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ABSTRACT 

A COMPUTATIONAL MODEL FOR TRANSDERMAL DIFFUSION 

OF LIDOCAINE AND TETRACAINE TOPICAL PATCHES 

By 

Qian Dong 

In recent years, transdermal drug delivery patches (TDDP) have developed rapidly. This is 

because the TDD system has more advantages than traditional drug delivery systems such 

as oral medicine and intravenous injection. In order to reach the circulatory system of the 

human body, drug molecules have to pass through the epidermis (outer layer) of the skin. 

The barrier properties of epidermis originate from low permeability of stratum corneum 

(SC) which is the outermost layer of the human skin. The objective of this thesis is to build 

a Finite Element (FE) model, utilizing commercial FE software (ANSYS), that can be 

implemented to estimate parameters of diffusion as well as common diffusion cell 

experiments. Use of the regular geometry, “brick and mortar”, to simulate tortuous 

intercellular route of SC is presented. It is assumed that diffusion occurs only within the 

SC lipids and the lipids are isotropic. The steady-state flux and lag time are solved and 

compared with the analytical results. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

The transdermal drug delivery (TDD) system represents a new method to replace oral 

delivery of drugs and hypodermic injection. Although the TDD system is not a perfect 

alternative to traditional drug delivery methods (oral delivery or hypodermic injection), it 

has made an important contribution to medical practice. For thousands of years, people 

have already placed substances on the human skin for therapeutic effects such as traditional 

Chinese medicated bath [2], and, in the modern era, a variety of topical patches have been 

developed to treat chronic diseases. In ancient China, transdermal drug delivery system has 

been one of the ways for external treatment. Treatment of a variety of diseases includes 

dermatosis, rheumatism, joint pain, and others. The drug administered directly to the lesion 

site has less toxic side effects. In the modern era, the first transdermal system for systemic 

delivery consisted of a three-day patch that delivered scopolamine to treat motion sickness, 

and was approved for use in the United States in 1979. A decade later, nicotine patches 

became the first transdermal blockbuster, which raised the profile of transdermal delivery 

systems in medicine, in particular and for the public in general. With the development of 

transdermal drug delivery systems, TDD has already been developed for three generations 

[1-4]. Between 1979 and 2007, numerous transdermal drugs have been approved by the 
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FDA each year (Figure 1.1). 

 

Figure 1.1 Cumulative number of transdermal drugs approved by the FDA since 1979. 

Source: The FDA Orange Book. 

  Currently, in an effort to advance TDD systems, transdermal drug delivery patches 

(TDDP) are being mainly fabricated. The nicotine patches have been mentioned widely in 

the literature [4-6], but it is important to notice that these are typical first generation 

transdermal patches with choice of special drugs. The use of TDDP significantly reduces 

major drawbacks that are associated with oral medicine, intravenous injection and 

intramuscular injection, such as viscera stimulation from oral medicine or increasing 

infection risk by injection. It reduces pain and inflammation while propagating quicker 

regeneration of tissues; and also it can avoid high percentage of protein related medicines 
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that can be influenced by the digestive system; moreover, unlike intravenous injection, 

optimal transdermal systems can slowly release medicine in the form of particles to the 

blood stream so as to avoid many undesired side effects. 

  Aside from these comparisons, the TDD still faces a big barrier of human skin. 

Thus, this study focuses on the use of commercial finite element analysis (FEA) software, 

ANSYS, to build a computational model for predicting diffusion in transdermal drug 

delivery patches. The FE results, which are much more conventional, are predicted by 

changing few parameters in the FEA model. This computational model can help the TDDP 

designers to choose ideal parameters for transdermal drug delivery experiments so that 

precious time and expense can be saved from performing long time experiments.   

1.2 Background Information 

1.2.1 Skin Structure  

The skin is a remarkable organ of the body which is able to perform various functions. Skin 

is not only a protective barrier against mechanical, thermal and physical injury and 

potential exposure to hazardous substances, but also has many other functions such as 

absorption, permeability, secretion, excretion and immunity. 

  The skin is a variably lamellar structure, which not only includes three main 

components, epidermis, dermis and subcutaneous layer, but also includes several sub-

structure at three main components as shown in Figure (1.2). Skin is constantly being 
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regenerated by new cell fission from the bottom layer of the skin to the top layer, because 

the bottom layers have the blood supply. The main function of epidermis is to form a tough 

barrier against the outside world, which has the primary obstacle to transdermal drug 

delivery. The dermis is the middle layer of the skin located between the epidermis and the 

subcutaneous layer, which is responsible for the structural integrity of the human skin. The 

subcutaneous layer includes numerous fat cells for isolating cold and trauma from outside 

to the underlying layer.  

Figure 1.2 The structure of human skin which includes three main parts – epidermis, 

dermis and subcutaneous layer. In each layer, they have different low-level structure. 

Source: Falcone, R., Jaffe, M., Ravindra, N.M., New screening methodology for selection of polymeric 

matrices for transdermal drug delivery devices, Bioinspired, Biomimetic and Nanobiomaterials, Volume 2 

Issue BBN2, p. 65-75, 2013. 

1.2.1.1 Components of Epidermis The epidermis is the outermost layers of the human 

skin [8]. The epidermis has 5 low-level layers which have different cell arrangement and 
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components. Figure 1.3 shows different cell arrangement in the epidermis layers. (1) 

Stratum basal is the bottom layer of epidermis. The cells in this layer can constantly 

reproduce so as to get constantly pushed up into the next layer. (2) Stratum spinosum layer 

can prevent bacteria from entering the cells and the moisture being lost. The cells of this 

layer can also reproduce. (3) Stratum granulosum can produce a protein, keratin, which is 

found in nail and hair. The cells, in this layer, cannot reproduce themselves. (4) Stratum 

lucidum layer plays the role of cushioning and protection and is found only on the palms 

of hands and soles of feet. (5) Stratum corneum is the outer-layer of skin which forms the 

primary barrier to drug transport.  

 

Figure 1.3 shows the schematic image of the epidermis with its sub structure such as the 

stratum basale layer, the stratum spinosum layer, the stratum granulosum layer, the stratum 

lucidum layer and the stratum corneum layer. The stratum corneum layer directly contacts 

with external environment.  

Source: Marks, J.G., Miller, J., Lookingbill and Marks' Principles of Dermatology (4th ed.), Elsevier, p. 1–

7. ISBN 1-4160-3185-5, 2006. 

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-4160-3185-5
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1.2.1.2 Stratum Corneum (SC) The outer 10-15 micrometer of skin, called stratum 

corneum, is a dead tissue that forms primary barrier to drug transport, since stratum 

corneum is a composite material made of protein and lipids structurally organized as “brick 

and mortar”, as shown in Figure 1.3. The hydrophobic lipid bi-layers fill all of extracellular 

spaces, where this lipid-enriched matrix is organized into lamellar membranes that 

surround the corneocytes. The lipid-enriched matrix of the stratum corneum includes not 

only the structure that limits transdermal delivery of hydrophobic drug, but also the so-

called stratum corneum “reservoir”, within which lipid soluble drugs, such as topical 

corticosteroids, can accumulate and be slowly released [6]. Therefore, once hydrophobic 

medicine can successfully pass through stratum corneum, they get into the viable epidermis 

layer which has live cells and nerves but not vessels; it can diffuse rapidly through deeper 

tissue and be taken up by the underlying capillaries for systemic administration [10].  
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Figure 1.4 The SC layer consists by corneocytes which are like scaffold for SC structure, 

and extracellular hydrophobic matrix.  

Source: Sebastien Henry, D., V.M., Mark, G.A. and Mark, R.P., Microfibricated Microneedles: A Novel 

Approach to Transdermal Drug Delivery, Journal of Pharmaceutical Sciences, Vol. 87, No. 8, August 1998. 

  Although the corneocytes (Figure 1.4) contribute volume to be a scaffold for the 

stratum corneum structure, modern transdermal delivery strategies focus primarily on 

manipulations of the extracellular lipid milieu. The reason why hydrophilic drugs have 

exceptional low permeability to cross stratum corneum is the consequence of several 

characteristics of the lipid-enriched, extracellular matrix, including its organization into a 

highly complicated and tortuous diffusion pathway, such as mortar between bricks, 

imposed by geometrically arrayed corneocyte “spacers” [6]. Furthermore, not only the 

stranger pathway of bilayers’ extracellular lipids, but also the three extreme hydrophobic 

components, ceramide fatty acid and cholesterol, of lipid contribute to the barrier function, 

as shown in Figure 1.5. 
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Figure 1.5 The structure of the major components of the stratum corneum intercellular 

lipids. Numbers 1 to 8 are ceramides and represent a thin layer with chromatographic 

mobility, with ceramide 1 being the least polar and ceramide 8, the most polar. The letters 

in square brackets are the structural classifications of the ceramide as suggested by Motta 

et al.  

Source: Biochim Biophys Acta 1993;1182: 145-51.  

1.2.2 Transdermal Patches  

Transdermal patch is a medicated adhesive patch that is placed on the skin to deliver a 

specific dose of medication through the skin and into the bloodstream. An advantage of 

transdermal patch over other types of delivery of medication is that the patch provides a 

controlled release of the medication into the patient. The main disadvantage to transdermal 
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delivery systems stems from the fact that the skin is a very effective barrier; as a result, 

only medications whose molecules are small enough to penetrate the skin can be delivered 

by this method. Nowadays, there are three main generations of transdermal drug delivery 

systems. The first generation is a very simple patch which has specific medicinal properties 

such as low-molecular weight, lipophilic and efficacious at low doses. Base on Fick’s law, 

the driving force of first generation TDD system is only the concentration gradient. The 

second generation of transdermal delivery systems already consider that skin permeability 

enhancement is needed to expand the scope of transdermal drugs. Thus the second 

generation of transdermal delivery systems add an enhancer layer to increase the skin 

permeability by reversibly disrupting stratum corneum structure or simply adding more 

driving force for transport into the skin such as chemical disruption, iontophoresis and non-

cavitational ultrasound. The third generation transdermal delivery systems is poised to 

make significant impact on drug delivery because it targets its effects to the stratum 

corneum [5]. This targeting enables stronger disruption of stratum corneum layer of skin, 

while still protecting the deep tissue. For example, the micro-needles are conceptually a 

straightforward way to directly penetrate the stratum corneum layer.  

  Normally, transdermal patches have similar structures. There are four basic layers 

for the common transdermal patches as shown in Figure 1.6. Clear backing layer isolates 

other layers from contacting with natural environment. Drug reservoir layer stores the 

medicinal particles. Drug delivery membrane layer controls the ratio of drug actives in the 
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form medicinal particles. Contact adhesive layer directly attaches to the skin. Based on 

different patches, which have different enhancers to increase the diffusion of medicine into 

the skin, different layer for enhancers are added. In this study, the author uses SYNERA 

Lidocaine and Tetracaine topical patches. These patches have extra integrated heating 

component layer for increasing drug diffusion rate by additional temperature gradient, 

which can heat the patch and skin surface to 42 ° C at room temperature. Therefore, the 

SYNERA patch has an additional enhancer layer between the clear backing layer and the 

drug reservoir.  

 

Figure 1.6 Common transdermal patch structure which includes four basic layers such as 

(i) clear backing layer, (ii) drug reservoir layer, (iii) drug-release membrane layer and (iv) 

contact adhesive layer.  

Source:(http://drugdelivery.chbe.gatech.edu/Papers/2012/Prausnitz%20Derm%20Book%20Chapter%20201

2.pdf) Accessed on March 15, 2016. 

http://drugdelivery.chbe.gatech.edu/Papers/2012/Prausnitz%20Derm%20Book%20Chapter%202012.pdf
http://drugdelivery.chbe.gatech.edu/Papers/2012/Prausnitz%20Derm%20Book%20Chapter%202012.pdf
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1.2.3 ADME/T Mechanism 

ADME/T mechanism is abbreviation in pharmacokinetic and pharmacology for absorption, 

distribution, metabolism, excretion and toxicity, and describes the disposition of a 

pharmaceutical compound within an organism. The five criteria already describe all 

influences when particles of drug/drug actives touch and interact with human tissues. 

Nowadays, although drug designers can synthesize many different kinds of drugs which 

have different chemical components, 95% of them cannot be directly used in clinical trials, 

because of insufficient ADME/T properties. 

1.2.3.1 Toxicity Arguably, drug toxicity is the most challenging drug property that 

remains one of the most significant reasons for many drugs failing to reach the market and 

for many drugs not approved to the market and withdrawal from the market during the late-

stage of drug development [12]. Base on individual differences, drug toxicity may occur 

from any sources inside the human body such as receptor or enzyme and DNA interaction. 

In this study, the anesthetic agents, Lidocaine and Tetracaine, are high lipophilic particles 

whose concentrations need to be controlled below specific number in blood.  

1.2.3.2 Excretion Drug excretion is the process whereby a drug molecule is eliminated 

by human organs such as liver and kidney. Base on blood flow, protein binding and 

lipophilicity, scientists can roughly predict passive excretion [13]. For example, there is 

enzyme which can hydrolyze the Tetracaine in the circulatory system. But the renal 
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excretion process is more complex due to more than few processes of excretion.  

1.2.3.3 Metabolism Compounds begin to break down as soon as they enter the human 

body by some enzymes in the liver. As metabolism occurs, the initial (parent) compound 

is converted to new compounds called metabolites; and also metabolism can deactivate the 

administered dose of parent drug and this usually reduces the effects on the body; moreover, 

metabolism may also be pharmacologically active. 

1.2.3.4 Distribution Distribution is a transport process by bloodstream which is the main 

circulatory system in the human body. Bloodstream delivers drug molecules from areas of 

higher concentration to areas of lower concentration. Some factors affecting drug 

distribution include regional blood flow rates, drug molecular size, polarity and binding to 

serum proteins, forming complex. Sometimes, distribution will face some serious barriers 

such as blood brain-barrier.  

1.2.3.5 Absorption For a compound to reach a tissue, it usually must be taken into the 

bloodstream before being taken up by the target cell. In this study, drug particles/actives 

should pass through the stratum corneum layer so as to be taken up into systemic circulation. 

Different drug delivery systems have different mucous membranes which also have 

different absorption mechanism. Thus, for this study of transdermal drug delivery, the 

author will discuss percutaneous absorption.  
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1.2.4 Percutaneous Absorption Mechanism  

Percutaneous absorption includes entire procedures of drugs delivery from the outermost 

layer of the skin to the systemic circulation. This process requires penetration into the 

layers of the skin with subsequent permeation across each layer of the skin and finally 

uptake to the capillary blood vessel in the upper region of the dermis [13]. In the 

percutaneous absorption system, different skin structure will give different routes for drug 

passives to diffuse into blood capillary. Thus, processes of passive diffusion of drug 

molecules are elaborated in the following model - Figure 1.7.  

 

Figure 1.7 shows that before drug molecules reach systemic circulation, drug molecules 

first face partition phenomenon of the skin followed by diffusion through the epidermis 

layer.     

Source: Alan, B., Ursula, G.R., Pierre, K., Panos, M. Olavi, P., In silico prediction of ADME and 

pharmacokinetics, European Journal of Pharmaceutical Sciences, 17, pp. 183-193, 2002. 
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1.2.4.1 Routes of Penetration Absorption via the transdermal route primarily occurs 

by passive diffusion through the SC. The rate of diffusion depends on several properties 

such as: (1) diffusivity between drug molecules and the SC layer, applied concentration of 

drug, surface area of the skin exposed to the drug molecules and the length of diffusion 

pathway. Except for the same procedures as shown in Figure 1.7, there are two main routes: 

the trans-epidermal route and the trans-follicular route, to penetrate the SC layer. In the 

early time periods, chemical particles can penetrate the SC via skin appendages such as 

hair follicles, sebaceous glands or sweat glands with absorption through the squamous 

epithelial cell lining these structures into the deeper layers of the skin (Figure 1.8). 

However, due to large surface areas, trans-epidermal diffusion gradually increases until 

dominating penetration processes.  

  As shown in Figure 1.8, there are two other sub-pathways for the trans-epidermal 

route. The first, the transcellular is the diffusion pathway across corneocytes. The second, 

the intercellular contributes a tortuous pathway between corneocytes for lipophilic 

molecules. Hence, the permeability of the SC components, lipid protein matrix and 

corneocytes, are the most important properties of transdermal delivery systems. In this 

study, the anesthetic agents, Lidocaine and Tetracaine, are highly lipophilic. The 

octanol/water partition ratio (Kow) of Tetracaine reaches 5370 at pH 7.3; and Kow of 

Lidocaine also reaches 182 at pH 7.3. Based on the partition ratio, this study only focuses 

on intercellular pathway for anesthetic agent transport. Geometric structure of the 
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intercellular pathway is demonstrated in Figure 1.8.  

 

Figure 1.8 demonstrates two penetration routes for percutaneous absorption. (1) The trans-

appendageal route dominates early when drug particles are put on the skin surface. (2) The 

trans-epidermal will gradually dominate instead of the trans-appendageal route.   

Source: Alan, B., Ursula, G.R., Pierre, K., Panos, M. Olavi, P., In silico prediction of ADME and 

pharmacokinetics, European Journal of Pharmaceutical Sciences, 17, pp. 183-193, 2002. 

1.2.4.2 Factors Affecting Drug Permeation The stratum corneum layer and other 

epidermal layers are quite distinct structures [14]. Considering drug diffusion through 

epidermis, the drug solution must balance between lipid solubility and aqueous solubility 

to handle variable structures of the epidermis. The structure of the SC, brick and mortar, 

essentially provides a lipophilic milieu for drug transport whereas the other layers of 

epidermis provides a more hydrophilic domain. Therefore, the drug molecules which are 

balanced between lipid and water solubility can successfully reach systemic circulation 
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without excess partition in different solubility media. Based on partition character, the Potts 

& Guy equation (Equation 1.1) describes an empirical equation governing highly lipophilic 

compounds which use intercellular pathway to penetrate the SC barrier. Equation (1.1) 

shows that the permeability of highly lipophilic compounds mainly relate to the partition 

coefficient and molecular weight. Also, Table 1.1 demonstrates that additional factors will 

affect the permeability of diffusants.    

     log k = 0.71log Kow − 0.0061𝑀𝑊 − 2.74    (1.1) 

k is the permeability of the diffusant (m/s).  

Kow is the partition coefficient of the diffusant.  

MW is the molecular weight of the diffusant (g/mol). 

Table 1.1 Factors Affecting Drug Permeation 

(a) Variations in skin structure 

(b) Sites of application 

(c) Hair follicles ( effects of hair or shaving the site of application) 

(d) Sweat glands 

(e) Effect of age, blood supply, body temperature and composition (e.g. elevated 

body temperature, hyperthyroidism & inflammation etc.) 

(f) First pass metabolism by the skin 

(g) Ability of the skin to act as a reservoir for transdermal agents 

(h) Physicochemical characteristics of the transdermal agents (the ideal 

compounds are low molecular weight, lipophilic, soluble in oil & water and have 

a high partition coefficient and melting point) 

(i) Drug stability 

(j) Use of solvent carriers or vehicles 

(k) Use of penetration enhancers ( nature & type) 

(l) Use of delivery devices etc. 
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1.2.5 Diffusion 

Diffusion refers to the process by which molecules intermingle as a result of their kinetic 

energy (In physics, the kinetic energy of an object is the energy that it possesses due to 

motion.) due to random motion. Therefore, the diffusion motion does not come from any 

outside force, but more as result of the random distribution of atoms being mixed. By 

definition, the atomic motion due to diffusion is random. However, a selective diffusion 

process, called osmosis, is driven by the internal energy of the solvent molecule so that the 

random diffusion has direction of molecule movement. This internal energy based driving 

force is the result from different gradients such as differences in concentration, temperature 

or magnetic field. This process was originally evaluated by Adolf Fick in the 19th century 

[15], who described this phenomenon by equation (1.2). There are two simple descriptions 

of Fick’s law (Table 1.2). 

Table 1.2 Description of Fick's Law 

1, The molar flux due to diffusion is proportional to the concentration gradient. 

2, The rate of change of concentration at a point in space is proportional to the second 

derivative of the concentration with space. 

1.2.5.1 Fick’s Laws of Diffusion The most common mathematical form of Fick’s laws of 

diffusion makes the following assumptions: (i) The receptor phase is a perfect sink. (ii) 

Depletion of the donor phase is negligible. (iii) The membrane is homogenous. 

        𝐽𝑖 = −𝐷𝑖∇𝐶𝑖          (1.2) 

The Ji is the molar flux (mol m2s-1) and the Di is the diffusion coefficient (m2s-1). 
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  The negative sign of equation (1.2) means that the transport direction of species i 

is reversed with concentration gradient, from higher concentration to lower concentration; 

moreover, the sign ∇ Ci means the gradient of difference of concentration with distance. 

         ∇𝐶𝑖 =
𝜕𝐶𝑖

𝜕𝑥
        (1.3) 

From the continuity equation for mass: 

         
𝜕𝐶𝑖

𝜕𝑡
+ ∇C𝑖 = 0       (1.4) 

We can derive the Fick’s second law directly: 

         
𝜕𝐶𝑖

𝜕𝑡
= 𝐷𝑖∇2𝐶𝑖       (1.5) 

  Equation 1.4 shows a linear equation for the Fick’s second law. Therefore, if this 

assumes that 𝐷𝑖 is a constant, the relationship between diffusion concentration and time 

can be calculated from the Fick’s second law. However, this assumption is only true in the 

dilute solution. 

1.2.6 Diffusion Coefficient Prediction Theory 

In the above sections, diffusion processes and modern mathematical equations, Fick’s laws 

are introduced. In each equation of mass diffusion processes, the diffusion coefficient is 

the most important parameter. Therefore, understanding how to calculate the diffusion 

coefficient is very important for solving mass diffusion problems [16] [17].  

1.2.6.1 Solid Media The diffusion coefficient in solids, at different temperatures, is 

generally found to be well predicted by the Arrhenius equation:  
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𝐷 = 𝐷0𝑒−𝐸𝐴/(𝑘𝑇)                      (1.6) 

where 

𝐷 is the diffusion coefficient (m2/s).  

𝐷0 is the maximum diffusion coefficient (at infinite temperature; m2/s). 

𝐸𝐴 is the activation energy for diffusion in dimensions of (J atom-1).  

T is the absolute temperature (K). 

k is the Boltzmann constant.   

1.2.6.2 Liquid Media The diffusion coefficient, as function of temperature, in liquids 

can often be found using Stokes-Einstein equation, which predicts that:  

𝐷𝑇1

 𝐷𝑇2
=

𝑇1

𝑇2
 
𝜇𝑇2

𝜇𝑇1
                        (1.7) 

D is the diffusion coefficient (cm2/s). 

T is the absolute temperature (K). 

T1 and T2 denote temperatures T1 and T2, respectively. 

μ is the dynamic viscosity of the solvent (Pa·s). 

1.2.6.3 Gas Media The dependence of the diffusion coefficient on temperature for gases 

can be expressed using Chapman- Enskog theory: 

𝐷 =
1.858∙10−3𝑇3/2√1/𝑀1+1/𝑀2

𝑝𝜎12
2 𝛺

                  (1.8) 

D is the diffusion coefficient, which is expressed in cm2/s. 

1 and 2 index the two kinds of molecules present in the gaseous mixture. 

https://en.wikipedia.org/wiki/Dynamic_viscosity
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T is the absolute temperature (K). 

M is the molar mass (g/mol). 

p is the pressure (atm). 

 is the average collision diameter (the values are tabulated) (Å). 

Ω is a temperature-dependent collision integral (the values are tabulated but usually ~ 1) 

(dimensionless). 

1.2.6.4 Free Volume Theory In percutaneous drug delivery, if only the intercellular 

pathway is considered, the drug molecules will migrate through the extracellular matrix of 

the epidermal layer for reaching bloodstream or nerve cells located at the dermis layer. The 

extracellular matrix is composed of macromolecular polymers such as proteins. Therefore, 

the diffusion of drug molecules can be considered as mobility of small molecules in the 

macromolecular matrix. Base on Equation (1.6), the mobility is considerably influenced by 

temperature and concentration. However, the extracellular matrix is not common solid 

media which can directly use Equation (1.6) for the determination of the diffusion 

coefficient. In 1959, Cohen and Turnbull originally suggested an assumption [18] that there 

were empty space, called free volume, between molecular sequences, which can be 

migration pathways for small hard sphere molecules. In transdermal delivery systems, there 

are many factors which will affect the mobility of the drug molecules. However, for 

simplifying this case, only free volume concept need to be considered. Therefore, diffusion 
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coefficient can be assumed to be proportional to the probability of locating a vacancy of 

volume V* or larger and could be written [7]. 

         𝐷 = A 𝑒
𝛾𝑉∗

𝑉          (1.9) 

V* is the critical volume for migrating molecule. 

γ is the overlap factor of free volume. 

A is the defined constant which is associated with kinetic energy. 

V is the specific volume.  

  Although, Equation (1.9) already suggests a mathematical method for mobility 

based on free volume theory, this is not enough for dealing with problems of drug diffusion 

through the skin. Therefore, Vrentas and Duda [19] introduced the following relationship 

between more diffusion units and free volume: 

         𝑉FH =
𝑉∗

𝑤1
𝑀1𝑗

+
𝑤2

𝑀2𝑗

        (1.10) 

VFH is the average hole of free volume. 

w1 and w2 represent species 1 and 2.  

M1j and M2j are diffusion units.  

  The above equations clearly indicate that the diffusion coefficient of small 

molecules is an exponential function related to free volume; and also the free volume is 

related with molecular shape and size. However, Vrentas and Duda [19] further simplified 

Equation (1.9) such as the Equation (1.11). 
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         𝐷 = 𝐷0𝑒−
𝐸

𝐾𝑇  𝑒
−𝜉𝑉∗

𝑉        (1.11) 

D is diffusion coefficient. 

D0 is the pre-exponential factor.  

E is the attraction energy between the molecules.  

K and T are the Boltzmann’s constant and absolute temperature.  

ξ is the ratio of solvent to polymer jumping units.  

V* is the critical space of free volume for molecule jump. 

V is provided by polymer matrix for diffusion.  

  By using Equation (1.10) in Equation (1.11) to obtain Equation (1.12) about 

diffusion of a solute in a polymeric matrix. 

      𝐷 = 𝐷0𝑒−
𝐸

𝐾𝑇 𝑒
−

𝛾[𝑊𝑠𝑉𝑠+𝑊𝑝𝜉𝑉𝑝]

𝑉𝐹𝐻        (1.12) 

Ws and Wp are the weight percentage of drug or polymer matrix. 

Vp and Vs are the embedded volume of matrix and drug.  

VFH is average hole of free volume. 

E is the attraction energy between the molecules.  

K and T are the Boltzmann’s constant and absolute temperature.  

ξ is the ratio of solvent to polymer jumping units.  

  However, a modified equation, in copolymer media, of molecular migration in 

polymer matrix was suggested by Duda and Zelinsky at 1992 [20]. 
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      𝐷 = 𝐷0𝑒−
𝐸

𝐾𝑇 𝑒
−

𝛾[𝑊𝑠𝑉𝑠+𝑊𝑝(𝑊2𝑎𝜉𝑉2𝑎+𝑊2𝑏
𝜉𝑉2𝑏)]

𝑉𝐹𝐻     (1.13) 

V2k (k is for either a or b) is defined as the specific volume of block k in the copolymer at 

0 K; and W2k (k is for either a or b) is defined as the weight fraction of block k in the 

copolymer. When polymer matrix is homo-polymer, W2a is equal to zero and W2b is equal 

to equation 1.12. The Duda-Zelinsky equation reduces to Vrentas-Duda equation.  

1.2.7 Partition Coefficient  

The term, partition coefficient, is the ratio of a compound in a mixture of two immiscible 

phases in equilibrium so as to measure the different solubility of the compound in these 

two phases (Equation 1.14). Kow is the ratio between solution of octanol and water. 

       log 𝐾𝑜𝑤 = log{
𝑠𝑙𝑜𝑢𝑡𝑒𝑜𝑐𝑡𝑎𝑛𝑜𝑙

𝑢𝑛−𝑖𝑜𝑛𝑖𝑧𝑒𝑑

𝑠𝑙𝑜𝑢𝑡𝑒𝑤𝑎𝑡𝑒𝑟
𝑢𝑛−𝑖𝑜𝑛𝑖𝑧𝑒𝑑}     (1.14) 

  In pharmacology, the partition coefficient strongly affects how easily the drug can 

reach its intended target in the body, how strong an effect it will have once it reaches its 

target, and how long it will remain in the body in an active form [20]. Specifically, for a 

drug to be percutaneously absorbed, normally it must first pass through lipid bilayers of 

corneocytes in the outermost layer (SC) of the epidermis. Hence, the Kow of diffusant 

cannot be too small to penetrate lipid bilayers. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 Materials 

The research material, considered in this study, is a commercial topical anesthetics patch, 

SYNERA, which combines amide (lidocaine) and ester (Tetracaine) local anesthetic for 

use on intact skin to provide local dermal analgesia for superficial venous access and 

superficial dermatological procedures such as excision, electrodessication and shave 

biopsy of skin lesion. The structure of SYNERA is shown in Figure 2.1. Table 2.1 presents 

the basic information of SYNERA.  

Figure 2.1 Synera patch not only includes drug reservoir and other common layers of 

transdermal delivery patches, but also includes CHADD heating element layer which uses 

chemical reaction to create extra temperature gradient instead of using drug vehicles for 

drug diffusion enhancement. 

Source: Crank, J., The mathematics of diffusion (2nd Ed.). 2-12, 46-47, 1975. 
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Table 2. 1 Basic Information of SYNERA 

Featured Indication 

Surface anesthetic for minor dermatological procedures in adults and needle punctures 

of the skin in adults and children ≥3 years of age 

Mechanism of Action 

Local anesthetic agent blocks voltage-gated sodium channels 

Dosage and Administration 

Doses per patch 70 mg/70 mg 

Patch size                              8.5cm x 6.0cm 

Drug cover area                         10cm2 

Route of administration                  Dermal (topical application) 

Application site                        Normal intact skin 

Application time                        30 min 

Number of simultaneous     

plasters (adults)              

1–4 (maximum 4 per 24 h) 

Number of simultaneous                 

plasters (children)  

1–2 (maximum 2 per 24 h) 

Mean Peak Plasma Concentration Following Dermal Application for 30 min of Two 

Plasters Simultaneously 

Number of SYNERA Patches 1 

Age Range (yr)                       18- 65 

Application Time (min)                   30 

Drug Content (mg)                       Lidocaine 70 /Tetracaine 70 

Estimated Amount Absorbed (mg)       Lidocaine/Tetracaine 1.7/1.6 

Cmax (ng/mL)                           Lidocaine/ Tetracaine 1.7/0.9 

Most Frequent Treatment-Related Adverse Events of Mild to Moderate Intensity 

in Clinical Trials 

Erythema, oedema, pruritus, burning sensation 

Partition Coefficient of Octanol/Water   

Lidocaine                                

182 at pH 7.3 

Tetracaine                               

5370 at pH 7.3 

Molecular Weight  

Lidocaine                                

234.34 g/mol 

Tetracaine                               

264.363 g/mol 
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  Although two local anesthesia agents, Lidocaine and Tetracaine, are formulated 

by eutectic methods, eutectic mixture is not a crystal but a liquid. This is because the 

melting point of this eutectic mixture is lower than room temperature. Hence, unlike other 

solid forms of anesthetic agents, SYNERA does not need diffusion vehicle for transdermal 

drug delivery in order for it to increase the drug concentration in the drug reservoir layer. 

These two special factors, liquid eutectic mixture and thermal enhancer, remarkably 

increase the drugs’ absorption ability and minimize the action time of patches so as to avoid 

many side effects, such as skin allergy, from drug delivery for long durations.  

2.2 Methods 

2.2.1 Parameters Switching 

In the commercial FEA software, ANSYS 15.0, there is no mass diffusion package. 

Therefore, the author has used thermal analysis package instead of mass diffusion. The 

reasons for this implementation will be explained in the subsection. 

2.2.1.1 Steady-State Diffusion Fick’s first law introduces the theory of diffusion flux, 

J (kg/m2·s), which is the rate of mass concentration transfer through a given surface, 

Equation (1.2), per unit time. Similarly, heat flux or thermal flux, q (J/ m2·s) is the rate of 

heat energy transfer through a given surface, per unit time, Equation (2.1). Comparing 

Equation (1.2) with Equation (2.1), it is easily understood that mass flux and heat flux 

separately relate to concentration or temperature gradient; and also, D and k are the 
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diffusion coefficient of different transfer equations.  

 q = −k
𝑑𝑇

𝑑𝑥
                           (2.1) 

q is the heat flux (J/ m2 s). 

k is the thermal conductivity (J/m·K·s).  

T is absolute temperature (K). 

x is distance of temperature gradient (m).  

2.2.1.1 Transient Diffusion In Fick’s first law, flux is a constant which will not change 

with time; it is called steady- state diffusion. In the same situation, heat flux is also constant. 

However, to reach steady state will require some time. Therefore, Fick’s second law, 

Equation (1.5), was introduced to demonstrate the relationship between time and flux for 

transient diffusion analysis. Also in the heat transfer analysis, there are similar equations 

for energy transfer at transient situation, for example, Equation (2.2).  

  
𝜕𝑇

𝜕𝑡
=

𝑘

𝜌𝑐𝑝
∇2𝑇                       (2.2) 

k is the thermal conductivity (J/m·K·s).  

T is absolute temperature (K). 

𝜌 is the density (kg/m3). 

𝑐𝑝 is the specific heat capacity (J/(kg·K). 

  Based on the above comparison, except for some differences between parameters, 

the form of the two transfer equations are same. Therefore, the use of heat transfer analysis, 
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instead of mass diffusion analysis, is viable whether steady-state or transient situation. The 

parameter switch is shown in Table 2.2.  

Table 2.2 Parameter Switching 

Thermal 

Heat  

Flux 
Conductivity Temperature Density 

Heat  

Capacity  

J/ m2 s J/m·K·s K kg/m3 J/kg·K 

Mass 

Mass  

Flux  
Diffusivity Concentrati

on 

Density 
Heat  

Capacity 

kg/m2·s m2/s kg/m3 1 1 

2.2.2 Finite Element Model  

This study uses 10 layers in the form of brick and mortar geometry to simulate the two-

dimensional (2D) geometry of the SC (Figure 2.2). Element type is 4 nodes of two 

dimension element, PLANE 55, for thermal analysis. Based on Table 2.2, the conductivity 

can be directly replaced by diffusivity (D); and also for transient analysis, specific heat 

capacity (Cp) and density (𝜌) are equal to one; moreover, the initial concentration is equal 

to 70 kg/m3 for each anesthetic agents. For the shape of the finite element model, the lipid 

layer between two corneocytes (S) is equal to 0.1 micrometer; and also the width (d) and 

height (h) of corneocytes are 40 micrometer and 1 micrometer, respectively; moreover, the 

length (ls) of two lipid pathway in y direction is equal to 10 micrometer.  
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Figure 2.2 Geometric Shape of Brick and Mortar Model 

2.2.3 Theoretical Calculations of Diffusion Parameters  

Transdermal diffusion is not totally like simple mass diffusion, such as diffusion of 

hydrogen through metal. This is because, when drug molecules migrate between lipid 

media, molecular distribution should be considered first, which means some molecules will 

dissolve in liquid so that these molecules cannot pass through the SC even with enough 

diffusion time. Hence, the solubility between transfer media and drug will be considered 

(The partition ratio of octanol and water is to estimate distribution phenomenon).  

2.2.3.1 Maximum Flux Determination The steady-state diffusion of a drug across the 

skin may be described by Fick’s first law, Equation (1.2). In this situation, Fick’s first law 

can be manipulated by considering solubility between stratum corneum and drugs [21]. 
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      𝐽𝑚𝑎𝑥 = (
𝐷

ℎ
) ∙ 𝐾𝑠𝑐/𝑣 ∙ 𝐶𝑣,𝑠𝑎𝑡 = 𝑘𝑝 ∙ 𝐶𝑣,𝑠𝑎𝑡    (2.3) 

Jmax (kg/m2 s) is the maximum drug flux when the system reaches steady- state. D (m2/s) is 

its diffusion coefficient in the stratum corneum (SC). 

KSC/v is the drug's SC-vehicle partition coefficient. 

h is the length of lipid pathway taken by the penetrant through the SC. 

Cv,sat ( kg/m3) is saturated concentration of the drug in the vehicle. 

kp (m/s) is the permeability of drug molecule (In this study, it can be directly calculated by 

Equation (1.1)).  

  Comparing Equation (2.3) with Fick’s first law, the diffusion coefficient of 

transdermal diffusion is manipulated to DKSC/v. By using permeability (kp) in Equation 

(2.3), the new diffusion coefficient will relate to permeability as in Equation (2.4). The new 

diffusion coefficient Ds will be used for FE model. 

𝐷𝑠 = 𝐾𝑝 ∙ ℎ                           (2.4) 

2.2.3.2 Permeability Determination The author has already described Potts & Guy 

equation, Equation (1.1), for permeability coefficient (kp) of each drug across the skin from 

aqueous solution. For calculating the corrected permeability coefficient (Kpcorr), the 

following Cleek and Bunge Equation (2.5) will be used for highly lipophilic species for 

which viable epidermis can contribute to rate-control [22]. 
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        𝑘𝑝
𝑐𝑜𝑟𝑟 𝑘𝑝

1+
𝑘𝑝∙√𝑀𝑊

2.6

        (2.5) 

  MW is the drug’s molecular weight. Therefore, if the diffusion pathway length (h) 

is calculated as in Figure 2.2, permeability and diffusion coefficient of each drug can be 

calculated. The results are shown at Table 2.3. The diffusion pathway length comes from 

10 layers in the FE model (h=101μm). 

Table 2.3 Diffusion Coefficient of FE Model 

Permeability kp (m/s) 

Lidocaine                                        

8.3E-9(m/s) 

Tetracaine                                       

6.02E-8(m/s) 

Diffusion Coefficient Ds (m2/s) 

Lidocaine                                     

8.383E-13(m2/s) 

Tetracaine                                      

6.08E-12(m2/s) 

2.2.3.3 Lag Time The term of time-lag is the period between closely related events. In 

this study, anesthetic agents, lidocaine and tetracaine, should transfer across the epidermis 

layer so as to reach the nerve cells of the dermis layer. Although, Fick’s first law can be 

used to predict the maximum flux of diffusion, the value of flux always changes with 

diffusion time. This is because the concentration gradient between two sides of a membrane 

is not always constant (Figure 2.3). Based on Figure 2.3, the changing concentration with 

increasing time is not linear before the concentrate penetrates the entire thickness of the 

membrane. Hence, the time of concentration, or flux, required to reach stead state is called 

the lag time (tL) [22]. The lag time for all FE model results are calculated by extrapolation 



32 

of the steady-state portion of the mass accumulation curve to the time axis. Lag time is 

related to the thickness of the skin, or length of diffusion pathway when geometry of media 

is irregular shape such as twist lipid pathway, and the diffusion coefficient. The equation 

for lag time is described by Equation (2.6). 

         𝑡𝐿 =
ℎ2

6𝐷𝑠
         (2.6) 

 

Figure 2.3 shows the changing processes of the concentration gradient with increasing 

time. Concentration gradient is not linear before concentration reaches the other side of the 

membrane at t3. After t3, the concentration gradient is linearly decreasing. 

2.2.3.4 Effect of Temperature In the experimental transport of drugs through cell 

membrane, the temperature should be strictly controlled since temperature can increase the 

mobility of diffusion molecules. Also the permeability of drug increases significantly as 

the experimental temperature is increased in increments of approximately 7 °C [23]. It is 

observed that the apparent permeability and temperature are related by an exponential 

relationship that conforms to the Arrhenius equation. In this case, the permeability of 
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diffusant may be expressed as following equation. 

𝑃𝑎𝑝𝑝 =
𝐷𝑇×𝐾

ℎ
                          (2.7) 

where Papp is the apparent permeability which is from Potts & Guy equation; K is the 

partition coefficient between media and diffusants; h is the length of the pathway. 

Combining Equation (2.7) and Arrhenius equation, the new equation will be obtained.  

𝑃𝑎𝑝𝑝 =
𝐷0×𝑒−𝐸𝐴/(𝑘𝑇)×𝐾

ℎ
                      (2.8) 

  Assuming that the partition coefficient and length of diffusion pathway remain 

constant over the range of temperature studied, the following relationship can be derived 

as in Equation (2.8) [23].  

𝑃𝑎𝑝𝑝 ∝ 𝑒
−1

𝑇                             (2.9) 

  This suggests that the apparent permeability of drugs increases exponentially with 

temperature. A plot of logarithm of apparent permeability versus absolute temperature will 

yield a linear relationship such as in Figure 2.4. In this study, a heating layer is also added 

to topical patches to increase the skin temperature up to 40 °C. Hence, the relationship 

between permeability of drugs, Lidocaine and Tetracaine, and temperature will be plotted.  
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Figure 2.4 A plot of lnP versus 1/T for five different temperatures, viz., 23°C, 30°C, 37°C, 

45°C, and 52°C, were utilized in individual permeation experiments. Four different 

diffusants transfer across porcine buccal mucosa.  

Source: Kulkarni, U.P., Mahalingam, R., Li, X., Pather, I. and Jasti, B., Effect of Experimental Temperature 

on the Permeation of Model Diffusants Across Pocine Buccal Mucosa, AAPS PharmSciTech, Vol. 12, No. 

2, DOI: 10.1208/s12249-011-9624-z, 2011. 

2.2.3.5 Mass Absorbed. The flux and permeability coefficient allow an exposure 

assessment over time in steady-state condition [24]. When Fick’s first law of diffusion is 

applied, Kp is constant over the range of concentration. Therefore, in order to characterize 

the quantity absorbed (M), some risk assessors have to be integrated over Kp by multiplying 

the chemical concentration (C) (i.e. the flux: J = Kp x C), the exposed surface (S) and the 

exposure time (t): 

     dM = J × S × dt = Kp × C × S × dt      (2.10) 

  From Equation (2.9), the amount of absorbed mass increases with increasing 

permeability when the area and diffusion time are assumed to be constant. Hence, the 

quantities absorbed is directly dependent on 𝑒
−1

𝑇 . 
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  However, in this study, the FE model is only a two dimensional model. Also the 

time-lag should be considered. Therefore, the new equation derived from Equation (2.9) is 

the following. 

        
𝑑𝑀

𝑑𝑆
= 𝐽 × (𝑡 − 𝑡𝐿)       (2.11) 

  When active time is bigger than time-lag (tL), Equation (2.10) can be used for 

prediction of permeation mass. This is because, after tL, the diffusion process is going to 

be steady-state. 
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Maximum Flux and Lag Time 

In steady-state, the maximum flux, Jmax, should be first considered. FE results compared 

with analytical results for flux (Equation (2.4)) and for time lag (Equation (2.6)) are 

presented in Table 3.1. After lag time tL, the diffusion system reaches steady state at the 

same location. For estimating the lag time across ten layers in the FE model, Equation (2.9) 

is used to plot the mass accumulation curve; and also, the ending time of diffusion process 

is 4000s (Figure 3.1) because analytical results of time-lag of lidocaine is 2028s. Hence, 

the processing time of Tetracaine is 500s (Figure 3.2) because analytical lag time is 280s. 

Table 3.1 Analytical and FE Results (Flux and Lag Time) 

 Analytical results FE results 

Lidocaine   

SS Flux (kg/m2 s) 0.581E-6 0.560E-6 

Time lag (s)  2028 2020 

Tetracaine   

SS Flux (kg/m2 s) 4.214E-6 4.07 E-6 

Time lag (s)  280 272.5 
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Figure 3.1 shows that the cumulative permeation curve of Lidocaine per unit area has two 

portions. The initial portion of the curve represents non-steady state diffusion, and linear 

portion corresponds to steady state diffusion. Therefore, if extending steady state line 

intersects with time axis, the lag time will be gained. The intersection point is between 

2040s and 2000s.  

 

Figure 3.2 shows cumulative permeation curve of Tetracaine. This curve also has two 

portions, similar to the results for Lidocaine. Extending steady state line intersects with 

time axis to gain the intersection point which is between 275s and 280s. Hence, the FE 

result of lag time when Teracaine passes through ten layer-model is 272.5s.  
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3.2 Concentration Distribution 

The concentration distribution in the lipid layers of the 10 layers stratum corneum model 

is depicted in Figure 3.3 at 1800s. The concentration of Lidocaine (Figure 3.3 (A)) in the 

bottom of the model is not steady state because diffusion time is smaller than lag time (tL= 

2028s). However, Tetracaine (Figure 3.3(B)) is a good approximation for the steady state. 

A path was created at location 101µm with the lipid diffusion pathway and the 

concentration distribution across the SC is shown in Figure 3.4.  

 

 

Figure 3.3 shows the contour plots of concentration distribution. (A) Contour plot of 

concentration distribution of Lidocaine. Color signifies concentration ranging from 0.1124 

(blue) to 70 (red). Based on the differences between adjacent colors, the range of color 

(blue) is non-steady state. (B) Contour plot of concentration distribution of Tetracaine. 

Color signifies concentration ranging from 27.06 (blue) to 70 (red). Based on the 

differences between adjacent colors, diffusion of Tetracaine is a good approximation for 

steady state. 
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Figure 3.4 shows the concentration distribution along with the lipid pathway. The length 

of lipid pathway is 101 µm at ten layers FE model. After 1800s diffusion, concentration 

distribution of Tetracaine decreases with increasing distance and is almost a straight line. 

However, after 1800s, the concentration distribution of Lidocaine does not reach steady 

state.  

3.3 Absorbed Mass 

The SYNERA heating component generates a mild warming that is intended to increase 

the skin temperature from 37 °C to 40 °C so as to enhance the diffusion of the local 

anesthetic agents. However, the permeability is calculated by Equation (1.1), which is 

apparent permeability of diffusants at room temperature (25 °C). Therefore, the 

permeability changes with temperature should be considered.  

  Clinical results show that 1.7 gram Lidocaine and 1.6 gram Tetracaine are 

absorbed by the skin after 30min (1800s) [Highlights of Prescribing Information]. In the 

FE model, the distance of diffusion pathway can be ignored. This is because the diffusion 
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depth will not be considered and the author is only interested in the number of molecules 

absorbed by the skin. Therefore, the time-lag can also be ignored. Equation (2.9) can be 

directly used for analytical results (shown in Table 3.2). The FE results are plotted in Figure 

3.5 and Figure 3.6.   

Table 3.2 Absorbed Mass per Unit Area  

 
Absorbed mass per unit 

area (kg/m2) 

Lidocaine 

Analytical results 
1.0458E-3 

FE results 1.14E-3 

Tetracaine 
Analytical results 7.578E-3 

FE results 6.52E-3 

 

 

Figure 3.5 shows the curve of absorbed mass of Lidocaine per unit area. The slope of this 

curve decreases with time since the concentration gradient decreases with processing time. 

The black line corresponds to 1.14E-3 kg/m2 of Lidocaine going into skin after 30 min.  
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Figure 3.6 shows the curve of mass absorbed of Tetracaine per unit area. The slope of this 

curve decreases with time since the concentration gradient decreases with processing time. 

The black line shows 7.578kg/m2 Tetracaine going into the skin after 30 min.  

  In this study, the effects of temperature are not considered since thermal analysis 

has been replaced by mass diffusion analysis. However, based on the results in Table 3.2, 

the absorbed mass of Lidocaine for 10cm2, similar to the size of Synera drug, is 1.14mg 

which is smaller than 1.7mg. This is because the extra temperature from heating layer of 

the Synera patch increases the mobility of Lidocaine particles so as to increase the 

penetration rate of Lidocaine. However, the 7.578mg Tetracaine is absorbed by the skin, 

which is much bigger than clinical experiments. This may be because there is a layer 

between the skin and the drug reservoir for limiting the release of Tetracaine.  
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CHAPTER 4 

CONCLUSIONS 

The objective of this thesis was to build a transdermal finite element model which can 

estimate results of transdermal diffusion experiments. Since the common transdermal 

experiments needs long time to prepare, by mimicking the brick and mortar structure, a 

successful simulation of the stratum corneum lipid pathway accomplished the objective. 

FE model was used in mechanics and heat flow analysis. A method to use a commercial 

FE package (ANSYS) to solve a real transdermal diffusion problem is presented here. The 

method has been validated by comparing FE model results with results for real local 

transdermal patches for which analytical solutions exist. Although scientists believe that 

percutaneous penetration of polar and ionized compounds occurs not only through the lipid 

pathway route (intercellular) but also via a transcellular route that is through the 

corneocytes [25], the intercellular route is the main pathway for high lipophilic molecules. 

The permeability of the intercellular route can be easily calculated by Potts & Guy equation 

(Equation (1.1)) without experimental data, which correlates the skin permeability to solute 

molecular weight and octanol-water partition coefficient. However, the main disadvantage 

of using Potts & Guy equation is that the relationship between permeability and 

temperature (Equation (2.8)) cannot be represented by FE model. This is because in this 

study, parameters of the thermal transfer were replaced by mass diffusion parameters (Table 
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2.2). The stratum corneum model described here are two dimensional (2-D). Using three 

dimensional (3-D) will be a more realistic approach to represent the stratum corneum 

structure. Advantages of three dimensional model over two dimensional model are 

unknown. This is because although 3-D model uses more elements to increase realism, it 

always repeats same geometric structures of 2-D model. Wang [26] already compared 2-D 

and 3-D SC model topology. The same tortuosities of two models was found so that Wang 

argues that 2-D representation of the stratum corneum is adequate for the purpose of 

transdermal diffusion modeling.  

  For accuracy and realism, the use of a biological image is the best option to 

generate the SC topology, especially to observe the concentration distribution in any 

location and any time [27]. But in this study, good approximate flux and time lag results 

were estimated by a regular brick and mortar geometry. Therefore, regular brick and mortar 

geometry can be used instead of the more complicated but realistic irregular geometry.  

  For reducing computational time of 2-D stratum corneum model, different element 

types were used for different results. The element link 33 was used to replace element plane 

55 for concentration distribution contour-plot. This is because using element link 33 can 

remarkably decrease the amount of elements. But link element can be calculated for flux.  

  The next step in this work is to utilize experimental results, time lags and 

permeability, to evaluate FE results with various sets of diffusivity. The transcellular route 

should be considered in situations when FE model deals with hydrophilic compounds.  
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