s.MN.y * (j + 0.5)
 V.z = -s.MN.z * 0.5
 magSt V
 V = B_CAL(V, s)
loop until (abs(V.m) < abs(sBSU) * sigma2)
yMAX = abs((s.M.y / 2) + s.MN.y * (j + 0.5))
swap s.x0, s.x1
if xMAX > yMAX then sBSU = xMAX else sBSU = yMAX
dlt = sBSU / eBSU
if dlt / 2 = int(dlt / 2) then dlt = dlt + 1
CCA = 2 * dlt + 1
print #3, "** CCA Calculator **"
print #3, "----------------------"
print #3, "delta -> "; dlt
print #3, "CCA -> "; CCA
print #3, ";
print #3, "count -> "; cnt - 1
close #3
close #2
close #1
kill "CCA-B.txt"
kil "CCA-F.txt"
swap_e
swap_s s
end void
REFERENCES

19. A. Bavin, "Cluster Tool Sputtering for Compound Semiconductors",
http://www.electroiq.com/index/display/semiconductors-article-display/
107519/articles/solid-state-technology/volume-44/issue-7/features/
materials/cluster-tool-sputtering-for-compound-semiconductors.html; Internet;
accessed 1 December 2010.

Engineering, edited by Anis Husain and Mahmoud Fallahi (San Jose, CA: SPIE

22. "ELI Tech Group EPOCH Biosciences", http://www.nanogen.com; Internet; accessed
1 December 2010.

on Silicon: Initial Process and Technology Development" Master's thesis,
Massachusetts Institute of Technology, Cambridge, MA (2002).

24. C. G. Fonstad, "Magnetically-Assisted Statistical Assembly – A New Heterogeneous
Integration Technique", http://dspace.mit.edu/bitstream/handle/1721.1/3978/
AMMNS013.pdf

25. C. G. Fonstad, Heterogeneous Integration: Critical Reviews of Optical Engineering
edited by Elias Tone (Bellingham, WA: SPIE Optical Engineering Press) R76
(2000).

105 2 (2009).

31. M. B. Cohn, C. J. Kim, A. P. Pisano, IEEE International Conference on Solid-State

32. A. K. Verma, M. A. Hadley, H. J. Yeh, J. S. Smith, Electronic Components and

34. P. Sangjung, K. F. Bohringer, IEEE International Conference on Solid-State Sensors,

35. P. Sangjung, K. F. Bohringer, IEEE International Conference on Micro Electro

36. R. Baskaran, H. Ji Hao, C. Bowen, K. F. Bohringer, IEEE International Conference

111. US Patent 7,737,515.