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ABSTRACT 

COMPARISON OF MUSCLE SYNERGIES ELICITED FROM TRANSCRANIAL 

MEGANETIC STIMULATION (TMS) AND VOLUNTARY MOVEMENTS 

 

by 

Yifei Wei 

A key question in motor control is the redundancy of musculoskeletal elements involved. 

This problem refers to as the degree of freedom problem. The Muscle Synergy 

Hypothesis is one of the hypotheses that aim to resolve the problem which defines that a 

muscle synergy is a combination of a small set of muscles activated at different levels, 

serving as a building block that constructs motor behaviors. A recent study (Overduin et 

al. 2012) demonstrated that muscle synergies decomposed by Nonnegative Matrix 

Factorization (NMF) from EMG patterns evoked by intra-cortical microsimulation 

(ICMS) in the monkey remarkably matched ones observed in naturalistic reach-and-grasp 

behaviors. Another study (Ajiboye et al. 2009) showed that synergies elicited from a 

small number of hand postures can allow prediction of hand postures in general. Inspired 

by aforementioned studies, the aim of this study was to investigate whether Transcranial 

Magnetic Stimulation (TMS) can elicit muscle synergies matching ones observed in 

voluntary movements in healthy human subjects and whether these synergies can serve as 

frameworks to predict EMG patterns evoked by either TMS or voluntary movements.  

Five healthy right-handed subjects participated in the study. 8 hand muscles were 

recorded to capture either TMS-evoked motor evoked potential (MEP) and 

electromyography (EMG) resulted from subjects’ shaping American Sign Language 

(ASL) letters and numbers. NMF was utilized to extract synergies from both MEP and 

EMG data. We observed 5 or 6 synergies can capture 90% of variance of original and 



ii

matched synergies of two classes. The reconstructions of the original datasets (VTMS: 

MEP data; Vvol: EMG data; Vrand: Random data as control) from synergies (Hvol synergies 

elicited from ASL tasks; HTMS synergies elicited from TMS) was done by the 

nonnegative least-square algorithm, and Proportion of Variance Accounted for (PAV) 

served as a measure to quantify the quality of the estimation, giving results Hvol -> Vvol: 

0.92±0.02; HTMS -> VTMS: 0.94±0.02; Hvol -> Vrand: 0.53±0.03; HTMS -> Vrand: 0.53±0.07; 

HTMS -> Vvol:  0.70±0.06; Hvol -> VTMS: 0.79±0.06.  

In conclusion, we argue that cortical components may involve in encoding 

synergies and we also demonstrate the possibility of synergies serving as frameworks in 

predicting and explaining human hand postures in general. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Degree of Freedom Problem 

The liberation of hands marks the difference of humans from other mammals, and it is the 

premise of the development of tools that tremendously change the life style of human 

beings. Hand structure is a guarantee for human beings to perform intricate and complex 

tasks for its complexity that involves muscles, bones, nerves, blood vessels and tendons. 

Such complexity allows a person to perform tasks that requires a great movement range 

and adaptability. However, the large number of musculoskeletal elements involved 

features a high number of degree of freedom (DOF) which increases the difficulty for 

central nervous system to control the human hand (Bernstein, 1967), and the control may 

be more complex particularly when time course is considered. Such problem refers to as 

the biomechanical redundancy which implies that the DOF due to the participation of 

various joints, muscles in a motor task is more than necessary to execute movements. In 

order to resolve the problem of the redundancy of DOF, many hypotheses have been 

developed to explain how the nervous system can result in a particular solution out of a 

large number of possible solutions that can give rise to a mutual motor goal, including 

Muscle Synergy hypothesis, Equilibrium Point hypothesis and Uncontrolled Manifold 

hypothesis. In this study, synergy will be the “protagonist”, and will be given more 

discussion in detail.  
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1.2 What are Synergies? 

1.2.1 The Definition of a Synergy 

A succinct definition of synergy was given in d’Avella et al. 2003 that “Muscle 

synergies-coherent activations, in space or time, of a group of muscles have been proposed 

as building blocks that could simplify the construction of motor behavior”. A more 

elaborated definition can be found in Turvey et al. 2007, in which a synergy refers to “a 

collection of relatively independent degrees of freedom that behave as a single functional 

unit – meaning that the internal degrees of freedom take care of themselves, adjusting to 

their mutual fluctuations and to the punctuations of the external force field, and do so in a 

way that preserves the function integrity of the collection”. Both definitions infer to the 

reduction of the number of controlled units for multiple muscles can be activated in a 

synergetic way under one motor command referring to a synergy, while such 

dimensionality reduction of control in the multi-element muscular system does not 

sacrifice the flexibility. Many types of synergy models were proposed. The mathematical 

form of the synergy model – Feedforward Time-Invariant Synergy Model in this study is 

given in Chapter 2.5.1.   

 

1.2.2 The Origin of the Proposal of the Synergy Hypothesis 

The results of early studies of the spinal cord in vertebral species such frog, rat and cat 

using techniques like microsimulation, cutaneous stimulation led to the hypothesis that 

motor primitives may be modules that can be combined to generate movements and 

postures. (Bizzi et al. 1991; Giszter et al. 1993; Tresch and Bizzi 1999) In the previously 

cited studies, force fields activated by the stimulation electrode implanted in the spinal 
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cord were found to group in different ways when moving the electrode to different 

locations. Mussa-Ivaldi et al. 1994 found the force vectors can be summed due to the 

co-stimulation of two sites in the spinal cord. Moreover, a subsequent study Loeb et al. 

2000 discovered that the similarity between the simulated robust synergies defined as 

combination of muscle activation and actual synergies they found previously, and both 

classes can produce stable force field. All these results argue the possible existence of 

synergies. Synergy may be called Motor Primitive elsewhere. Modular control refers to the 

same meaning as well. However, in the field of rehabilitation, synergy has different 

concept as which in the field of motor control.  

 

1.3 Transcranial Magnetic Stimulation (TMS)  

1.3.1 A Brief Introduction to the Mechanism of TMS 

Transcranial magnetic stimulation (TMS) (Barker et al. 1985) is a non-invasive brain 

stimulation method. During the stimulation, the coil is supposed to be put tangentially with 

respect to the scalp (Figure 1.3). The illustration to the mechanism of TMS is given in 

Figure 1.2 in which induced current in the brain is produced by the megnatic field is caused 

by the electrical influx that is perpendicular to the coil that is supposed to placed tangential 

to the scalp. The brief and high-voltage electric induced current over the primary motor 

cortex (M1) can corespondingly give rise to a brief and synchronous muscle response, 

which is defined a motor evoked potential (MEP). (Figure 1.1). 
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Figure 1.1  An illustration of MEP: TMS Response of the Forearms vs. Time.  
 

Source:http://www.ai.mit.edu/projects/medical-vision/surgery/tms.html. 

 

 

 

Figure 1.2  Stimulation mechnism of TMS. Current Flow direction in a Magnetic Coil and 

Induced Current in the Brain.  
 

Source: Hallett et al. 2000. 

 

1.3.2 Rationales of the Use of TMS in the Present Study 

According to Rothwell et al. 1997, TMS can activate intracotical horizontal fibers when it 

is applied at a moderate intensity. These fibers are believed to be able to wire the 

corticospinal projection neurons to an extended cortical nework. (Huntley and Jones 1991). 

The primary motor cortex with its connected monosynaptic spinal neurons are believed to 

form anatomical units for finger movement. (Lang et al. 2004). TMS could stimulate 
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neuronal circuits and produce naturalistical movements or postures (Rothwell et al. 1997). 

In addition, Muscle Primitives are traditionally hypothesized to be encoded either in the 

spinal cord or brain stem (Bizzi et al. 2013). However, intraspinal microstimulation 

experiments in rats (Tresch and Bizzi 1999) demonstrated modular organization, 

experimental evidence for such functional modular organization was not observed in 

spinalized cats (Aoyagi et al. 2004; Mushahwar et al. 2004). We might argue that, if such 

modular organization exist, movements presented in higher-order animals than frog, i.e. 

cat, monkey, even humans, may require involvement of the primary motor cortex in 

realizing such modular control pattern. As a method that excites an extended region of the 

brain and of great convenience to use, TMS should be preferentially chosen, and we might 

argue the involvement of primary motor cortex in encoding synergies if TMS can elicit 

similar synergy patterns as voluntary movement does. 

 

Figure 1.3  A demonstration of TMS.  
 

Source: http://www.psychologypage.org/transcranial_magnetic_stimulation_tms.html. 

 

 

http://www.psychologypage.org/transcranial_magnetic_stimulation_tms.html
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1.4 Objective 

The overal objective of this study is to explore the synergy hypothesis. In a recent study 

(Overduin et al. 2012), EMG patterns evoked by intracortical microstimulation (ICMS) in 

monkey subjects on areas of motor cortex connected to the spinal interneurons can be 

decomposed by NMF algorithm into a set of muscle synergies that mirror those obtained 

from reach-and-grasp behaviors. In an earlier study (Gentner and Classen, 2006),  hand 

muscles’ modular organization of cortical representations were suggested. In that study, 

PC analysis suggested that TMS used as a stimulation tool on primary motor cortex can 

elicit kinematic finger movements that were similar to those of grasping imagined objects 

by same subjects. Another study (Overduin et al. 2008) provided evidence that a small 

number of EMG synergies elicited from grasping objects could capture most variance in 

the original EMG dataset. In addition, Ajiboye et al. 2009 demonstrated that muscle 

synergies elicited from EMG recording of subjects performing American Sign Language 

(ASL) tasks can serves as not only a descriptive framework but also a predictive 

framework for a variety of hand postures. These studies inspired the form of the present 

study in which, other than using invsaive method, long duration ICMS, TMS, as a 

non-invasive brain stimulation method was applied for its convenience of use, 

harmlessness on human subjects and effectiveness in stimulation. EMG recording was 

favored instead of kinematic recording due to its convenience of implementation and the 

fact that EMG signals are reflections of net output from neural commands to alpha-motor 

neuron in the spinal which with the muscles form a motor unit. Unlike kinematic signals as 

an indirect evidence, EMG signals can be viewed as a more direct representation of muscle 

activation levels. 
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The specific aims of this study are to either investigate or confirm whether 

naturalistic activation of hand muscles can be evoked by TMS on human subjects; Whether 

TMS-evoked hand muscle responses exhibited modular properties; How many synergies 

decomposed by NMF algorithm (Explained in Chapter 2.5.2) are needed to capture a 

majority of variance in the original dataset; Whether TMS elicited synergies display a 

certain level of similarities with those resulted from voluntary hand movement; Whether 

those synergies demostrate a centain level of predictive power for either new sets of tasks 

or TMS elicited data sets, in other words that instead of being specific in terms of tasks,  

synergies are general and robust. The detailed experimental procedures, data analysis 

methods as well as representative results are given in the next chapter, and all other 

supplementary or intermediate results are provided in Chapter 3. 
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CHAPTER 2 

METHODS AND RESULTS 

 

In this chapter, all procedures including rationales behind will be explained in detail and 

typical results i.e. figures and tables will be provided for better illustration and explanation 

of the methods and results. MATLAB scripts used in data analysis are given in 

Appendices.  

 

2.1 Subjects 

Data were collected from five young (< 40 years old) healthy right-handed subjects 

following informed consent.  

 

2.2 EMG Channels 

Eight right hand muscles were recorded by using EMG wireless electrodes during both 

TMS mapping session and American Sign Language (ASL) tasks session. (Figure 2.1) 

These muscles includes First Dorssal Interosseus (FDI), serving to abduct the index finger 

and rotate the index finger slightly at the metacarpophalangeal joint as well as assist 

adductor pollicis in thumb adduction; Extensor Indicus (EI), extending the index finger and 

assisting in wrist extension; Abductor Pollicis Brevis (APB), functioning in the abduction 

of the thumb; Abductor Digiti Minimi (ADM), playing an important role when grasping 

large objects with outspread fingers; Flexor Digitorum Superficialis (FDS), contributing to 

the flexion of the middle phalanges of the fingers at the proximal interphalangeal joints; 

Extensor Digitorum (ED), helping with the extension of the phalanges, wrist and the 
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elbow; Flexor Carpi Radials (FCR), assisting the flexion of the wrist and Extensor Carpi 

Radialis (ECR), finally, also extending the wrist. Electrode positions were verified by 

observing the EMG of corresponding muscle when asking the subject to perform a 

movement (i.e. FDI, pinch) 

 

Figure 2.1  EMG recording channels. Eight right hand muscles were recorded including 

FDI, EI, APB, ADM, FDS, ED, FCR and ECR.  
 

Source: Created by Mathew Yarossi. 
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2.3 TMS Mapping 

2.3.1 Experiment Procedures 

TMS mapping was conducted using a two-cone shaped magnetic coil. The coil is 

connected to a Magstim 200 monophastic stimulator (Magstim, Whitland, Dyfeld, UK). 

Motor evoked potentials (MEP) from aforementioned eight muscles were recorded. A 

neuronavigational workstation (Brainsight, Rogue Research, Montréal, Canada) recording 

the relative position of the coil with respect to the position of subject’s head was used in the 

whole mapping process. The subject’s head was registered with a template MRI scans. The 

optimal position for the magnetic coil to elicit MEPs in the right FDI muscle, termed as 

hotspot was found. It was defined as the position that TMS can produce the highest MEP 

on FDI at a moderate suprathreshold intensity on the motor cortex, where adjacent to the 

central gyrus. The minimal intensity of TMS on the hotspot that can produce response on 

the muscle is termed as the Resting Motor Threshold (RMT). The actual stimulations at a 

110% RMT with an inter-stimulus interval (ISI) of 4 seconds were conducted on a 7cm x 

7cm 10 dots x 10 dots stimulation grid with the FDI hotspot at the center in which each dot 

is a rough stimulation position. (Figure 2.2) On each dot on that grid, three stimulations 

were performed so that a total number of 300 stimulations were conducted for each subject. 

Stimulations not generate any MEP on any muscle were disregarded. 
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Figure 2.2  TMS schematic. Subject’s head was registered with a template MRI scan. 

Green dot in the middle is the FDI hotspot. 10 x 10 blue dots on the 7cm x 7cm grid are 

instructing positions that serve to anchor the actual stimulations (Purple dots).   
 

Source: Created by Mathew Yarossi. 

 

2.3.2 MEP Data Preprocessing 

The positions of stimulations were normalized and centered in analysis. The equations are 

given below: 

𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑛𝑑 𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑋 

𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑋 − 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑋 
 

𝑁𝑜𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑛𝑑 𝐶𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 − 𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑌 

𝑀𝑎𝑥𝑖𝑚𝑎𝑙 𝑌 − 𝑀𝑖𝑛𝑖𝑚𝑎𝑙 𝑌 
 

The MEP amplitudes for each channel are normalized to the largest MEP on that 

channel.  

Amplitudes observed on that channel, and the matrix containing the normalized 

MEP amplitudes is given below: 

[

𝑁𝑀𝐸𝑃1,1
⋯ 𝑁𝑀𝐸𝑃1,𝑛

⋮ ⋱ ⋮
𝑁𝑀𝐸𝑃m,1

⋯ 𝑁𝑀𝐸𝑃m,𝑛

]

𝑚 𝑥 𝑛

 

(2.1) 

(2.2) 
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Where m is the total channel number, and n is the total number of stimulations. 

Thus, each row is a eight dimensional vector, denoted as muscle vector or MV which 

stands for an aggregate of responses of 8 muscles resulted from a single stimulation. If no 

MEP for all channels was observed in a stimulation, that stimulation would be neglected 

and the corresponding row in the matrix would be removed from the matrix. The detailed 

MATLAB script for this procedure is attached in Appendix – MAP_Preprocess.m and 

MAP_Visualization.m for the visualization of the data. The TMS topographic results are 

given in the next section. 

 

2.3.3 TMS Topographic Results Visualization

 

Figure 2.3  TMS results visualization. Muscle activation level vs TMS sites (Upper) and 

MEP for the corresponding stimulation sites (Lower). Subject S1. 
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American Sign Language (ASL) Tasks 

Experiment procedures 

Figure 2.4 TMS representative results. (Upper-Left) Normalized Stimulation sites. 

(Upper-Right) Normalized MEP Tuning Curves for all stimulations. (Lower-Left) Three 

randomly selected stimulations. Embedded plot: MEP of the 3 randomly selected 

stimulations. (Lower-Right) Normalized MEP Tuning Curves of the 3 randomly selected 

stimulations. Subject S1. 

 

 

 

2.4 American Sign Language Tasks 

2.4.1 Experimental Procedure 

Subjects were required to shape their hands into 33 static ASL letters in an ASL task trial 

for 5 to 7 seconds while watching and imitating a Youtube tutorial video at 

https://www.youtube.com/watch?v=9IEODEihHVw (Figure 2.5) (Subject S3 did not 

perform 6 through 9) Letters “J” and “Z” were omitted for they are not static. “0” was 

omitted because it is visually the same as “O”. (“D” was neglected in the analysis for barely 

no EMG were observed for D) ASL tasks can provide sufficient spanning of hand postures 

thus when considering the total 32 shapes as a whole, all muscles were observed to be used 

and obvious responses were observed on EMG. Each subject was required to conduct three 

trials (In exception, Subject S3 performed only two trials).  ASL sets are very similar to 

 

https://www.youtube.com/watch?v=9IEODEihHVw
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hand postures when grasping objects. The reason that subjects were not required to 

familiarize themselves with the ASL sets beforehand is that natural postures were expected 

to be produced and the trace or influence of motor learning can be eliminated, and cohesion 

between trials would not be generated that EMG from all trials can be concatenated and 

considered a whole because EMG for a specific letter/number in different trials may not be 

exactly the same and can be considered different responses. Thus, the rank of the 

concatenated EMG matrix will not be lowered and can be fed in the NMF algorithm with 

no problems. 

 

Figure 2.5  Static ASL letters and numbers. Subjects were instructed to shape their hands 

into 33 static ASL letters and numbers. Dynamic letters “J” and “Z” were omitted. “0” was 

omitted because it is visually the same as “O”. 
 

Source: Ajiboye et al. 2009. 
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2.4.2 EMG Data Preprocessing 

EMG signals with a sampling frequency of 1000 Hz were filtered using a six-order 

Butterworth bandpass filter with cutoff frequencies of 10 Hz (Low) and 300 Hz (High). 

Another second-order Butterworth notch filter with cutoff frequencies of 59.5 Hz (Low) 

and 60.5 Hz (High) was applied for the purpose of removing noise resulted from power line 

at 60 Hz. Rectified and filtered EMG signals inside a time window from 5 second to 7 

second were used for the remaining analysis (Figure 2.6), for stable value of EMG 

responses were observed during the time window.  Thus, instead of integrating the EMG, 

averaged amplitude of the time window was used as a measure of activation level of 

muscle activities. 
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Figure 2.6  EMG patterns of ASL tasks. Upper: Rectified Raw EMG for all 32 ASL letters 

and numbers. Lower: (Subject S1 Trial 3) the outmost circle indicates value one for the 

normalized EMG amplitude. 
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Similar with how MEP matrix was constructed. The EMG amplitudes for each 

channel are normalized to the largest EMG amplitude observed on that channel within each 

trial.  

[

𝑁𝐸𝑀𝐺1,1
⋯ 𝑁𝐸𝑀𝐺1,𝑛

⋮ ⋱ ⋮
𝑁𝐸𝑀𝐺m,1

⋯ 𝑁𝐸𝑀𝐺m,𝑛

]

𝑚 𝑥 𝑛

 

 
Each row of the matrix represents EMG activity of each muscle when performing one sign. 

The detailed MATLAB script for this procedure is given in the Appendix – 

Vol_Mov_Preprocess.m 

 

2.5 Muscle Synergies Extraction 

The MATLAB source code can be found in the Appendix – synergy_extraction.m and 

synergy_extration_no_plot.m. 

2.5.1 Time-Invariant Muscle Synergy Model 

The concise generalized time-invariant feed-forward synergy model is illustrated in Figure 

2.7. 
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Figure 2.7  Schematic of Muscle Synergy Hypothesis. (Upper) The observed pattern (m) 

of multiple muscle (A, B, C, D) activities is a combination of two synergies (blue and red), 

each with a scaling factor c (0.5 for the blue synergy and 0.25 for the red one).  

(Lower)Three muscles are recruited in two synergies. Each element wij in a synergy vector 

W is the activation level of a given muscle j where i is the index of the synergy. A motor 

task that requires recruitment of these two synergies can be represented as an ensemble of 

scaling factor C multiply by each synergy vector W.   
 

Source: Tresch et al.(Upper); Ting et al. 2005 (Lower). 
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A matrix form of the model is given as: 

 𝑁𝑚×𝑛 =   𝑊𝑚×𝑘  ×  𝐻𝑘×𝑛 

𝑁𝑚×𝑛 = [

𝑁𝑀𝐸𝑃𝑜𝑟𝑁𝐸𝑀𝐺1,1
⋯ 𝑁𝑀𝐸𝑃𝑜𝑟𝑁𝐸𝑀𝐺1,𝑛

⋮ ⋱ ⋮
𝑁𝑀𝐸𝑃𝑜𝑟𝑁𝐸𝑀𝐺m,1

⋯ 𝑁𝑀𝐸𝑃𝑜𝑟𝑁𝐸𝑀𝐺 m,𝑛

]

𝑚×𝑛

 

𝑊𝑚×𝑘 =  [

𝑊1,1 ⋯ 𝑊1,𝑘

⋮ ⋱ ⋮
𝑊𝑚,1 ⋯ 𝑊𝑚,𝑘

]

𝑚×𝑘

 

𝐻𝑘×𝑛 = [

𝐻1,1 ⋯ 𝐻1,𝑛

⋮ ⋱ ⋮
𝐻𝑘,1 ⋯ 𝐻𝑘,𝑛

]

𝑘×𝑛

 

Where Nm × n (n muscles, m stimulations or ASLs denoted as observations) is either 

an MEP matrix or an ASL task related EMG matrix. Each row denotes as an observation 

resulted from either a TMS or an ASL; Hk × n is the synergy matrix contains k synergies. As 

given in the model, each row corresponds a synergy in which each element is the weight of 

corresponding muscle activation (i.e. H2 × 4: activation of muscle #4 in synergy #2); each 

column in the matrix Wm × k (k synergies) is weights of synergies of that corresponding 

observation (i.e. W2 × 4: weight of synergy #4 in observation #2). A hybrid use of NMF 

algorithms that is recommended by MATLAB documentation was implemented to 

decompose N and gave rise to H and W. 

 

2.5.2 Muscle Synergy Extraction Algorithm 

NMF is a versatile algorithm which has a lot of applications either in study of physiological 

problems. Image processing is another field where this algorithm has a wide use. In this 

study, two simplest and popularest NMF algorithms were used altogether to perform the 

decompossition that captures synergies: ALS and Mult. Unlike other algorithms that are 

(2.3) 



 

20 

 

also frequently used in synergy study such as PCA, ICA, FA etc., the non-negative 

constraint for the NMF makes more physiological sense for the activations of muscles 

being positive make more sense. Other than that, as what was stated in Tresch et al. 2006 a 

paper reviews serveral decomposition methods used in the extraction of synergies, these 

algorithms “differ in their assumptions on two issues: on the distributions of activation 

coefficients and on the noise within the data set”. For example, PCA and FA “assume a 

Gaussian distribution of activation coefficient”, while NMF has “no explicit assumptions 

about the distributions of activation coefficient” which they believe results in the robust 

performance of NMF. That two commonly used NMF algorithms ALS and Mult have 

gained a large popularity is partially due to their simplicity and not requiring preset of 

algorithmic parameters while still producing reasonalbe results. The Matlab 

documentation states that “In general, the ’als’ algorithm converges faster and more 

consistently, but was argued to have a problem of converging on local minima instead of 

global minimum. The ’mult’ algorithm is more sensitive to initial values, which makes it a 

good choice when using ’replicates’ to find W and H from multiple random starting 

values.” Therefore, their recommended solution is the combined use of ALS and Mult 

algorithm as a hybrid method proposed by Berry et al. 2006. Below is my MATLAB 

source code sample conducting the synergy extraction procedure. 

 

In the MATLAB implementation, Mult determined the initial W0 and H0 which 

later needed to be fed in ALS algorithm for the final solution. H*W that has the lowest least 
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root-mean-square (RMS) among 10 attempts would be considered initial input H0*W0 for 

the ALS algorithm. We visually confirmed that this hybrid method produced similar 

synergies by running the same dataset with this algorithms for many times.  

 

2.5.3 The Determination of Synergy Number 

≈90% of Proportion of Variance Account for (PAV) was set as a criterion when 

determining synergy numbers when applying NMF algorithm. The formula is given below: 

Proportion of Variance Account for (PAV) 

𝑃𝑉𝐴 = 1 −
𝑈𝑉

𝑂𝑉
 

𝑈𝑉 = ∑ ∑(𝑋𝑛𝑖 − 𝐸𝑛𝑖)
2

𝐿

𝑖=1

𝑁

𝑛=1

 

𝑂𝑉 = ∑ ∑(𝑋𝑛𝑖 − 𝐴)
2

𝐿

𝑖=1

𝑁

𝑛=1

 

UV: Unexplained Variance 

OV: Overall Variance 

Xni:  Element in the original matrix N_EMG or N_MEP 

Eni: Estimated Matrix W*H 

A: Expectation for each observation (Mean value of each observation): stimulation or ASL  

 In this process, NMF algorithm was repeatedly applied to decompose either MEP 

matrix or ASL task related matrix with different preset numbers of synergies from 1 to n, 

which is the dimensionality of MV, and is eight in our study for eight muscles were 

recorded. PAVs were calculated for every estimated matrix W*H of different synergy 

numbers. Whichever k generated the PAV closest to 90% was considered the number of 

(2.4) 

(2.5) 

(2.6) 
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synergies and the corresponding H which was denoted as synergy matrix in the previous 

section was chosen for further studies. A typical illustration of this procedure is given in 

Figure 2.8, in which both the upper and lower subplot indicate that five synergies can 

explain approximately 90% of the variance of variability of either the MEP matrix obtained 

from Subject S1 or the ASL task related EMG matrix acquired from Subject S1 ASL task 

trial 3.  

 

Figure 2.8  Synergy decomposition: The determination of synergy numbers. (Subj: S1) 

Upper: Decomposition of MEP matrix. Lower: Decomposition of ASL task related EMG 

matrix (Subj S1: ASL task Trial 3). Five (Left) and six (Right) synergies could explain 

approximately 90% variance of variability in both MEP matrix and ASL task related EMG 

matrix. 

 



 

23 

 

2.6 Synergy Matching and Comparison 

A quantitative method was used to compare synergies elicited from TMS-MEP matrix and 

ASL-task-related EMG matrix for each subject. Dot products were computed for all pairs 

of synergies. For example, TMS-MEP matrix obtained from Subject S1 elicited 5 

synergies. ASL-task-related EMG matrix of trial 3 of the same subject elicited 5 synergies 

as well. The total number of possible pairs is 5 x 5 = 25. It was done in order to find the pair 

that can achieve maximal correlation. Best matched pair was defined as the pair that has the 

highest dot product. Synergies were compared without replacement, which means once the 

best pair is defined, second best match should be searched from the remaining synergies 

that has a total number of possible pair (5-1)x(5-1) = 16. The search stopped when no 

possible pairs were left.  The synergy comparison results are given below in Figure 2.9 on 

a separated page. 
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(Matched)                                                                         (Unmatched) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9  TMS-evoked muscle behavior could be decomposed into a small set of 

synergies mirroring those in ASL tasks. The ASL-task-related synergies (green) are shown 

paired together with the corresponding best-matching TMS-derived synergies (blue) 

ordered left to right by decreasing the dot products (numbers above the paired bar plots 

asterisks indicate significant correlations (p < 0.05).  
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2.7 Predictive Power of Synergies 

The purpose of reconstruction is to see how well synergies elicited from TMS-MEP matrix 

or ASL task related matrix can predict the original dataset and random datasets. In this 

procedure, MEP vectors or ASL task related EMG vectors were reconstructed by solving 

the least-squares fitting problem min
𝑥

||𝐶 ∗ 𝑥 − 𝑑||2
2, where x ≥ 0 by using a nonnegative 

least-squares constraint algorithm lsqnonneg that is available in MATLAB. The vector d (n 

by m; 1 X number of muscles) stands for normalized EMG amplitudes obtained while 

performing a sign language letter or number or normalized MEP amplitudes of eight 

channel of one stimulation site or randomly generated vector of the same size. C contains 

the synergy matrix obtained from either the MEP dataset or EMG dataset (n by k; number 

of synergies x number of muscles) by the decomposition of the NMF algorithm on the 

datasets. Two synergy matrices were used as basis matrices to reconstruct 

ASL-task-related vectors for the purpose of evaluating the predictive power. The quality of 

reconstruction was quantified as the PVA described in Chapter 2.5.3 between C*x, the 

reconstructed vector and d, the ASL task related vector.  

Table 2.1  The Ability of the NMF-decomposed Synergies to Reconstruct the Original 

Data 

Subj HTMS->

VTMS 

Hvol->

Vvol 

HTMS->

Vrand 

Hvol->

Vrand 

HTMS->

Vvol 

Hvol->

VTMS 

S1 0.96 0.90 0.62 0.56 0.73 0.82 

S2 0.94 0.91 0.58 0.55 0.77 0.79 

S3 0.91 0.90 0.52 0.51 0.66 0.72 

S4 0.96 0.95 0.46 0.52 0.69 0.75 

S5 0.95 0.92 0.49 0.50 0.63 0.86 

Mean 0.94 0.92 0.53 0.53 0.70 0.79 

STD 0.02 0.02 0.07 0.03 0.06 0.06 
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As shown in Table 2.1, H represents synergies and V represents the original data. 

The subset Vol stands for Voluntary movement, TMS stands for TMS and Random data. 

Predictive power of synergies elicited from TMS and ASL related tasks were tested and 

quantified. Reconstruction of original data from their elicited synergies (Hvol -> Vvol, HTMS 

-> VTMS) serve as one set of control while the predication of random matrices serves as 

another set of control (Hvol -> Vrand, HTMS -> Vrand). PAVs for Hvol -> Vvol and HTMS -> VTMS 

are 0.92±0.02, 0.94±0.02. It verified the validity of the nonnegative least-squares 

constraint algorithm, and PAVs for Hvol -> Vrand, HTMS -> Vrand are 0.53±0.03 and 

0.53±0.07, meaning synergies are not able to predictive random data. PVAs for the cross 

reconstructions HTMS -> Vvol and Hvol -> VTMS are 0.70±0.06 and 0.79±0.06. The results 

demonstrated that synergies elicited from either TMS or voluntary movement can be 

predictive frameworks to explain real data.   
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CHAPTER 3 

DISCUSSION AND CONCLUSION 

 

The results of the study showed that TMS can be used to examine the mapping between the 

motor cortex and muscles involved in the control of hand muscles in healthy human 

subjects. Muscle responses were evoked as representations of MEP at modest TMS 

intensities. Unlike the results provided by the study of Gentner and Classen 2006 in which 

TMS could generate somatotopical gradient of finger movement, our results (Figure 2.3) 

do not demonstrate similar gradient topographic properties for each muscle. More rigorous 

studies need to be performed to verify the results. For TMS is not a direct stimulation 

method, the topographical results may not directly imply the relationship between 

stimulated region and muscles that were activated due to TMS, the angles of placing the 

TMS coil with respect to the scalp plain may produce different stimulation results even for 

the same stimulation sites. However, in this study, TMS was confirmed to be capable of 

generating muscle responses at a moderate intensity. Those muscle responses were not 

large enough to trigger mechanical constriant of hands. Therefore, we can conclude that 

MEPs were direct results caused by the stimulations alone plus some noise.  

 The hybrid NMF algorithm worked well on our data. It produced decomposition 

results that were visually verified to be consistent. Our results showed that for all subjects, 

5 or 6 synergies can explain 90% variance of the original dataset regardless of TMS-MEP 

data or ASL-task-related EMG data. Figure 2.9 demonstrates a high similarity between 

synergies elicited from TMS-MEP data and ASL-task-related EMG data. The result is 

similar with Overduin et al. 2012. Results given in Table 2.1 indicate that synergies of both 
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class work equally well in explaining either TMS-MEP dataset or ASL-task-related dataset 

and can serve as predictive framwork in reconstruct real data.  

Future work on the current data may involve quantitative determination similarity 

between same ASL trials within individual subjects to determine whether these EMG data 

for each trial need to be analyzed individually or not. Cortical topographic distribution of 

elicited synergies may be produced. In addition, statistical analysis of synergies between 

subjects may be performed as well.  

 The evaluation of synergy hypothesis is still going on after so many years of study. 

Even though there is considerable evidence upholding this hypothesis, some result studies 

provided strong results that challenge the hyposthesis (Kutch et al. 2008; Valero-Cuevas et 

al. 2009). In addition, the neural basis of synergies still remains unknown. All of these 

require more rigorous and clever studies. Stroke subjects may be good candidates in 

studying the neural basis of synergies. Cheung et al. 2009 observed similar synergies on 

affected arm and unaffected arm which may imply that muscle synergies may be generated 

in brain stem or spinal cord and the stroke may alter neural commands from spinal cord that 

results in fauly muscle behaviors. We might want to see if synergies patterns elicited from 

either TMS or voluntary movements of patients with brain trauma or stroke alter after 

rehablitation as Cheung et al. 2012 demonstrates the possibility of using systergy as a 

physiological markers of the status of stroke patients or patients with trauma. 

 My personal viewspoints regarding the field are given here. Compaired with 

cognative behaviors, motor behaviors are more direct therefore easier to study. One basic 

rationale in designing experiments is to minimize assumptions and control as many 

variables as possible. It is easy to apply constraints to motor behavior therefore the field of 
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motor control has been a hotspot for many years. However, it is inevitable to circumvent 

the study of the neural system when studying motor control: How neural commands are 

encoded and sent to spinal cord to result in movement; How these Synergy hypothsis is a 

good hypothesis in resolving the DOF problem, but as a theory, there must be assumptions 

or premises underneath. Therefore, Some questions may be worthy being explored such as 

whether there is difference in producing an adopt behavior vs a newly accquired behavior; 

how the brain plasticity relates to synergies; Why NMF is prefered.  

Another paradox in the field of study is that traditional empiricism of the study 

methods has developed to a point when major breakthroughs is unlikely to occur unless 

new technologies or new image medalities are introduced. We have seen that empirical 

methods have pushed the field so far. However, it is like a process of learning vocabularies 

in a foreign language: gathering evidence and looking for correspondence between these 

words and words we already know in our native languages. The initial steps might be very 

fast. With about a hundred words, it seems like we “sort of” know that language and can 

travel in countries where this language is spoken. But, in order to truly know the language, 

it is inevitable to know the syntax and gramma.  
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Therefore, we need models in spite of there might be infinite number of models that 

can be used to explain the problem. Simple models are more powerful due to their 

unlikeliness of the overfitting problem, and they may be a backbone of a better fit theory or 

a special case of that better fit theory. For example, Newton’s Law is a special case of 

Einstein’s theory of relativity at macroscopic and low speed condition, but no one can deny 

its simplicity and in real life cases, Newton’s Law is still preferred for it is easy for 

calculation. Likewise, synergies may also serve as a foundation or a building block for 

more complex and advanced theories that demonstrate synergetic property of motor 

control.  

 

 

 

 

 

 

 

 

 

 

 



 

31 

 

APPENDIX A 

MATLAB SCRIPTS FOR DATA ANALYSIS  

This sections contains MATLAB scripts for data analysis described in the context 

Mass_Process.m: the mass processing function of the small automatically analyzing 

toolbox I made. It is made for input the information of subjects. 

clear all 

clc 

  

warning('off','all') 

warning 

  

  

% Description: it is a mass processing main script 

% -------------------------------------- 

% Major Path definination 

Path_Name = 'C:\Users\popeyes\Desktop\Wei_work\Labwork\Subject Folders\'; 

Save_Path = 'C:\Users\popeyes\Desktop\Wei_work\Labwork\Results\'; 

% Add the folder and its subfolders to the search 

addpath(genpath('C:\Users\popeyes\Desktop\Wei_work\Labwork\')) 

  

% Subject Control 

% It is supposed to send subject information to the subsequent function 

% Subject Matrix 

% Subject number by Trial number 

%      Subject Initial Trial number Type 

% i.e.         TM          3         1 

%              GF          2         2 

% P.S. Type 1 subject performed more signs than Type 2 subject 

Sub_Mat = cell(5,3); 

% Fill in with subject name 

Sub_Mat{1,1} = 'CY';  

Sub_Mat{2,1} = 'GF'; 

Sub_Mat{3,1} = 'NM'; 

Sub_Mat{4,1} = 'QQ'; 

Sub_Mat{5,1} = 'TM'; 

% Fill in with trial numbers  

Sub_Mat{1,2} = 3; 

Sub_Mat{2,2} = 2; 

Sub_Mat{3,2} = 3; 

Sub_Mat{4,2} = 3; 

Sub_Mat{5,2} = 3; 

% Fill in with Type 

Sub_Mat{1,3} = 1; 

Sub_Mat{2,3} = 2; 

Sub_Mat{3,3} = 1; 
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Sub_Mat{4,3} = 1; 

Sub_Mat{5,3} = 1; 

  

% ---------------------------------------------------------------- 

% Turn Subject matrix into PATH matrix, pass the information to the 

% subsequent function 

% Path_Matrix = Sub_Matrix plus a column of Path 

Path_Mat = cell(5,4); 

Path_Mat(:,2:4) = Sub_Mat; 

% Fill in Path_Mat with PATH 

Path_Mat{1,1} = [Path_Name, Sub_Mat{1,1},'_Mapping\']; 

Path_Mat{2,1} = [Path_Name, Sub_Mat{2,1},'_Mapping\']; 

Path_Mat{3,1} = [Path_Name, Sub_Mat{3,1},'_Mapping\']; 

Path_Mat{4,1} = [Path_Name, Sub_Mat{4,1},'_Mapping\']; 

Path_Mat{5,1} = [Path_Name, Sub_Mat{5,1},'_Mapping\']; 

  

% Execute Function of second layer 

Main(Path_Mat(1,:),Save_Path) % CY 

Main(Path_Mat(2,:),Save_Path) 

Main(Path_Mat(3,:),Save_Path) 

Main(Path_Mat(4,:),Save_Path) 

Main(Path_Mat(5,:),Save_Path) 

 

 

 

 

MAP_Preprocess.m: Preprocess of the MEP data and the TMS position data 
 

 
function [N_MEPamp, NavData, GoodTrials] = MAP_Preprocess(tempData) 

%   Preprocess the Data 

%   Input: Loaded Raw Data 

%   Output: N_MEPamp -> Normalized MEP Amplitude 

%           NavData -> Position of stimulation sites 

  

GoodTrials = find(tempData.MEPstruct.trialGood(:,1)==1); % index of good 

trials 

MEPamp = tempData.MEPstruct.MEPamp; 

NavData = tempData.MEPstruct.NavCoords; 

MEPamp = MEPamp(:,1:8);  

MEPamp = MEPamp*1e3; %Convert to microvolt 

MEPamp = MEPamp(GoodTrials,:); % Only retain GoodTrials 

NavData = NavData(GoodTrials,:); 

NavData = NavData./10; %Convert from mm to cm 

  

% Normalize MEP by dividing its maximal value 

% N_MEPamp = MEPamp/(max(max(MEPamp))); 

N_MEPamp = MEPamp./repmat(max(MEPamp),length(MEPamp),1); 

  

% Not going to use them 

MAPxlim = [min(NavData(:,1)) max(NavData(:,1))]; % X limit 

MAPylim = [min(NavData(:,2)) max(NavData(:,2))]; % Y limit 

  

% Center and Normalize Positions 

NavData(:,1) = (NavData(:,1) - min(NavData(:,1)))/(max(NavData(:,1))- 

min(NavData(:,1))); 
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NavData(:,2) = (NavData(:,2) - min(NavData(:,2)))/(max(NavData(:,2))- 

min(NavData(:,2))); 

N_MEPamp(isnan(N_MEPamp)) = 0; 

end 

 

 

Main.m: main function 

function Main(Path_Array, Save_Path)  
%% ======================================================== 
% Part I Rest Mapping 
% Load Data 
tempData = 

load([Path_Array{1},Path_Array{2},'rest_preproc_autosave.mat']); 

  
% Create a folder for current subject 
Save_Path = [Save_Path,Path_Array{2}]; 
mkdir(Save_Path) 
% Change directory 
cd(Save_Path) 

  
% Muscle Involved in Experiments 
muscle = {'FDI';'EI';'APB';'ADM';'FDS';'EDC';'FCR';'ECR'}; 
%% ------------------------------------------------------ 
% Data Preprocessing 
[N_MEPamp, NavData, GoodTrials] = MAP_Preprocess(tempData); 
%% ------------------------------------------------------ 
% Data Visualization 
% MAP_Visualization(N_MEPamp, NavData, GoodTrials, tempData) 
%% ------------------------------------------------------ 
% Muscle Synergies Identification and Plot 
[H_Rest, synergy_Rest] = synergy_extraction(N_MEPamp, muscle); 
%% ------------------------------------------------------- 
% PCA Analysis and plots (need 2012b or later to run this function) 
% PCA_Analy(N_MEPamp, muscle) 

  

  
%% ======================================================== 
% Part II Voluntary movement  
for Trial_Num = 1:cell2mat(Path_Array(3)) 
    % Make a new directory to store  
    Trial_Path = [Save_Path, '\' , num2str(Trial_Num), '\']; 
    mkdir(Trial_Path) 
    % Change directory 
    cd(Trial_Path) 
    % --------------------------------------------------- 
    %  
    Vol_Data = Vol_Mov_Preprocess(Path_Array, Trial_Num); 
    % Calculate  
    [H_Mov, synergy_Mov] = synergy_extraction(Vol_Data.N_MEPamp, 

Vol_Data.Muscle); 

  
    %% ======================================================== 
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    % Part III Find Best Match 
    [match_mat,max_Dot_Prod_All,p_value,match_num] = 

Best_Match(muscle,synergy_Rest, synergy_Mov, H_Rest, H_Mov); 

     
    % 

-----------------------------------------------------------------------

------- 
    % Change directory back to upper level 
    cd(Save_Path) 

  
    % Publish this result to excel spreadsheet 
    filename = 'results.xlsx'; 
    sheet = Trial_Num; 
    xlswrite(filename, {'Index of matched column'}, sheet, 'B1'); 
    xlswrite(filename, {'H_Rest'}, sheet, 'E1'); 
    xlswrite(filename, {'H_Mov'}, sheet, 'F1'); 
    xlswrite(filename, {'Dot Product'}, sheet, 'G1'); 
    xlswrite(filename, {'Pearson r correlation'}, sheet, 'H1'); 
    xlswrite(filename, match_mat ,sheet, ['E2:F',num2str(match_num+1)]); 
    xlswrite(filename, max_Dot_Prod_All, sheet, 

['G2:G',num2str(match_num+1)]) 
    xlswrite(filename, p_value, sheet, ['H2:H',num2str(match_num+1)]) 

  

  

  
    % The Mante Carlo simulation isn't quite important for now  
    % % Find the significance 
    % % Run simulation 
    % MAX_DOT = Significance(N_MEPamp, Vol_Data.N_MEPamp); 
    % X = 1:5; 
    % for m = 1:5 
    %     X(m) = prctile(MAX_DOT(m,:),95);% 95 percentile 
    % end 
    % % We can maunually to see if they are significant 
    % $$$$$$$ 

  
    %% ========================================================= 
    % Part IV Reconstruction and Error 
    % Synergies elicited from MEP reconstruct MEP (Rest->Rest) 
    [Error_Vec_Rest_Rest, PVE_Vec_Rest_Rest, VAF_Vec_Rest_Rest] = 

Assessment_Calc(H_Rest,N_MEPamp,synergy_Rest); 
    % Synergies elicited from ASL tasks reconstruct ASL tasks (ASL->ASL) 
    [Error_Vec_Vol_Vol, PVE_Vec_Vol_Vol, VAF_Vec_Vol_Vol] = 

Assessment_Calc(H_Mov,Vol_Data.N_MEPamp,synergy_Mov); 
    % Synergies elicited from MEP reconstruct ASL tasks (Rest->ASL) 
    [Error_Vec_Rest_Vol, PVE_Vec_Rest_Vol, VAF_Vec_Rest_Vol] = 

Assessment_Calc(H_Rest,Vol_Data.N_MEPamp,synergy_Mov); 
    % Synergies elicited from ASL tasks reconstruct MEP (ASL->Rest) 
    [Error_Vec_Vol_Rest, PVE_Vec_Vol_Rest, VAF_Vec_Vol_Rest] = 

Assessment_Calc(H_Mov,N_MEPamp,synergy_Rest); 
    % --------------------------------------------------- 
    % Random Matrix with the same size as MEP 
    Rand_Mat = rand(size(N_MEPamp)); 
    % Synergies elicited from MEP reconstruct Random Matrix (Rest->Random) 
    [Error_Vec_Rest_Ran, PVE_Vec_Rest_Ran, VAF_Vec_Rest_Ran] = 

Assessment_Calc(H_Rest,Rand_Mat,synergy_Rest); 
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     % Random Matrix with the same size as MEP 
    Rand_Mat = rand(size(Vol_Data.N_MEPamp)); 
    % Synergies elicited from ASL tasks reconstruct Random Matrix 

(ASL->Random) 
    [Error_Vec_Vol_Ran, PVE_Vec_Vol_Ran, VAF_Vec_Vol_Ran] = 

Assessment_Calc(H_Mov,Rand_Mat,synergy_Mov); 

     

     

    
    % Calculate mean error and std of RMSE 
    % A 18 by 2 matrix  
    %              Mean   Standard Deviation  
    % Rest->Rest   
    % ASL->ASL   
    % Rest->ASL 
    % ASL->Rest 
    % Rest->Ran 
    % ASL->Ran 

  
    Results = [mean(Error_Vec_Rest_Rest) std(Error_Vec_Rest_Rest);... 
        mean(Error_Vec_Vol_Vol) std(Error_Vec_Vol_Vol);... 
        mean(Error_Vec_Rest_Vol) std(Error_Vec_Rest_Vol);... 
        mean(Error_Vec_Vol_Rest) std(Error_Vec_Vol_Rest);... 
        mean(Error_Vec_Rest_Ran) std(Error_Vec_Rest_Ran);...  
        mean(Error_Vec_Vol_Ran) std(Error_Vec_Vol_Ran);...%%%% 
        mean(PVE_Vec_Rest_Rest) std(PVE_Vec_Rest_Rest);... 
        mean(PVE_Vec_Vol_Vol) std(PVE_Vec_Vol_Vol);... 
        mean(PVE_Vec_Rest_Vol) std(PVE_Vec_Rest_Vol);... 
        mean(PVE_Vec_Vol_Rest) std(PVE_Vec_Vol_Rest);... 
        mean(PVE_Vec_Rest_Ran) std(PVE_Vec_Rest_Ran);...  
        mean(PVE_Vec_Vol_Ran) std(PVE_Vec_Vol_Ran);...%%%% 
        mean(VAF_Vec_Rest_Rest) std(VAF_Vec_Rest_Rest);... 
        mean(VAF_Vec_Vol_Vol) std(VAF_Vec_Vol_Vol);... 
        mean(VAF_Vec_Rest_Vol) std(VAF_Vec_Rest_Vol);... 
        mean(VAF_Vec_Vol_Rest) std(VAF_Vec_Vol_Rest);... 
        mean(VAF_Vec_Rest_Ran) std(VAF_Vec_Rest_Ran);...  
        mean(VAF_Vec_Vol_Ran) std(VAF_Vec_Vol_Ran)]; %%%% 

  
    % Publish this result to excel spreadsheet 
    xlswrite(filename, {'First 6 rows: RMSE, Second 6 rows: PVE,  Third 6 

rows: VAF'}, sheet, 'E10'); 
    xlswrite(filename, 

{'Rest->Rest';'ASL->ASL';'Rest->ASL';'ASL->Rest';'Rest->Random';'ASL->R

andom'}, sheet, 'E11:E16'); 
    xlswrite(filename, 

{'Rest->Rest';'ASL->ASL';'Rest->ASL';'ASL->Rest';'Rest->Random';'ASL->R

andom'}, sheet, 'E17:E22'); 
    xlswrite(filename, 

{'Rest->Rest';'ASL->ASL';'Rest->ASL';'ASL->Rest';'Rest->Random';'ASL->R

andom'}, sheet, 'E23:E28'); 
    xlswrite(filename, Results,sheet,'F11:G28'); 

  

  
end 
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MAP_Visualization.m: Visualization of TMS positions and their corresponding MEPs of 

various muscles. 

 

 
function MAP_Visualization(N_MEPamp, NavData, GoodTrials, tempData) 

%   Visualize  

%   Input: Loaded Raw Dat 

muscle = {'FDI';'EI';'APB';'ADM';'FDS';'EDC';'BIC';'FDI OPP'}; 

  

  

% Plot all trials (Normalized MEP) 

h_fig = figure('Visible', 'off'); 

subplot(2,2,1) 

plot(NavData(:,1),NavData(:,2),'k','Marker','o','LineStyle','none') 

title('Normalized Stimulation Sites (x-y plane)') 

xlabel('x position') 

ylabel('y position') 

  

% Plot all trials (Normalized MEP) 

subplot(2,2,2) 

N_MEPamp(isnan(N_MEPamp)) = 0; 

plot(N_MEPamp') 

xlim([0 9]) 

set(gca,'XTick',1:8) 

set(gca,'XTickLabel',muscle); 

title('MEP Tuning Curves') 

xlabel('Muscles') 

ylabel('Normalized MEPs') 

  

% Plot randomly selected stimulation sites 

n = randi([1 length(GoodTrials)],1,3); % 3 random integer 

subplot(2,2,3) 

plot(NavData(n,1),NavData(n,2),'k','Marker','o','LineStyle','none')% 

xlim([0, 1]) 

ylim([0, 1]) 

title('Normalized Randomly Selected Stimulation Sites (x-y plane)') 

xlabel('x position') 

ylabel('y position') 

  

% Plot randomly selected trials (Normalized MEP) 

subplot(2,2,4) 

plot(N_MEPamp(n,:)') 

xlim([0 9]) 

set(gca,'XTick',1:8) 

set(gca,'XTickLabel',muscle); 

title('Corresponding MEP Tuning Curves') 

xlabel('Muscles') 

ylabel('Normalized MEPs') 

  

saveas(h_fig, 'Visualization_1.png') 

close(h_fig) 
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%% --------------------------------------------------------------------- 

% Plot EMG for selected Trials 

h_fig = figure('Visible', 'off'); 

for i = 1:8 

    for j = 1:3 

        subplot(8,3,j+(i-1)*3) 

        plot(tempData.MEPstruct.EMG{n(j),i}) 

        xlabel('Time') 

        ylabel(muscle(i)) 

        %ylim([-0.1, 0.1]) 

    end 

end 

saveas(h_fig, 'Visualization_2.png') 

close(h_fig) 

  

%--------------------------------------------------------------------- 

% Plot stem figure 

h_fig = figure('Visible', 'off'); 

for k = 1:8 

    subplot(2,4,k) 

    stem3(NavData(:,1),NavData(:,2),N_MEPamp(:,k)) 

    title(muscle(k)) 

end 

% Intrapolant figures 

xlin = linspace(min(NavData(:,1)),max(NavData(:,1)),100); 

ylin = linspace(min(NavData(:,2)),max(NavData(:,2)),100); 

[X, Y] = meshgrid(xlin,ylin); 

saveas(h_fig, 'Visualization_3.png') 

close(h_fig) 

  

h_fig = figure('Visible', 'off'); 

for l = 1:8 

    subplot(2,4,l) 

    f = scatteredInterpolant(NavData(:,1),NavData(:,2),N_MEPamp(:,l)); 

    Z = f(X,Y); 

    mesh(X,Y,Z) 

    zlim([0,1]) 

    axis tight; hold on 

    plot3(NavData(:,1),NavData(:,2),N_MEPamp(:,l),'.','MarkerSize',15) 

%nonuniform 

    title(muscle(k)) 

end 

saveas(h_fig, 'Visualization_4.png') 

close(h_fig) 

  

% Covariance matrix 

Cov_Mat = cov(N_MEPamp); 

h_fig = figure('Visible','off'); 

imagesc(Cov_Mat) 

axis ij 

axis square 

title('Covarience Matrix') 

colorbar 

set(gca,'XTickLabel',muscle) 

set(gca, 'YTickLabel',muscle) 
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saveas(h_fig, 'Covariance.png') 

close(h_fig) 

  

% Correlation matrix 

Cor_Mat = corrcov(Cov_Mat); 

h_fig = figure('Visible','off'); 

imagesc(Cor_Mat) 

axis ij 

axis square 

title('Correlation Matrix') 

colorbar 

set(gca,'XTickLabel',muscle) 

set(gca, 'YTickLabel',muscle) 

  

saveas(h_fig, 'Correlation.png') 

close(h_fig) 

  

end 

 

 

Vol_Mov_Preprocess.m: Preprocess of the ASL task EMG data. 

 

 
function Preprocessed_Data = Vol_Mov_Preprocess(Path_Array, Trial_Num) 

% Preprocess voluntary movement data 

%  Load EMG Data and Preprocess to generate and return amplitude data 

%  Each subject perform sign language number and letter 

  

% Sign Name 

switch Path_Array{4} 

    case 1 

        % For subject TM, NM, QQ, CY 32 signs 

        Sign_Name = {'A';'B';'C';'E';'F';'G';'H';'I';'K';'L';'M';'N';... 

            'O';'P';'Q';'R';'S';'T';'U';'V';'W';'X';'Y';... 

            '1';'2';'3';'4';'5';'6';'7';'8';'9'}; 

    case 2 

        % For subject GF 28 signs 

        Sign_Name = {'A';'B';'C';'E';'F';'G';'H';'I';'K';'L';'M';'N';... 

            'O';'P';'Q';'R';'S';'T';'U';'V';'W';'X';'Y'... 

            ;'1';'2';'3';'4';'5'}; 

end 

Num_Sign = length(Sign_Name); 

% Muscle Name 

muscle = {'FDI';'EI';'APB';'ADM';'FDS';'EDC';'FCR';'ECR'}; 

Num_Muscle = length(muscle); 

% Path 

  

Path_Name = [Path_Array{1}, '\ASLtask\Trial', num2str(Trial_Num), '\']; 

  

% 

-----------------------------------------------------------------------

----------- 

Preprocessed_Data = []; % structure to load EMG data 

  

% EMG filter profile 
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fs = 1000; % sampling frequency 

fc_H = 10; % cutoff frequency High Pass 

fc_L = 300; %cutoff frequency Low Pass 

order = 6; % filter order 

nfc_H = 2*fc_H/fs; % normalized cutoff frequency 

nfc_L = 2*fc_L/fs; % normalized cutoff frequency 

[B_H,A_H] = butter(order, nfc_H,'high'); 

[B_L,A_L] = butter(order, nfc_L,'low'); 

[B_Power,A_Power] = butter(2, [59.5 60.5]*2/fs,'stop'); % Power remove 

% 

-----------------------------------------------------------------------

------ 

h_fig = figure('Visible', 'off'); 

plotscale = 0.8; % to make all EMG on the same subplot 

MEP_amp = zeros(Num_Sign, Num_Muscle);% Pre-defined matrix to store 

Amplitude 

for i = 1:Num_Sign 

    % load files to create a structure 

    temp = load([Path_Name,Sign_Name{i},'.mat']); % load data 

    temp_EMG = temp.EMG;  

    time = (1:length(temp_EMG(:,1)))/fs; % length of EMG/fs = time 

     

    subplot(2, ceil(Num_Sign/2), i) 

    % Filter each muscle 

    for j = 1:Num_Muscle 

        temp_EMG(:,j) = filtfilt(B_H, A_H, temp_EMG(:,j)); 

        temp_EMG(:,j) = filtfilt(B_L, A_L, temp_EMG(:,j)); 

        temp_EMG(:,j) = filtfilt(B_Power, A_Power, temp_EMG(:,j)); 

        temp_EMG(:,j) = abs(temp_EMG(:,j)); 

        % Calculate Amplitude and Normalized Amplitude 

        a = temp_EMG(:,j); 

        MEP_amp(i,j) = mean(a(5000:7000)); 

        plot(time, temp_EMG(:,j) + j*plotscale) 

        hold on 

    end 

    % I need to put ylabel and xlabel here to make the plot look better 

    set(gca, 'XTickLabel',[]) 

    set(gca, 'YTickLabel',[]) 

  

end 

saveas(h_fig, 'ASL_EMG.png') 

close(h_fig) 

  

  

% Normalize MEP_amp 

N_MEPamp = MEP_amp./repmat(max(MEP_amp),length(MEP_amp),1); 

%%%% Note all sign amp stay here 

  

% 

----------------------------------------------------------------------- 

% Draw circles  

h_fig = figure('Visible', 'off'); 

for i = 1:Num_Sign 

    subplot(4, ceil(Num_Sign/4), i) 

    circleplot(N_MEPamp(i,:), muscle, Sign_Name(i)) 

end 

saveas(h_fig, 'ASL_AMP.png') 
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close(h_fig) 

  

  

% Store data in a structure for output 

Preprocessed_Data.Sign = Sign_Name; 

Preprocessed_Data.Muscle = muscle; 

Preprocessed_Data.MEP_amp = MEP_amp; 

Preprocessed_Data.N_MEPamp = N_MEPamp; 

end 

 

 

synergy_extraction.m: Extract synergy matrix 

 

 
function [H, synergy_num] = synergy_extraction( N_MEPamp, muscle ) 
%Extraction of muscle synergies using NNMF algorithm 
% Muscle synergy (NMF) 
% Identify number of synergies 
% Using MATLAB built-in function nnmf 
% --------------------------------------------------------- 
% Determine if one array in the matrix are equal to zero 
% If so, delete them (Decrease the sparseness 
N_MEPamp(find(any(N_MEPamp')==0),:) = []; 
[muscle_num, ~] = size(muscle); 

  
R2 = 1:muscle_num; 
VAF = 1:muscle_num; 

  
for i = 1:muscle_num 
    % A possible solution to find more consistent solutions 
    opt = statset('MaxIter',100,'Display','final'); 
    % Maximal iteration allowed = 100; Display final outcome 
    [W0,H0] = 

nnmf(N_MEPamp,i,'replicates',10,'options',opt,'algorithm','mult'); 
    opt = statset('Maxiter',10000,'Display','final'); 
    [W,H,D] = 

nnmf(N_MEPamp,i,'w0',W0,'h0',H0,'options',opt,'algorithm','als');   
    % Decompose normalized MEP Amplitude 
    % N_MEPamp: 80by8 => W:80*i & H:i*8 
    R2(i) = D; 
    % --------------------------------------------- 
    % Calculate VAF by using the formula on the webpage 
    % http://www.rasch.org/rmt/rmt173g.htm 
    % VAF = 1 - UV/OV 
    % UV = (x-y)'*(x-y) --- we only want numbers on the diagonal 
    % OV = (y-mean(y))'*(y-mean(y)) --- The same as above, we only want 
    % numbers on the diagonal 
    % --------------------------------------------- 
    temp = N_MEPamp - W*H; 
    UV = trace(temp*temp'); 
    temp_2 = bsxfun(@minus,N_MEPamp,mean(N_MEPamp, 2)); 
    OV = trace(temp_2*temp_2'); 
    VAF(i) = 1 - UV/OV; 
end 
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% Set the threshold to 0.05 
% 1.Residual method 
% [~, synergy_num] = min(abs(R2-0.05)); % find the nearest  
% 2.VAF method 
[~, synergy_num] = min(abs(VAF-0.9)); % find the nearest set to 90% 

  
%% ---------------------------------------------------------------- 
h_fig = figure('Visible', 'off'); 
plot(R2) 
xlabel('Number of synergies') 
ylabel('Root-mean-squared residual') 
title('Synergy Decomposition') 
line('XData', [0 muscle_num], 'YData', [0.05 0.05], 'LineStyle', '-', ... 
    'LineWidth', 2, 'Color','m'); 
saveas(h_fig, 'Synergy_Decomp.png') 
close(h_fig) 
% ----------------------------------------------------------------- 
h_fig = figure('Visible', 'off'); 
plot(VAF) 
xlabel('Number of synergies') 
ylabel('Varience Account for') 
title('Synergy Decomposition') 
line('XData', [0 muscle_num], 'YData', [0.9 0.9], 'LineStyle', '-', ... 
    'LineWidth', 2, 'Color','m'); 
saveas(h_fig, 'Synergy_Decomp_2.png') 
close(h_fig) 

  
%% -------------------------------------------------------------------- 
% A possible solution to find more consistent solutions 
opt = statset('MaxIter',100,'Display','final'); 
[W0,H0] = 

nnmf(N_MEPamp,synergy_num,'replicates',10,'options',opt,'algorithm','mu

lt'); 
% Maximal iteration allowed = 100; Display final outcome 
% The number of times to repeat the factorization, using new random 
% starting values for W and H. "Mult" represents the multiplicative update 
% algorithm that is more sensitive to initial values. "Replicates" can be 
% used to find W and H from multiple random starting values. 
% The command above gives out 10 iteration, and the best one (smallest RMS) 
% is used to feed for alternating least squares for more iteration. 

  
opt = statset('Maxiter',10000,'Display','final'); 
[~,H,~] = 

nnmf(N_MEPamp,synergy_num,'w0',W0,'h0',H0,'options',opt,'algorithm','al

s');  
% Maximal interation allowed = 10000; Display final outcome 
% "als" stands for the alternating least squares algorithm that converges 
% faster and more consistently. 
% Final # of synergies is synergy_num 
% H contains some synergies; W contains weights for Good trials 

  
% ------------------------------------------------------------------- 
% Visualize synergies by muscles (We are interested in H) 
h_fig = figure('Visible', 'off'); 
bar(H'); 
set(gca,'XTickLabel',muscle); 
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xlabel('Muscles') 
ylabel('Normalized MEP') 
title('Synergies Visualization') 
ylim([0 2]) 
legend_title = cell(synergy_num,1); 
for j = 1:synergy_num 
    legend_title(j) = cellstr(['Synergy ',num2str(j)]); 
end 
legend(legend_title) 
saveas(h_fig, 'synergy_by_muscle.png') 
close(h_fig) 

  

  
% Visualize synergies by synergies 
h_fig = figure('Visible', 'off'); 
bar(H); 
set(gca,'XTickLabel',legend_title); 
xlabel('Synergies') 
ylabel('Normalized MEP') 
title('Synergies Visualization') 
ylim([0 2]) 
legend(muscle) 
saveas(h_fig, 'synergy_by_synergy.png') 
close(h_fig) 

  

  
end 

 

 

synergy_extraction_no_plot.m: extract synergies matrix but not  

 
function [H, synergy_num] = synergy_extraction_no_plots(N_MEPamp, muscle) 
%Extraction of muscle synergies using NNMF algorithm 
% Muscle synergy (NMF) 
% Identify number of synergies 
% Using MATLAB built-in function nnmf 
% Not produce plots only for calculation 

  
% --------------------------------------- 
% Determine if one array in the matrix are equal to zero 
% If so, delete them (Decrease the sparseness 
N_MEPamp(find(any(N_MEPamp')==0),:) = []; 
[muscle_num, ~] = size(muscle); 

  
R2 = 1:muscle_num; 
VAF = 1:muscle_num; 

  
for i = 1:muscle_num 
    % A possible solution to find more consistent solutions 
    opt = statset('MaxIter',100,'Display','final'); 
    % Maximal iteration allowed = 100; Display final outcome 
    [W0,H0] = 

nnmf(N_MEPamp,i,'replicates',10,'options',opt,'algorithm','mult'); 
    opt = statset('Maxiter',10000,'Display','final'); 
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    [W,H,D] = 

nnmf(N_MEPamp,i,'w0',W0,'h0',H0,'options',opt,'algorithm','als');   
    % Decompose normalized MEP Amplitude 
    % N_MEPamp: 80by8 => W:80*i & H:i*8 
    R2(i) = D; 
    % --------------------------------------------- 
    % Calculate VAF by using the formula on the webpage 
    % http://www.rasch.org/rmt/rmt173g.htm 
    % VAF = 1 - UV/OV 
    % UV = (x-y)'*(x-y) --- we only want numbers on the diagonal 
    % OV = (y-mean(y))'*(y-mean(y)) --- The same as above, we only want 
    % numbers on the diagonal 
    % --------------------------------------------- 
    temp = N_MEPamp - W*H; 
    UV = trace(temp*temp'); 
    temp_2 = bsxfun(@minus,N_MEPamp,mean(N_MEPamp, 2)); 
    OV = trace(temp_2*temp_2'); 
    VAF(i) = 1 - UV/OV; 
end 

  
% Set the threshold to 0.05 
% 1.Residual method 
% [~, synergy_num] = min(abs(R2-0.05)); % find the nearest  
% 2.VAF method 
[~, synergy_num] = min(abs(VAF-0.9)); % find the nearest set to 90% 

  

  
% A possible solution to find more consistent solutions 
opt = statset('MaxIter',100,'Display','final'); 
[W0,H0] = 

nnmf(N_MEPamp,synergy_num,'replicates',10,'options',opt,'algorithm','mu

lt'); 
% Maximal iteration allowed = 100; Display final outcome 
% The number of times to repeat the factorization, using new random 
% starting values for W and H. "Mult" represents the multiplicative update 
% algorithm that is more sensitive to initial values. "Replicates" can be 
% used to find W and H from multiple random starting values. 
% The command above gives out 10 iteration, and the best one (smallest RMS) 
% is used to feed for alternating least squares for more iteration. 

  
opt = statset('Maxiter',10000,'Display','final'); 
[~,H,~] = 

nnmf(N_MEPamp,synergy_num,'w0',W0,'h0',H0,'options',opt,'algorithm','al

s');  
% Maximal interation allowed = 10000; Display final outcome 
% "als" stands for the alternating least squares algorithm that converges 
% faster and more consistently. 

  

  

  
% Final # of synergies is 5 
% H contains 5 synergies; W contains weights for Good trials 
end 
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Best_Match.m: Find the best match 

 

 

 
function [match_mat,max_Dot_Prod_All,p_value,match_num] = 

Best_Match(muscle, synergy_Rest, synergy_Mov, H_Rest, H_Mov) 
%UNTITLED3 Summary of this function goes here 
%   Detailed explanation goes here 

  
[muscle_size, ~] = size(muscle); 
% Compute Dot Product 
    Dot_prod = zeros(synergy_Rest,synergy_Mov); % syngery_Rest x 

synergy_Mov x axis: Rest; y axis: Vol 
    for i = 1:synergy_Rest 
        for j = 1:synergy_Mov 
        Dot_prod(i,j) = sum(H_Rest(i,:).*H_Mov(j,:)); 
        end 
    end 

  
    % Find largest dotproduct to determine the best match 
    % Determine the significance 
    % Calculated using Pearson's r correlation 
    % http://faculty.quinnipiac.edu/libarts/polsci/Statistics.html 
    % 

https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coeffi

cient 
    match_num = min(synergy_Rest, synergy_Mov); 
    match_mat = zeros(match_num,2); % Store match index column 1:rest; 

col2:mov 
    max_Dot_Prod_All = zeros(match_num,1); % Store Dot product 
    p_value = zeros(match_num,1); % Store P value 
    % The following for loop does three jobs 
    % 1: finding matches 2: calculating p values 3: plot matching  
    h_fig = figure('Visible', 'off'); 
    for k = 1:match_num 
        max_dot = max(max(Dot_prod)); 
        max_Dot_Prod_All(k,1) = max_dot; 
        [r,c] = find(Dot_prod == max_dot); 
        match_mat(k,1) = r; % match 
        match_mat(k,2) = c; % match 
        [~,x] = corrcoef(H_Rest(r,:), H_Mov(c,:)); % calculate p value 
        % t test here 
        % [h,~,~,~] = ttest2(H_Rest(r,:), H_Mov(c,:)); 
        p_value(k) = x(2,1); 
        % clear corresponding row and column 
        Dot_prod(r,:) = 0; 
        Dot_prod(:,c) = 0; 

         
        % Plot 
        subplot(1,2*match_num,(k-1)*2+1) 
        h = barh(H_Rest(r,:)'); 
        set(get(h,'Parent'),'xdir','r') 
        axis off 
        if p_value(k) <= 0.05 



 

45 

 

            h_1 = title([num2str(max_dot),'*']); 
        else 
            h_1 = title(num2str(max_dot)); 
        end 
        P = get(h_1,'Position'); 
        set(h_1,'Position',[P(1)-1.05 P(2) P(3)]) 
         if k == 1 
             for n = 1:muscle_size 
                text(2.1,n,muscle(n)) 
             end 
         end 
         subplot(1,2*match_num,2*k) 
         barh(H_Mov(c,:)') 
         xlim([0 1]) 
         axis off 
    end 
    saveas(h_fig, 'matching.png') 

    
    % Plot unmatched synergies 
    % Three cases: synergy_Rest > synergy_Mov 
    %              synergy_Rest < synergy_Mov 
    %              synergy_Rest == synergy_Mov 
    if synergy_Rest < synergy_Mov  
        h_fig_1 = figure('Visible', 'off'); 
        unmatched = find(ismember((1:synergy_Mov),match_mat(:,2))==0); 
        unmatched_num = synergy_Mov - synergy_Rest; 
        for o = 1:unmatched_num 
            subplot(1,unmatched_num,o) 
            barh(H_Mov(unmatched(o),:)') 
            if o == 1 
            for p = 1:muscle_size 
                text(1,p,muscle(p)) 
            end 
            end 
            title('Mov') 
            xlim([0 1]) 
            axis off 
        end 
        saveas(h_fig_1, 'unmatching.png') 
    elseif synergy_Rest > synergy_Mov 
        h_fig_1 = figure('Visible', 'off'); 
        unmatched = find(ismember((1:synergy_Rest),match_mat(:,2))==0); 
        unmatched_num = synergy_Rest - synergy_Mov; 
        for o = 1:unmatched_num 
            subplot(1,unmatched_num,o) 
            barh(H_Rest(unmatched(o),:)') 
            if o == 1 
            for p = 1:muscle_size 
                text(-0.5,p,muscle(p)) 
            end 
            end 
            title('Rest') 
            xlim([0 1]) 
            axis off 
        end    
        saveas(h_fig_1, 'unmatching.png') 
    end 
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end 

 

 

Assessment_Calc.m: Calculate PVA 

 

 

 
function [Error, PVE, VAF] = Assessment_Calc(H,N_MEPamp,synergy_num) 
% Input: 
% H: synergies elicited 
% N_MEPamp: Matrix ready for reconstruction 
% synergy_num: # of synergies 
% //////////////////////////////// 
% Output: 
% Error: Root-mean-squared residual 
% PVE: Proportion of variance explained 
% VAF: Varience account for 
% Equations are given below 
% ///////////////////////////////// 

  

  
%% --------------------------------------------------------- 
Num = length(N_MEPamp); % Number of rows 
Error = 1: Num; % Error vector 
% ------------------------------------------------------------- 
PVE = 1: Num; % PVE vector 
% ------------------------------------------------------------- 
VAF = 1: Num; % VAF vector 
% ------------------------------------------------------------- 
%% 
for m = 1:Num 
    % Version I Root Mean Squared Error (RMSE) 
    % lsqnonneg:Solve nonnegative least-squares constraint problem 
    % Error = norm(d-C*X)/sqrt(n*m) same as determined D calculated in NMF 

function 
    % Here n = 1; m = synergy_num 
    % --------------------------------------------------------- 
    % Version II Proportion of Variance Explained (PVE) 
    % The explanation of PVE is given at: 
    % https://www.msu.edu/user/sw/statrev/strv211.htm 
    % 

https://en.wikipedia.org/wiki/Explained_variation#Correlation_coefficie

nt_as_measure_of_explained_variance 
    % PVE = SSR/SST 
    % SSR: (x-mean(x))'*(y-mean(y)))^2 
    % SST: (x-mean(x))'*(x-mean(x))*((y-mean(y))'*(y-mean(y))) 
    % ------------------------------------------------- 
    % Version III Variance Account for (VAF) 
    % http://www.rasch.org/rmt/rmt173g.htm (Website was provided by Mat) 
    % VAF = 1 - UV/OV 
    % UV = (x-y)'*(x-y) 
    % OV = (y-mean(y))'*(y-mean(y)) 
    % --------------------------------------------------------- 
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    % Calculate X: non-negative least squared fit (nnlsf) (save computing 

power) 
    % Calculate C*X Reconstructed muscle response for a single trial 
    CX = transpose(H)*lsqnonneg(transpose(H),transpose(N_MEPamp(m,:))); 

  
    % --------------------------------------------------------- 
    % Voluntary activity -> Voluntary activity 
    Error(m) = norm(CX - transpose(N_MEPamp(m,:)))/sqrt(synergy_num); 
    %%%%%%%%%%%%%%%% 
    PVE(m) = ((CX - mean(CX))'... 
        *(transpose(N_MEPamp(m,:))-mean(transpose(N_MEPamp(m,:)))))^2 

... 
        /((CX-mean(CX))'*(CX-mean(CX))... 
        

*((transpose(N_MEPamp(m,:)))-mean(transpose(N_MEPamp(m,:))))'*(transpos

e(N_MEPamp(m,:))-mean(transpose(N_MEPamp(m,:))))); 
    %%%%%%%%%%%%%%%% 
      VAF(m) = 1 - (CX -transpose(N_MEPamp(m,:)))'*(CX 

-transpose(N_MEPamp(m,:)))... 
        

/(((transpose(N_MEPamp(m,:)))-mean(transpose(N_MEPamp(m,:))))'*(transpo

se(N_MEPamp(m,:))-mean(transpose(N_MEPamp(m,:))))); 

  
end 

  
PVE(isnan(PVE)) = []; 
Error(find(Error)==0) = []; 
VAF(isnan(VAF)) = []; 

  
end 

 

 

PCA_Analy.m: PCA Analysis 

 

 
function PCA_Analy(N_MEPamp, muscle) 
%PCA Analysis 

  

  
% Distance of MP's MV 
n = length(N_MEPamp); 
Distance = zeros(n, n); 
MyDistance = zeros(n, n); 
for i = 1:n 
    temp = sqrt(sum(N_MEPamp(i,:).*N_MEPamp(i,:))); 
    temp0 = N_MEPamp(i,:); 
    for j = 1:n 
        % d_MV = 1 - sum(MVi*MVj)/sqrt 
        Distance(i,j) = 1 - sum(N_MEPamp(i,:).*N_MEPamp(j,:))... 
            /(temp*sqrt(sum(N_MEPamp(j,:).*N_MEPamp(j,:)))); 
        % My distance is just view them as a point in high dimensional 
        % space, and find their natural distance 
        temp1 = temp0 - N_MEPamp(j,:); 
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        MyDistance(i,j) = sqrt(sum(temp1.*temp1)); 
    end 
end 
% Normalize MyDistance 
MyDistance = MyDistance./(max(max(MyDistance))); 

  
% Distance matrices visualization 
h_fig = figure('Visible', 'off');  
pcolor(MyDistance) 
axis ij 
axis square 
title('Distance') 
colorbar 
saveas(h_fig, 'PCA_Dist_Mat.png') 
close(h_fig) 

  
%% --------------------------------------------------------------- 
%% 

====================================================================== 
% Hierachical cluster analysis is used to cluster muscle vector (MV) 
% Distance calculated here is euclidean distance 
% figure 
% Z_1 = linkage(pdist(N_MEPamp)); 
% dendrogram(Z_1) 
% title('Hierachical clustering') 

  
% PCA  
[PCAcoeff, PCAscore, eigenvalues,~, explained] = pca(N_MEPamp,... 
    'VariableWeights','Variance'); 

  
% Scree Plot 
% figure 
% plot(eigenvalues); 
% title('Scree Plot') 
% line('XData', [0 8], 'YData', [1 1], 'LineStyle', '-', ... 
%     'LineWidth', 2, 'Color','m'); 

  
h_fig = figure('Visible', 'off');  
pareto(explained) 
xlabel('Principal Component') 
ylabel('Variance Explained (%)') 
title('Variance Explained') 
saveas(h_fig, 'PCA_Explained.png') 
close(h_fig) 

  

  
% Plot of component weights 
% figure 
% marker = '.ox+*sdv'; 
% for p = 1:8 
%     line('XData', [0 PCAcoeff(p,1)], 'YData', [0 

PCAcoeff(p,2)],'Marker',marker(p),'LineStyle', '-', ... 
%     'LineWidth', 2, 'Color', 'b'); 
%     legend(muscle(p)) 
%     hold on 
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% end 

  
% A better plot - Biplot 
[numobs, numvars] = size(N_MEPamp); 
h_fig = figure('Visible', 'off');  
hold on; 
scatter(PCAscore(:,1), PCAscore(:,2), 5, 'bo'); 
scale = max((abs(PCAscore(:,1:2)))) ./ max((abs(PCAcoeff(:,1:2)))); 
scatter(PCAcoeff(:,1)*scale(1), PCAcoeff(:,2)*scale(2), 'ro', 'filled'); 
for i = 1:numvars 
    line([0,PCAcoeff(i,1)*scale(1)],... 
        [0,PCAcoeff(i,2)*scale(2)], 'Color', 'r'); 
    text(PCAcoeff(i,1)*scale(1)-1, PCAcoeff(i,2)*scale(2), muscle{i}); 
end 
title('Principal Component Biplot'); 
xlabel('PC 1'); 
ylabel('PC 2'); 
saveas(h_fig, 'PCA_Biplot.png') 
close(h_fig) 

  

  
end 

 

 

circleplot.m: Plot MV circles 

 

 
function circleplot(N_MEPamp, muscle, Sign_Name) 
%Produce circleplot for each sign movement 
%   Inputs are muscles and N_MEPamp 
mean_MEPamp = mean(N_MEPamp); 
std_MEPamp = std(N_MEPamp); 
[numobs, numvars] = size(N_MEPamp); 
STD = (N_MEPamp - repmat(mean_MEPamp,numobs,1)) ./ 

repmat(std_MEPamp,numobs,1); 
for ax = 1:numvars 
    ylim([-5, 5]); 
    upperlimits = [4, 3, -2, -3]; 
    lowerlimits = [3, 2, -3, -4]; 
    colors = {'r', 'y', 'y', 'r'}; 
    for i = 1:4 
        patch([0, 0, numobs, numobs],... 
            [upperlimits(i), lowerlimits(i), lowerlimits(i), 

upperlimits(i)],... 
            colors{i}, 'EdgeColor', 'none', 'FaceAlpha', 0.4); 
    end 
end 

  
offset = 4; 

  
[X,Y] = pol2cart(... 
    (0:1/numvars:1)*2*pi,... 
    [STD(1,:), STD(1,1)] + offset); 
plot(X,Y); 
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axis off square; 
hold on; 

  
% Plot upper and lower control limits at 2 and 3 sd 

  
for i = 1:4 
    [X,Y] = pol2cart(... 
        [0:1/99:1,1:-1/99:0]*2*pi,... 
        [ones(1,100)* (upperlimits(i)+offset),... 
        ones(1,100)* (lowerlimits(i)+offset)]); 
    patch(X, Y, colors{i}, 'EdgeColor', 'none', 'FaceAlpha', 0.4); 
end 

  
% Label variables nicely 

  
[X,Y] = pol2cart(... 
    (0:1/numvars:1)*2*pi,... 
    ones(1,numvars+1)*(4 + offset)); 
for i = 1:numvars 
    h = text(X(i), Y(i), muscle{i}); 
    circlepos = (i-1)/numvars; 
    if circlepos < 0.25 
        set(h, 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 

'left'); 
    elseif circlepos == 0.25 
        set(h, 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 

'center'); 
    elseif circlepos < 0.5 
        set(h, 'VerticalAlignment', 'bottom', 'HorizontalAlignment', 

'right'); 
    elseif circlepos == 0.5 
        set(h, 'VerticalAlignment', 'middle', 'HorizontalAlignment', 

'right'); 
    elseif circlepos < 0.75 
        set(h, 'VerticalAlignment', 'top', 'HorizontalAlignment', 

'right'); 
    elseif circlepos == 0.75 
        set(h, 'VerticalAlignment', 'top', 'HorizontalAlignment', 

'center'); 
    elseif circlepos < 1 
        set(h, 'VerticalAlignment', 'top', 'HorizontalAlignment', 

'left'); 
    end 
end 

  

  
title(Sign_Name) 
end 

 

 

subtitle.m: subtitle 
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function [ax,h]=subtitle(text) 
% 
%Centers a title over a group of subplots. 
%Returns a handle to the title and the handle to an axis. 
% [ax,h]=subtitle(text) 
%           returns handles to both the axis and the title. 
% ax=subtitle(text) 
%           returns a handle to the axis only. 
ax=axes('Units','Normal','Position',[.075 .075 .85 .85],'Visible','off'); 
set(get(ax,'Title'),'Visible','on') 
title(text); 
if (nargout < 2) 
    return 
end 
h=get(ax,'Title'); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

52 

 

REFERENCES 

Ajiboye, A. B., & Weir, R. F. (2009). Muscle synergies as a predictive framework for the 

EMG patterns of new hand postures. Journal of neural engineering, 6(3), 036004. 

Aoyagi, Y., Stein, R. B., Mushahwar, V. K., & Prochazka, A. (2004). The role of 

neuromuscular properties in determining the end-point of a movement. Neural 

Systems and Rehabilitation Engineering, IEEE Transactions on, 12(1), 12-23. 

Barker, A. T., Jalinous, R., & Freeston, I. L. (1985). Non-invasive magnetic stimulation of 

human motor cortex. The Lancet, 325(8437), 1106-1107. 

Bernstein N. (1967). The Coordination and Regulation of Movements. Pergamon Press. 

New York.OCLC 301528509 

Berry, M. W., Browne, M., Langville, A. N., Pauca, V. P., & Plemmons, R. J. (2007). 

Algorithms and applications for approximate nonnegative matrix 

factorization. Computational statistics & data analysis, 52(1), 155-173. 

Bizzi, E., Mussa-Ivaldi, F. A., & Giszter, S. (1991). Computations underlying the 

execution of movement: a biological perspective. Science, 253(5017), 287-291. 

Cheung, V. C., Piron, L., Agostini, M., Silvoni, S., Turolla, A., & Bizzi, E. (2009). 

Stability of muscle synergies for voluntary actions after cortical stroke in 

humans. Proceedings of the National Academy of Sciences, 106(46), 19563-19568. 

Cheung, V. C., Turolla, A., Agostini, M., Silvoni, S., Bennis, C., Kasi, P., ... & Bizzi, E. 

(2012). Muscle synergy patterns as physiological markers of motor cortical 

damage. Proceedings of the National Academy of Sciences,109(36), 14652-14656. 

d'Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the 

construction of a natural motor behavior. Nature neuroscience, 6(3), 300-308.  

Hallett, M. (2000). Transcranial magnetic stimulation and the human 

brain.Nature, 406(6792), 147-150. 

Huntley, G. W., & Jones, E. G. (1991). Relationship of intrinsic connections to forelimb 

movement representations in monkey motor cortex: a correlative anatomic and 

physiological study. Journal of neurophysiology, 66(2), 390-413. 

Giszter, S. F., Mussa-Ivaldi, F. A., & Bizzi, E. (1993). Convergent force fields organized in 

the frog's spinal cord. The journal of neuroscience, 13(2), 467-491. 

Kutch, J. J., Kuo, A. D., Bloch, A. M., & Rymer, W. Z. (2008). Endpoint force fluctuations 

reveal flexible rather than synergistic patterns of muscle cooperation. Journal of 

neurophysiology, 100(5), 2455-2471. 



 

53 

 

Kutch, J. J., Kuo, A. D., Bloch, A. M., & Rymer, W. Z. (2008). Endpoint force fluctuations 

reveal flexible rather than synergistic patterns of muscle cooperation. Journal of 

neurophysiology, 100(5), 2455-2471. 

Lang, C. E., & Schieber, M. H. (2004). Human finger independence: limitations due to 

passive mechanical coupling versus active neuromuscular control.Journal of 

neurophysiology, 92(5), 2802-2810. 

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. 

In Advances in neural information processing systems (pp. 556-562). 

Loeb, E. P., Giszter, S. F., Saltiel, P., Bizzi, E., & Mussa-Ivaldi, F. A. (2000). Output units 

of motor behavior: an experimental and modeling study. Journal of Cognitive 

Neuroscience, 12(1), 78-97. 

Mussa-Ivaldi, F. A., Giszter, S. F., & Bizzi, E. (1994). Linear combinations of primitives in 

vertebrate motor control. Proceedings of the National Academy of 

Sciences, 91(16), 7534-7538. 

Mushahwar, V. K., Aoyagi, Y., Stein, R. B., & Prochazka, A. (2004). Movements 

generated by intraspinal microstimulation in the intermediate gray matter of the 

anesthetized, decerebrate, and spinal cat. Canadian journal of physiology and 

pharmacology, 82(8-9), 702-714. 

Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non‐negative factor 

model with optimal utilization of error estimates of data 

values.Environmetrics, 5(2), 111-126. 

Rose, P. K., & Scott, S. H. (2003). Sensory-motor control: a long-awaited behavioral 

correlate of presynaptic inhibition. Nature neuroscience, 6(12), 1243-1245. 

Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation of 

the human motor cortex. Journal of neuroscience methods, 74(2), 113-122. 

Ting, L. H., & Macpherson, J. M. (2005). A limited set of muscle synergies for force 

control during a postural task. Journal of neurophysiology, 93(1), 609-613. 

Tresch, M. C., & Bizzi, E. (1999). Responses to spinal microstimulation in the chronically 

spinalized rat and their relationship to spinal systems activated by low threshold 

cutaneous stimulation. Experimental brain research, 129(3), 401-416. 

Tresch, M. C., Cheung, V. C., & d'Avella, A. (2006). Matrix factorization algorithms for 

the identification of muscle synergies: evaluation on simulated and experimental 

data sets. Journal of Neurophysiology, 95(4), 2199-2212. 

Tresch, M. C., & Jarc, A. (2009). The case for and against muscle synergies.Current 

opinion in neurobiology, 19(6), 601-607. 

Turvey, M. T. (2007). Action and perception at the level of synergies. Human movement 

science, 26(4), 657-697. 



 

54 

 

Valero-Cuevas, F. J., Venkadesan, M., & Todorov, E. (2009). Structured variability of 

muscle activations supports the minimal intervention principle of motor 

control. Journal of neurophysiology, 102(1), 59-68. 

 


	Comparison of muscle synergies elicited from transcranial meganetic stimulation (tms) and voluntary movements
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Methods and Results
	Chapter 3: Discussion and Conclusion
	Appendix A: MATLAB Scripts for Data Analysis
	References

	List of Tables
	List of Figures

