New Jersey Institute of Technology Digital Commons @ NJIT

Civil and Environmental Engineering Syllabi

NJIT Syllabi

Fall 2019

CE 210-005: Construction Materials & Procedures

Frank L. Golon

Follow this and additional works at: https://digitalcommons.njit.edu/ce-syllabi

Recommended Citation

 $Golon, Frank \ L., "CE\ 210-005: Construction\ Materials\ \&\ Procedures"\ (2019).\ {\it Civil\ and\ Environmental\ Engineering\ Syllabi}.\ 240.$ https://digitalcommons.njit.edu/ce-syllabi/240

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Civil and Environmental Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.

CE 210-005: CONSTRUCTION MATERIALS & PROCEDURES

Class Hours

Thurs 11:30 am - 2:20 pm Colton Hall 416 (First Day of Classes Tuesday. September 03, 2019)

Office (Colton 261) at (973) 491-6900 or fg4@njit.edu

REQUIRED TEXT

Halpin, Daniel W. and Senior, Bolivar A., Construction Management, 5th Edition Wiley, and ISBN: 9781119256809. This textbook is referred to as DH in the lecture readings and other references below.

OTHER REFERENCE

International Building Code (IBC 2015) and International Residential Code (IRC 2015) some of it supplements

Building Construction, M. Mehta, W. Scarborough, & D. Armpriest 3rd Edition Pearson *Construction Methods and Management* by S.W., Nunnally, 6th edition Other files are assigned electronically as supplemental readings and will be e-mailed or place on Moodle to class participants. These are denoted in course outline as Efiles.

Prerequisite: <u>HUM 101</u>. Introduction to construction management organization, contracts, construction safety, engineering economics, and engineering ethics. Studies current practices of heavy construction including soil and rock excavation productivity, and building construction materials and procedures. Field trips to construction sites provide opportunities to directly view many of the practices.

"Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at:

http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu

COURSE DESCRIPTION AND OBJECTIVES:

This course is a general comprehensive course on construction management and engineering in the Civil and Environmental Engineering Department at NJIT. It provides a broad understanding of the construction environment, the engineering and construction project management process and development process, with particular emphasis on planning, scheduling and cost management, which are key pillars of successful construction management. Also, the various tools and techniques and their interactions in the cost-effective development of constructed facilities, will be covered with practical illustrations and complemented by hands-on exercises and case studies.

LEARNING OUTCOMES

This course covers the environment, planning and management issues related to the modern approach of construction management. Using the cases and background materials, and methodologies covered, you should be able to:

- Analyze the feasibility of a construction project within resource constraints.
- Understand the basic structure of the construction industry, its environment, its various sectors and its overall relationship to the US and global economy.
- Devise the best organizational structure capable of carrying out the project.
- Understand engineering economic principles and apply the concepts of life-cycle management of a constructed project from the owner's perspective (feasibility, financing, rate of return, contract management, quality control).
- Define the role of the general contractor, and understand the perspective of the GC as a business (estimating, bidding, project financing, cash flow management, materials and operations management).
- Understand the components of modern Professional Construction Management, and its relationships to other project participants as a form of project delivery.

COURSE OUTLINE (Subject to updating throughout semester)

Week	Dates	Textbook/Reading	Assignment (*)	Topics
1	05 Sept	DH Chapters 1,2	Assignment #1	Overview of
		AIA Docs e-mailed	Questions 2.1, 2.5 DH	Construction Industry;
		or hand-out		Development Cycle for
				Projects
2	12 Sept	DH Chapters 3, 4	Assignment #2	Development Cycle for
			Questions 3.4,	Projects (cont.),
			3.11(refer to AIA Doc	Contracts
			G702)	
3	19 Sept	DH Chapters 5, 6	Assignment #3 4.13	Legal Aspects of
			and handout	Organizations; Impact
				of Taxes-Field Trip (1)
4	26 Sept	Chapter 6(cont.), &	Case: So St & Penn Ave	Depreciation of Assets
		14	Urban Renewal LLC	Project PILOT
			Assignment #4	
			Handout	
5	3 Oct	DH Chapter 11	Proforma Problem &	Quiz1/Mathematics of
			FV PV Time Value	Money
			Money	-

6	10 Oct	DH Chapters 11, 12	Future and Present	Present and Future
		& AIA Document	Values; Annuities &	Values; Proforma
		G702	sinking funds, Bonds	
7	17 Oct	DH Chapter 13	Problem Project	Case Study NY Ave
			Funding	
8	24 Oct	DH Chapter 7 E-mail	Assignment # 5	Project Planning &
		Nunnally book	Problem 7.3, MS project	Scheduling
		chapters	WBS Model Hand out	
9	31 Oct	Nunnally (cont.)	CPM scheduling	Mid-Term/ scheduling
			Handout	
10	7 Nov	Nunnally (cont.)	Assignment # 6 CPM	CPM Scheduling
			handout,	
11	14 Nov	Fast track case study	MS schedule &	Practical Case Studies-
		South Street Urban	presentation with	Newark & Elizabeth
		Renewal	problems	Projects
12	21 Nov	Nunnally	Structural building	Construction Materials
		E-mail 1926	Materials	
13	26 Nov	Handout, Nunnally	Structural building	Construction Materials
		IBC Codes	materials	and Properties;
				Building Systems
14	5 Dec	Handout, Nunnally	Structural building	Construction Materials
		IBC Codes	materials	
15	11 Dec	No Class Extra Help	No Class Extra help	Review any material
	Last			
	Day			
16	14 Dec	Finals week	TBD	Final cover entire
				semester

Reading day 1 & 2 Dec 12 & 13 - Final Exam Period begins: Dec 14. Ends Dec 20

OSHA & Ethics will be covered each week specific to the topics Assignment sheet will be handed out in class and/or found in Moodle with due dates *Actual Assignments may differ from list and can be changed by Instructor during Semester.

GRADING:

The overall term grade will be based on the following elements:

Paper/Project Case Study: 17.5%

Quiz 1: 10% Homework: 20%

Class Participation/attendance: 10%

Mid-Term: 17.5%

Final: 25%

Field Trip Reports

Each student will submit two (2) reports, which can be 2 Parts of the same project on self-conducted field trips according to the following schedule:

- 1. Project Administration: In this first part, you will establish a construction project of your choice, or a section of the class field trip project:
 - a- The project background, scope, budget, staging and key milestones.

- b- Understanding of the contract and project delivery system, relationships between parties, progress measurement/payment, change order management.
- c- Description of the Construction Methods and Materials, and an engineering evaluation of a key project component (e.g. foundation design, etc.)
- d- A Preliminary Work Breakdown Structure.Part 1 is due October 17 hand in at the beginning of class.
- 2. Project Planning and Code evaluation, including:
 - a- A detailed Work Breakdown Structure for all building systems and work elements or a building code evaluation used on site.
 - b- An MS Project CPM Schedule integrated with a cost estimate to enable cost/schedule integration.
 - Part 2 is due **December 5** hand in at the beginning of class

Outline and Content Elements for Each (Part of) the Field Trip Reports:

- 1. *Introduction:* Identify the project, its location and the type of construction. Give the dates of your visitation. Identify the Owner, Contractor, and Architect-Engineer.
- 2. *Field Investigation:* Describe the project in detail based on your field visitation. Report on the present stage of construction. Report on the labor, equipment, and materials on the job. Report on production rates. Report any discussions with personnel (see note below).
- 3. Engineering Evaluation: Present your own evaluation of the equipment, materials, and procedures being used on the project based on your knowledge from CE 210. Suggest alternatives that might improve job progress and efficiency. Discuss any environmental and safety aspects of the project.
- 4. *Appendix:* (If any) Present applicable codes, manufacturer's literature, news articles, web links, etc.
- 5. *Figures and Photographs:* These or sketches are strongly recommended. Refer to all figures and photos in the body of the report.

Note: Make certain that you do not disrupt the ongoing construction activities during your visit. Always check first with the person-in-charge, usually the project superintendent, upon your arrival. Be courteous and remember, construction managers are busy people.

<u>Report Format and Grading</u>: The report should be word processed on 8.5 x 11 in. bond paper and handed in on dates specified. Correct grammar and spelling are required. Grading will be based on (1) Technical content, (2) Communication effectiveness including organization, grammar, spelling, clarity, and neatness. Suggested length of the text portion of each of the 2 Parts of the report is at least 4 pages.

NJIT Honor Code: the NJIT Honor Code will be upheld; any violations will be brought to the immediate attention of the Dean of Students.

Outcomes Course Matrix - CE 210 Construction Materials & Procedures

	A DETECT OF A	Program						
Strategies, Actions	ABET Student	Educational	Assessment					
and Assignments	Outcomes (1-7)	Objectives	Measures					
Student Learning Outcome 1: Explain terms used to describe construction materials,								
methods and procedures used in heavy building construction management and construction management and organization.								
	i e e e e e e e e e e e e e e e e e e e	1 2 2	TT 1 · 1					
Introduce the United	4	1, 2, 3	Homework, quizzes and					
States system of			exams					
delivery of engineering and construction								
services	7	1	II.					
Introduce equipment labor and methods used		1	Homework, quizzes and					
			exams					
in heavy and building								
construction	2							
Student Learning Outc		rocess of Job site pla	nning, scheduling and					
construction productive		1	TT 1 · 1					
Introduce critical path	1, 2	1	Homework, quizzes and					
method scheduling	1.0	1	exams					
Introduce methods	1, 2	1	Homework, quizzes and					
used to calculate and			exams					
estimate excavation								
equipment productivity								
Student Learning Outco Sates legal system.	ome 3: Discuss con	struction contracts	in the context of the United					
Introduce the United	4	1, 3	Homework, quizzes and					
States legal system and	'	1, 5	exams					
contracts			Chamb					
Present the NCEES	4	1, 3	Homework, quizzes and					
model rules of	'	1, 5	exams					
professional conduct			CAUTIS					
Introduce the role of	4	1, 2. 3	Homework, quizzes and					
OSHA and	T	1, 2. 3	exams					
construction site safety			CAUTIS					
Student Learning Outc	ome 4. Observe end	report on construc	tion project site visits					
Visit construction sites	3	1, 2	Field reports.					
and observe the project	3	1, 4	Tield reports.					
status and operations at								
the site.								
	7	1 2	Homowork anigges and					
Introduce engineering economics and its role	<i>'</i>	1, 2	Homework, quizzes and					
in selection of			exams.					
alternatives.								
anemanves.								

CEE Mission, Program Educational Objectives and Student Outcomes

The mission of the Department of Civil and Environmental Engineering is:

- to educate a diverse student body to be employed in the engineering profession
- to encourage research and scholarship among our faculty and students
- to promote service to the engineering profession and society

Our program educational objectives are reflected in the achievements of our recent alumni:

- <u>1 Engineering Practice:</u> Alumni will successfully engage in the practice of civil engineering within industry, government, and private practice, working toward sustainable solutions in a wide array of technical specialties including construction, environmental, geotechnical, structural, transportation, and water resources.
- <u>2 Professional Growth:</u> Alumni will advance their skills through professional growth and development activities such as graduate study in engineering, research and development, professional registration and continuing education; some graduates will transition into other professional fields such as business and law through further education.
- 3 -Service: Alumni will perform service to society and the engineering profession through membership and participation in professional societies, government, educational institutions, civic organizations, charitable giving and other humanitarian endeavors.

Our Student Outcomes are what students are expected to know and be able to do by the time of their graduation:

- 1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts
- 5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives
- 6. an ability to develop and conduct appropriate experimentation, analyze and interpret data and use engineering judgment to draw conclusions
- 7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies