IE 650-101: Advanced Topics in Operations Research

Wenbo Cai

Follow this and additional works at: https://digitalcommons.njit.edu/mie-syllabi

Recommended Citation

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Mechanical and Industrial Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
IE 650-101 Advanced Topics in Operations Research
Fall 2020

It is the responsibility of students to read and understand the course syllabus. Students enrolled in this course agree to all terms specified in the syllabus.

Contents

1 Course Overview .. 2
 1.1 Instructor .. 2
 1.2 Course Delivery via Canvas & WebEx 2
 1.3 Required Background 3
 1.4 Recommended Textbooks 3
 1.5 Course Restrictions 3
 1.6 Required Hardware and Software 3
 1.7 Academic Integrity 4
 1.8 Office Hours via WebEx 4
 1.9 Communications .. 4

2 Learning Activities and Assessments 4
 2.1 In-class Participation 5
 2.2 Homework Assignments 5
 2.2.1 Homework Submission Policy 5
 2.2.2 Homework Grading 6
 2.2.3 Homework Solutions 6
 2.2.4 Homework Collaboration 6
 2.3 Exams ... 7
 2.3.1 Make-up Exam Policy 7
 2.3.2 Technical Issues during Exams 8
 2.3.3 Exam Grading 8

3 Course Grade .. 8
 3.1 Letter grade ... 9
 3.2 Extra Credit ... 9
 3.3 Incomplete (I) ... 9

4 Other .. 10
 4.1 Technical Assistance 10
 4.2 Respondus LockDown Browser Q&A 10
 4.3 Excel Solver Q&A 11
 4.4 Piazza Q&A ... 11
 4.5 Campus Resources 11
 4.6 Modifications to Syllabus 12
1 Course Overview

This is a graduate level course on mathematical programming, a discipline that facilitates managerial decision making by applying a scientific approach to problems with quantitative factors. Topics covered in this course include Linear Programming (LP) Formulation, Simplex Method, Two-Phase Method, Sensitivity Analysis, Duality, Unconstrained and Constraint Nonlinear Programming (NLP), Optimality Conditions, and Lagrange Methods.

The overall learning outcomes include creating mathematical models, applying classical optimization techniques to solve problems, analyzing and evaluating solutions generated by Excel Solver, and interpreting solutions to facilitate decision making. These learning outcomes are appropriate to the rigor and breadth of the IE graduate program. Further, students are required to meet high standards and requirements of the program, regardless of the method of instruction.

1.1 Instructor

Dr. Cai is the instructor of this course. See Table 1 for her contact information. She is an Associate Professor in the Department of Mechanical and Industrial Engineering at the Newark College of Engineering. She received a B.S. in both Electrical and Computer Engineering and Operations Research & Industrial Engineering at Cornell University and an M.S. and a Ph.D. from Industrial Engineering & Operations Research at University of California, Berkeley.

She joined NJIT as an Assistant Professor in Fall 2012 and has been teaching a number of courses, including IE 706 Queuing Theory and Applications, IE 650 Advance Topics in Operations Research, EM 602 Management Science, IE 459 Production Planning and Control, IE 439 Deterministic Models in Operations Research. Her research interest is in Operations Management, focusing on theoretical advancement of OR methodologies and economic models as well as their applications in managing sustainable energy systems, pricing in e-commerce, designing incentives to foster public-private partnership, and primary care planning and scheduling.

| Email address: cai@njit.edu | Phone: 973-596-3338 | Office: MEC 308 |

1.2 Course Delivery via Canvas & WebEx

This course will be conducted synchronously online. Canvas, NJIT’s Learning Management System (LMS), will be used to disseminate lecture notes, feedback, and grades and to collect in-class exercises, homework assignments, and exams. The course website is

See Canvas Student Guides for instructions on how to use various features of Canvas.

Classes meet remotely on Wednesdays 6-9 pm via WebEx. Directions on how to join these meetings are posted on the course webpage.
1.3 Required Background
Students are expected to have mastered the following prior to taking this course:

- Apply Gaussian elimination (or row manipulation);
- Add and multiply matrices; Compute the transpose and determinant for a given matrix;
- Take derivatives of polynomial functions and solve a set of equations.

1.4 Recommended Textbooks

1.5 Course Restrictions
Due to COVID-19, this course is run asynchronously online. it is important to understand its implications on exams:

- All exams can only be taken online 6-9 pm on Wednesday (see Table 2 for dates).
- All exams must be proctored via the *Respondus LockDown Browser*, a microphone, and a computer camera.
- Exams contain different types of questions. They are multiple-choice, true/false, fill-in-the-blanks, and essay questions (which require students to show detailed work). Students must be willing to learn how to use the *Canvas* editors.

1.6 Required Hardware and Software

1. A personal computer equipped with a microphone and a webcam, either built-in or connected via a USB cable.

2. The *Respondus LockDown Browser*. See section 4.2 for a *Respondus LockDown Browser* Q&A.

Important: Students must agree with the following to take exams:

(a) Launch the *Respondus LockDown Browser* on their personal computers to take the exams;

(b) Allow Respondus to access webcams to (i) record pictured IDs issued either by NJIT or by a state/local government, (ii) take pictures of their faces, (iii) scan their environments at the start of each exam, and (iv) record them during the entire exams.

A student who refuses to use the *Respondus LockDown Browser* with a webcam and a microphone during the entire exam will receive a zero on the exam.

3. Excel with its built-in *Solver*. See section 4.3 for a *Excel Solver* Q&A.
1.7 Academic Integrity

Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues your degree. As members of the NJIT community, it is the responsibility of students to protect their educational investment by knowing and following the academic code of integrity policy, which can be found by clicking here.

Please note that it is the instructor’s professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing, or using any online software inappropriately will lead to disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. Students who have questions about the code of Academic Integrity should contact the Dean of Students Office at dos@njit.edu.

1.8 Office Hours via WebEx

The instructor conducts office hours via WebEx on Wednesday 4-5 pm. To access the WebEx meeting, click on the link posted on the course webpage. During office hours, the instructor will answer questions regarding the course materials students may have.

1.9 Communications

The instructor post important information, including comments, corrections, and updates on Canvas. Students are responsible to check the course webpage regularly.

The instructor will not answer emails or online posts that are not professional. The following links offer examples of professional email etiquette, but also applies to online posts:

https://www.math.uh.edu/~tomforde/Email-Etiquette.html
and https://www.wikihow.com/Email-a-Professor.

The instructor encourages students to help foster a learning community by posting questions on Piazza (see section 4.4 for details) rather than emailing. Students may post anonymously to classmates, but not to the instructor. When students email questions of an academic nature, the instructor will answer these questions on Piazza so all students can see.

The instructor will respond within 48 hours, during normal business hours: Monday - Friday between 8 am and 5 pm. Questions received on Saturdays and Sundays will be replied on Monday.

2 Learning Activities and Assessments

This is a three-credit, semester-long course. Students should expect to spend at least 6 hours per week on coursework and assignments. In a synchronous online format, students have a heightened responsibility to take ownership of their learning and it may require more time.

Online learning, however, should not be a solitary experience. It can only be successful with a strong instructor presence, guidance, and initiation. In fact, the Department of Education requires Regular and Substantive Interaction between students and the instructor to ensure federal financial aid funds were used appropriately. To facilitate student learning and assess learning outcomes, the
instructor includes the following types of learning activities and assessments: in-class participation, homework assignments, and exams.

2.1 In-class Participation

Students are expected to attend classes via WebEx, take notes, and participate in discussions. During classes students are asked to work on problems in groups. The goal of these in-class exercises is to get you started on a problem but not necessarily finish. **Students must submit their work via Canvas at the end of each class. Neither late submissions or submissions via email will be graded, and zero points will be assigned.**

2.2 Homework Assignments

Homework assignments are intended to help students learn the topics and keep up with the pace of the course. Deadlines are set so feedbacks, such as solutions and grades, can be offered promptly.

2.2.1 Homework Submission Policy

- **Canvas Quizzes** are used to disseminate homework questions and homework collection. Learning the features and functionalities (such as types of questions, various editors) of Canvas Quizzes help students prepare for exams.
- The cutoff submission time is set at **11:30 pm on the due date.**
- **Late submission is not accepted and will receive zero points.**
- **No submissions via emails will be accepted.**
- Depend on the questions, students may be asked to type their answers in the given space. They may also be asked to upload files that contain detailed work. Only two formats are accepted: portable document format (pdf) and Excel spreadsheet (xls or xlsx).
 - If a question requires a pdf file submission, students may either type up their answers or scan their hand-written answers. Label each part of the question and sort them either in a numerical order (part 1, part 2, etc.) or in an alphabetical order (part a, part b, etc.).
 - If a question requires an xls or xlsx submission, students must submit a single Excel spreadsheet that includes both the model and the solution. The instructor will run the model(s) to check whether the solution is generated by the Solver. Use multiple tabs if more than one model is required.
- **Submit a separate file for each problem that requires a file submission.** This is the most efficient method because it
 - ensures consistency in grading: the instructor can grade the answers to one question from all students before moving on to the next question.
 - facilitates prompt feedback: the instructor needs to minimize time in opening up files, loading pages, and searching for answers. Otherwise, feedback will be delayed significantly and students learning may be negatively affected.
 - allows the instructor to link a problem to a learning outcome and analyze whether or not mastery of the learning outcome is achieved. This is an important step in continuous improvement required by accreditation.
Example of how homework questions are graded: Two questions (Q1 and Q2) in an assignment require file submissions.

- **Correct submission:** Submit one file (F1) to Q1 and another (F2) to Q2. Grading: Q1 will be graded based on F1 and assigned a grade. Q2 will be graded, after everyone's Q1 is graded, based on F2 and assigned another grade.
- **Incorrect submission:** Submit a single file (F) to Q1 and submit no file to Q2. F has answers to both Q1 and Q2. Grading: Q1 will be graded based on F and assigned a grade. Q2 will receive zero points because no file was submitted to Q2.

2.2.2 Homework Grading

- To receive full points, students must follow the instructions and meet the criteria specified for each problem in a homework assignment.
- The instructor will **not** deduct points for incorrect work. Instead, the instructor will provide meaningful feedbacks when the approach is incorrect or to clarify a concept.
- The instructor will finish grading and post grades within a week of the submission deadline.

2.2.3 Homework Solutions

Homework solutions will be posted on *Canvas* shortly after the submission deadline. **Students are responsible to compare their work to the homework solutions** and ask questions during office hours or via *Piazza*.

2.2.4 Homework Collaboration

The instructor strongly encourages students to form pairs and collaborate on homework. **Students, however, must report such collaboration by answering the first question in every homework assignment.** Further, **every student must type-up or write-up the solutions himself/herself and create his/her own *Excel* spreadsheet when applicable.**

The following acts violate academic integrity:

- Two or more students submit the same file;
- The collaboration question is not answered;
- Statements of collaboration do not corroborate. Example: A stated working alone, while B claimed to work with A.

Penalty for violating academic integrity:

- First offense: all students receive a zero on their homework, along with a warning from the instructor.
- Second offense: all students are reported to the DOS in addition to receiving a zero on their homework.
- Third offense: all students fail the course.
2.3 Exams

Two midterm exams and a final exam are scheduled, see Table 2 for exam dates. Because some students work full-time Monday to Saturday, all exams are scheduled on Sunday afternoons, between 2pm and 5pm.

- All exams are administered online.
- To ensure academic integrity, all students are required to use the Respondus LockDown Browser with microphones and webcams during the exams.
- Multiple versions of the exams will be used.
- The exams are comprehensive (or cumulative), closed book, and closed notes.
- Students may bring blank sheets of paper.
- No electronics (calculators, cell phones, tablets, computers, smart devices, etc.) other than the computer used to take the exam are permitted.
- Students must show that none of unauthorized items are included during the environment check step in the Respondus LockDown Browser.
- Students found cheating on the exams, as defined in the NJIT’s Academic Integrity Code, will receive a grade of F for the course, and be reported to the Dean of Students.

2.3.1 Make-up Exam Policy

No make-up exams will be administered without formal approval from the Dean of Students. Typical reasons that will not grant a make-up exam include, but not limited to, (1) work matters, (2) planned vacations and other events, (3) lack of preparation, or (4) misinformation.

Procedure to Request a Make-up Exam: To properly report absence of a midterm or a final exam, students must do the following:

1. Contact the Dean of Students (DOS) at dos@njit.edu before the exam. Provide necessary documentation to support the student’s reason for missing an exam. To protect students’ privacy*, do not copy the instructor on the email.

 Note: Students who have incapacitating illness or emergencies that prevent them from contacting the Dean of Students before or during the exams must notify the Dean of Students within 72 hours of the missed exams.

2. If circumstances warrant a makeup exam, the Office of DOS will email a formal notice to the instructor. The instructor will then notify the student the date and time of the makeup exam. Students cannot pick the date.

* NJIT Academic Policies and Procedures states the following: The university continues to make every effort to protect students’ academic and personal information. Moreover, maintaining the confidentiality of students’ medical information is a legal and ethical duty, as defined by federal and state laws and regulations, and by the courts. Whenever students have a situation that affects their academic standing, it should be brought to the Dean of Students. This includes medical or psychological documentation to support a student’s claim. Students should not bring such information to their instructors, nor should it be requested by a faculty member. The Dean of Students has a physician and staff psychologists to evaluate such information to verify its legitimacy. The Dean of Students will then notify the faculty member(s) if a student has a legitimate absence and will ask that the student receive consideration in making up any missed course work or exam. This process ensures confidentiality of students’ information and, just as important, consistency in dealing with such matters.
2.3.2 Technical Issues during Exams

Students who cannot start or complete the exams because of poor internet connects, failure to install/launch the Respondus LockDown Browser, automatic updates of personal computers, etc. will not receive time extensions or make-up exams. Students cannot submit answers after the exams.

To minimize technical failure during exams, a practice exam gives students an opportunity to make sure that they have the proper equipment and internet connections.

2.3.3 Exam Grading

- The instructor will finish grading and post grades within 10 days of the submission deadline.
- A grading rubric will be provided for each essay question that asks students to show detailed work. Partial credits may be awarded.

3 Course Grade

A numerical weighted-average score is calculated based on a student’s performance in homework assignments, participation in online discussion, midterm exams, and the final exam. Weights assigned to each category are shown in the following table:

<table>
<thead>
<tr>
<th>Category</th>
<th>Homework Assignments</th>
<th>In-class Participation</th>
<th>Midterm Exam 1</th>
<th>Midterm Exam 2</th>
<th>Final Exam Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight</td>
<td>15%</td>
<td>10%</td>
<td>20%</td>
<td>25%</td>
<td>25.5% NLP 4.5% LP 100%</td>
</tr>
</tbody>
</table>

Average homework score calculation: For various reasons (health, work, religion, etc.), students may not be able to submit their homework before the deadlines. The lowest score from homework assignments will be dropped. Therefore, students who miss up to one (1) homework submission will have no negative impact on their average HW score.

Average in-class participation score calculation: The lowest two in-class participation scores will be dropped.

Final exam score calculation: There are two components in the final exam: NLP and LP.

- The NLP component is mandatory, and thus all students must take it. 85 (out of 100) points are allocated to the NLP component.
- The LP component is optional, and students may choose NOT to take it. 15 (out of 100) points are allocated to the LP component. Students who choose NOT to take the LP component in the final exam will receive the same score from the weighted average of the midterms.

Example 1: course grade calculation when a student opt-out the LP component on the final. A student receives an average score of 95 (after dropping the lowest score) on homework assignments,
100 (after dropping the lowest two scores) on in-class participation, 85 on exam 1, 78 on exam 2, and 70 (out of 85 on NLP) on the final, the student’s cumulative score is

\[
\frac{95 \times 15\%}{HW} + \frac{100 \times 10\%}{In-class} + \frac{85 \times 20\%}{Exam1} + \frac{78 \times 25\%}{Exam2} + \frac{70 \times 25.5\%}{NLP} + \frac{85 \times 20\% + 78 \times 25\%}{20\% + 25\%} \times 4.5\% = 85.4
\]

Example 2: course grade calculation when a student choose to take both components on the final: A student receives an average score of 95 (after dropping the lowest) on homework assignments, 100 (after dropping the lowest) on in-class participation, 85 on exam 1, 78 on exam 2, 80 (70 on NLP and 10 on LP) on the final, the student’s cumulative score is

\[
\frac{95 \times 15\%}{HW} + \frac{100 \times 10\%}{In-class} + \frac{85 \times 20\%}{Exam1} + \frac{78 \times 25\%}{Exam2} + \frac{80 \times (25.5\% + 4.5\%)}{NLP+LP} = 84.8
\]

3.1 Letter grade

Mapping from a numerical grade to a letter grade follows the following table.

<table>
<thead>
<tr>
<th>Course Grade</th>
<th>≥ 84.0</th>
<th>76.0-83.9</th>
<th>68.0-75.9</th>
<th>60.0-67.9</th>
<th>52.0-59.9</th>
<th>≤ 51.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letter Grade</td>
<td>A</td>
<td>B+</td>
<td>B</td>
<td>C+</td>
<td>C</td>
<td>F</td>
</tr>
</tbody>
</table>

3.2 Extra Credit

No extra credits will be awarded. Please [click here](#) to read an article for a detailed explanation.

3.3 Incomplete (I)

The university’s policy on requesting and awarding an I grade is as follows:

- The I grade is only given in rare instances when a student who would normally have completed the course work but who could not do so because of extenuating circumstances.
- When a student invokes extenuating circumstances and requests an I grade, the student must contact the Dean of Students first. The Dean of Students will be making the determination of whether extenuating circumstances exist or not and will be notifying the instructor accordingly.
- Except for cases determined by law, the instructor is **not** required to accommodate student requests even when extenuating circumstances are certified by the Dean of Students.
- When giving an I grade, the instructor will notify the student (and copy the Department Chair and the Dean of Students), in writing, of the exact work to be completed and the date by which it must be submitted.
- If the specified work is **not** submitted by the specified date. The I grade will be automatically changed to a F grade in the next regular semester.

The instructor will only grant an I grade when **all** of the following conditions are satisfied:
1. There is a written statement from the Dean of Students certifying the student’s circumstance qualifies for an I.

2. The student has completed at least 70% of all coursework when requesting an I grade.

3. The instructor and the student are able to come to an agreement, in writing, before the final grade due date on the exact work to be completed and the date by which it must be submitted.

4 Other

4.1 Technical Assistance

The Office of Digital Learning manages all courseware, such as Canvas, WebEx, and Respondus LockDown Browser. When encountering any technical issue with any courseware (including during an exam), submit a ticket to the IST Service Desk using this website: https://servicedesk.njit.edu/CherwellPortal/IST.

The Office of Digital Learning, after receiving a ticket, will assign a representative to help resolve the technical issue. Please note that the instructor has neither the admin authorization nor the in-depth knowledge to help students with technical issues.

4.2 Respondus LockDown Browser Q&A

• Q: What is the Respondus LockDown Browser?
 A: It is a proctoring application that assists with the academic integrity of online exams by preventing students from printing, copying, going to another URL, or accessing other applications during an exam. Students cannot access the exam via a standard web browser.

• Q: What role does the Respondus LockDown Browser play during an online exam?
 A: It will access the students’ webcams to record them during the entire exam.

• Q: What role does the Respondus LockDown Browser play after an online exam?
 A: It analyzes the recorded videos to catch violations of academic integrity. Click here to see NJIT’s Academic Integrity Code.

• Q: How does the Respondus LockDown Browser work?
 A: Click here to watch a video to get a basic understanding of the Respondus LockDown Browser.

• Q: How to install the Respondus LockDown Browser?
 A: Click here to install the Respondus LockDown Browser.

• Q: How to do the Respondus Environment Check?
 A: Click here for a YouTube video that shows how to do Respondus Environment Check. Note: the video demonstration allows for a calculator. However, students may not bring a calculator. The Respondus LockDown Browser provides one.
4.3 **Excel Solver Q&A**

- **Q**: How will the Solver be used in this course?
 A: The Solver, an Excel add-in, is used to solve complex linear programs.

- **Q**: How to install the Solver?
 A: Click here for directions.

4.4 **Piazza Q&A**

- **Q**: What is Piazza?
 Piazza, a platform on *Canvas*, is designed for students to get help fast and efficiently from classmates and the instructor. See this page for a Quick Start Guide.

- **Q**: Are there rules of postings that I need to follow?
 A: Yes.

 1. Sharing answers to graded activities, such as assignments, are not permitted.
 2. Postings that are unprofessional, disrespectful, or offensive will be deleted.

- **Q**: How to start a new post?
 A: Create a new post only if the question has not been asked. Click on *New Post* in the left sidebar of the discussion board. Select *Question* as the post type. Tag the post by selecting one of the folders. Do not select *Note* or *Poll*. You may choose to post anonymously to classmates, but not to the instructor. Select *Anonymous to Classmates* from the pulldown menu if you choose to not to show your name.

- **Q**: How to find an existing post?
 A: Search the left sidebar of the discussion board.

- **Q**: What should I do if I have a followup question to an existing post?
 A: Simply type your question below *Start a new followup discussion*. Select *Anonymous to Classmates* from the pulldown menu if you choose to not to show your name.

- **Q**: How soon can I expect an answer?
 A: The instructor will either provide an answer or endorse a student’s answer. A response will be provided in 48 hours during normal business hours: Monday - Friday between 8 am and 5 pm. Questions posted on Saturdays and Sundays will be replied on Monday.

- **Q**: What if I have a problem with Piazza?
 A: If you have any problems or feedback for the developers, email team@piazza.com.

4.5 **Campus Resources**

The most relevant on-campus resources are highlighted in this section.
• The Robert W. Van Houten Library (http://library.njit.edu/) offers electronic and print resources, including a core collection of academic books, databases, and journals, as well as research and consultation services.

• The Office of Accessibility Resources and Services (OARS), https://www.njit.edu/studentsuccess/accessibility, works in partnership with administrators, faculty and staff to provide reasonable accommodations and support services for students with disabilities.

• The Center for Counseling and Psychological Services (C-CAPS), https://www.njit.edu/counseling/, is committed to assisting students in the achievement of their academic goals as well as benefiting from their personal experience on campus.

4.6 Modifications to Syllabus

The syllabus is subject to change. Students will be notified by the instructor should any modifications or deviations from the syllabus occur.
<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Learning Outcomes/Learning Objectives</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2</td>
<td>OR Overview</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LP Formulation</td>
<td>Formulate a LP problem with four components: (1) variable definitions; (2) objective function in linear terms; (3) linear constraints; and (4) variable restrictions.</td>
</tr>
<tr>
<td>9/9</td>
<td>The Simplex Method</td>
<td>Convert an LP model to its Standard Form; Identify when Simplex is used; Perform Simplex iterations using tableau.</td>
</tr>
<tr>
<td>9/16</td>
<td>Two-Phase Method</td>
<td>Identify when Two-Phase is necessary; Setup initial simplex tableaus in both phases; Perform Simplex iterations using tableau.</td>
</tr>
<tr>
<td>9/23</td>
<td>Midterm Exam 1 Review</td>
<td>Topics covered: LP Formulation, Simplex Method, and Two-Phase Method.</td>
</tr>
<tr>
<td>9/30</td>
<td>Midterm Exam 1 via Respondus LockDown Browser, 6-9 pm</td>
<td>Midterm Exam 1 via Respondus LockDown Browser, 6-9 pm</td>
</tr>
<tr>
<td>10/7</td>
<td>Sensitivity Analysis</td>
<td>Revise the initial and the final Simplex tableau when one of the following of the original LP is changed: (1) RHS; (2) coefficients of a non-basic variable; 3) coefficients of a basic variable; and (4) adding a new constraint.</td>
</tr>
<tr>
<td>10/14</td>
<td>Duality</td>
<td>Create the Dual LP for a given Primal LP; Find the Dual solution using Complementary Slackness Conditions; Evaluate whether a given solution to the Primal LP is optimal.</td>
</tr>
<tr>
<td>10/21</td>
<td>Unconstrained NLP: Optimality Conditions</td>
<td>Find stationary points of unconstrained NLP; Check first-order and second-order necessary conditions to determine which (if any) is an optimal solution.</td>
</tr>
<tr>
<td>Date</td>
<td>Topic</td>
<td>Learning Outcomes/Learning Objectives</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10/28</td>
<td>Unconstrained NLP: Solution Methods</td>
<td>Apply algorithms to find optimal solutions; Determine when to stop these algorithms.</td>
</tr>
<tr>
<td>11/4</td>
<td>Constrained NLP: Optimality Conditions</td>
<td>Determine whether a function is convex or concave; Classify a given solution as a local or a global optimal solution.</td>
</tr>
<tr>
<td>11/11</td>
<td>Midterm Exam 2 Review</td>
<td>Topics covered: LP Formulation, Simplex and Two-Phase Methods, Sensitivity Analysis, Duality, Unconstrained NLP</td>
</tr>
<tr>
<td>11/18</td>
<td></td>
<td>Midterm Exam 2 via Respondus LockDown Browser, 6-9 pm</td>
</tr>
<tr>
<td>11/25</td>
<td>No Classes</td>
<td>Friday classes meet instead</td>
</tr>
<tr>
<td>12/2</td>
<td>Constrained NLP: Lagrange Methods</td>
<td>Find candidate solutions using the KKT necessary conditions; Evaluate whether these solutions are optimal by investigating the structure of the objective function and constraints.</td>
</tr>
<tr>
<td>12/9</td>
<td>Final Exam Review</td>
<td>NLP component topics: Optimality Conditions of Non-linear Programs; Apply algorithms or KKT conditions to find optimal solutions; LP component topics: LP Formulation, Simplex and Two-Phase Methods, Sensitivity Analysis, Duality.</td>
</tr>
<tr>
<td>12/16</td>
<td></td>
<td>Final Exam via Respondus LockDown Browser, 6-9 pm</td>
</tr>
<tr>
<td>12/23</td>
<td></td>
<td>Final Grade Posted</td>
</tr>
</tbody>
</table>