
New Jersey Institute of Technology New Jersey Institute of Technology 

Digital Commons @ NJIT Digital Commons @ NJIT 

Theses Electronic Theses and Dissertations 

Spring 5-31-2016 

Gene network understanding and analysis Gene network understanding and analysis 

Maria E. Somoza 
New Jersey Institute of Technology 

Follow this and additional works at: https://digitalcommons.njit.edu/theses 

 Part of the Bioinformatics Commons, and the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Somoza, Maria E., "Gene network understanding and analysis" (2016). Theses. 279. 
https://digitalcommons.njit.edu/theses/279 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital 
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons 
@ NJIT. For more information, please contact digitalcommons@njit.edu. 

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.njit.edu%2Ftheses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/279?utm_source=digitalcommons.njit.edu%2Ftheses%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu


 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

                        GENE NETWORK UNDERSTANDING AND ANALYSIS 

                                      by 

           Maria E. Somoza 

 

 

Gene regulatory network (GRN) is a collection of regulators that interact with each other  

in the cell to govern the gene expression levels of mRNA and proteins. These regulators  

can either be DNA, RNA, protein and their complex. Transcriptional gene regulation is  

an important mechanisms in which an in-depth study can lead to various practical  

applications, and  a greater understanding of how organisms control their cellular  

behavior. One of the most widely studied organisms in gene regulatory networks are the  

Mycobacterium tuberculosis and Corynebacterium glutamicum ATCC 13032.  

Gene co-expression networks are of biological interests due to co-expressed genes  

which are controlled by the same transcriptional regulatory programs, as well as, studying  

the functionality of genes in a system-level. Correlation networks are increasingly being  

used in research applications, especially in the field of bioinformatics. It facilitates  

networks based on gene screening methods which can be used to identify biomarkers or  

therapeutic targets.  Computational methods use for the development of network models,  

as well as, the analysis of their functionality proved to be of valuable resources. 
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         CHAPTER 1 

 

                                  INTRODUCTION 

 

                                                                1.1 Objective 

The objective of this thesis is to present an analysis in gene regulatory networks and gene  

co-expression networks. Gene regulatory networks is represented as a directed graph  

connecting two genes. These connections represent a biochemical process such as:  

reaction, transformation, interaction, inhibition, or activation.  

As for gene co-expression networks, the graph is represented as undirected, and  

the edges represent a correlation or dependency relationship among genes. The datasets  

used for gene co-expression networks are generated by high-throughput gene expression  

database such as microarray and RNA-Seq. Gene co-expression  measures are often used  

to describe the network results among genes. The most widely used is Mutual  

information (MI) for generalized correlation measure.  Comparison of other co- 

expression measures were used to  find the biologically meaningful modules (clusters of  

genes) [12].  The following network measures were used: CLR, MRNET, ARACNE,  

BICOR, COR, MINE and WGCNA . 
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                                     1.2 Information about the CMNR Species 

Mycobacterium tuberculosis are intracellular pathogens that have evolved strategies for  

coping with the pressures encountered inside host cells. Mycobacterium tuberculosis is a  

devastating virulence that affects roughly 9 million new cases and 2 million deaths  

yearly[1]. Unfortunately, there’s not a lot is known about the dormant state of tuberculi  

bacilli in human infection. From published microarray data, researchers have assembled  

the largest M. tuberculosis transcriptional-regulatory network to date, and characterized  

the temporal response of this network during adaptation to stationary phase and  

hypoxia[2].  

C. glutamicum ATCC 13032 belongs to the CMNR group of family which  

includes Mycobacterium, Nocardia, and Rhodococcus[9]. The members of this group are  

Gram-positive bacteria that exhibit many unusual features such as :  high G + C content,  

and a specific organization of the cell wall composed of mycolic acid, peptidoglycan and  

arabinolactano [9].  Some species of the CMNR group are important for industrial and  

biotechnological applications, such as Corynebacterium glutamicum and  

Corynebacterium efficiens [9].These group of organisms consists of several bacterial  

species that are of medical, veterinary, and biotechnological interest. 

 

           1.3 Understanding Transcriptional Regulatory Networks 

To further understand the complex structure of transcriptional regulatory networks, well  

known model organisms such as E. coli, have been studied extensively to analyse the  

conservation patterns of this network across 175 prokaryotic genomes, and predict  

components of the regulatory networks for these organisms[6]. The first step toward  

understanding the regulatory network of this pathogen is the prediction of operons in  

Mycobacterium tuberculosis (MTB)[7].  
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According to Roback et al, a gene regulatory network consisting of 222 links among 216  

genes based on MtbRegList (http://mtbreglist.genap.ca/MtbRegList/www/index.php) was  

developed , a database that lists the binding sites of 21 TFs and sigma factors. Next, a  

network of 159 links among 164 genes was included, based on recent studies on the  

transcriptional regulatory activity of mprA, dosR, Rv1395, Rv2358, furB, Rv0967, kstR,  

pknH, embR, trcR, and crp . an M. tuberculosis TR network (223 links among 201 genes)  

inferred from gene orthology with 29 E. coli TFs and their targets were downloaded and  

included. Finally, the researchers completed the network based on the list of  

Mycobacterium tuberculosis operons [7], assuming that if a TF regulates a gene within an  

operon, it also regulates all other gene members of the operon. Following a similar  

procedure, a separate assembled network was created, purely literature derived network,  

with 581 links among 518 genes that should have higher confidence than those in the full  

network [2]. 
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Table 1.1 Mycobacterium Tuberculosis Transcription Regulatory Network  

 

Source:Voskuil MI, Visconti KC, Schoolnik GK (2004) Mycobacterium tuberculosis gene 

expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 

(Edinb) 84: 218–227. 

 

Table 1.1 shows the transcription regulatory network of M. tuberculosis where the  

numbers arerepresented as follows: 0 indicates whether a link is not orthology-based, but  

no gene to gene interaction, 1 indicate from the orthology-based network and gene to  

gene interaction, and 2 inferred by operon-based extension of the original orthology- 

based network.  

Corynebacterium glutamicum ATCC 13032 is very well known in the industry in  

its production of the amino acids[8]. This is also use as a reference network to all other  

corynebacterium species, due to the fact that all experimental evidence was done on this  

particular species. 
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  1.1   Regulatory Networks Image of Corynebacterium Glutamicum ATCC 13032 

  

Figure 1.1 Is an image of a regulatory network of Corynebacterium glutamicum ATCC 

13032 using Cytoscape. Genes with regulations and experimental evidence were 

specifically chosen for the network.   

 Source: Abreu VA, Almeida S, Tiwari S, Hassan SS, Mariano D, Silva A, Baumbach J, Azevedo V, 

Rottger R (2015) CMRegNet-An interspecies reference database for corynebacterial and mycobacterial 

regulatory networks. BMC Genomics 16:452. doi:10. 1186/ s12864-015-1631-0.                                                                                                                                        

http://www.lgcm.icb.ufmg.br/cmregnet/ 

 

The network shows gene to gene interactions as indicated by the arrow. In the  

experimental version,  all transcriptional regulations are stored with experimental  

evidence[11].The interaction is represented by 1 means that genes are expressed when a  

gene is an activator , while a 0 (not shown on the image) means that genes are not  

expressed when a gene is a repressor.



 

6 
 

     CHAPTER 2 

    DATABASE AND SOFTWARES USED    

2.1 Datasets and Normalization for M. Tuberculosis and C. Glutamicum ATCC 13032 

The time course microarray data for Mycobacterium tuberculosis is the following  

GSE35362.  This can be obtained from the database Gene Expression Omnibus  

(http://www.ncbi.nlm.nih.gov)[6]. The transcriptional regulations in C. glutamicum  

ATCC 13032 which includes TFBS and regulation can be found in the following  

reference databases CMRegNet  (http://lgcm.icb.ufmg.br/cmregnet)  and CoryneRegNet  

(http://coryneregnet.compbio.sdu.dk/v6/index.html) [9,11].  After processing the raw data  

of microarray datasets, the normalization procedure was executed in order to avoid  

systematic biases due to the variation between different trials and samples. Robust multi- 

array average (RMA) was done using the justRMA function in the iffy package that is  

part of the BioConductor project in R [4].  

  

 

    2.2 Software for Visualization 

Cytoscape is an open source software used for integrating biomolecular interaction  

networks using high-throughput data into a conceptual framework which can be  

downloaded in the following http://www.cytoscape.org[10].  

 

 2.3 Programming Tool 

The R, or for an updated version, R Studio statistical programming language is an  

integrated suite of software facilities used for data manipulation, calculation, and  

graphical display. The software is freely available to download, www.r-project.org, it  

compile and runs on a wide variety of platforms such as UNIX, Windows, and MacOS.  
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The R language is similar to the S language which its environment was developed  

at the Bell Laboratories by John Chambers and colleagues.  

 

Table 2.1 Participating Datasets 

 

Table 2.1 shows the seven gene expression datasets that were included to compare the  

co-expression measures in order to define the networks among genes. 
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Figure 2.1 Images of Yeast Sporulation.                 (ARACNe) 
 

Source: Cytoscape 3.2.1  

http://www.cytoscape.org   

 

   

 

 

Figure 2.2 Images of Yeast Cell Cycle.                (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  
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Figure 2.3 Images of Yeast KY.                    (Biweight Midcorrelation (Bicor)) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

 

 

 

 

 

Figure 2.4 Images of GDS825 (Human).      (MINE- Maximal Information Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  
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Figure 2.5 Images of GDS958 (Mouse).                 (MRNET) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

  

 

Figure 2.6 Images of GDS3702 (Rat).                    (Cor- Pearson Correlation) 
 
 Source: Cytoscape 3.2.1 
 http://www.cytoscape.org    
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Figure 2.7 Images of Thaliana.                                                                         (WGCNA) 
 

Source: Cytoscape 3.2.1 
http://www.cytoscape.org 

 

 

The network images of the seven  gene expression datasets were done using the  

visual software Cytoscape. The images shows the comparison of the seven  co-expression  

measures. 
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           CHAPTER 3  

       IMPLEMENTATION 

      

   3.1 Methods for Gene Co-expression Networks 

 

 Context Likelihood of Relatedness (CLR) is an algorithm that uses mutual 

information in order to infer networks from steady-state. It forms a matrix of 

mutual information scores by calculating between each pair of genes in the 

network. This algorithm output only undirected edges because of their 

bidirectional nature of mutual information [15].  

 

 ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) is  a 

novel algorithm (information-theoretic) which is used for the reverse engineering 

of transcriptional networks from microarray data. In a biological context, the 

algorithm infers bona-fide transcriptional targets[3].  ARACNe begins by 

assigning to each pair of nodes a weight equal to the mutual information [14]. 

 

 

 MRNET is an inference method using the maximum relevance/minimum 

redundancy (MRMR), which performs a series of supervised MRMR gene 

selection procedures where each gene in turn plays the role of the target output 

[15].  
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 WGCNA (weighted gene correlation network analysis) is a method that can be 

used for finding clusters of highly correlated genes. By using the module 

eigengene or an intramodular hub gene in which clusters are summarized [13].  

 

 Bicor (biweight midcorrelation) is an alternative to Pearson correlation. Bicor 

measures the ‘similarity’ between gene expression profiles which provides 

approach for gene differential coexpression analysis [16]. 

 

 MINE(maximal information-based nonparametric exploration) is a novel method 

which computes the MINE family measures between two variables. MIC 

(maximal information coefficient) is one of five statistics that is part of MINE, 

which identify important relationships in data sets and characterize them as well. 

The method can be downloaded, http://www.exploredata.net/, and is also 

available in R package ‘minerva’.  

 

 

 Cor (Pearson Correlation Coefficient) functions implements a faster calculation of 

Pearson correlation. A measure of the linear correlation between two variables, 

giving a value between +1 and -1 inclusive, where +1 is total positive correlation, 

0 is no correlation, and -1 is total negative correlation   
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3.2 Measurements 

In order to determine the biological significance of the clusters which comprises of all the  

genes participating in the co-expression network, Q-values was used against statistically  

significant GO terms validated by using the GO annotation database [17]. 

Q-value is the minimum False Discovery Rate (FDR) in which genes appears  

significant. Q values from an FDR corrected hypergeometric test for enrichment can be 

obtained using GeneMania, a plugin, from Cytoscape.  P-value is the probability of 

obtaining a result equal to or more in an observed sample results. 
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3.3  Results 

As an example shown in Table 3.1, cluster 1 shown from the Yeast KY network is  

responsible for Protein-DNA complex with a Q value of 3.3e-12. While on cluster 1  

shown from the Yeast Cell Cycle is responsible for chromosome segregation with a Q  

value of 3.9e-0 being the highly enriched one.  

Table 3.1 Q-value Scores for Each Organisms 

 

Source: http://www.cytoscape.org 
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Figure 3.1 The bar graphs represent the p-value comparing the seven  methods used on 

each seven  datasets using the Pearson Correlation Coefficient measures in the minet 

Bioconductor package and WGCNA package. Aracne shows a better performance in 

most of the datasets. 

Source: Meyer PE, Lafitte F, Bontempi G: minet: A R/Bioconductor Package for Inferring Large     

Transcriptional Networks Using Mutual Information, BMC Bioinformatics 2008, 9:461. 

 

Figure 3.1 shows the Pearson Correlation Coefficient measures of the methods used. If  

 

the correlation coefficient is close to 1, it would indicates that the variables are positively  

 

linearly related. If the score is -1, it indicates that the variables are negatively linearly  
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related .A value of zero would indicate a weak linear relationship between the variables.   

 

This calculation was done using minet part of a bioconductor package in R[15] and  

 

WGCNA [13]. 

 

 
 

 
 

 
 

Figure 3.2 The images shows a heatmap/clustering of the gene expression of 

Mycobacterium tuberculosis using TM4:MeV. 

 

Source: Rohde KH, Veiga DFT, Caldwell S., Balazsi G., Russell DG (2012) Linking the Transcriptional 

Profiles and the Physiological States of Mycobacterium tuberculosis during an Extended Intracellular 

Infection. PLoS Pathog 8(6): e1002769. doi:10.1371/journal.ppat.1002769. 

www.tm4.org/mev.html 
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Figure 3.2 is a heatmap/clustering image of the Mycobacterium tuberculosis of the log  

 

scaled time series set in {2 hours, 2 days, 4 days, 6 days, 8 days, 10 days, 12 days,  

 

14 days}[1]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    

 

 



 

19 
 

        CHAPTER 4 
               

                                                 4. CONCLUSIONS 
 

In summary, genetic network analysis are used and compared to better understand the  

important of assessing each co-expression measures in terms of how the genes are  

connected and its correlation. And in terms of gene regulatory network, to better  

understand the interaction of regulators among each other and other substances in the cell  

that governs the gene expression levels.  
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Table 1.2 is a supplementary table excel file of the transcriptional regulatory network of  

C. glutamicum ATCC 13032 

 

 

 

 

 

Source: Abreu VA, Almeida S, Tiwari S, Hassan SS, Mariano D, Silva A, Baumbach J, Azevedo V, 

Rottger R (2015) CMRegNet-An interspecies reference database for corynebacterial and mycobacterial 

regulatory networks. BMC Genomics 16:452. doi:10. 1186/ s12864-015-1631-0.                                                                                                                                      

http://www.lgcm.icb.ufmg.br/cmregnet/ 
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cg1791 cg2831(ramA) 1 

cg2560  cg0350 (glxR) 0 

cg2560  cg0444(ramB) 0 

cg2560  cg2831(ramA) 0 

cg2559 cg0350(glxR)  0 

cg2559 cg0444 (ramB) 0 

cg3047 cg0350(glxR)  0 

cg3047 cg0444(ramB) 0 

cg3047 cg1120(ripA)  0 

cg0760 cg0350(glxR)  0 

cg1701 cg3253(mcbR) 0 

cg0978 cg0979(-) 0 

cg0949 cg0350(glxR)   0 

cg0949 cg0444(ramB)  0 

cg0791 cg0350(glxR)  0 

cg0791 cg0444(ramB)  0 

cg0953 cg0444(ramB)   0 

cg2630 cg0350(glxR)   0 

cg2630 cg2624(pcaR)  0 

cg2747 cg0862(mtrA)  0 

cg1345 cg1120(ripA)   0 

cg1345 cg1340(arnR)  0 

cg1746 cg2109(oxyR) 0 

cg0469 cg2103(dtxR) 0 

cg1791 cg0350(glxR)  0 

cg1791 cg2115(sugR)  0 
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APPENDIX A 

                          CO-EXPRESSION NETWORK IMAGES 

Figure A.1 to A.6 are network images of the Yeast Sporulation data. 

 

Figure A.1 Images of Yeast Sporulation.                      (Biweight Midcorrelation (Bicor)) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

Figure A.2 Images of Yeast Sporulation.                   (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

 

 



 

22 
 

 

 

 

  

  

Figure A.3 Images of Yeast Sporulation.                (Cor- Pearson Correlation Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

  

  

 

 

Figure A.4 Images of Yeast Sporulation.         (MINE- Maximal Information Coefficient) 
  

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 
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Figure A.5 Images of Yeast Sporulation.                                                            (MRNET)                                                       

 
Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

  

 
 

 

Figure A.6 Images of Yeast Sporulation.                                                            (WGCNA) 
  

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 
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APPENDIX B 

Figure B.1 to B.6 are network images of Yeast Cell Cycle. 

 

Figure B.1 Images of Yeast Cell LCycle.                                               (ARACNe) 
  

Source: Cytoscape 3.2.1  

http://www.cytoscape.org 

 

 

 

Figure B.2 Images of Yeast Cell Cycle.                        (Biweight Midcorrelation (Bicor)) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 
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Figure B.3 Images of Yeast Cell Cycle.                              (Cor- Pearson Correlation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

  

 

 

 

  

 

Figure B.4 Images of Yeast Cell Cycle.   (MINE- Maximal Information Coefficient) 
  

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 
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Figure B.5 Images of Yeast Cell Cycle.                                                             (MRNET)                                                       

 
Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

 

 

  

 

  

 

Figure B.6 Images of Yeast Cell Cycle.                                                            (WGCNA) 
  

Source: Cytoscape 3.2.1 
http://www.cytoscape.org 
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APPENDIX C 

Figure C.1 to C.6 are network images of Yeast KY. 

 

 

Figure C.1 Images of YeastKY.                                     (ARACNe) 
 

Source: Cytoscape 3.2.1  

http://www.cytoscape.org  

 

 

Figure C.2 Images of Yeast KY.                          (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 
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Figure C.3 Images of Yeast KY.                 (Cor- Pearson Correlation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

 

 

Figure C.4 Images of Yeast KY.           (MINE- Maximal Information Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

  

http://www.cytoscape.org/
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Figure C.5 Images of Yeast KY.                          (MRNET) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

 

 

 

  

Figure C.6 Images of Yeast KY.                                                                         (WGCNA) 
  

Source: Cytoscape 3.2.1 
http://www.cytoscape.org 
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                                        APPENDIX D 

Figure D.1 to D.6 are network images of GDS825 (Human). 

 

Figure D.1 Images of GDS825 (Human).                                 (ARACNe) 
 

Source: Cytoscape 3.2.1 

 http://www.cytoscape.org  

 

 

 

 

Figure D.2 Images of GDS825 (Human).                              (Biweight Midcorrelation) 
 

Source: Cytoscape 3.2.1 

 http://www.cytoscape.org  
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Figure D.3 Images of GDS825 (Human).                  (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

 http://www.cytoscape.org  

 

 

 

Figure D.4 Images of GDS825 (Human).                     (Cor-Pearson Correlation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  
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Figure D.5 Images of GDS825 (Human).                             (MRNET) 
 

Source: Cytoscape 3.2.1 
 http://www.cytoscape.org  
 

 

Figure D.6 Images of GDS825 (Human).                                                          (WGCNA) 
 

Source: Cytoscape 3.2.1 
http://www.cytoscape.org 
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                                            APPENDIX E 

Figure E.1 to E.6 are network images of GDS958 (Mouse). 

 

 

 

Figure E.1 Images of GDS958 (Mouse).                                                       (ARACNe) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

 

Figure E.2 Images of GDS958 (Mouse).                (Biweight Midcorrelation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   
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Figure E.3 Images of GDS958 (Mouse).              (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

 

 

 

Figure E.4  Images of GDS958 (Mouse).               (Cor- Pearson Correlation) 
 

 Source: Cytoscape 3.2.1 

 http://www.cytoscape.org  
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Figure E.5 Images of GDS958 (Mouse).      (MINE- Maximal Information Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  

 

 

 

 

Figure E.6  Images of GDS958 (Mouse).                                                           (WGCNA) 
 

Source: Cytoscape 3.2.1 
http://www.cytoscape.org 
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                                            APPENDIX F 

Figure F.1 to F.6 are network images of GDS3702 (Rat). 

 

  

Figure F.1 Images of GDS3702 (Rat).      (ARACNe) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org 

 

 

 

Figure F.2 Images of GDS3702 (Rat).                   (Biweight Midcorrelation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   
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Figure F.3 Images of GDS3702 (Rat).               (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   

 

 

 

 

Figure F.4 Images of GDS3702 (Rat).           (MINE- Maximal Information Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org  
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Figure F.5 Images of GDS3702 (Rat).       (MRNET) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   

 

 

 

 

 

  

 

Figure F.6 Images of GDS3702 (Rat).                                                            (WGCNA) 
 

Source: Cytoscape 3.2.1 
http://www.cytoscape.or 
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                                                     APPENDIX G 

        Figure G.1 to G.6 are network images of Thaliana. 

 

  

 

Figures G.1 Images of Thaliana.                 (ARACNe) 
 
Source: Cytoscape 3.2.1 

 http://www.cytoscape.org   

 

 

 

 

Figures G.2 Images of Thaliana.                                (Biweight Midcorrelation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   
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Figures G.3  Images of Thaliana.                     (Context Likelihood of Relatedness) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   

 

 

 

 

 

  

 

  

 

Figures G.4 Images of Thaliana.                           (Cor- Pearson Correlation) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   
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Figures G.5 Images of Thaliana.                    (MINE- Maximal Information Coefficient) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   

  

 

 

 

 

Figures G.6 Images of Thaliana.                                                  (MRNET) 
 

Source: Cytoscape 3.2.1 

http://www.cytoscape.org   
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