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ABSTRACT

APTAMER-BASED NANO-SCALE DIELECTRIC SENSOR
FOR PROTEIN DETECTION

by
Teena James

The specific detection and precise quantification of protein molecules play an essential

role in basic discovery research as well as in clinical practice. In this research work, a

novel protein detection mechanism based on nanoscale dielectric sensor functionalized

with aptamer probes is developed. This work has been done in collaboration with

Rational Affinity Devices LLC. The use of aptamer based detection offers several

advantages over the traditional labor intensive antibody based immunosensing. In the

initial phase of the work, the binding affinities of rationally designed oligomers towards a

specific protein molecule (IgG) was studied and optimized under varying conditions of

ionic strength and pH using fluorescence based methods. Also, various immobilization

strategies for aptamer probes including agarose gel based biomimetic surfaces and self

assembled monolayers were studied. In the second phase of the sensor development, two

separate transduction mechanisms to produce a measurable signal from the immobilized

aptamer-protein binding events were analyzed. Initially, a piezoelectric sensing

mechanism utilizing the mass of the protein molecules was developed. Although found to

be sensitive, this mechanism suffered from viscous damping in liquid phase

measurements. Therefore, a novel nanoscale dielectric sensor was developed capable of

monitoring biomolecular recognition events in liquid phase with high sensitivity. The use

of this sensor for attaining highly sensitive label-free detection of alpha thrombin using

immobilized aptamer probes is demonstrated in this work.
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CHAPTER 1

INTRODUCTION

Understanding the signaling information from cells is of utmost importance in various

areas of medicine especially with regards to clinical diagnosis. This information is

primarily carried in the form of protein molecules; therefore, their study is fundamental to

understand the metabolism, life cycle, and inner working of cell. Due to this reason,

many clinical tests rely on the accurate detection and quantification of proteins, as they

are clear indicators of the physiological conditions of cell and body at large. Studies have

focused on the development of tools and analytical techniques to understand and study

these molecules in detail. Although standardized procedures have existed for detection of

proteins and for studying their conformational changes and dynamics, this area is

currently in a state of transition as the analytical technologies are undergoing rapid

change. In the case of clinical diagnosis, the proteins of interests are often found in

extreme low abundance and the traditional analytical methods are often limited in their

sensitivity. Current methods used clinically are of either low sensitivity, or time-

consuming and complicated, requires expensive instrumentation and additional labeling.

Exploring improved alternatives for immunosensing has therefore become an area of

great interest.
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1.1 Objective & Goals •

The advancement of medical research is highly dependent on the both advancements in

engineering technology as well as molecular research. In this work, such a combined

achievement is reported. This thesis describes the work done in the development of an

immunosensor coupled with the optimization of Tunable Affinity Ligands (TALs), the

patented product of Rational Affinity Devices LLC. In this work, a new electrochemical

sensing mechanism has been developed for protein recognition. In addition, studies

relating to configurational changes of aptamer molecules in relation to buffer condition

have also been performed. Along the course of this research, other experiments relating

to formation of biomimetic layer and piezoelectric sensing of proteins were also

performed.

1.2 Overview

In this thesis, a novel label-free immunosensor utilizing the specific advantages of the

aptamer based recognition system and improved sensitivity offered by the nanoscale

dielectric signal transduction mechanism is demonstrated.

Aptamer molecules, being more stable and having better shelf life were found to

be most suited for this application as compared to the conventional antibody based

sensing. These molecules were linked to the gold sensor surfaces through thiol covalent

linking. The strong affinity of these molecules for gold surfaces was exploited for coating

the gold electrodes. This coating procedure using of alkanethiol requires minimal

modification in the sensor, and therefore proved to be very compatible with the

microfabrication process sequence.
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In the first part of the sensor development, a sensing platform, using Quartz

Crystal Microbalance, which uses piezoelectric change for detecting protein molecule, is

presented. When an oscillating potential is applied to the QCM a mechanical oscillation

is produced in the disk due to its piezoelectric nature whose frequency of vibration is

sensitive to any mass changes. Although this technique is advantageous as a label free

sensing mechanism, the damping effect of liquid on the surface in the measurement posed

to be a major problem. For real time monitoring of binding events, a system capable of

giving a more sensitive signal in liquid environments was therefore necessary. This led to

the investigation of the dielectric biosensing platform.

The microfabricated capacitive sensors presented in the current work offers many

advantages which include small sample volumes, easy sensor array fabrication, better

multiplexing possibilities and portability in contrast to the macro-scale setups. The sensor

was found to be extremely sensitive to alkanethiol immobilization and to protein binding.

Alpha thrombin (test protein) sensing experiments were performed with sensors

functionalized with aptamers and the sensors showed almost 35% decrease in permittivity

for specific binding as compared to 4.32% and about 0.23% change observed for

nonspecific binding (the interaction between alpha thrombin aptamer and lysozyme and

scrambled aptamer and alpha thrombin).The sensor was capable of detecting alpha

thrombin at 0.05uM concentration at 0.5xSSC salt solution.

The work is organized as follows: Chapter 2 gives an overview of current

methods and techniques available for biosensing. The concept of label-free

immunosensing is introduced and a short review of the various label-free immunosensing

is presented. Chapter 3 gives an overview of the various recognition elements that can be
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used for protein recognition. The focus of this work, aptamers, are introduced in this

chapter, SELEX process for aptamer generation is briefly explained. A brief comparison

of aptamer recognition to antibody based recognition is also given. Investigation of salt

concentration and pH on aptamer-protein interactions is also given in this section. In

Chapter 4, a discussion of the immobilization strategies used in the development of the

sensor is presented along with the investigation on the formation of biomimetic layers. In

the first part of Chapter 5, the development of piezoelectric immunosensor is presented.

Due to its limitations, a new electrochemical sensing mechanism was developed and

tested. This is discussed in the second part of the Chapter 5. The experimental data is

summarized and recapitulated and future research plans are outlined in the last Chapter.



CHAPTER 2

LITERATURE REVIEW

2.1 Immunosensors

The fundamental concept that forms the basis of both analytical immunoassay in solution

and immunosensors on solid phase is the specificity of molecular recognition between an

antigen and an antibody. Monitoring the product formation that occurs due to this specific

reaction is the underlying principle behind these analytical methods. The principle of

immunoassay was first published by Yalow and Berson in 1959 [1]. Since then this field

has grown rapidly and clinical laboratories has greatly benefited from this technique. The

idea of immunosensor as a heterogeneous immunoassay system was conceived as a result

of an increased interest in the trace analysis for clinical sciences.

As science and technology progressed over the years, diagnostics have also been

subjected to continuous improvement. Currently, much research and development are put

into the development of personalized diagnostic tools that are highly sensitive and

capable of early detection of diseases. The idea of downsizing diagnostic tools was made

a reality by the engineering advances in surface and material science. Today, many

molecular based diagnostics are emerging that enable identification of susceptibility to

diseases long before the actual symptoms are manifested [2]. Protein expression of cells

can reveal a great amount of information which can be useful in innumerable ways for

medical purposes. Therefore, much research has been done in this area for developing

sensors capable of identifying specific protein molecules.

In this chapter the current state-of-the-art immunosensing technologies are

discussed, many of which have greatly benefited from the advances in the MEMS

5
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technology. Immunosensors can be broadly classified under two main headings; label-

based and label-free. In label-based (indirect) mechanisms, a signal generating label is

incorporated into the system to monitor the formation of the complex. In the case of

label-free (direct) detection, the sensors detects the formation of the immune complex by

monitoring the physiochemical changes that occur during the process. Label-free

technologies offer a number of distinct advantages over traditional label-based methods

as they are non-invasive and require minimal manipulation of reaction components. In

addition they do not suffer from potential assay artifacts such as compound auto

fluorescence or quenching as no fluorescent dye or label is involved. Another advantage

is that there is no requirement for target modification thus label-free technologies can be

used to investigate biological processes, such as certain enzymatic reactions and ion

channel gating, for which label-dependent assay formats are currently limited or

unavailable.

2.2 Principle of Biosensing

The concept of biosensing was born during the 1960s as a result of the phenomenal work

carried out by Updike and Hicks [3]. Since then, this field has undergone rapid

advancements. The primary driving factor for this rapid growth is due the fact that these

systems are envisioned to play significant role in medicine, food safety, homeland

security and environmental monitoring. Protein biosensors are defined as chemical

sensors with a recognition system utilizing a biochemical mechanism for detection of

protein analyte molecules. These sensors contain usually two basic components
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connected in series: a biochemical (molecular) recognition system (receptor) and a

physico-chemical transducer [4].

Figure 2.1 Schematic representation of a protein biosensor.

The bioreceptor layer translates information from the biochemical domain

(protein analyte concentrations) into a physio-chemical output signal. The degree of

selectivity towards the analyte is highly dependent on the specificity of this bioreceptor

layer. The transducer part of the biosensor serves to transfer this physio-chemical signal

from the bioreceptor layer, mostly to the electrical domain. Over the years, a number of

transducing mechanisms have been tried for various biosensing applications. Of these,

the most popular ones are optical (by fluorescence spectroscopy) and electrochemical

methods. The following section briefly describes the basic sensing principles used in the

various biosensing structures. Most of the biosensors are affinity-based, which uses a

biorecognition layer (probe molecules) immobilized on a transducer surface to bind to the

analyte molecules selectively. Microfabricated biosensors utilizing electrical, mechanical,

piezoelectric and acoustic signal transduction mechanisms have been developed over the

years.
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2.3 Optical Techniques

The modulation of the properties of light in response to the biochemical changes that

occurs within the system forms the basis of these techniques. Examples of such properties

include refractive index, absorbance, reflectance, scattering, interference, fluorescence,

polarization etc. In the case of certain type of sensors, the biomolecules themselves

carries their own signal. These are known as intrinsic sensors.

capture
antibodies

Figure 2.2 Schematic of label-based technique for immunosensing.

2.3.1 Fluorescence

Figure 2.2 shows the principle used in fluorescence detection. In this method, the probe

molecules (capture antibodies) are immobilized onto a solid surface. The sample

containing a heterogeneous mixture containing targets is then allowed to interact with this

surface. These bound targets (such as antigens) can either be detected by flourophores

which are directly attached or in two steps by first being tagged with a reagent which can

then be detected in a second step using a labeled affinity reagent as shown in the Figure.

Although this process is one of the most commonly used methods due to their high

sensitivity and selectivity, these techniques are complicated and time consuming.
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2.3.2 Chemiluminescence

Enzyme-linked immunosorbent assay (ELISA), is the most common example of this

category. In this method, the primary antibody is first immobilized on the solid support,

next the antigen (target) is captured on the primary antibody. In the next step, a secondary

antibody, linked to an enzyme is added to bind to the antigen. This is then followed by

the addition of a substrate which is converted to the detectable colored product by the

bound enzyme. As discussed earlier, this method also is complicated and time

consuming.

2.3.3 Surface Plasmon Resonance (SPR)

When gold- or silver-coated surfaces are exposed to monochromatic p-polarized light

above the critical angle of incidence, a sharp reduction (SPR minimum) in the amount of

reflected light is observed due to the resonant transfer of the energy from the incoming

light to surface plasmons generated at the metal/glass interfaces. The specific angle (or

wavelength) at which this occurs is extremely sensitive to the local optical properties of

the interface. Therefore, this method can be used to detect biomolecular complexes

formed at the interface due to biomolecular recognition events[5, 6]. The major challenge

with the use of SPR for biosensing is the difficulty to multiplex and hence, this

technology does not lend itself to be used in an array format for enhancing sensor

selectivity.

2.4 Electrochemical Immunosensing

In electrochemical immunosensing, the specificity of biorecognition process is used

together with the electrochemical technique for identification of specific protein
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molecules. This class of biosensors can be classified into two main categories namely,

amperometric and potentiometric. Amperometric immunosensors measures the current

flow generated by an electrochemical reaction at constant voltage[7, 8] whereas

potentiometric methods detects the change in the potential between a working electrode

and a reference electrode. Field effect sensors are examples of potentiometric sensors.

The main advantage of potentiometric sensors is its simplicity of operation and

possibility of miniaturization, but they suffer from problems of sensitivity and

nonspecific effects of binding or signaling (influences from other ions present in the

sample) [9]. In the case of amperometric immunosensors, however, better sensitivity is

obtained, but the current is generated by oxidation or reduction of redox species at the

electrode surface. Therefore, they require electrochemically active labels (directly or as

products of an enzymatic reaction) for the electrochemical reaction of the analyte at the

sensing electrode.

2.5 Acoustic Sensors

These sensors rely on the changes in the measurable acoustic wave properties of the

sensor for measuring biomolecular recognition events. The basic operations of these

sensors are based on the propagation of acoustic shear waves in the substrate of the

sensor. When biomolecular complexes are formed at the surface of the sensor due to

biomolecular recognition events, the phase and velocity of the propagating acoustic

waves are altered. A number of such acoustic wave devices have been developed and

demonstrated for biosensing applications. These sensors are configured in different ways

such as Transverse Shear Mode (TSM) devices (Quartz Crystal Microbalance), Surface
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Acoustic Wave (SAW) devices and Flexural Plate Wave (FPW) devices. These devices

consist of a piezoelectric substrate and converts electrical energy into mechanical energy

in the form of acoustic waves.

2.5.1 Quartz Crystal Microbalance

In Quartz crystal microbalance, the principle of the sensing mechanism is the resonant

frequency changes of an AT-cut quartz crystal which is directly proportional to the mass

loading on its surface. When the target-probe complex formation on surface due to the

molecular recognition layer, a mass change occurs, this is shown as a change in its

resonant frequency[10]. For a typical TSM device fabricated on quartz crystal (AT-cut)

operating at 10 MHz, a mass change of 1 ng produces a frequency change of 1 Hz.

2.5.2 Surface Acoustic Wave Devices

The SAW device is made of relatively thick plate of piezoelectric materials (Zinc oxide

or lithium niobate) with interdigitated electrodes to excite the oscillation of the surface

wave. The SAW is stimulated by applying an AC voltage to the fingers of the

interdigitated electrode on the piezoelectric crystal surface. Changes in the properties of

the piezoelectric crystal surface due to biomolecular interaction affect the propagation of

these surface acoustic waves.

2.6 Surface Stress Biosensor

The most common example of surface stress biosensors are microcantilevers. The general

idea behind a micro cantilever biosensor is that biological stimuli can affect mechanical

characteristics of the structure in such a way that the resulting changes can be measured
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using electronic, optical or other means. Microfabricated cantilevers are shown to be

capable of measuring extremely small displacements and extremely small mechanical

forces[11]. These structures are coated with bioreceptor molecules and biorecognition

events takes place on the surface of these sensors[12]. They can operate in two modes-

static and dynamic. According to the mode of operation, the cantilever deflections upon

mass loading can be detected by optical methods, resonant frequency changes,

modulation of electric magnetic fields or by changes in thermal residual stress.

Microcantilevers are extremely sensitive to surface stress changes, can be easily

microfabricated, selectively functionalized and possibly implemented in large arrays for

biosensing applications[13]. However, they have limitations due to the bulky size of the

optical detection system, long term drift from non-specific adsorption on non-sensing

side, loss of signal due to severe bending of the cantilever, and limited dynamic range.

Micro membrane is another configuration of a surface stress biosensor[14].

Unlike microcantilevers, they use of low stiffness materials like polymers instead of

silicon based materials. This can solve the problem of sensitivity, but lack of suitable

polymers that are microfabrication compatible, chemically inert and mechanically stable

has made this solution infeasible till recent times.



CHAPTER 3

PROTEIN RECOGNITION SYSTEM

3.1 Receptor Elements

Receptor elements are major players in the development of any biosensing device. These

elements were initially isolated from the living system, but now many of them can be

synthesized in the laboratory. Receptor preparations for biosensing applications have

been a major area of study from 1980s onwards [9]. Antibodies represent a major class of

molecules that has been utilized as recognition elements for protein detection. This has

been the case as they are the most popular class of molecules that can be created to

almost any antigenic structure due to their high diversity at the binding region. For this

reason, they have also made substantial contributions towards the advancement of

diagnostic assays and have become indispensable in most diagnostic tests that are used

routinely in clinics today[15].

The development of the Systematic Evolution of Ligands by EXponential

enrichment (SELEX) process, however, made possible the isolation of oligonucleotide

sequences with the capacity to recognize virtually any class of target molecules with high

affinity and specificity [15]. These oligonucleotide sequences, referred to as "aptamers",

are beginning to emerge as a class of molecules that rival antibodies in both therapeutic

and diagnostic applications[15].

13
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3.2 Aptamer based Recognition

Aptamers are oligonucleotides, designed and engineered such that they have specific

binding sites to certain types of molecules. The aptamer molecules are isolated from

random nucleic acid libraries by "in-vitro selection and amplification technique"[16, 17]

(termed SELEX: systematic evolution of ligands by exponential enrichment). Aptamers,

although predominantly unstructured in solution, fold upon associating with their ligands

into molecular architectures in which the ligand becomes an intrinsic part of the nucleic

acid structure. The folding of these molecules to well-defined secondary and tertiary

structure due to their self annealing process results in a number of conformations .Thus

these molecules are considered to recognize the target molecules by shape or

conformation [18].

Figure 3.1 Molecular recognition of ligands by aptamers.

The recent studies on these molecules on their use as ligand binding molecules

have been shown useful for the detection of protein analytes [19-22], nucleic acids [23-

26] and even small molecular targets such as metal ions, dyes [27-29] etc. As discussed,
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the most commonly used diagnostic method for protein detection is the antibody based

immunoassay, and many studies have focused on the development of biosensor based on

this technique. As an alternative to antibodies, aptamers are being used for protein

detection as they are more specific and sensitive. Aptamers raised against specific targets

including cellular proteins can be linked to fluorescent labels and used as superior and

inexpensive substitutes for antibodies.

Table 3.1 Examples of Nucleic Acid Aptamers

Theophylline

Thrombin

Flavin mononucleotide

Adenosine monophosphate

Arginine

Citrulline

Tobramycin

Neomycin B

HIV-1 Rev peptide

HTLV-1 Rex peptide

MS2 coat protein

DNA aptamer

DNA aptamer

RNA aptamer

RNA & DNA aptamer

RNA & DNA aptamer

RNA aptamer

RNA aptamer

RNA aptamer

RNA aptamer

RNA aptamer

RNA aptamer

[30]

[31, 32]

[33]

[34, 35]

[20, '36]

[20]

[37]

[38]

[39]

[40]

[41]

3.2.1 Advantages of Aptamer Sensing

Aptamers are equal to monoclonal antibodies in binding affinities but they hold major

advantages that make them particularly attractive for biosensing. Aptamers are produced

in vitro, whereas antibodies are produced in vivo. This allows the productions of
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in vitro, whereas antibodies are produced in vivo. This allows the productions of

aptamers against toxic proteins or nonimmunogenic proteins. The binding affinity, or the

stability of the protein — ligand complex etc can be improved or modified by varying its

environments or design. It is also possible to attach functional groups to them, thus

allowing covalent or indirect immobilization on the substrate. In addition, aptamers are

usually synthesized in large bulk using chemical synthesis resulting in homogenous

qualities of aptamers, but in the case of antibodies, they vary from one organism to the

other, and thus it is not possible to observe such homogeneity. Finally, the simple

structure of the nucleic acids allows them to be more densely immobilized than

antibodies on biosensors. They have larger shelf life than antibodies as they are more

resistant to denaturation unlike antibodies which has to be handled very carefully.

Denaturation of aptamers does occur, but the process is reversible and hence it is possible

to regenerate them in short period of time. Another major advantage of aptamers

molecules is their small size (30 to 100 nucleotides) which enables higher immobilization

density resulting in better efficiency of biosensors. Biosensors which are based on

aptamers have been studied using a wide range of signal transduction approaches like

fluorescence [42, 43], quartz crystal microbalance[10, 44]etc.

3.2.2 The SELEX Method

This is the general process for aptamer generation. It is an iterative process of in vitro

selection and amplification, by which large libraries of oligonucleotides are screened. As

shown in Figure, the SELEX process starts with the synthesis of a random sequence of

oligonucleotides. Normally, the starting round contains around 10 15 individual sequences,

thus giving a high probability of selecting an aptamer specific for the target of interest.
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Each of these oligonucleotide sequences will have unique 3D structures due to their

specific sequences. In order to find aptamers to a given target molecule, the target protein

molecules are incubated together with the nucleic acids. Upon formation of the molecule-

target complex, separation is done by filtration or other methods and another step of

amplification is done by PCR to have a new pool enriched in target binding species and

this will be used for the next selection/amplification cycle.

RNA Library

Incubate with specific target

Partition Bound from
unbound RNA's

Amplify Selected
RNA's (RT/PCR)

Figure 3.2 Schematic diagram for in vitro selection of aptamer.



CHAPTER 4

BIOFUNCTIONALIZATION

The surface structure of a biosensor has to be optimized well as the sensitivity of the

device is based on the characteristics of its bioreceptor layer. In most cases, the

bioreceptor molecules are immobilized on or placed in close proximity to the transducer

surface. For the above reason, immobilization procedure and such biofunctionalization

techniques play a major role in the development of biosensors. In general,

biofunctionalization methods can be classified into two major categories; methods in

which no control over the orientation of the receptor molecules are exercised and

methods that avoid random orientation. A great amount of work has been done in this

area for ensuring the recognition molecules remain attached to the surface, and also for

ensuring that their natural orientations are not disturbed.

Active 	 Active 	 Active 	 Inactive

Figure 4.1 Various kinds of protein attachment to surfaces [45].

18
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Figure 4.1 shows the various methods of receptor molecule attachment. They can

be attached to different surfaces using diffusion, adsorption, absorption, covalent linkage

and affinity interaction. In the case of proteins, most of the methods, except affinity

interaction results in random orientation, which may make them inaccessible to targets

[45]. However, in the case of aptamers attached to surface through covalent linkages,

every molecule is uniformly attached to the surface, thus maintains their native

conformations making target molecules accessible to them.

4.1 Biomimetic Surfaces

In order for the recognition elements to be attached on the sensor, the surface of the

sensor has to be modified to achieve maximum binding capacity. One of the common

methods includes coating the sensor surface with nitrocellulose or poly-lysine so that the

receptor molecules can be adsorbed to the sensor surface through non-specific

interactions. As shown in Figure 4.1, the attached molecules may have random

orientations and thus may not remain in the active state for biomolecular recognition.

These types of attachment also tend to have higher noise level as they tend to lay on the

surface of the sensor.

Table 4.1 Various Types of Biomimetic Surfaces

Agarose	 Diffusion	 Tough to fabricate, miniaturize

Nitrocellulose	 Adsorption & Absorption	 High non-specific binding

Poly-lysine coated	 Adsorption	 Non-specific adsorption

PVDF	 Adsorption & Absorption	 Non-specific attachment
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4.1.1 Objective

In this experiment, the use of agarose as a biomimetic surface to aid in the

immobilization of probe molecules was investigated. In order to understand the optimum

concentration and minimally achievable thickness for biomolecule immobilization, the

following experiment was performed.

4.1.2 Protocol

Various concentrations of agarose solutions were made up in 10mM water solution of

NaIO4. This mixture was heated to 80 degrees C to make a solution of the melted agarose

(time 1/2 hr.). The melted agarose was pored over the treated glass slide (2 ml/slide) and

spun on with various rotational speeds and allowed to gel. After gelling, the thickness

was investigated using Dektak profilometer.

4.1.3 Results & Discussion

Figure 4.2 shows the results obtained for this experiment. From the results it can be seen

that very thin layers of agarose gels can be obtained using spin on technique. The

thickness is seen to be inversely related to the concentration of agarose used. As the

concentration of agarose was increased from 1 to 5%; the initial thickness at 200 rpm

reduced by about 200nm. But this effect seems to decrease as higher rotational speeds are

used. On an average, through this technique it was possible to make biomimetic layers

with agarose for microdevices in the range of 13 um with a rotational speed of about

1200 rpm which is not possible by conventional manual protocols.

Although this method proved to be easy and simple for immobilization purposes,

the main limitation with the use of this biomimetic layer was the reduction in sensitivity
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as more noise was observed during sensing procedures. The 3D gel formed by agarose

served to trap other non-specific molecules thus reducing the device sensitivity.

Figure 4.2 Variation of agarose thickness with speed and concentration.

4.2 Self Assembled Monolayers

Self assembly is one of the most common approaches used for surface modifications. Self

assembled monolayers are surfaces that have a single layer of molecules attached onto

them. The molecules that form these monolayers have a 'head group' that has a special

affinity for the substrate. They can be prepared with different kinds of molecules on

different substrates. The thickness of the SAM layer is mostly between 1-3nm[461. Some

common examples of monolayers include alkylsiloxane monolayers, fatty acids on oxidic
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materials and alkanethiolate monolayers. In the development of this sensor, alkanethiol

chemistry was chosen for immobilization. The self assembly is achieved by reacting thiol

containing compounds with clean gold surfaces. The sulphydryl groups will covalently

bind to the gold surface leaving the molecules to be arranged two dimensionally on the

surface. The end group determines the surface properties of the SAM layer whereas the

alkane group serves to act as a physical barrier and it alters the electronic conductivity

and local optical properties of the material.

End group (OK

Alkane group

SH bead group

Metal ( Gold)

Figure 4.3 Schematic diagram of an ideal, single-crystalline SAM on a gold surface [46].

4.2.1 Theory

In thiolate linkage, the high affinity of sulphur atoms to gold/substrate is taken advantage

of and the thiol molecules adsorb onto gold surface from the solution. An SH-modifier

can be placed at either the 5'-end or 3'-end of the aptamer. These modifiers can be used

to form reversible disulfide bonds (ligand-S-S-aptamer) or irreversible bonds with a

variety of activated accepting groups. Aptamers with thiol end groups are chemically

assembled onto the surface of gold. The long aptamer chains are thus tethered to the gold

substrate at one end and the rest of the chain stays upright and fully extended, at an angle

of approximately 30deg to the surface [47, 48]. The thiol — gold bond is a very strong
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bond (semi-covalent bond) with binding energy of around 44kcal/mol [47]. The ordering

of the aptamer chains parallel to each other occurs due to the hydrophobic, Van der

Waals forces between the methylene carbons of adjacent chains. When the binding of

aptamer chains onto the surface becomes dense enough, the chains begin to interact with

each other and are lifted off the substrate with one end held on to the gold substrate by

the thiol linkage. The crystal orientation of gold that gives excellent result for the

formation of self assembled monolayers is found to be <111>, which can be obtained by

thin layer deposition of gold by evaporation on silicon surfaces.

Figure 4.4 Schematic of an alkanethiol molecule attached to the gold substrate.

4.2.2 Experimental

4.2.2.1 Materials

I. Gold coated substrates (sensors)

2. Thiol compound- 6- Mercapto-1- hexanol solution HS- (CH2)6 OH

3. DNA aptamer solution 5'- GGT TGG TTT GGT TGG TTT - (CH2)3SH-3

4. Scrambled aptamer solution 5'-GTG TGT GTG TGT GTG TTT - (CH2)3SH-3"

5. Fresh 200 proof ethanol
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4.2.2.2 Protocol. The concentration ratio of aptamer molecules to the MCH used in

the immobilization procedure was 1:1000. 61 µM of aptamer solution and 61mM MCH

solution was prepared using ethanol. The sensor surface was allowed to interact with

MCH solution for a period of 15-20mins in an atmosphere of dry nitrogen with

minimized exposure to air. This process was followed by the addition of 61µM aptamer

solution. In the later experiments, a solution mix of both MCH and aptamer in the above

concentrations were used for the SAM layer formation as both the procedures showed

similar results.

4.2.2.3 Discussion. From this immobilization procedure, a dense coverage of the

monolayer was obtained. According to calculation a surface coverage of about 3.6 x 10 14

molecules/cm2 . The higher concentration of the molecules enabled this dense coverage of

adsorbates; for millimolar solutions (milliseconds to minutes). Studies indicate the

requirement of longer period of incubation for better reorganization process to maximize

the density of molecules and minimize the defects in the SAM[46]. In the preparation of

the sensor, ethanol was used as the solvent for preparing SAMs. Ethanol is usually used

as the solvent in most of the cases due to the fact that it can solvate a number of

alkanethiols with varying degrees of polar character and chain length; it is also

inexpensive and available in high purity.
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Figure 4.5 Schematic representation of an immobilized aptamer molecule in SAM layer.

The dynamic equilibrium is affected by the type of solvent used in the monolayer

formation process. The choice of solvent is therefore very important as the interaction

between the solvent and the substrate can at times hinder the rate of adsorption of thiols

from the solution as the solvent molecules must be displaced from the surface prior to the

adsorption of thiols, which are less prevalent in solution than the solvating molecules.

The preparation of the monolayer for the sensor was done at a temperature of about 30 °C

as temperatures above 25 °C have been reported to reduce the number of defects and

improve the kinetics of the formation of the monolayers [49, 50].



CHAPTER 5

DEVELOPMENT OF PROTEIN SENSING MECHANISM

5.1 Introduction

The development of the label-free immunosensor was carried out in two separate stages.

In the first stage, a piezoelectric platform was investigated for protein recognition. The

following section deals with the information regarding this study. From the results of the

study, it was found that a more sensitive system was required for real time, liquid phase

detection of protein molecules. Hence, a novel nano cavity based electrochemical

capacitive system was developed and was found to be more sensitive and more suitable

for miniaturization purposes for applications such as point-of-care diagnostics. This

sensor is presented in the second section of this chapter and is discussed in detail.

5.2 Piezoelectric Immunosensor

Piezoelectric effect is the basic principle behind the working of this sensor. This effect

occurs in crystals without a center of symmetry [51]When pressure is applied to the

crystal, the crystal lattice is deformed in such a manner that a dipole moment arises in the

molecules of the crystal. Many types of crystals exhibit the piezoelectric effect, but the

electrical, mechanical, and chemical properties of quartz make it the most common

crystal type used in analytical applications[52].

Quartz crystal microbalance is a well established technique in non-biological

applications. The device consists of a quartz crystal disc placed between two evaporated

layers of metal electrodes. When an oscillating potential is applied to the disk through

26
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the electrodes, a mechanical oscillation is produced in the disk due to its piezoelectric

nature.

With this applied voltage, the physical orientation of the crystal lattice is

distorted, resulting in a mechanical oscillation of a standing shear wave across the bulk of

the quartz disk at a characteristic vibrational frequency (i.e. the crystal's natural resonant

frequency)[52]. The direction of the oscillation depends on the orientation of crystal

lattice in the electric field; in turn, the orientation of the crystal lattice depends on the

exact geometry of the quartz disk with respect to the crystalline axes of the quartz from

which the crystal is cut. Oscillation in the thickness shear mode (TSM) creates a

displacement parallel to the surface of the quartz wafer. Only the region between the

electrodes is piezoelectrically active; thus oscillation is maximum where the electrode

pads overlap and diminishes rapidly from that point[52]

The frequency of vibration is sensitive to any loading effects on the crystal

surface. Basic QCM operation is described by the Sauerbrey relation where a mass

change (Am) of the crystal results in a subsequent change in its resonance frequency (f).

In air, the following formula applies.

Where AF=measured frequency shift, in Hz; f0 ²=the fundamental resonant

frequency (squared), in Hz; Am=mass change, in g; A=piezoelectrically active area (area

of electrode surface), in cm2; µq=shear modulus of quartz=2.947x 1011 gcm-2;

pq=density of quartz=2.648 gcm-3; C=mass sensitivity constant (based on type of crystal

used), in (sg)-1
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In his work, Sauerbrey demonstrated that a thin film applied to the surface of a

quartz crystal could be treated as an equivalent mass change of the crystal. This approach

is based on the deposition of rigid layers that are infinitesimally thin and, thus, dampen

the propagation of the bulk shear wave in a fashion identical to quartz itself [52].

Therefore, a small change in the mass of the crystal per unit area results in a change in

resonant frequency. AT-cut crystals are used in quartz crystal microbalances. The AT-cut

refers to quartz wafers cut at +35°15' angle from the z-axis. AT-cut crystals have a

temperature coefficient of nearly zero, indicating the resonant frequencies are stable over

a wide range of temperatures[53].

Figure 5.1 Schematic of a quartz crystal microbalance.

When biomolecular recognition occurs and biomolecular complexes are formed

on the surface, additional mass is added to the crystal. This change in mass is identified

by a corresponding change in the frequency of vibration of the crystal. The Sauerbrey

relation is based on the overall mass sensitivity of the quartz crystal. Only the region

under the electrode is piezoelectrically active; at the bare quartz, the mass sensitivity is

negligible [54-56].
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5.2.1 Experimental

The main part of the biosensor system is the quartz crystal with a diameter of 8mm and

resonance frequency 6MHz. The crystal as described above was coated with gold layers.

These gold layers serve as both electrical contacts and platforms for ligand support. The

aptamers were immobilized on the gold surface as in the protocol in appendix. To

monitor the binding and dissociation kinetics a network analyzer HP8713C was used.

Samples of protein solutions were injected into the measuring cell using a syringe. The

data was extracted and processed using the program LView Pro.

5.2.1.1 Objective.	 Determination of selectivity of thrombin aptamer immobilized

quartz resonator to various types of protein was investigated. The sensitivity of the crystal

was also investigated in a second set of experiments.

5.2.1.2 Materials & Method.

1. Buffer solution 0.25xSSC,

2. Acetone

3. Isopropanol

4. Protein solutions ( Albumin, Thrombin and Lysozyme)

Initially, the quartz resonator is cleaned using acetone, isopropanol and deionized water.

Then, oligonucleotides are immobilized on the gold surface according to the

immobilization procedure described in Subsection 4.2.2 and the resonance frequency was

noted. 10111 of 50µM concentrations of protein solutions made up in buffer solutions were

allowed to incubate on the surface of the crystal for short amount of time. The surface of
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the resonator is washed off with deionized water to remove unbound protein and the

resonant frequency of the crystal was noted after drying.

In a second set of experiments the sensitivity of the quartz crystal microbalance

was determined using thrombin solution. The quartz resonator was first cleaned using

deionized water and various concentrations of thrombin solutions made up using the

prepared buffer solution. After noting the original resonant frequency of the quartz

crystal, 1 Oul of the prepared protein solution is placed on the quartz resonator. 10-12 mins

is given for incubation and the crystal is washed with DI water and then allowed to dry

and resultant resonant frequency is noted.

Figure 5.2 Variation of resonant frequency with time various protein solutions.
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Figure 5.3 Variation of resonant frequency with protein concentration.

5.2.1.3 Results & Discussion.	 The mass change of the crystal resulting from the

association or dissociation of a protein to the quartz sensor surface is shown as frequency

decrease in the graph. In Figure 4.1, the first plot the control protein albumin was added

to the functionalized sensor surface. After incubating for few minutes and unbound

molecules were washed off. From the graph it can be seen that after drying, the frequency

returns to the original point, indicating that the molecules did not bind to the surface. In

the case of thrombin addition, the frequency shift was apparent, indicating an additional

increase in crystal mass due to protein binding. As the third control experiment,

lysozyme, a positively charged protein molecule similar to thrombin was also tested.

From the graph, a small shift in frequency can be seen after about 15mins indicating the

presence of some nonspecific binding. Figure 5.3 shows the response of the crystal to

various concentration of protein. Almost 100 Hz frequency shift is observed at 0.5uM

concentration, indicating the possibility of detecting much lower concentration. Although
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this proves to be a good sensitive method for protein recognition, this method provides no

real-time data. To date, no unifying equation has been developed to describe the quartz

crystal response in a liquid medium since the response depends greatly on the exact

interfacial structure formed between the coatings on the crystal surface and the solution

environment. Therefore, development of a new type of biosensor was investigated.

5.3 Electrochemical Immunosensor

5.3.1 Dielectric Spectroscopy as Monitoring Technique

Biomolecular recognition events occurring at the interface of the sensor leads to the

formation of biomolecular complexes; altering the state of the immobilized probe

molecules, the fluid boundary layer in the proximity of the probe-target complex and the

bulk fluid in the vicinity of the biomolecules. The alterations in these equilibrium states

are reflected as alterations in the electrical properties (relative permittivity and

conductivity) and such changes can be measured using dielectric spectroscopic

techniques.

The dielectric constant, c, of any polar liquid or solution (proteins or

oligonucleotides) can be interpreted as being almost entirely a measure of the number of

molecules oriented by an external electrical field of unit strength. These molecules are

oriented by a torque depending on the field strength and the dipole moment p, a constant

or each molecular species. The orientation of these biomolecules is hindered by the

frictional forces in the solution depending on the frequency D, and a constant 't,

designated as the "relaxation time." Thus it can be seen that the number of molecules

oriented at unit field strength will decrease in the frequency region where the hindering
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frictional forces and the orienting torque become of the same order of magnitude. Figure

5.4 shows the dispersion curve for pure polar liquid. At lower frequencies the orienting

torque is sufficient to overcome completely the resisting forces, and resulting in a high

dielectric constant (c s). At very high frequencies the resisting forces completely overcome

the orienting torque resulting in a low dielectric constant (8.0).

Figure 5.4 Dispersion curve for pure polar liquid.

As a result of this dielectric property of the biomolecules, application of an

external electric field produces a different internal field within them. There are two main

categories of this electrical interaction in biomolecules (i) charge displacement, which

subsides on the removal of the field and (ii) charge drift. Charge displacement causes

electrical polarization whereas charge drift leads to the formation of ionic currents. In an

electric field of time varying in strength or direction, polarization and charge

displacement do not occur instantaneously. If the measuring frequency is low enough for
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all the charges to change their position, polarization is maximal. But as frequency

increases, they do not get sufficient time and thus the polarization and permittivity will

decrease. Relaxation is the term given to this characteristic property and it occurs in the

time domain as the system is allowed to relax to the new equilibrium. Relaxation time is

therefore the parameter that describes this property and it's defined as the time required

for dipolar molecules to orient themselves

The frequency dependence of the relaxation process will depend on the

contribution of polarizability of the material. For biomolecules Schwan [57] proposed 3

main different frequency ranges where these processes can be observed — a, 13 and y

regions. In the case of protein molecules a dispersion occurs in the lower frequency range

(kHz) and 3 dispersion occurs at slightly higher frequencies due to the rotation of protein

molecules The 7 dispersion occurs at microwave frequencies (10 ¹0Hz) indicative of the

relaxation of the free water in the solution. In addition 6 dispersion occurs in between

and y regions and it is indicative of the internal conformational motion of protein and

water bound to protein.

The dielectric spectra of biomolecules such as proteins, oligonucleotides etc.

presents a very complex shape involving the above three or more different partially

overlapping, contributions, each of them originated by different molecular level

mechanism[58, 59]. These may be classified as due to polyion dipolar orientation

relaxation, polarization of condensed counter ions, polarization of ionic atmospheres,

long-range solvent ordering effects and at the higher end of frequencies, orientational

polarization of the water molecules[60]. Proteins have complex three dimensional

structures as well as complex charge distribution and thus may have a high linear charge
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density. In the case of F actin filament the linear charge density is 1 electron charge per

2.5 A[61, 62]. Same is the case with oligonucleotides; DNA in aqueous solution has a

linear charge density of 1 electron charge per 1.7 A. These high charge densities give rise

to condensed structures and they are characterized by large dielectric constant in the

lower frequency range (tens of KHz).

Since water is present in most aqueous solution of biomolecules, the main

characteristics of the biomolecules do not differ much from the bulk water dispersion.

The difference is confined to moderate variation in the dielectric permittivity (75.9) [63]

which is contributed partly due to the large dipole of the water molecules (1.84 Debye)

and also due to the high Kirkwood correlation factor [64]. In general, there is certainly a

dependence of dielectric parameters on the biomolecule type and concentration. But this

dependence relies on the very delicate interplay between the biomolecular chain

conformation and its charge, which is indirectly dependent on the concentration, contour

length and also its interaction with small ions.

Dielectric spectroscopic measurement is a well established method and the

principle of measurement is as follows. The electrical impedance of the device containing

the sample is measured as a function of the frequency of the applied electric field [60].

However, this method faces a number of limitations which hampered its application to

biosensing. The main limitations is that biomolecular solutions usually display a very

high ionic electrical conductivity which causes a giant frequency-dependent dielectric

dispersion, falling in the low-frequency tail of the spectrum that generally masks the

relaxations associated with the polymer component [60]. In addition, there is also a

strong polarization in the vicinity of the electrodes that can dwarf the relaxation of
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interest in the sample. Therefore experimentally, it is quite difficult to remove parasitic

effects that screen the real information especially in the low frequency region.

5.3.2 The Electric Double Layer

The double layer at the electrodes of the sensor can be thought of as a molecular

capacitor where one plate is represented by the surface charge of the metal and the other

plate by the ions at a minimum distance from the solution .Since the distance between

these 'capacitor plates' are in the order of nanometers, the capacitance values become

enormous (proposed by Helmholtz in 1879).

At the sensor electrode/ electrolyte interface, the surface charge a m created by the

application of potential forms an electrostatic field that affects the ions in the bulk of the

solution. This field causes the bulk solution to create a counter charge a s to screen this

surface electric charge e. The properties of this layer depends on the surface charge on

the electrode, the DC bias voltage, the concentration of ions in the solution and the

charge of the individual ions This net electric screening charge a s is equal in magnitude

to the surface charge and has opposite polarity. As a result, the complete structure is

electrically neutral.

There are three theoretical treatments of the double layer on the interface,

Helmholtz Plane Theory, Gouy-Chapman Theory and Gouy-Chapman Stern Models.

Helmholtz model is only valid for high concentration electrolyte solution. In more dilute

solution; the thickness of the double layer will increase as the transition is not so abrupt.

The thickness is related to the distance from the metal surface at which the ions can

escape to the bulk by thermal motion. In such a case, the counterion atmosphere is

commonly referred to as diffuse layer. In the theory of Gouy and Chapman, the exchange
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of counter ions between the double layer and the bulk solution due to thermal motion is

taken into account. The theory of Stern takes into account the finite size of the counter

ions and their binding properties at the surface. The diffuse layer is divided into an inner

layer (Stern layer) and outer layer (Gouy layer). The Stern layer refers to the layer formed

when the counter-ions specifically adsorb near the surface. Grahame made a further

division of the Stern layer into the Inner Helmholtz layer and Outer Helmholtz layer.

These layers are separated by the IHP at a distance from the surface corresponding to the

radius of non-hydrated specifically adsorbed ions. It assumes a "plane of closest

approach", which is based on the fact that ions have finite size, so they cannot approach

the surface closer than a few nm. The IHP is defined by the plane of the center of the

dehydrated ions and the excess ions are adsorbed to form the OHP.

Figure 5.5 Schematic of electrical double layer.

This accumulation of ions on the electrode surface causes huge parasitic

impedance that masks the small changes in relative permittivity produced by

biomolecular interactions. This is because a potential gradient exists in the area of the
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electrical double layer. As the measurement frequency is decreased this effect becomes

more pronounced thus making low frequency measurement impossible. Several methods

have been proposed for eliminating this double layer effect. In this sensing system, the

effect of the electric double layer has been eliminated by reducing the electrode distance

to the same order as the double layer length. The characteristic thickness of the DL is the

Debye length which is the reciprocal of the Debye-Huckel parameter K. This value is

reciprocally proportional to the square root of the ion concentration C. Therefore the

thickness of the double layer decreases with increasing valence and concentration of the

buffer electrolyte. In aqueous solution it is on scale of a few nanometers and the

thickness decreases with the concentration of the electrolyte. Experimentally, the double

layer thickness is generally found to be somewhat larger than calculated

5.3.3 Experimental

5.3.3.1 Sensor Fabrication. In the first process step 500nm thick Silicon Nitride is

deposited on the single side polished <100> Si wafer followed by the patterning of 1µm

thick photo resist spacers to act as the sacrificial layer for the formation of the first set of

Au electrodes. Gold electrodes are deposited using E-beam evaporation under ultra high

vacuum conditions. The selective removal of the photo resist sacrificial layer defines the

first set of Au electrodes. In the next step a very thin and uniform layer of SiO2 is

deposited using Plasma Enhanced Chemical Vapor Deposition (PECVD), to form the

nanometer spacers between the electrodes. A second layer of 11,1,m gold metallization is

applied using E-beam evaporation and SiO2 is etched off to form the nano cavities.



Figure 5.6 Microscopic Image of the fabricated sensor.
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Figure 5.7 Microscopic image of the nanoscale sensing area in comparison to a cell

5.3.3.2 Materials. 	 Alpha-thrombin (a-thrombin) aptamers modified with thiol linkers

(5'- GGT TGG TTT GGT TGG TTT - (CH2)3SH-3') were used for the specific binding
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experiments. A scrambled version of the specific aptamer, (5'-GTG TGT GTG TGT GTG

TTT - (CH2)3SH-3") also modified with the thiol linker was used for control experiments.

The DNA aptamers used for the experiments were purchased from IDT (Integrated DNA

Technologies). a-thrombin samples were purchased from Haematologic Technologies,

Essex Junction, VT. Lysozyme and the buffer solution 20xSSC (3.0M Sodium Chloride

+ 0.3M Sodium Citrate) were purchased from Sigma-Aldrich.

Aptamer Sequences:

Alpha thrombin aptamer (apt 1) — 5'-GGT TGG TTT GGT TGG TTT/3 ThioMC3-D/-3'

Scrambled aptamer (apt2) — 5'-GTG TGT GTG TGT GTG TTT/3 Thio MC3-D/-3'

5.3.3.3 Aptamer Probe Immobilization. Prior to the immobilization procedure the

structure was cleansed using acetone, isopropanol and deionized water. Single stranded

probe DNA aptamer sequences pre-modified by the thiol linker (5'- GGT TGG TTT GGT

TGG TTT/3 - (CH2)3SH-3' ) were immobilized on the gold electrodes using a

concentration of 1011,M in 0.5xSSC buffer (75mM Sodium Chloride + 7.5mM Sodium

Citrate). By taking advantage of the high affinity of sulphur atoms to gold substrate, the

DNA molecules with thiol end groups are chemically assembled onto the gold surface

from the solution [65]. The Van der Waals forces between adjacent chains helps to order

the oligomers parallel to each other. After immobilization of the DNA aptamers,

mercaptohexanol (HS- (CH2)6 OH) self assembled monolayers (SAMs) were

immobilized in between the DNA strands in order to passivate the vacant spaces. The

<111> crystal orientation of gold which is obtained by thin film deposition provides an

optimum substrate for the formation of such monolayers.
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5.3.3.4 Measurement Procedure. The dielectric properties were investigated over a

frequency range of 10Hz to 100 kHz, with OV DC bias and 20mV AC signals using an

SR 785, 2 channel dynamic signal analyzer. A Lab View program was used to collect and

record data through a GPM interface. The electrical contacts and the functioning of the

entire system including the capacitive element were verified by measuring the dielectric

spectrum with air and deionized (DI) water between the electrodes.

In order to monitor the formation of the bio-recognition layer, measurements were

taken before and after aptamer immobilization. After immobilization, a-thrombin

solution varying from 0.111M to 1µM was added on the sensor surface. After a short

incubation time, the variation of the dielectric spectrum was recorded. To monitor the

exact response of the sensor towards the bound protein, the measurement was taken after

the removal of unbound proteins by washing. As a first control experiment, the above

experimental procedure was repeated with lysozyme, a positively charged protein which

does not bind to the a-thrombin aptamer. The interaction of a-thrombin molecules to a

scrambled version of the specific aptamer is performed as a second control measurement.

Each step of the aptamer immobilization and the target binding was characterized by

dielectric spectroscopic measurements conducted on the nano-cavity capacitive

electrodes.

5.3.4 Results and Discussion

Dielectric spectra of the binding experiments were obtained by conducting impedance

spectroscopy analysis on the nanogap capacitive structure. The relative permittivity of air

was measured and found to be close to 1 and the relative permittivity of DI water was

used for calibration. The result is shown in Figure 5.8. From the result it can be seen that
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the relative permittivity of water is seen to be around 78. It is slightly lower than the

reported value of 80 due to the presence of unfilled air gaps in the nano-space cavities.

Figure 5.8 Dielectric spectra of deionized water and air.



Dielectric spectra of various concentrations of SSC buffer
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Figure 5.8 Dielectric spectra of various buffer concentrations.

Figure 5.8 shows the dielectric spectra of various concentration of buffer solution

was analyzed and plotted. From the results it can be seen that the dielectric permittivity of

the solutions increases with increase in buffer concentration. This can be explained by

the fact that as the number of ions increase in the sample, the Debye length reduces thus

increasing the double layer capacitance and hence the measured relative permittivity.

5.3.4.1 Dielectric Spectra for Alpha Thrombin- Aptamer Binding. 	 In order to

monitor the formation of the bio-recognition layer, measurements were taken before and

after aptamer immobilization in 0.5xSSC. After immobilization, a-Thrombin solution

concentration varying from 0.1	 to 1 1 µM was added on the sensor surface. After a short
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incubation time and rinsing process, the variation of the dielectric spectrum was recorded.

The addition of positively charged alpha thrombin showed a decrease in the value of

relative permittivity.

Figure 5.9 Dielectric spectra for alpha thrombin- aptamer binding.

Figure 5.9 shows the dielectric spectrum after aptamer immobilization and Alpha-

thrombin binding. A reduction in the dielectric spectra was observed after immobilization

and alpha thrombin binding. This decrease in overall sensor permittivity could be due

replacement of water molecules (e= 80) by oligonucleotide sequences during

immobilization process. The binding of protein molecules further enhances this effect.



45

5.3.4.2 Dielectric Spectra for Lysozyme a-Thrombin Aptamer Interaction. In this

control experiment, the immobilized a-Thrombin aptamer was allowed to interact with

Lysozyme, a positively charged protein similar to a-Thrombin. The concentration used

was 0.05 µM.

Figure 5.10 Dielectric spectra for Lysozyme a-Thrombin aptamer interaction.

An initial decrease of the relative permittivity was observed upon the addition of

the positively charged molecules, but the spectra returned to the original value after

rinsing off the unbound molecules. The Figure shows negligible change in dielectric

property upon exposure to these non-specific target molecules. This supports the

relationship between capacitance (relative permittivity) change and specific biomolecular

interaction.
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5.3.4.3 Dielectric spectra of Alpha Thrombin —Scrambled Aptamer Interaction.

In order to verify that the change in the value of rel. permittivity observed in the above

experiment was due to the specific protein — aptamer interaction, a scrambled version of

the aptamer was immobilized and allowed to interact with alpha thrombin. Even though

an initial decrease in the value of relative permittivity from the SAM layer was observed

due to the positively charged protein, rinsing off the non-specific bound molecules

resulted in a spectrum close to the original one.

Figure 5.11 Dielectric spectra of alpha thrombin —scrambled aptamer interaction.

Dielectric spectra of the second control experiment; interaction of the a-Thrombin

molecules with a layer of immobilized scrambled aptamer is shown in Figure 5.11. The

Figure shows negligible change in dielectric property upon exposure to these non-specific

target molecules. This proves the specific interaction between the a-Thrombin molecules

and their aptamer sequences. The slight shift in the relative permittivity in the case of
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and their aptamer sequences. The slight shift in the relative permittivity in the case of

both the control experiments can be accounted by the electrostatic interaction between the

positively charged protein molecules (a-Thrombin and Lysozyme) and the negatively

charged aptamer molecules.

Specific Vs Non-Specific Aptamer- Protein Interactions

Figure 5.12 Relative permittivity change due to specific and non- specific interactions.

The measured values of Relative Permittivity at 210Hz for DI water, specific

binding experiment. (alpha thrombin- aptamer 1), and control experiments are plotted.

Due to the specific binding between alpha thrombin and aptamer 1, a significant change

in relative permittivity is observed from the value of immobilized aptamer layer (114.4 to

84.22). The shift in relative permittivity observed due to the first control experiment
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(alpha thrombin- aptamer 2) was considerably low as compared to the specific binding

(234.1 to 224.4 ). The addition of lysozyme to the immobilized alpha thrombin aptamer

layer produced slight change in the value of relative permittivity.

Figure 5.13 Percentage change in relative permittivity.

The percentage changes in relative permittivity for the three binding experiments

were calculated with respect to the corresponding SAM layers. Due to the specific

binding of alpha thrombin to its aptamer (aptamer 1), a 35.83 % decrease in the value of

relative permittivity is observed from the value of immobilized aptamer. This shows the

improved sensitivity of the nanoscale dielectric sensing mechanism due to the

minimization of electrode polarization effect through the reduced space confinement. The
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interaction of alpha thrombin with aptamer 2 (scrambled aptamer) gave a variation of

4.32% in relative permittivity and about 0.23% change was observed for the interaction

between lysozyme and aptamer 1 (non-specific interaction). This proves the specificity of

the aptamer molecules to the specific proteins as well as demonstrates the selectivity of

the entire sensing mechanism.



CHAPTER 6

CONCLUDING REMARKS AND FUTURE OUTLOOK

The aim of this thesis was to develop an aptamer based immunosensor that allows label-

free detection of protein molecules. Improved sensitivity of electrochemical capacitive

sensors towards biomolecular interactions due to reduced electrode spacing was

demonstrated in this work. This sensing mechanism offer many advantages including

small sample volumes, easy sensor array fabrication and portability over the macro-scale

setups. Further this detection mechanism is label-free as it does not require samples to be

labeled with fluorescent, radioactive or redox tags for sensing.

Development of two key components of the protein sensor was discussed in

detail; the aptamer based recognition element and the electrochemical signal transducing

element. Aptamer molecules were used in this sensor as recognition elements mainly due

to their better shelf life and stability. These molecules were linked to the gold surface

using the well known thiol-chemisty.

In the development of sensing mechanism, both piezoelectric and capacitive

methods were investigated. Although good sensitivity was achieved by piezoelectric

method, the inability of the system to measure in liquid phase posed to be a major

problem. Development of capacitive sensing mechanism therefore proved to be better

suited as real time monitoring of biomolecular recognition process in liquid medium was

made possible.

Towards the development phase of this immunosensor; Lab-on-a-chip devices

capable of identifying protein molecules in real time is envisioned. Integrating this

microfabricated immunosensor along with well designed microfluidic processors and

50
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MEMS components can enable the development of such miniaturized devices that are

capable of purifying, isolating and characterizing samples, thus putting the entire

assaying operation on a single chip. Figure 6.1 shows a graphical version of some of the

process stages to be incorporated for the development of such a hand held device.

Sample Preparation

Cell lysis

Molecular
sensingCell sorting

Figure 6.1 Future development towards a lab-on-a-chip device.

In addition, the design of the microfabricated immunosensor is such that a number

of multiple sensing elements can be incorporated together and can be multiplexed

electronically to detect many targets simultaneously. Due to the above mentioned

advantages, this sensing mechanism can be used for the development of lab-on-a-chip

and point-of care devices. The potential for such devices are many including detection of

biological weapons through protein analysis, blood analysis and drug screening systems.
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