Fall 2020

PHYS 103-101: General Physics

Andrei Sirenko

Follow this and additional works at: https://digitalcommons.njit.edu/phys-syllabi

Recommended Citation

https://digitalcommons.njit.edu/phys-syllabi/247

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Physics Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
INSTRUCTOR: Andrei Sirenko, email: sirenko@njit.edu Office: TIER 458

Office hours: Thursday, 4:00 pm – 5:00 pm Classes, Thursday, 6:00 pm – 9:00 pm in CKB G-08

This class is offered in the Converged Learning mode:
Delivery of instruction is independent of place, merging the physical and virtual classrooms. There is an attendance expectation and students can choose to attend class face-to-face or using real-time synchronous video conferencing technology. Instructor may require occasional proctored exams. (sometimes referred to as a synchronous distributed course).

Webex will be used for synchronous delivery of the course materials. Notifications will be sent to the registered Students on the day of the class.

PRE-REQUISITES AND CO-REQUISITES:
- Pre-requisites: Phys 102 or Phys111 with grade C or better
- Co-requisites: Phys 103A (the lab course) unless a waver is provided by the Physics Dept Office. For example, the Lab 103A may be rescheduled for the next Semester.

FAILURE TO MEET EITHER CO-Requisites or PRE-Requisites will result in student being dropped from class.

COURSE MATERIAL:
- Mastering Physics Homework System: Be sure that your textbook is sold bundled with a Mastering Physics student access code card. Each student must enroll in the course specified by his/her instructor. Homework assignments will be posted on-line. Students login, download and solve the assigned problems, and submit answers to the automated grading system.

CLASS ATTENDANCE: The NJIT attendance policy is the following: "It is expected that students will attend all classes. Your teacher will take attendance at all classes and exams. More than 3 unexcused absences (in total) are excessive. The attendance is in the classroom or via WebEx.

COUNSELING AND ACADEMIC SUPPORT: The Center for Counseling and Psychological Services is committed to assisting students experiencing high levels of personal challenge and stress. If you need accommodations due to a disability please contact Associate Director of Disability Support Services.

HELP: Visit or email your instructors if you are having trouble with the course; do not simply hope for a miracle and fall further behind. The Physics Dept. office on the 4th floor of Tiernan may have more information on tutoring.

GRADING: Final letter grades will be based on a term average for the semester’s work that includes the three common exam scores, the final exam, and the homework score.

COMMON EXAMS Three common exams will be given during the semester. The schedule is:
- Common Exam 1: Thursday, October 08 7:15 – 8.50 PM
- Common Exam 2: Thursday, November 05 7:15 – 8.50 PM
- Common Exam 3: Thursday, December 03 7:15 – 8.50 PM

HOMEWORK Homework assignments will be posted on-line using the Mastering Physics Homework System. Please register for your section using login: www.masteringphysics.com. See instructions at the end of the file.
COURSE SYLLABUS

PHYSICS 103
FALL 2020

COURSE CODES TO REGISTER TO HOMEWORK CLASSES with PROF. SIRENKO

Section 101 – CRN 94615
Instructor’s ID in Mastering Physics: sirenko08656

PHYSICS 103 NJIT FALL 2020 SIRENKO

FINAL EXAM
Comprehensive Final Exam will be given during Final Exam Period.

Here are the weights to be used for calculating term averages:

- 45% for all three common exams (15% each)
- 30% for the final exam
- 25% for the total of homework

The conversion of term average values to letter grades will use the following cutoff values:

- 80% for A, 76% for B+, 66% for B, 56% for C+, 50% for C, and D or F below 50%.

COURSE POLICIES

In order to insure consistency and fairness in application of the NJIT policy on withdrawals, student requests for withdrawals after the deadline (end of the 10th week of classes) will not be permitted unless extenuating circumstances are documented through the Office of the Dean of Students. The course instructor and the Dean of Students are the principal points of contact for students considering withdrawing from a course. When a student invokes extenuating circumstances for any reason (late withdrawal from a course, request for a make-up exam, request for an Incomplete grade) the student will be sent to the Dean of Students Office. The Dean of Students will be making the determination of whether extenuating circumstances exist or not and will be notifying the instructor accordingly. Instructors should never request or accept medical or other documents from students; such documents need to be submitted by the student to the Dean of Students.

HONOR CODE

“Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu”

LEARNING OUTCOMES: For this course you can expect to be assessed on the following learning outcomes:

1. Comprehend the meaning of equations governing the fluid at rest and fluid in motion. Understand the extension of conservation of energy and mass equations to fluid dynamics.
2. Define temperature scales.
3. Understand the phenomena of thermal expansion and Ideal Gas Law,
4. Understand the concept of heat and comprehend the meaning of equations governing the calorimetry and heat transfer.
5. Understand the basics concepts of thermodynamics.
6. Comprehend the meaning of equations governing oscillations and mechanical waves and apply those concepts to solve related problems.
7. Understand the concept of electric charge, electric field, electric potential, and electric current. Apply those concepts to solve simple circuits.
8. Understand the basic concepts of geometrical optics and learn how to apply them for mirrors, lenses and optical fibers.
9. Comprehend the wave theory of light and apply it the phenomena of interference and diffraction.

IMPORTANT DATES:
NOVEMBER 26, THANKSGIVING
FINAL EXAM PERIOD – DECEMBER 14 -21

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Text Study</th>
<th>Recommended Problems</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elasticity, Density and Pressure, Fluids at Rest</td>
<td>Chapt. 9 Sect. 5-6 Chapt.10 Sect. 1-7</td>
<td>p. 256 prob. 40, 45, 50 p. 285 prob. 2, 12, 14, 19, 23 27, 34, Intro</td>
</tr>
<tr>
<td>2</td>
<td>Fluids in Motion</td>
<td>Chapt. 10 Sect. 8-10</td>
<td>p. 285 prob. 47, 48, 49, 50, 53, 80 A</td>
</tr>
<tr>
<td>3</td>
<td>Temperature, Thermal Expansion, The Ideal Gas Law</td>
<td>Chapt. 13 Sect. 1-8</td>
<td>p.385 prob. 5, 12, 15, 19, 24, 31,9, 78 7</td>
</tr>
<tr>
<td>5</td>
<td>Transfer of Heat</td>
<td>Chapt. 14 Sect. 6 - 8</td>
<td>p.408 prob. 38, 42, 43, 54 E</td>
</tr>
<tr>
<td>6</td>
<td>Thermodynamics</td>
<td>Chapt. 15 Sect. 1-7</td>
<td>p.438 prob. 1, 18, 19, 24, 32, F</td>
</tr>
<tr>
<td>7</td>
<td>Simple Harmonic Motion, Waves, Standing Waves</td>
<td>Chapt. 11 Sect. 1-12</td>
<td>p.322 prob.3, 7, 8, 14,18, 27, 36, 37, 40, 49, 52, G</td>
</tr>
<tr>
<td>8</td>
<td>Sound</td>
<td>Chapt. 12 Sect.1-7</td>
<td>p. 354 prob. 3, 4, 9, 14, 27, 28, 56, 63 B1</td>
</tr>
<tr>
<td>9</td>
<td>Electric Charges, Electric Field, Electric Potential</td>
<td>Chapt.16 Sect.1-5, 7 Chapt. 17 Sect. 1-2</td>
<td>p. 468 prob. 2, 3, 19, 21, p. 496 prob. 3, 4, 6, 9 W</td>
</tr>
<tr>
<td>10</td>
<td>Electric Current, Resistance, Electric Power</td>
<td>Chapt.18 Sect. 1-7</td>
<td>p.521 prob.1. 9, 13, 17, 28, 37, 47, 54 J</td>
</tr>
<tr>
<td>11</td>
<td>Electric Circuits</td>
<td>Chapt.19 Sect. 1- 5, 7</td>
<td>p. 552 prob. 1, 4, 12, 15, 16, 77 H</td>
</tr>
<tr>
<td>12</td>
<td>Light: Reflection, Mirrors, Refraction</td>
<td>Chapt. 22 Sect. 3-4 Chapt. 23 Sect. 1-3</td>
<td>p. 673 prob. 4, 9, 12, 25, 26, 28, 29, 72 215</td>
</tr>
<tr>
<td>13</td>
<td>No classes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 14</td>
<td>Dec. 03</td>
<td>Light: Total Internal Reflection, Lenses</td>
<td>Chapt. 23 Sect. 4-8</td>
</tr>
<tr>
<td>---------</td>
<td>---------</td>
<td>--</td>
<td>----------------------</td>
</tr>
<tr>
<td>Week 15</td>
<td>Dec. 10</td>
<td>Interference, Diffraction Grating, Resolution</td>
<td>Chapt. 24 Sect. 1, 3, 4, 6 Chapt. 25 Sect. 7-9</td>
</tr>
<tr>
<td>Week 16</td>
<td>Dec. 14 – Dec. 21</td>
<td>REVIEW FOR FINAL and THE FINAL EXAM</td>
<td></td>
</tr>
</tbody>
</table>
To register for PHYSICS 103 NJIT FALL 2020 SIRENKO:

2. Under Register, select Student.
3. Confirm you have the information needed, then select OK! Register now.
4. Enter your instructor’s course ID: sirenko08656, and Continue.
5. Enter your existing Pearson account username and password to Sign In.
 You have an account if you have ever used a MyLab or Mastering product.
 » If you don’t have an account, select Create and complete the required fields.
6. Select an access option.
 » Enter the access code that came with your textbook or that you purchased separately from the bookstore.
 » If available for your course,
 • Buy access using a credit card or PayPal.
 • Get temporary access.
 If you’re taking another semester of a course, you skip this step.
7. From the You’re Done! page, select Go To My Courses.
8. On the My Courses page, select the course name PHYSICS 103 NJIT FALL 2020 SIRENKO to start your work.

To sign in later:

2. Select Sign In.
3. Enter your Pearson account username and password, and Sign In.
4. Select the course name PHYSICS 103 NJIT FALL 2020 SIRENKO to start your work.

To upgrade temporary access to full access:

2. Select Sign In.
3. Enter your Pearson account username and password, and Sign In.
4. Select Upgrade access for PHYSICS 103 NJIT FALL 2020 SIRENKO.
5. Enter an access code or buy access with a credit card or PayPal.