New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Fall 2019

CE 632-103: Design of Prestressed Concrete Structures

Raj Navalurkar

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

Navalurkar, Raj, "CE 632-103: Design of Prestressed Concrete Structures" (2019). *Civil and Environmental Engineering Syllabi*. 247. https://digitalcommons.njit.edu/ce-syllabi/247

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

CE 632 - Section:	Design of Prestressed Concrete Structures 103	Fall 2019
Text:	Nawy, Edward G., Prestressed Concrete - Fundamental Updated Prentice Hall, 2009, ISBN: 0-13-6081509	l Approach, 5th Edition

Dr. Raj Navalurkar, PE, Rajendra.navalurkar@parsons.com

Instructor: CE 632 - Section 103 Tuesday 6 PM - 8:50 PM Room 310 Central King Building

Prerequisites: undergraduate course in theory and design of reinforced concrete. Analysis and design of pre-tensioned prestressed concrete elements for both determinate and indeterminate structures will be studied. Examples of prestressed elements used in buildings and bridges will be discussed, as well as the source and magnitude of prestress losses.

"Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at:

http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

Week	Торіс	Homework
1	Introduction, Prestressing Methods, Prestressing Systems, General Design Principles. Chapter 1	To be assigned in class
2	Materials for Prestressing; Steel (strength, plasticity, relaxation, corrosion. Concrete strength, elastic modulus, and shrinkage and creep properties. Chapter 2	To be assigned in class
3,4	Prestress Losses, Effect of Friction, Relaxation, Creep and Shrinkage, Specifications and Practical Design Solutions. Chapter 3	To be assigned in class

Week	Торіс	Homework
5,6	Basic Principles for Flexural Design; Service Load Design, Minimum Section Modules, Limiting Eccentricities, Shape and Size Selections, Practical Considerations. Chapter 4	To be assigned in class
7	End Anchorage and Bearing. Chapter 4	To be assigned in class
8	Mid-Term Exam	
9	Ultimate Strength Flexural Design. Chapter 4	
10	Shear (and Torsion) Design. Chapter 5	To be assigned in class
11	Camber, Deflections, and Crack Control - Serviceability. Chapter 7	To be assigned in class
12	Continuity in Prestressed Beams; Elastic Analysis, Load-Balancing Method. Chapter 6	To be assigned in class
13	Compression Members and Tension Members. Chapter 8	To be assigned in class
14	Introduction to Two-Way Prestressed Concrete Floor Systems. Chapter 9	To be assigned in class
15	Final Exam	

<u>Grading</u>

- 1. Homework/Project ----- 30% (must do all homework)
- 2. Term Exam ----- 35%
- 3. Final Exam ----- <u>35</u>
- <u>35%</u> 100%