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ABSTRACT 

DIFFERENTIATION OF MOUSE EMBRYONIC STEM CELLS INTO 

INSULIN-PRODUCING CELLS: OPTIMIZATION TO ENHANCE THE 

OVERALL DIFFERENTIATION EFFICIENCY 

 

by 

Xiaotang Ma 

Embryonic stem cells have the potential to differentiate into multiple cell types including 

insulin-producing cells (IPCs), which is becoming one of the promising cell sources for 

treating type 1 diabetes mellitus. However, in order to achieve functional stem cell-derived 

cells, it is important to generate more mature IPCs and to keep long-term viability post 

differentiation process. In this study, we varied several factors including different embryonic 

body culture conditions, digested cells seeding density and various coatings required for 

differentiation to optimize a previously established protocol to enhance the overall 

differentiation efficiency. Moreover, a three-dimensional in vitro collagen tissue culture 

system was prepared to provide a more physiological culture environment for stem 

cell-derived IPCs. Survivability of IPCs was examined under both static and flow conditions 

and low flow rate of 0.02 ml/min resulted in better survival of IPCs in in vitro 

three-dimensional tissues.   
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

Diabetes Mellitus (DM) is a chronic disease that affects about 382 million people in the world, 

and has resulted in 5.1 million deaths in 2013 [1]. It is a common endocrine disease which is 

characterized by hyperglycemia, and leads to a series of complications. With the development 

of living standards, extension of lifespan and reduction of physical activities, the death rate of 

diabetes has risen, making it the 8th leading cause of death in the world. 

  DM is classified into two main types. Type 1 diabetes mellitus (DM1) is caused by 

severe damage of insulin-producing β cells, and results in about 10% of DM cases. Patients 

with DM1 need injections of insulin for a long-period in life. Type 2 diabetes mellitus (DM2) is 

a heterogenous metabolic disorder, which results from insulin resistance deficiency caused by 

cells failing to respond to insulin properly. Approximately 80% of DM cases are DM2. One of 

the main treatments for DM2 involves proper diet and physical exercise. 

  Pancreas or islets transplantation have been considered as an effective way to treat 

DM1 and brittle DM2. However, the number of organ donors is limited for sufficient 

transplantations. Even if the transplantation is performed, the patients need to take a long-term 

immune suppression drugs to prevent rejection problems, which can compromise their health 

and well-being. Exogenetic insulin injection has been an important treatment, while it creates 

problems such as virus transmission and the risk of acute or chronic complications [2]. 

  Recently, studies have shown the possibility of generating insulin-producing cells 
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(IPCs) from stem cells, which opens an exciting pathway towards obtaining larger number of 

IPCs required for transplantations [3, 4]. The use of pluripotent stem cells can ultimately 

overcome the shortage of the healthy donor tissue by producing β cells and reduce the use of 

immune suppression drugs [5]. 

  Various types of stem cells including pancreatic stem cells [6], liver stem cells [7], 

mesenchymal stem cells (MSCs) [8], embryonic stem (ES) cells [9], and induced pluripotent 

stem cells (iPSCs) [10] have been investigated for their differentiation potential into IPCs. 

  In this study, mouse embryonic stem cells were used to generate IPCs, by using a 

previously reported protocol [11]. However, the efficiency of this protocol remained low at 

5.7% of IPCs by the study previously performed in our laboratory. Therefore, to enhance the 

overall differentiation efficiency, we examined and varied several factors involved in the 

differentiation process. Moreover, the three-dimensional (3D) culture conditions to maintain 

the viability of stem cell-derived IPCs were also modified and the results were compared to 

the previous study.  

  Chapter 1 describes the physiology of pancreatic and islet cells, pathophysiology of 

diabetes and recent methods for generating pancreatic islet cells. Chapter 2 includes the design 

and optimization of the differentiation protocol used in this research to improve differentiation 

efficiency. Various factors influencing the efficiency are studied, such as time required for 

suspension culture of embryonic bodies, seeding cell density for induction into pancreatic 

lineage, and different coating conditions. Chapter 3 describes culturing ES cell-derived IPCs 

in a 3D tissue culture condition to provide more physiological environment for long-term in 
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vivo culture. Chapter 4 summarized the thesis with suggestions for future studies. 

1.2 Pancreas and Pancreatic Cells 

 

 

 

Figure 1.1  Anatomy of the pancreas. The pancreas is shown in relationship of liver, stomach 

and intestine. 

Source: Longnecker, D.S , et al. 2014 [12]. 

 

The pancreas is a narrow endocrine organ which lies in the upper left abdomen, and is about 

6-inch long. It is located behind the stomach with the head surrounded by the duodenum. 

Figure 1.1 shows the anatomical position of the pancreas, which is composed of a head, neck, 

body and tail. It starts with a head that rests in the concavity of the duodenum, a body that 

rests behind the base of the stomach and ends at a tail abutting the spleen. The pancreas is a 

highly visualized organ with numerous arteries offer fresh blood and nutrients. It develops 

from the endoderm, which is the innermost layer of three germ layers. The gut tube first 
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forms in the embryo, and several buds below the section of the stomach grow into the liver, 

the pancreas rudiments and the gallbladder [12]. 

  The pancreas plays an important role in endocrine and external digestive functions. 

It is comprised of glandular tissue and a duct system throughout the organ. The glandular 

tissue is constituted of exocrine cells named acinar cells, which are formed into clusters 

called acini. Acini produce digestive enzymes and secrete them into ducts. Endocrine cells 

represent only a small fraction of pancreatic cells. The clusters of these cells are spattered 

patches called islets of Langerhans, located between acini. Islets of Langerhans carry out 

endocrine functions, produce important hormones and secrete into the blood.  

1.2.1 Pancreas Development 

Pancreas development is a complex process composed of several cascades of signaling 

pathways and transcription factors secreted from the surrounding tissues. The pancreatic 

primordium is induced into the primitive gut and posterior foregut during embryonic 

development. In this period, the pancreatic anlage formation is facilitated by retinoid 

signaling and depends on the inhibition of hedgehog signaling. The epithelial progenitors 

express PDX1 (lpf1), Hlxb9, Ptf1a, Nkx6-1 and Hnf6 (Onecut) and become endocrine, 

exocrine and ductal cells. The differentiation of pancreatic epithelium is controlled by the 

signals such as Fgf10 from the adjacent mesenchyme. The pro-endocrine gene Neurog3 

(Ngn3) triggers the expression of some transcription factors, such as Nkx2-2, Neurod1, 

Nkx6-1, Pax-6, Pax-4 and Isl-1, and these transcription factors regulate the differentiation of 

endocrine cells. Endocrine cell specification occurs with the inhibition of Notch signaling and 
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expression of Ngn3 for some of the pancreatic epithelial cells. Further, the islets of 

Langerhans are formed by the migration of nascent endocrine cells from the epithelium to 

surrounding mesenchyme. Table 1.1 shows most of the transcription factors in pancreas 

development [13, 14].  

  Generation of insulin-producing cells in vitro culture requires thorough 

understanding about how beta cells are formed in vivo. Differentiation from stem cells into 

beta cells in vitro requires t a series of transition steps replicating organogenesis in pancreas 

development. Genetic manipulation is involved in the process as well as epigenetic influences 

such as differentiating factors in vitro. Table 1.2 shows the main differentiating factors 

required for specific cell type differentiation.  
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Table 1.1  Transcription Factors Involved in Pancreas Development 

 

Source: Pokrywczynska, M., et al., 2013[6]. 

 

Table 1.2  Differentiation Factors for Specific Cell Types 

 

Source: Pokrywczynska, M., et al., 2013[6]. 
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1.2.2 Cell Types in Islets 

The cells comprising islets are derived from both endodermal and neuroectodermal precursor 

cells. There are four main types of cells, classified by their secretion of hormones. 

Approximately 75% of islet cells are insulin-producing beta cells, and the other cells are 

alpha, delta, and pancreatic polyeptide (PP) cells. Alpha cells secrete glucagon, which 

maintains basic blood glucose concentration by regulating hepatic glucose secretion. 

Insulin-producing beta cells are clustered centrally in the islets and secrete insulin, decreasing 

the glucose level. Delta cells and PP cells secrete somatostatin and pancreatic polyeptide 

respectively, and are located on the periphery of the islets [15].  

  Beta cells are essential in glucose homeostasis of the body by expressing a set of 

specific proteins. As the most frequent islet cell type, beta cells detect increased blood 

glucose levels and secrete insulin, which starts with glucose entering by the Glut2 receptor in 

the beta cells. Glucose then becomes the glucose-6-phosephate by glucokinase, a main 

glucose sensor. Cell membrane depolarization results from closure of ATP-sensitive 

potassium channels on the cell surface, which leads to Ca
2+

 channels opening and boosts the 

influx of Ca
2+

 inside β cells. The increase of Ca
2+ 

levels in the cytoplasm triggers the 

exocytosis of insulin. The secreted insulin facilitates glucose uptake in three ways: insulin 

signals the insulin-sensitive peripheral tissue to increase their uptake of glucose, and then 

insulin increases glycogenesis in the liver, and inhibits glucagon secretion to stop the liver 

from producing glucose. Insulin also acts to stimulate fat synthesis, promote triglyceride 

storage in fat cells, cells growth and protein synthesis in the liver and muscle. Beta cells also 
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secret amylin as a co-secret hormone with insulin, to modify carbohydrate metabolism in 

skeletal muscle and the liver. Amylin circulates glucose concentration in two mechanisms. It 

suppresses glucagon secretion after meal, and glucagon-stimulated hepatic glucose output is 

decreased. In addition, the rate of gastric emptying is weakened by amylin, which slows the 

delivery rate of absorption from stomach to the small intestine [16]. 

1.3 Diabetes 

Diabetes mellitus is described as a chronic metabolic disease, resulting from failure of insulin 

secretion. It is characterized by disturbances of carbohydrate, protein and fat metabolism, 

leading to the symptoms like frequent urination, increased hunger and increased thirst. The 

acute complications include kidney failure, foot ulcers, cardiovascular disease and damage to 

the eyes. There are two main types of diabetes, type 1 is due to body failing to produce 

sufficient insulin and type 2 is called “non- insulin-dependent diabetes mellitus” as cells do not 

respond to insulin properly. According to etiology, type 1 diabetes is presented in people 

whose endogenous insulin secretory capacity is damaged. It is classified as type 1A and type 

1B. Type 1A results from insulin deficiency, it is caused by immunological destruction of 

pancreas beta cells. Islet cell antibody (ICA), anti-glutamicacid decarboxylate (anti-GAD), 

IA-2 or insulin antibodies are present in almost 85-90% of patients with type 1A. These 

antibodies identify the autoimmune process of ß cells destruction. Type 1B has no evidence 

of autoimmunity. This disease is more widespread in African and Asian origin [1].  

  The current treatments for type 1 diabetes include pancreas or islets transplantation. 
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Unfortunately, there is a shortage of healthy donor organs and tissues. Even though the organ 

transplantation is performed, the patients need continuous immunosuppression to prevent 

graft rejection and recurring autoimmune attacks on the islet. It is shown that about 60% of 

islets are damaged by inflammatory reactions. The release of inflammatory cytokines, such as 

tumor necrosis factor-α (TNF-α)，interleukin-1 (IL-1) and interferon-γ (IFN-γ) leads to the 

destruction of the islet graft by the hypoxia condition [2].  

  Type 2 diabetes mellitus (T2DM) is the most common form of diabetes mellitus, and 

is often characterized by insulin resistance. It increases the risk of developing macrovascular 

and microvascular complications. In many cases, approximately 50% of patients are not 

diagnosed because of the underestimation of the disease. T2DM is often associated with 

obesity, decreased physical activity and heredity. Women with gestational diabetes are more 

likely to have T2DM, while people suffering with hypertension and dyslipidemia are also at 

risk of developing T2DM. Genetic disposition and familial factors are the major causes. 

T2DM is usually controlled by dietary therapy, hypoglycaemic agents and exercise. The main 

method to treat T2DM is insulin injections, to keep normal blood glucose level normal. 

However, insulin injection results in poorer glycaemic control, and has more side effects as 

the dose increases. Recently, it has been demonstrated that islet and cell transplantation is an 

effective method for treatment of T2DM [5]. 
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1.4 Stem cells Derived Pancreatic Cells 

1.4.1 Embryonic Stem Cells 

It has been demonstrated that ES cells from mouse and human have the capacity to 

differentiate into different cell types such as blood, blood vessels, heart, muscle as well as 

insulin-producing cells (IPCs). While it is becoming a potential tool for pancreas 

development and diabetes treatment, it is a yet a challenge to derive fully functional IPCs 

from pluripotent stem cells [5].  

  A number of multi-step protocols have been used to differentiate ES cells into 

pancreatic lineage. The derivation of IPCs from mouse embryonic (MES) cells into IPCs was 

first described by Soria et al. [17]. Assady et al. first showed human embryonic stem (hES) 

cells differentiated into IPCs [18]. Lumelsky et al. found that chemical factors have an 

influence of efficiency of differentiation. The serum free ITSFn (Insulin, Transferrin, 

Selenium and Fibronectin) medium and fibroblast growth factor (bFGF) were used in some 

protocols [19]. P13 kinase inhibitors were also involved in some of these studies, but it was 

demonstrated to trigger apoptotic pathways and facilitate neuronal differentiation [20, 21]. 

Further, these protocols failed to control insulin secretion from the derived cells, showing that 

they may not be fully mature or functional in vitro conditions [20-22]. Cells were unable to 

up-regulate their insulin production in response to varying glucose concentrations. The ES 

cells derived IPCs which were transplanted into mice showed the ability to correct glucose 

levels, but faded in time, indicating the de-differentiation or cell death. The teratoma 

formation may also be a problem for the IPCs derived by embryoid methods with mixture of 
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undifferentiated ES cells [23, 24].  

  A five-stage protocol was successfully established to differentiate hES cells into 

IPCs, which mimics the process of pancreatic organogenesis [25]. It involves phases of 

inducing a definitive endoderm, primitive gut tube, posterior foregut, pancreatic endoderm 

and cells expressing endocrine hormones. The shortcoming of this protocol was that there 

were more than one hormones expressed by most of the cells, meaning that the cells were not 

totally mature. Meanwhile, the C-peptide released in response to a glucose challenge was 

marginal and the yield of IPCs was low as ~7% [25]. The Wnt and transforming growth 

factor TGF-β are demonstrated to be essential as two signaling pathways for the formation of 

definitive endoderm. It has been found that differentiation of human ES cells into definitive 

endoderm is achieved when cultured in the media with activin-A and Wnt3a. This process 

was validated by the expression of endodermal markers, such as Sox17, Cxcr4, Gata4, FoxA2 

and Cerberus [19, 26]. Also, retinoic acid (RA) is a strong teratogen and it is shown to induce 

ES cells into different cell types. Based on the time and concentration of RA, it can induce 

ES cells into neuronal, cardiac and smooth muscle cells [23].  

  A new protocol was developed based on the five-stage protocol, which consists of 

only four stages with 12 days of differentiation period [26]. During the first stage, human ES 

cells were cultured in the media with activin-A and Wnt3a for a single day, then changed by 

the media with only activin-A for 2 days. In the next stage, cyclopamine was eliminated and 

keratinocyte growth factor was substituted for FGF10. In the third stage of posterior 

endoderm formation, the medium was changed with the one supplemented B27, Noggin, 
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all-trans RA and KAAD-cyclopamine, instead of Fibroblast growth factor (FGF). In final 

stage, cells were treated without all the factors except B27. The immature pancreatic 

endoderm was generated and finally grafted into immune deficient mice for maturation step 

in vivo. Human insulin and C-peptide were detected at the level similar to the mice 

transplanted with about 3000 human islets after stimulation of glucose. The implanted cells 

upon engraftment appeared to have become more functional cells.  

  Using nuclear reprogramming method is another interesting way to induce IPCs. 

Nuclear reprogramming has been used to facilitate the expression of essential transcription 

factors and guide ES cells to differentiate into IPCs. Shiroi et al. studied the capacity of 

NKX2.2 gene to transfect murine ES cells to differentiate into IPCs in vitro [27]. It is known 

that Nkx2.2 is NK-homeodomain gene expressed in pancreatic progenitor cells, which is 

needed for pancreatic endocrine development and inducing beta cells. In addition, it was 

demonstrated that the overexpression of PDX1 and Ngn3 can enhance differentiation for 

pancreatic cells. PDX1 works in early pancreatic development while Ngn3 is involved in the 

endocrine precursor formation of pancreatic. Overexpression of PDX1 leads to up-regulate of 

insulin or other pancreatic genes. This study indicates genetic engineering to be an important 

tool in differentiation of IPCs [27]. However, if transcription factors are forced to express at 

non-physiological level on inappropriate time points, it will results in the generation of other 

cell types [28]. 

1.4.2 Mesenchymal Stem Cells 

Mesenchymal stem cells (MSCs) are self-renewing and multipotent cells which are located in 
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bone marrow, adipose tissue, umbilical cord blood, or skeletal muscle. MSCs have the 

potential to be differentiated into endodermal and ectodermal lineages [29], and it has been 

shown that MSCs can differentiate into insulin producing cells (IPCs) [30]. Chen et al. 

demonstrated that MSCs can be differentiated into insulin-producing islet-like cells, which 

positively controlled blood glucose level in diabetic rats [8]. Hisanaga et al. used a simple 

method to generate IPCs from murine bone marrow MSCs [31]. The MSCs were cultured in 

the media supplemented with activin-A, betacellulin-d4 and conophylline. Differentiated 

cells secreted insulin in response of glucose stimulation in vitro. These cells showed the 

capacity to reduce glucose level when they were grafted into diabetic mice.  

  A three-stage protocol was reported by Sun et al. [32]. Firstly, serum free medium 

with high glucose supplemented with 2-mercaptoethanol was used. Cells treated with b-FGF, 

EGF, B27 and NEAA express nestin, PDX1, Ngn3, Pax4, insulin and glucagon. In the next 

stage, b-cellulin, activin A, B27 and nicotinamide were added to enhance the expression of 

PDX1 and endocrine hormones of insulin and glucagon. Further, another study used adipose 

tissue derived MSCs to generate IPCs. The cells expressed transcription factors in induction 

into a pancreatic endocrine phenotype, including Isl-1, IPF-1, and Ngn3. 

1.4.3 Induced Pluripotent Stem (IPS) Cells 

IPS cells generated from human skin fibroblast have been demonstrated to be differentiated 

into insulin producing islet like clusters [33, 34]. The clusters express C-peptide and 

glucagon by the four-stage protocol. However, the level of insulin secreted by iPS cells 

derived clusters was lower in response of high glucose, compared with ES cells derived 
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clusters. Another study by Zhang et al. demonstrated a high efficient step wise method [34]. 

Firstly, the cells were treated by the medium supplemented with basal serum albumin (BSA), 

N2, wortmannin, activin-A and B27 for 4 days. In the second stage, the medium 

supplemented with BSA, B27, FGF-7, ITS and NOGGIN was used for another 4 days. In the 

next stage, the medium was changed to high glucose with ITS, BSA, N2 and EGF for 5 days. 

In the last stage, the medium supplemented with BMP4, ITS, bFGF, nicotinamide and 

exendin-4 was used. IPCs generated by the protocol expressed most of transcription factors 

and markers, including PDX1, MAFA, NEUROD, Isl-1, Glut2 and Nkx6.1. In addition, 

insulin and C-peptide secretion in response to glucose stimuli was similar to that of adult 

human islets. 

  In a current study, Pellegrini et al. demonstrated a method for promoting the 

efficiency of differentiation from iPSCs into insulin-producing cells [35]. Human iPSCs were 

derived from both fetal and adult fibroblasts, and then iPSCs were differentiated into 

pancreas committed cells and transplanted into immune deficient mice. After the 

differentiation, the production of insulin mRNA was increased obviously and 5 ± 2.9 % of 

total cell population became insulin positive cells. Terminal differentiated cells produced 

C-peptide in both basal and stimulated conditions, as well as secreting C-peptide in response 

to glucose stimulus in vivo when transplanted into mice. 

1.4.4 Progenitor Cells 

It was indicated that human neural stem cells also have a broad potential to be differentiated 

into various cell types including insulin-producing cells [6]. Gao et al. reported that the 
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progenitor cells were generated from human pancreatic ducts during monolayer expansion 

[36]. The cells were proliferated from cytokeratin 19 (CK19)-positive ductal epithelial cells 

to nestin-positive fibroblastoid cells. Serum-free medium was used for the differentiation into 

endocrine cells. Matrigel was used as an essential requirement, while nicotinamide showed 

potentiating effect. The cells of generated islets buds had response to glucose as efficient as 

native islets. Furthermore, Feng et al. demonstrated that liver progenitor cells could be 

transdifferentiated into IPCs under specific condition [7]. Moreover, these cells can reduce 

the non-fasting blood glucose level when transplanted into the mice with alloxan-induced 

diabetic.  

  Despite the advancements in stem cell research, a numbers of challenges remain 

before insulin-producing cell therapy is applied for diabetes treatment. One of the main 

problems is achieving IPCs that are full mature in vitro. Differentiated cells express multiple 

hormones secret very little insulin and have little response to glucose challenge. It is 

supposed that the failure of beta cells maturation may be caused by the lack of 

mesenchyma-epithelium interactions, which occurs through pancreatic embryogenesis. Other 

problem is that the IPCs grafts do not survive long-term in vivo and vitro due to lack of 

supporting vasculature. Immature IPCs could also dedifferentiate into other cell types. More 

importantly, large scale of fully functional IPCs are required for clinical application. Further, 

studies are needed to fully assess the capacity of IPCs for the treatment of diabetes. 
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1.5 Three-Dimensional System for Pancreatic Islets 

Islets cultured in two-dimensional (2D) condition not only exhibit low viability but also 

transdifferentiation into exocrine cell. 2D tissue surfaces do not provide the cell-matric 

interactions which are present in vivo [37]. Recent studies have demonstrated islet-matrix 

interactions by culturing beta cells or IPCs on 2D ECM coated tissue surface [38-40]. 

ECM-derived substrates such as cell-secreted matrices and individual purified ECM proteins 

improve the survivability of beta cells [41]. It was demonstrated that matrix secreted by 

endothelial cells from bovine corneal facilitates islet survival, induced adult β cells 

proliferation and insulin secretion. Rat β cells cultured on matrix produced by rat bladder 

carcinoma line showed that the integrinα6β1 interacted with laminin and affected β cells 

function [42]. The purified individual ECM proteins showed better islet survival and 

function.  

  Collagen type I, IV and laminin are components of the basement membrane, 

showing higher insulin release. Collagen type I coated surfaces as well as those treated with 

fibronectin contributed to less apoptosis and higher insulin secretion from islets [43]. It is 

also shown that materials such as collagen and PEG hydrogel with matrix proteins entrapped 

may also be suitable as 3D scaffolds for pancreatic tissue engineering [44, 45]. Zhang et al. 

examined the effects of collagen matrix C and fibroblast-populated collagen matrix on 

amyloid formation, viability, and function of isolated islets and showed that 3D scaffolds 

improve viability and function of human islets in vitro [46]. Moreover, Matrigel is used for 

encapsulation of islets to prevent the immune rejection from host animals when implanted in 
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vivo. 

  To successfully transplant microencapsulated islets, the crucial point is to solve the 

problems such as deficient nutrient diffusion, microcapsule biocompatibility and local 

fibrosis [46]. Microfluidics systems have been explored to improve the islet survivability in 

vitro culture by perfusing islets and performing a quick quality assessment after donor 

isolation. It was shown that the mouse islets cultured in a microfluidic devices resulted in 

twice the endothelial cell density and have a connection length of capillaries compared with 

the islets cultured by previous methods. Microfluidic devices allow application of 

intercellular flow on islets to better deliver of nutrients and gas. However, there are still some 

limitations such as damage of islet by potential shear and mechanical stresses, low throughput, 

the difficulty of monitoring the islets real time and the complexity of microfluidic devices [47, 

48]. 

1.6 Significance 

This thesis describes strategies to enhance the overall efficiency of obtaining 

insulin-producing cells (IPCs) differentiated from mouse embryonic stem (ES) cells, by 

examining the time duration of suspension culture of embryonic bodies (EBs), cell seeding 

density and different collagen coating conditions.  The thesis also includes the pancreatic 

tissue engineering approach to generate the three-dimensional (3D) collagen tissue for 

long-term culture in vitro.  

  To begin the thesis, Chapter 1 describes the anatomy and development of the 

pancreas, diabetes mellitus, and differentiation methods from stem cells into 
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insulin-producing cells, as well as potential application of pancreatic tissue engineering for 

islet transplantation. While previous studies have proven the generation of insulin-producing 

cells (IPCs) from embryonic stem cells by different differentiation methods [24], current 

challenges in deriving insulin-producing cells include low efficiency and difficulty in 

maintaining viability and functional phenotype. Thus, Chapter 2 describes strategies to 

optimize a preexisting three-stage protocol, which includes the formation of EBs, the 

spontaneous differentiation from EBs into progenitor cells of ectodermal, mesodermal and 

endodermal lineages, and the induction of differentiation of early progenitors into pancreatic 

lineage [11]. 

  The influence of culture duration of suspension culture for EBs was first examined. 

This is the stage of spontaneous differentiation of ES cells into progenitor cells of ectodermal, 

mesodermal and endodermal lineages. While the existing protocol reports 3 days of 

suspension culture of EBs, previous work done in our laboratory following the protocol used 

2 days of suspension culture. Only 2 days were used for suspension culture as it was found 

that EBs attach to the bottom in suspension culture after 2 days. However, in this study, this 

was revisited to examine whether the durations of suspension culture majorly affects the 

overall differentiated efficiency. The results from 2 and 3 day EB suspension culture were 

compared.  

  Secondly, it was initially observed that a higher cell density results in higher number 

of islet-like clusters. Thus higher differentiation efficiency was expected with higher cell 

seeding density as previous study also demonstrated that higher initial cell seeding density 
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enhances pancreatic endocrine formation. Thus, initial cell seeding density was doubled in 

this study to examine the effects of digested cell seeding density on the differentiation 

efficiency. 

  Lastly, various coating methods were explored during the last stage of differentiation. 

Instead of diluted collagen coating, thin collagen gels as well as thin collagen gels with 

endothelial cells were used in this study. As islet specific endothelial cells were recently 

identified in the vicinity of pancreatic islet cells in the differentiation culture [49], it was 

hypothesized that ECs are important in the development of pancreatic organogenesis and thus 

may enhance the differentiation of pancreatic progenitor cells into insulin producing cells.  

  Chapter 3 describes a 3D tissue with IPCs in the collagen type I gels. IPC clusters 

obtained from the differentiation were much larger in size compared to native islets as they 

consist of IPCs as well as other cell types. By further isolation and dissociation method, IPCs 

were purified and the viability of IPCs in 3D tissues were enhanced. Moreover, to increase 

the viability of IPCs in collagen gels, perfusion flow bioreactor was utilized to apply 

perfusion flow through the tissue. The survivability of IPC clusters in flow condition was 

compared to that of static culture. In addition, since previous work using a flow rate of 0.5 

ml/min resulted in higher cell death in 3D tissues, a lower flow rate of 0.02 ml/min was used 

in this study to examine whether the cell death is due to higher shear stress caused by the 

flow. A summary of the entire work and further directions is discussed in Chapter 4. 

Appendix sections provide the details of the protocol and medium recipes. 
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CHAPTER 2 

DIFFERENTIATION FROM MOUSE STEM CELLS INTO INSULIN-PRODUCING 

CELLS 

2.1 Introduction 

Pancreas or islet transplantation has been one of the therapy options for treating Type 1 

diabetes patients. However, this has been limited by lack of donor tissues, immune rejection 

and associated side effects. Recently, a number of studies have demonstrated the possibility of 

generating insulin-producing cells (IPCs) from embryonic and adult stem cells that can be 

used for islet/cell transplantation [19, 50]. 

  So far, studies have used differentiation factors, genetic methods and various 

approaches to differentiate pluripotent stem cells into insulin-producing beta cells. Some of 

the differentiation factors include B27, transferrin, selenium, and activin-A. Lumelsky et al. 

used a serum free medium supplemented with ITSFn (insulin, transferrin, selenium and 

fibronectin) to initially support the proliferation of nestin-positive cell to differentiate mouse 

ES cells into IPCs [19]. It has been demonstrated that insulin-producing beta cells can be 

derived from nestin-positive cells [51, 52]. However, this protocol resulted in activating 

apoptotic pathways and facilitating the differentiation into neuronal lineage at the same time. 

During embryogenesis, parts of pancreatic and neuroectodermal differentiation are guided by 

the same factors, including Ngn3, Isl-1 and Pax6. It was found that the selection of 

nestin-positive cells was not required for successful pancreatic progenitors when it was used 

for ES cell-derived cells [52]. 
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  Other protocols applied retinoic acid (RA), which is a strong teratogen, to induce the 

differentiation of ES cells into various cell types. It has been reported that cardiac, neuronal 

and smooth muscle cells can successfully be derived from ES cells using the protocols with 

RA [53-55]. The application of RA was demonstrated to support the differentiation of ES cells 

into IPCs, while both pancreatic and neuronal cells were generated at the same time [56]. The 

generation and selection of endoderm progenitors through ES cells differentiation process 

could be another strategy to increase pancreatic differentiation based on the spontaneous 

differentiation. Activin-A is a member of the transforming growth factor-β (TGF-β) 

superfamily, and it has been shown to guide endodermal differentiation in embryonic bodies 

(EBs) in serum-free conditions. Activin-A promotes both pancreatic differentiation and 

neuronal differentiation at the same time [11]. The treatment of activin-A and RA resulted in 

the increased number of neuronal cells during differentiation of ES cells into IPCs. Thus, the 

application of RA and activin-A was not used in this study.  

  During differentiation process, the spontaneous formation of embryoid bodies (EBs) 

into ecto-, meso- and endodermal lineages is essential for the production of IPCs. Formation 

process includes suspension culture and plating of EBs culture, although different protocols 

require different EBs culture conditions. Lumelsky et al. cultured EBs from mouse ES cells 

in suspension culture for 4 days, while Schroeder et al. and McKiernan et al. used 3 days of 

suspension culture [11, 19, 57]. As the schematic in Figure 2.1 demonstrates, our studies are 

based on previously reported protocol with a few variations in an attempt to optimize the 

process. The differentiation process includes formation of EBs, spontaneous differentiation 
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from EBs into ectodermal, mesodermal and endodermal lineages and differentiation into 

insulin-producing cells. A basic culture medium was used for the differentiation into 

multilineage progenitors, and medium supplemented with insulin, nicotinamide and laminin 

was used for the induction into pancreatic lineage. 

  While the original protocol used 3 days of suspension culture, only 2 days of 

suspension culture was used in a previous study conducted in our laboratory as the EBs 

started to attach to the petri dish after 2 days culture. In this study, however, efforts were 

made to keep the suspension culture for 3 days to investigate the influence of time in 

suspension culture on the overall differentiation efficiency. Results from 2 days and 3 days 

suspension culture were compared after 33 days of differentiation process.  

  In addition, during the last of differentiation, EBs that were plated on dishes were 

digested and seeded on the 10 μg/cm
2
 collagen coated dishes to induce into pancreatic lineage. 

During this stage, cell seeding density may be an important factor that can affect the 

efficiency of differentiation. Gage et al. demonstrated that the higher initial cell seeding 

density enhances pancreatic endocrine formation as well as growth of pancreatic progenitor 

cell populations [58]. Thus, to examine the effects of cell density, the cell seeding density was 

doubled in this study, and was compared with our previous work which used the same 

seeding density as the previously reported protocol. 

  As the last stage is essential for the induction of pancreatic differentiation, different 

collagen coating conditions were also examined. Recently, it was found that islet-specific 

endothelial cells are present in the differentiation culture [49]. MES cell-derived endothelial 
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cells not only expressed normal endothelial markers, but also islet endothelial cells (IECs) 

specific markers. It was also found that pancreatic β cells are not capable to form a basement 

membrane without IECs, whereas endothelial cells can secret proteins to promote IPCs 

proliferation and to regulate insulin [59]. Moreover, islets are vascularized densely to 

facilitate the fast exchange of glucose and hormones, and vascular endothelial cells are 

essential to the pancreatic organogenesis. Therefore, it is hypothesized that the presence of 

endothelial cells may promote differentiation of cells into pancreatic insulin producing cells. 

Talavera et al. developed a co-culture system of mouse EBs and human microvascular 

endothelial cells, to investigate whether interaction of ECs with EBs enhances the 

differentiation of IPCs. The expression of some pancreatic markers including PDX1, 

proinsulin, Nkx6.1, Glut-2, Ngn3 and Ptfl1 was increased at the interface between ECs and 

EBs, while there was no expression of the markers at the periphery of EBs without ECs [60]. 

In addition, the activation of the bone morphogenetic protein (BMP) signaling pathway was 

found by the EB-EC interaction, BMP is an inductive factor for the differentiation of IPCs 

[60]. Thus we co-cultured IECs with digested EBs in the differentiation dish, by embedding 

IECs in the thin collagen gel as a specific coating as well as setting up the gel coating without 

ECs to compare with the normal collagen coating. The differentiation efficiency was 

evaluated using Dithizone (DTZ) staining, western blotting and insulin ELISA.  
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Figure 2.1  A schematic of the IPC differentiation protocol. (A) is the previous established 

protocol [11], (B) is modified version of (A) which was used in this study. 

2.2   Material and Methods 

2.2.1 Mouse Embryonic Stem (MES) Cells Culture 

The MES cells (a generous gift from Dr. Qyang’s lab at Yale University) were cultured on a 

feeder layer of mouse embryonic fibroblasts (MEF) at 37 ºC with 5% CO2. MES medium 

consisted of high glucose DMEM, 15% knockout serum, 1% sodium pyruvate, 1% 

L-Glutamine, 1% penicillin-streptomycin and 1% non-essential amino acids, 5 ng/ml 

Leukemia inhibitory factor (LIF) and β-mercaptoethanol (Appendix A). As ES cells 

differentiation is strongly depended on the quality of ES cells, it is essential to keep the ES 

cells in well status. MES cells were passaged every 2-3 days by treating cells with a 1:1 ratio of 

0.25% and 0.05% trypsin-EDTA solutions for 3 minutes, and then MES medium was added to 
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neutralize the trypsin after cells were removed from the plate. Collected cell suspension was 

centrifuged at 1000 RPM for 5 minutes, and fresh MES medium was used to re-suspend the 

cells. MEFs were removed by pre-plating for 30 minutes on bare tissue-culture plate, to get the 

pure MES cells. 0.25 Million cells were passaged onto freshly prepared MEF cell layers. Cells 

were checked and medium was exchange every day. 

2.2.2 Generation of MES-derived Progenitor Cells 

MES cells were used for generation of embryonic bodies (EB), to derive IPCs by the 

previously established protocol [11]. The hanging drop method was used for generating a 

homogeneous fraction of EBs, which derives reproducible cells and controls the size of EBs. 

To form hanging drops, 0.3 Million cells were added to10 ml differentiation medium #1, 

which is composed of IMDM medium, 20% FBS, 1% L-Glutamine, 1% 

pencillin-streptomycin and 1-thioglycerol (Refer to Appendix A for details). Each drop 

contained 600 ES cells in 20 μl of differentiation medium #1. Hanging drops were formed on 

the lids of P100 petri dishes (USA Scientific). 5 ml of 0.01% gelatin was added into P100 

petri dishes to keep the drops hydrated. To give 64 EBs per plate, 8 rows of 8 drops were 

added totally. The hanging drops were cultured for two days before they were collected in 1 

ml of differentiation medium #1 and transferred into a P60 Petri dish with 5 ml of medium 

for suspension culture. EBs were checked with light microscopy to ensure that they have 

regular round morphology. As shown in Figure 2.1, the suspension culture dishes of EBs 

were divided into two groups, one group with 2-day suspension culture and the other with 

3-day suspension culture, to examine whether any differences were detected. The size of 



 

26 
 

growing EBs was tracked daily by taking images and calculated by image J. 

  After either 2 or 3 days for suspension culture, 25 EBs were transferred into a 0.1% 

gelatin coated P60 tissue culture dish containing 4 ml of differentiation medium #1. The 

dishes were incubated for at least 36 hours without disturbing, to allow proper attachment of 

the EBs to the dishes. Cells were cultured for additional 9 days and the medium was changed 

every 2-3 day. EBs are expected to differentiate into progenitor cells of ecto-, meso- and 

endodermal lineages. 

2.2.3 Induction of Pancreatic Differentiation 

The plated EBs on the dishes were digested after 9 days culture. To induce the differentiation 

of EBs into pancreatic lineage, different coating conditions were investigated before digestion, 

which provides crucial factors for pancreatic differentiation. As Figure 2.1 shows, three 

collagen coating conditions were applied by rat tail collagen type 1 (Lab processed). Group 1 

was normal coating made by diluting collagen type 1 in the ratio of 1:70 with 0.02N acetic 

acid to make 10 μg/cm
2 

collagen I-coated dishes, and coat for 1 hour at 37 ºC. Group 2 was 

collagen gel coating composed of rat tail collagen type I (BD Biosciences), 10X DMEM 

(Sigma Aldrich) and 10X reconstitution buffer (0.05 N NaOH with 0.16 M HEPES and 0.25 

M NaHCO3), mixed on ice in the ratio of 80:10:10 to form collagen solution. The final 

concentration of collagen was 3 mg/ml. The pH was adjusted to 7.2-7.4 by adding 1N NaOH 

until the mixture appeared salmon pink in color. Islet endothelial cells (IECs) were used to be 

mixed with collagen gel. Group 3 was collagen & ECs gel coating by mixing ECs (Details in 

Appendix C) with collagen, while the density of ECs was 1 Million cells/ ml. the gel coating 
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was composed of rat tail collagen type I (BD Biosciences), 5X DMEM (Sigma Aldrich), ECs 

suspension and 10X reconstitution buffer (0.05 N NaOH with 0.16 M HEPES and 0.25 M 

NaHCO3), in the ratio of 70:10:10:10. The thickness of the coating gel for group 2 and 3 are 

0.5 mm. 190 μl collagen gel solution was added into each well with the area of 380 mm
2
. The 

plate was incubated for 30 minutes before adding the digested cell suspension. The cell 

suspension was 171.2 μl to keep the same cell seeding density in P60 dish.  

  To digest the plating EBs, the medium was aspirated from dishes of differentiating 

EB derivatives and the cultures were rinsed 2X with PBS. 0.05% trypsin and 0.25% trypsin 

were added in 1:1 ratio into the dishes and incubated for 3 minutes at 37 ºC. Trypsin was 

removed and the cells were gently peeled off by a cell scraper (USA Scientific). The 

trypsinized cells were mixed well by 2 ml of differentiation medium #2 (Refer to Appendix A 

for details) supplemented with 10% FBS. 1284 μl of the cell suspension containing single 

cells and cell aggregates was plated onto P60 normal coating dishes, and 171.2 μl on the 

12-well plate for the three different coating conditions. Additional 3 ml and 400 μl of the 

differentiation medium #2 supplemented with 10% FBS was added and the dishes and 

12-well plate, respectively. The digested cells were incubated overnight for cell attachment. 

FBS was removed the next day to keep serum free conditions, by changing medium to the 

differentiation medium #2. Medium was exchanged every second or third day and the dishes 

were incubated for 18 days. 

2.2.4 Dithizone Staining  

Dithizone (diphenyl thiocarbazone, DTZ) is an organic chemical which chelates zinc in beta 
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cells of pancreatic islets. It is demonstrated to be able to stain the insulin-producing cells 

crimson red, which identifies the pancreatic differentiation [61]. To test the positive clusters 

which have insulin-producing cells, the dishes after 18 days of differentiation were stained 

with DTZ solution. A DTZ stock solution was prepared with 50 mg DTZ powder (Sigma) in 

5mls of dimethyl sulfoxide (DMSO, Sigma), after mixing well, make aliquots in 200 μl tubes 

and store -20 ºC for future use. In vitro, 10 μl of DTZ stock solution was added to 1 ml of 

culture medium. The solution was filtered using a 0.2 µm nylon filter (Nalgene) and placed in 

the -20 ℃ freezer for 30 seconds. The cells were incubated at 37°C in DTZ solution for 15 

minutes, followed by three times rinsing with Hanks balanced salt solution (HBSS). DTZ 

positive clusters stained crimson red were detected by a light microscope. DTZ positive 

clusters and total clusters numbers were counted. 

2.2.5 Isolation of IPC Clusters 

The mixture of undifferentiated ES cells, IPCs and other differentiated cell types may cause 

teratoma formation. Additionally, after Day33, there were many cell types in the 

differentiation dish, thus the insulin-producing cells may not be able to get enough nutrients 

from medium. Isolation of the DTZ positive clusters immediately after the DTZ staining was 

used in this study, to get purified insulin-producing cells, which has the potential to show 

higher glucose-response capacity in the further studies. Two 30G needles and 100 μl pipette 

were used to careful separate DTZ positive clusters, which showed red by DTZ staining, 

while it was processed under the light microscopy in the hood to keep it sterile. When the 

cluster was totally separated from the cell sheet and non DTZ positive clusters, it was gently 
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transferred into a P35 Petri dish with FBS by 100 μl pipette. In this way, the IPCs were 

purified with minimum disturbance.  

2.2.6 Glucose Challenge 

Glucose Challenge test is performed on the isolated IPC clusters or on the whole culture dish 

with IPC clusters. The clusters are suspension cultured in insulin free medium (Refer to 

Appendix A for details) to get rid of insulin from differentiation medium, so that it does not 

contribute to the detection of insulin levels. After 24-48 hours incubation, the medium was 

removed and the clusters were carefully washes 2X with PBS, then incubated with Krebs 

Ringer Bicarbonate Hepes buffer (KRBH, See Appendix B for details) supplemented with 

2.5mM glucose for 90 minutes. The supernatant was collected in 200 µl aliquots and stored at 

-20 °C. The cells were immediately incubated with KRBH buffer supplemented with 27.7mM 

glucose for 2 hours. Then supernatant was collected as 200 µl aliquots and stored at -20 °C 

until ready to use. 

2.2.7 Insulin ELISA 

The Mouse Insulin ELISA kit (Mercodia) was used to detect insulin from the glucose 

challenge samples by the manufactures instructions. The micro-plate was read by an Emax 

plate reader (Molecular devices in Dr. Arinzeh’s lab). Softmax pro software was used at the 

wavelength of 450 nm. A standard curve was drawn using the absorbance values of the 

calibrators with known insulin concentration and an equation was derived, which was then 

used to calculate the concentration of insulin in the samples. Experimental values were 
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verified by a high positive control (Mercodia). The samples were prepared in duplicates. 

2.2.8 IPC Yield Calculation. 

The yield of IPC cluster was obtained based on DTZ staining. The clusters were associated 

with cell sheet, thus DTZ positive clusters were count before isolation. The efficiency of 

differentiation was calculated as DTZ positive clusters/total clusters. 

2.2.9 Western Blot for IPC Clusters 

Western blot was performed to study the characterization of insulin-producing cell clusters. 

The isolated clusters were stored at -20 °C before making cell lysate. The frozen clusters 

were washed 2X with ice cold PBS, then incubated with cell lysis buffer (Details in Appendix 

B) for 20 min at 4 °C. Tissue (Rat Pancreas) lysates were made by grinding the tissue on dry 

ice with a hammer pre-colded in -80 °C, making sure it keeps frozen in whole process. The 

powdered tissue was transferred to microcentrifuge tube with lysis buffer at 4 °C for 20 min. 

The lysates were centrifuged at 4 °C for 30 min at 14,000 rpm in the microcentrifuge. The 

supernatant was transferred into fresh tube and tested protein quantification by the Bradford 

assay (Details in Appendix X). The Smart Spec Spectrophotometer (BioRad) was used for 

reading the results. Cells lysate was diluted in ratio of 1:1 with Laemmli buffer (Bio-Rad, 

Hercules, CA) containing 5% mercaptoethanol and 2% sodium dodecyl sulfate (SDS). Based 

on the protein concentration resulted for protein quantification, the volume of aliquots was 

calculated to make the concentration as 30 μg/μl. The lysates aliquots were stored at -20 °C 

till ready to use. 
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  In this study, insulin/Proinsulin, PDX1 and Glucagon were tested by western blot, 

the molecular weight of the three proteins are 8.1 kDa, 31 kDa and 17 KDa. Specific protocol 

was developed to test small proteins. 15% SDS-Polyacrylamide gel was made to separate the 

bands of small proteins. Dual color precision plus protein standard (BioRad) was used as a 

protein marker. In addition, 0.2 μm Immunoblot PVDF membrane (BioRad) was used for the 

transfer process. The transfer condition was 100 V, 45 min for insulin and Glucagon, and 100 

V, 60 min for PDX1. One membrane and two membranes conditions were studied to ensure 

there was no small protein transferring out of membranes. An ice bag was used to keep the 

process cool. A monoclonal mouse anti-insulin/proinsulin (Abcam) was used as primary 

antibody for insulin. The PDX1 was tested by monoclonal rabbit anti-PDX1 (Abcam). 

Different primary antibody dilutions including 1/1000, 1/2000, and 1/3000 were investigated 

to test the insulin and PDX1. Blots were incubated with secondary antibody for 1 hour at 

room temperature after three times washes with TBS-Tween buffer. The secondary antibodies 

are goat anti-mouse IgG HRP for insulin, and goat anti-rabbit IgG HRP for PDX1 (1:2000, 

Santa Cruz), respectively. After 3X washes by TBS-Tween buffer and one wash with TBS 

washing buffer, the blots were developed by Supersignal chemiluminescent substrate 

(Thermoscientific, Rockford, IL). The membrane was incubated with 3 ml of 1:1 ratio of the 

Supersignal substrate solution and Supersignal enhancer solution in the dark. The membrane 

was then exposed to UV and developed using a Chemidoc XRS (BioRad). Rat pancreas 

lysate were used as positive control while ES cells lysate was negative control. The samples 

were cell lysates of DTZ positive clusters. 
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2.2.10 Statistical Analysis 

Results are shown as mean ± standard deviation. To compare statistical significance between 

two data sets, a one-way paired student T-test was applied. ANOVA test was used for 

comparing more than two sets of data. Statistical significance level of p<0.05 was used. 

2.3 Results 

2.3.1 Differentiation of Insulin-Producing Cells  

 

Figure 2.2  A representative microscopic images at varying stages during differentiation. (A) 

Undifferentiated MES cells on a MEF feeder in culture, (B) EBs on the second day of 

suspension culture, (C) spreading out EBs after plating for 8 days, and (D) digested cells after 

overnight incubation.  Small clusters indicate committed pancreatic progenitors [11]. Scale 

bar: 100 μm. 

 

Insulin-producing cells were successfully differentiated from mouse embryonic stem cells 

using a previously established protocol which comprises of three stages: i) formation of EBs, ii) 

spontaneous differentiation from EBs into multiple lineages including ectodermal, 
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mesodermal and endodermal cells, and iii) induction of differentiation into insulin-producing 

cells [11]. Figure 2.1 illustrates the schematic of a 33 day long differentiation process. EBs 

were formed by a hanging drop method, resulting in well-rounded shapes with an average 

diameter of 216  31.8 μm as shown in Figure 2.2. These EBs were then plated and digested 

on Day 14 in preparation for the last stage of differentiation, which continues for another 18 

days. The growth of the clusters was tracked during this period as shown in Figure 2.3 

 

Figure 2.3 Tracking the growth of clusters after digestion in the last stage of differentiation. 

Many small aggregates were formed in the culture dish after seeding on Day15 of total 

differentiation process; the aggregates grew into bigger clusters during the differentiation 

process and some of the clusters become DTZ positive. Scale bar: 100 μm. 

 

 After the last stage of differentiation process on day 33, MES cell-derived IPCs were 

generated and detected by DTZ staining. DTZ positive clusters indicate insulin-producing 

cells that appear crimson red as shown in Figure 2.3. In the original protocol, the small 
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aggregates were supposed to be committed progenitor cells, but by tracking of the process, it 

was found that only some of the aggregates grew into DTZ positive clusters. To determine the 

yield of IPC clusters, DTZ positive and total clusters were counted right after DTZ staining. 

On average, about 7 DTZ positive clusters were generated from a 9.5 cm
2 

surface area (area 

corresponding to one well in 6-well plate). The efficiency was calculated by number of IPC 

clusters/ Total clusters. 

2.3.2 Two Days and Three Days of EB Suspension Culture 

 

Figure 2.4  Size of EBs in suspension culture. (A) A graph of average size of EBs in 

suspension culture from Day 0 to Day3. (B) Representative microscopic images of EBs in 

suspension after 1, 2 and 3 days of culture. Scale bar: 100 μm. 

 

While the original protocol uses 3 days of suspension culture, previous work from our 
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laboratory used only 2 days suspension as the EBs started to attach to the culture dish after 2 

days. As indicated by Figure 2.4, the average size of EBs in suspension culture increases 

much from Day 2 to Day 3 making the EBs difficult to remain in suspension. However, it was 

possible to detach EBs by gentle pipetting and agitation, allowing the EBs to remain in 

suspension culture for 3 days. To compare the 2 day vs. 3 day EB suspension condition, two 

groups were prepared. In Group 1 EBs were cultured for 2 days and in Group 2, they were 

cultured for one additional day Three days of suspension culture led to a continuous increase 

in EB diameter compared to that of 2 day suspension culture. The average diameter of EBs 

on days 0-3 days were 216  31.8 μm, 259  30.7 μm, 360  50.5 μm and 550  96.6 μm, 

respectively as shown in Figure 2.4. 

 

Figure 2.5  Differentiation efficiency from 2 day vs. 3 day EB suspension culture. (A) The 

average number of IPC clusters were not affected by the suspension culture duration. (B) The 

average differentiation efficiency of 2 days and 3 days suspension culture was not statistically 

significant. The results were calculated from the area of 9.5 cm
2 

(corresponding to 6-well 

plate). (Mean ± SD) 

 

 The results show that while the number of IPC clusters and the efficiency seems to 

appear higher for group 2 which had 3 days of EB suspension culture, they were not 
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statistically different from two day suspension group. It is plausible that the increase of 

efficiency from 3 days suspension culture was caused by the decrease in the number of total 

clusters number on the differentiation dish.  

2.3.3 Different Digested Cell Seeding Density 

 

Figure 2.6  The effect of different digested cell seeding density on IPC yield. 1X seeding 

density indicate the same density as the previously reported protocol [11] and 2X seeding 

density indicate the doubling of cell density (Mean ± SD).  

 

In this study, 2X digested cell seeding density and 1X digested cell seeding density were 

investigated in the last stage of differentiation. On Day 14, EBs were trypsinized and digested 

into a mixture of aggregates and single cells. As it was not applicable to count the cells when 

there were aggregates in the cell suspension, 2X digested cell seeding density was applied by 

adding 2 times of digested cell suspension when 1X cell seeding density preserved the same 

digested cell suspension volume as the original protocol [11]. The 2X digested cell 

suspension formed more aggregates as well as single cells compared with 1X cell suspension. 

However, more aggregates did not lead to more DTZ positive IPCs as there was no 
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significant difference between 1X and 2X cell seeding density on IPC yield (Figure 2.6). 

2.3.4 Different Collagen Coating Conditions for Digested Cells 

 

Figure 2.7  Digested cells after overnight incubation. The thickness of collagen gels used 

was 0.5 mm. Scale bar is 100 μm. 

 

 

Figure 2.8  Yield of DTZ positive clusters from three coating conditions. The yield of IPC 

clusters was generated from the area of 9.5 cm
2
 (Mean ± SD, p< 0.05). 

 

Different coating conditions were set up to investigate whether the co-culture system with 

endothelial cells would affect the overall differentiation efficiency. Islet endothelial cells 

(IECs) used for the co-culture system were also MES cell-derived ECs from our laboratory. 
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The IECs generated near MES cell-derived IPC clusters were supposed to facilitate the 

differentiation into IPCs [49]. Three conditions including normal diluted collagen coating, a 

thin collagen gel and a thin collagen gel with ECs (1M cells/ml) coating were explored. The 

seeded cell density was obviously different after overnight incubation as more aggregates and 

cells were seeded on the dishes containing collagen gel and collagen gel with ECs (Figure 

2.7). The yield of DTZ positive clusters was calculated on Day 33, and the standard 

deviations were large. Figure 2.8 shows that there was no significant difference among three 

different coating conditions. The result demonstrates that co-culture system with ECs in the 

collagen gel coating do not result in a higher production of IPC clusters nor negatively affect 

the IPC production 
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2.3.5 Isolation of Insulin-Producing Cell Clusters 

 

Figure 2.9  DTZ staining of IPC clusters. (A) IPC cluster without isolation, (B) IPCs spread 

out on the culture dish, (C) shows the whole isolated cluster with only a small DTZ positive 

part, (D) shows further isolated IPCs and (E) DTZ positive islets from rat pancreas. Scale bar 

is 100 μm. (F) is an IPC cluster generated from previous work in out laboratory, scale bar is 

500 μm. 

 

The IPCs were stained crimson red by DTZ staining at the end of the differentiation. 

However, the color of DTZ positive clusters changed from pink to amaranth, depending on 
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the density of IPCs in the clusters. This indicated that whole cluster contains both IPCs and 

other cell types. When comparing the color intensity of the DTZ positive clusters from the 

previous work done in our laboratory, it was apparent that the IPC clusters generated from 

using the optimized protocol have higher density of IPCs. Furthermore, IPCs appeared as 

spreading out cells and clusters at the same time, indicating that the differentiation process 

not only results in clusters of IPCs, but also some non-clustered single IPCs. The average size 

of whole differentiated IPC clusters was about 369  137 µm, while the average size of native 

islets are much smaller of 150 µm [62], as shown in Figure 2.5. Thus, a further isolation was 

needed to remove the other cell types to obtain more pure IPCs clusters.  

 

 

Figure 2.10  Average size of IPC clusters compared with native islets. The average size of 

generated whole IPC clusters was 369 µm in diameter, the average size of further isolated 

IPCs was 183µm in diameter (n=25), whereas the native islets are in a size range 50-250 µm 

[62]. 

 

The IPC clusters which showed DTZ positive were then isolated immediately after staining 

and suspension cultured. The rat pancreas was also isolated and stained by DTZ solution as a 
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positive control. The IPC clusters derived using a modified protocol exhibited obvious 

crimson red color compared with the previous derived clusters which were generated by 1X 

cell seeding density of digested cells,. To generate pure IPCs, a further isolation was 

processed by using a 30G needle and a 100 μl pipette. The IPCs were well separated from the 

non DTZ positive cells. As it is shown in Figure 2.10, the average size of further isolated 

DTZ positive clusters was 183  53 μm in diameter, varying from 100 μm to 300 μm, while 

the native mouse islets are 50-250 µm in size [62]. The results showed that the isolated IPC 

clusters were much smaller than the whole DTZ positive clusters after further isolation. 

 

 

Figure 2.11  Western blot results. Glucagon was detected in both rat pancreas and 

differentiated IPC clusters. But the insulin and PDX1 expression were not successfully 

detected by western blotting. Beta-Actin was used as a loading control. 

 

 Furthermore, Figure 2.11 shows that Glucagon was detected by western blotting in 

the isolated clusters and rat pancreas, confirming the presence of alpha cells in the clusters. 
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However, the insulin/proinsulin and PDX1 were not detected successfully even after several 

attempts to optimize the western blotting conditions. The reasons for the failure of detection 

can be predicated by several factors:  (i) low level of expression of insulin/proinsulin and 

PDX1 in cell lysate of isolated IPC clusters, (ii) very low molecular weight of insulin and 

PDX1 to be detected with western blotting and (iii) unsuccessful extraction of insulin and 

PDX1 from cell lysate. Ponceau staining was used to detect protein bands but only a few 

bands appeared without target bands.  

2.3.6 Glucose Responsiveness of Generated IPCs 

 

Figure 2.12  Insulin ELISA assay of fresh samples. (A) Glucose challenge results from 

fresh samples of whole IPC clusters without isolation, (B) Glucose challenge of the whole 

IPC clusters from the previous work in our lab (n=6, p<0.005). 17.5mM medium is the 

insulin-free medium with high glucose concentration, and it was added before glucose 

challenge to remove the insulin in the clusters.  
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Figure 2.13  Insulin ELISA assay of frozen samples. (A) Glucose challenge from the frozen 

samples of IPC clusters without isolation. (B) Glucose challenge from isolated clusters. 

 

The amount of insulin secreted by differentiated IPCs was quantified by an insulin ELISA, to 

test the glucose responsiveness of IPCs. Figure 2.12 and Figure 2.13 show the ELISA results 

from IPC clusters. The IPC clusters were cultured in the insulin-free medium with a high 

glucose concentration of 17.5 mM prior to glucose challenge for 24 hours. The results of 

fresh samples demonstrate that the IPCs secrete slightly higher insulin when exposed to 

higher glucose concentrations, while there was no glucose response in frozen samples stored 

4 months ago, as well as from the isolated clusters. It is suspected that long-term store may 

affect the quality and stability of the samples. Further, the isolation process may cause harm 

to the IPCs, leading to failure of glucose responsiveness. While compared with previous work 

in our laboratory, the IPCS were not as glucose responsive. However, the basal insulin 

concentration was much higher than the previous results, which demonstrate that the IPCs 

derived by the optimized protocol led to larger number of IPC cells that have better quality. 

However, more trials are needed to ensure the glucose responsiveness as this study shows 

results from one trial.  
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2.3.7 Other Cell Types on Digestion Dish 

 
Figure 2.14  Other cell types found on the digestion dish. (A) shows neural cells, (B) shows 

macrophage cells, (C) shows endothelial cells, by the morphology of the cells. Scale bar is 

100 μm. 

 

Different types of cells were found in the differentiation process, cardiac myocytes were 

discovered on the dishes of plated EBs by continuous beating in the microscope. Figure 2.14 

shows several cell types on the culture dish, by the morphology of the cells, there were neural 

cells, macrophages and ECs on the digestion dish after Day 33. These cell types were less 

than 10% of total cells in the culture dishes.  

2.4 Discussion 

Although successful generation of IPC clusters was achieved after 33 days of differentiation 

from MES cells by using a previously established protocol [11], the efficiency remained low. 

Therefore, in this study, we investigated the influence of several conditions during 

differentiation process to enhance the overall differentiation efficiency.  

  First, the influence of the duration of embryonic bodies (EBs) suspension culture 

was examined. While the previous established protocol reports 3-day suspension culture for 

the differentiation into progenitor cells of ectodermal, mesodermal and endodermal lineages 
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[11], a previous work from our laboratory used only 2-day suspension culture due to 

attachment of EBs to the dish after 2 days. Therefore, 3-day EB suspension culture was 

performed in this study and the results were compared to that of 2-day EB suspension. 

Three-day suspension culture resulted in much larger EBs and it was expected that more 

clusters are formed after digestion from larger EBs, which can potentially result in higher 

number of IPC clusters. However, the results demonstrated that the 3-day suspension culture 

do not lead to improved differentiation efficiency nor negatively affect the number of IPC 

clusters.  

  The insulin-producing cells were identified by DTZ staining, which works by 

forming a chelating complex with zinc ions secreted with insulin from β cells [63, 64]. The 

differentiation efficiency was calculated based on the ratio of number of DTZ positive 

clusters to the total number of clusters instead of total number of cells. However, as most of 

the DTZ positive cells were derived from the clusters, this simple estimation was used. Other 

studies use flow cytometry to get the efficiency of IPCs in the total cells, and the yield of 

IPCs were reported in the range of 0.8-7.3% [9, 25].  

  Secondly, the effect of higher cell seeding density after digestion of EBs on 

differentiation efficiency was examined. In previous studies, it has been demonstrated that 

cell seeding density effects the formation of pancreatic cell population [58, 65]. Blair et al. 

examined initial cell seeding density of human embryonic stem (ES) cells from 2.6 to 10.6 × 

10
4
 cells/cm

2
. Efficient definitive endoderm induction was observed above moderate 

densities of 2.6 × 10
4
 cells/cm

2
, and PDX1 expression and subsequent hormone positive 
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populations were increased in cultures seeded at 5.3 × 10
4
 cells/cm

2
. The high seeding density 

cultures resulted in expected temporal expression of maturing pancreatic progenitors that 

specify endocrine cell fates and  finally adopt hormone expression [58]. In this study, 2X 

digested cell seeding density was investigated based on the original digested cell seeding 

density from the previously reported protocol [11]. As it was difficult to count cells when 

there were aggregates in the digested cell suspension, 2X digested cell suspension was added 

when 1X cell seeding density preserved the same digested cell suspension volume. Digested 

cells were added to the collagen coated dishes during the third stage of differentiation process 

to induce the differentiation of pancreatic lineage. However, by comparing with yield of 

generated IPC clusters from 1X cell seeding density of the previous work in our laboratory, 

there was no significant difference detected with statistical analysis. Since the effect of cell 

seeding density was studied at the initial stage of different differentiation in previous studies 

rather than at the later stages as in this study, it is possible that higher cell seeding density 

during initial stage of differentiation is more essential to generate more cells in endodermal 

lineage which can then ultimately become IPCs.  

  Lastly, different coating conditions such as normal collagen coating, thin collagen 

gel coating and thin collagen gel coating with ECs were examined. ECs used in this study 

were islet endothelial cells (IECs) generated beside MES cell-derived IPC clusters in 

previous work from our laboratory [49]. It was investigated in this study whether IECs help 

to facilitate the differentiation into IPCs, when thin collagen gel coating was used to compare 

with the gel coating mixed with ECs. During the developing of pancreas, differentiating 
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pancreatic cells are in close proximity with endothelial cells from the vasculature. 

Furthermore, pancreatic islets are densely vascularized to promote rapid exchange of blood 

glucose and islet hormones. Thus, endothelial cells play an important role in the development 

of pancreatic organogenesis [66]. IECs were used as feeder layer for seeded cells in previous 

work from our laboratory, but too many IECs proliferated on the dishes and resulted in low 

yield of IPCs. In this study, we embedded IECs in the collagen gel to obtain paracrine factors 

while keeping a low proliferation rate. Much higher cells were initially seeded on the 

collagen gel and collagen with ECs gel coating dishes, after overnight incubation. However, 

our results indicated that the islet endothelial cells mixed in the collagen gel coating were not 

effective for generating more IPCs. No difference was observed when compared to the 

control condition with normal coating in this study. It indicated that the IECs were either 

insufficient in the coating gels to produce enough factors, or the high seeded cell density 

caused cell necrosis and apoptosis during differentiation process. More importantly, for the 

co-culture system, differentiation medium was used. Lack of endothelial cells medium may 

have caused endothelial cells to dedifferentiate or not function properly and this awaits 

further investigation. In addition, other types of ECs such as microvascular ECs need to be 

investigated in the future work. 

  Although the factors varied did not result in more production of IPC clusters, the 

basal amount of insulin secretion was above 11μg/L, it was higher than the previous study 

with the secreted insulin concentration varying from 2μg/L to 8μg/L. However, the isolated 

clusters showed no glucose response while the IPC clusters without isolation in the culture 
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dishes showed minimal glucose response, which indicated that the isolation process may 

cause damage to the function of IPCs.  

  In previous studies, it was reported that exposure to high glucose medium impaired 

function of rat or human islets, and de-sensitized the cells in response to glucose challenge 

[67-69]. The insulin-free medium used before glucose challenge contained 17.5 mM glucose, 

which is considerably high. The exposure to the medium may also cause the IPCs to lose the 

function of glucose responsiveness. It was suggested in previous studies that transferring cells 

to a low glucose medium in the last stage of differentiation might be capable to recover the 

function of glucose responsiveness [18]. In addition, to compare glucose challenge with 

previous work in our laboratory, the results were presented the same way by the 

concentration of secreted insulin got from ELISA with the unit of μg/L. Whereas insulin 

secretion was calculated as percentage of total insulin content in the original protocol and 

some of the current studies [11, 70, 71], it was not capable to compare the results with other 

studies. The basal insulin concentration of glucose challenge in this study was transformed to 

7 ng insulin/mg protein based on the total protein extracted by cell lysate. By comparing with 

the glucose challenge results in original protocol, it was found that our results were similar to 

the original protocol [11]. However, the extraction of protein were processed by acid ethanol 

in original protocol and other studies, thus it was inaccurate to compare our results with the 

original protocol. More work needs to be done in the future, including extracting intracellular 

insulin from all the cells by acid ethanol and calculating the insulin secretion by released 

insulin/total intracellular insulin. 
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  Since the whole cluster is a mix of IPCs and non-IPCs with a large size of 369 μm in 

diameter, the isolation of IPC clusters was necessary to obtain more pure population of IPCs. 

Our method of isolation showed the feasible and ensured the IPC clusters to get sufficient 

nutrients by controlling the size of the cluster. After isolation, the IPCs were purified in a 

much smaller cluster as big as 183 μm, the further isolated IPCs were similar to the size of 

native islets of 50~150 μm [62].  

  Western blotting was applied to test insulin/proinsulin, PDX1 and Glucagon. PDX1 

serves as a regulator of β cells function and development by activating genes essential for β 

cells [72]. The detection of Glucagon demonstrated the presence of alpha cells, but it was 

difficult to test insulin/proinsulin and PDX1 from the clusters. RT-PCR is the most common 

method to test the proteins expressed by IPCs, including PDX1, Nkx6.1and Pax4 [8, 11]. The 

failure of western blot for insulin/proinsulin and PDX1 in this study may be resulted from the 

low expression of these proteins or the failure to properly extract protein from cells in 

preparing cell lysates. We also found several cell types on the culture dishes after Day 33 of 

differentiation, and the cells were speculated to be neural cells, macrophages and endothelial 

cells by morphology. 

  In summary, three optimization strategies including different time period for 

spontaneous formation of suspension culture, different cell seeding density for the induction 

of pancreatic cells differentiation and different collagen coating conditions for the induction 

of pancreatic lineage were investigated. The statistical analysis showed that there was no 

significant difference between each group. However, the insulin secretion concentration by 
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glucose challenge and DTZ staining results show that the IPCs generated by the optimized 

protocol were more homogeneous and better in quality, comparing with the IPCs generated 

by the original protocol. 

  Further studies are needed, such as examining the influence of a gradient cell 

seeding density in different differentiation stages, using mixed medium (MCDB ECs medium 

and Differentiation medium) for the co-culture system, adding more ECs in coating gels, and 

setting up the co-culture system in initial differentiation stage to generate more endoderm 

lineage cells. Furthermore, the unit of glucose challenge is ng insulin/mg protein from total 

cells in some of the current studies including the original protocol, thus further studies are 

needed to obtain more data with the same calculation method to estimate glucose 

responsiveness of MES cell-derived IPCs. 
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CHAPTER 3  

FORMATION OF THREE DIMENSIONAL TISSUES USING IPC CLUSTERS 

3.1 Introduction 

Post-isolation islet survivability is an essential step for the successful islet transplantation, 

including optimizing islet culture for long-term survival and maintaining functionality in vitro. 

It was found that the IPC clusters lose their insulin secretion and response after several days 

culturing in vitro due to low survivability [45].  

  Two-dimensional (2D) culture is the most common strategy for culturing islets in 

vitro, however, it does not provides sufficient extracellular matrix (ECM) support as in vivo, 

which is essential in regulating cell adhesion, activating signaling pathways and supplying 

structure support [73]. However, it was found from previous studies that the three 

dimensional (3D) culture constructs is more similar to microenvironment than 2D monolayer 

cultures [74]. While the islets are cultured as monolayer in 2D system, their characteristic and 

functions are damaged. The cells are not able to maintain their phenotype with the lack of 

essential microenvironment, and the differentiated cells tend to lose their functions or 

survivability during long in vitro culture. And it is demonstrated that only about 56% islets 

survive after 48 hour culture in 2D system [75]. 

  Zhang et al. tested the effects of two types of 3D scaffold, collagen matrix (CM) and 

fibroblast-populated collagen matrix (FPCM), on amyloid formation, viability, and function 

of isolated islets. Amyloid is pathological characteristic of the pancreas in type 2 diabetes 

mellitus that contributes to progressive-cell death in this disease. The results suggested that 
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3D scaffolds reduce amyloid formation, and improve viability and function of human islets in 

vitro, as well as additive effects in enhancing islet function [76]. Therefore, a 3D system 

providing more physiologically relevant environment may be necessary to maintain the 

survival and function of islets in vitro [77, 78]. 

  Biomaterials are used to strengthen islets survival by making a 3D cellular support 

and facilitate the delivery of proteins, immunosuppressive agents and growth factors. ECM 

molecules were demonstrated to enhance cell survival, support differentiation, and improve 

the function of insulin-producing beta cells. It was found that 3D culture condition composed 

of collagen type I, IV was useful for the function and survival of IPCs in vitro [79]. Collagen 

type I is a major component of basement membrane, present at the interface of exocrine and 

endocrine interface, as well as in close proximity to intra-islet endothelial cells. In this study, 

we used collagen type I to generate 3D tissue with IPC clusters, to enhance the viability of 

MES cell-derived IPCs after differentiation.  

  In addition, perifusion system was used to improve the islet survivability in vitro 

culture by providing the cells sufficient nutrient and mimic the physiological environment 

[80]. Microfluidic device allows application of intercellular flow on islets to better deliver of 

nutrients and gas. Thus, a flow bioreactor system was used to provide continuous fluid flow 

through the 3D tissues containing IPCs. Previous study from our laboratory used a flow rate 

of 0.5 ml/min for the bioreactor of 3D flow gel embedded with IPC clusters with a shear 

stress of 0.71 dyn/cm
2
, which resulted in severe cell death. In this study, a much lower flow 

rate of 0.02 ml/min was examined for the long-term culture of 5 days, to attenuate the 
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physical destruction of IPCs caused by the shear stress of flow. By the data from a previous 

study [77], as the flow rate and shear stress showed linearity, a flow rate at 0.02 ml/min was 

calculated to be approximately 0.156 dyn/cm
2
. This shear stress was much smaller compared 

with the shear stress of flow rate at 0.5 ml/min.  

3.2 Materials and Methods 

3.2.1 Suspension Culture of Isolated IPC Clusters in vitro 

The DTZ positive clusters were directly isolated after the staining, and transferred to a P35 

petri dish. Differentiation medium #2 was added to keep the clusters in suspension culture. 

The clusters were also dissociated to compare IPCs survivability with the whole clusters. Two 

methods were used for the dissociation: one was processed by using a 3 ml syringe, a 25G 

needle and a 40 µm cell strainer (BD Falcon); the other was processed by trypsin, a 3 ml 

syringe, a 25G needle and a 40 µm cell strainer. 0.25% trypsin was used to dissociate the 

clusters before the physical break. After 3 minutes incubation, the clusters were broken into 

small pieces by passing through the needle and the cell strainer to be further broken. The 

clusters were also broken by physical break without trypsin. The dissociated cells were 

transferred into a microcentrifuge and centrifuged at 1200 RPM for 5 minutes, and then the 

supernatant was carefully removed. 
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3.2.2 Preparation of Static Collagen Tissues Containing IPC Clusters 

 

Figure 3.1 Schematic of collagen gel preparation process. IPCs were isolated from 

differentiation culture (Day 33) into a microcentrifuge tube with FBS. After washing by PBS, 

IPCs were either kept intact in clusters or dissociated into small pieces. The IPCs were then 

mixed with collagen type I solution to form the 3D gels. 

 

  

Figure 3.1 shows a schematic of 3D collagen gel preparation process. Before the process, the 

IPC clusters were transferred into a microcentrifuge tube, the IPCs were settled down after 

5-10 minutes, the supernatant was carefully removed. The collagen solution was composed of 

rat tail collagen (Lab processed), 10X reconstitution buffer (0.05 N NaOH with 0.16 M HEPES 

and 0.25 M NaHCO3), and 10X DMEM (Sigma Aldrich) in the ratio of 80:10:10, with the 

concentration of 3 mg/ml. 1N NaOH was added to adjust the pH to 7.2-7.4 until the solution 

appeared salmon pink. As shown in Figure 3.1, 25 IPC clusters were suspended in 51.2 µl of 

collagen solution to make the thickness of 1.6 mm in the 96-well plate. The mixture was added 

to the well of a 96-well plate. The collagen gel was incubated for 30 min in the incubator to 

polymerize. Differentiation medium #2 was added after polymerization and changed every 

other day. After the static gel was set up, the collagen gel was separated from the bottom of 

dish by fine tip forceps, to keep the clusters from attaching the dish or spreading out. 
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3.2.3 Application of Fluid Flow Using A 3D Flow Bioreactor System 

 

Figure 3.2  Flow bioreactor system. A flow bioreactor system consists of  (A) a peristaltic 

pump, (B) a media reservoir, (C) L13 sized tubing, (D) a bioreactor chamber housing a 3D 

collagen tissue . (E) a 0.2 μm air filter for gas exchange and (F) a 3-way stop-cock/injection 

port for medium exchange. 

 

A customized bioreactor was applied for the flow collagen tissue with IPC clusters, which 

provided constant perfusion to the tissue. The flow bioreactor was used to provide the cells or 

tissue flow media physiologically. The influence of the flow rate was then examined after 5 

days culture, by comparing the tissue of flow condition with tissue in static condition. The 

volume of collagen solution mixed with IPCs was 152 μl, to keep the same thickness of 1.6 

mm with static gel, and the area of the bioreactor is 95 mm
2
. The collagen solution with IPCs 

was added on a polyethylene terephthalate (PET) membrane, which was glued to the PDMS 

ring on the edge of bottom part of bioreactor. The gel was supported by the PET porous 

membrane, and to decrease the resistance to flow from the membrane, 15-20 holes were 
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punched on the membrane using a 30 G needle. Stainless pins were plated in the membrane 

and the PDMS ring below, to prevent collagen gel compaction in the flow condition culture.  

  After the gel was added to the membrane, the bioreactor was incubated for 2 hours at 

37 °C by being placed inside a 50 ml conical tube for polymerization. Then the bioreactor was 

fully assembled in the flow hood. The top part of bioreactor and 3-way stopcock valves (Smith 

Medicals) was fastened using connectors (Cole Parmer). The bioreactor assembly was 

connected to a medium reservoir by two pieces of LS’13 tubing. Syringe ports (Baxter) were 

used to fill the inlet and outlet tubing by Differentiation medium #2, the ports were attached to 

stopcock valves. Finally, the bioreactor assembly was connected to the peristaltic pump (Cole 

Parmer) and the flow was set at 0.02ml/min in continuous mode for 5 days. The shear stress 

was calculated to be 0.156 dyn/cm
2
, based on the previously reported data [77]. 

3.2.4 Cell Viability 

Live/Dead viability/cytotoxicity assay (Invitrogen) was used to test the survivability of IPCs 

by staining live and dead cells in 3D collagen tissues. Calcein AM (1 µM/ml) and ethidium 

homodimer-1 (2 µM/ml) were applied to stain live and dead cells, respectively. Staining 

solution was prepared in sterile PBS. After 5 days culture, collagen tissues in flow condition 

were transferred from the bioreactor into the 96-well plate by sterile fine tip forceps. Static 

collagen tissues were stained directly in the 96-well plate. The staining was processed in at 

37 °C for 30 minutes with foils on the plates, to keep it from light. Samples were washed by 

PBS, and transferred on a glass coverslip. An inverted fluorescence microscope (IX81 DSU, 

Olympus) was used for imaging. 
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3.2.5 Statistical Analysis 

Results are shown as mean ± standard deviation. A one way ANOVA test was performed to 

examine significant difference between the culture conditions. Statistical significance was 

accepted when p<0.05. 

3.3 Results 

3.3.1 Isolated IPC Clusters Survival in Suspension Culture 

 

Figure 3.3  Live/Dead staining of suspension cultured IPCs. (A) and (B) show survivability 

of clusters on day 3, (C) and (D) show survivability of clusters on day 7. Calcein stains the 

living cells green and ethidium homodimer stains the dead cells in red. Scale bar is 100 µm. 

 

To investigate the viability in suspension culture, IPC clusters were cultured in the 

differentiation medium for up to 7 days. Live/dead staining on Day3 and Day7 showed more 

dead cells after 7 days compared to that of 3 days (Figure 3.3). Not only the viability, but the 
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functionality of the IPC clusters also decreased as the number of DTZ positive clusters 

decreased tremendously after 7 days of static suspension culture, as shown in Figure 3.4. In 

addition, there was no significant difference in the sizes of the clusters with a long-term 

suspension culture for 7 days as shown in Figure 3.5, indicating that not so much 

proliferation has occurred.  

 

 
Figure 3.4  DTZ staining of IPC clusters in suspension culture on Day 0, Day 3 and Day 7. 

DTZ positive clusters in suspension culture showed decrease in the number of positive 

clusters with longer culture. 

 

 

Figure 3.5  Average size of whole IPC clusters on Day0, Day3 and Day7 of suspension 

culture. 
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Figure 3.6  Survival of IPCs in suspension culture and collagen tissue on Day 5. (A) IPC 

cluster in 2D suspension culture, (B) IPC clusters in a free floating 3D collagen gel, and (C) 

IPC clusters in a 3D collagen gel from the previous work in our laboratory where the gel 

remained attached to the bottom of the dish. Scale bar is 100 µm. 

 

 IPCs survivability was compared in 2D suspension culture with 3D collagen tissue. 

Live cells were stained green and dead cells showed red. The morphology of IPC clusters was 

different under different conditions shown in Figure 3.6. Cells were in clusters both in 2D 

suspension culture and in a free floating 3D collagen gel. However spreading of the clusters 

was observed from the previous study in which the collagen gels remained attached to the 

plate (Figure 3.6.C). The difference in the boundary constraint likely caused the difference in 

IPC spreading behavior. Interestingly, in both 2D and 3D culture conditions, dead cells were 

found mostly at the edges and not at the core of the clusters. This can be attributed to the 

manual isolation of the IPC clusters from the differentiation plates, and less from diffusion 

limitation. However, it is difficult to accurately quantify the number of live/ dead cells in 

suspension culture condition from these images. Thus in the future, better isolation method is 

needed to reduce the dead cells at the edges. 
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3.3.2 Survivability of Whole and Dissociated IPC Clusters in 3D Tissues  

 

Figure 3.7 Live/Dead staining of whole and dissociated IPC clusters in collagen gels on Day 

5. (A) and (B) whole clusters without dissociation, (C) and (D) Cells dissociated from 

clusters, processed by a 3 ml syringe, 25G needle and a 40 µm strainer. (E) Dissociated cells, 

generated by trypsin, a 3 ml syringe, 25G needle and a 40 µm strainer, and (F) Dissociated 

cells generated by trypsin and cell strainer, which was from the previous work in our lab. 

Live cells were stained green by calcein, dead cells were stained red by ethidium homodimer. 

Scale bar is 100 µm. 

 

To examine whether the dissociation process is useful to reducing the number of dead cells, 

different dissociation methods were used. A 25G needle, syringe and 40 µm cell strainer were 

used to dissociate the whole clusters into small pieces and single cells, and the cell strainer 

was used to remove the debris and dead cells. It was found that using trypsin before physical 
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dissociation helped to reduce dead cells, whereas the clusters dissociated without trypsin 

resulted in a lot of dead cells, as demonstrated in Figure 3.7. Meanwhile, there were much 

less dead cells in the dissociated cells by trypsin and physical breaking, when compared with 

the whole clusters. By comparing the dissociated cells generated by trypsin and physical 

breaking with the previous work using the same dissociation method in our laboratory, it was 

demonstrated that the well dissociation process helped to reduce dead cells in 3D collagen 

tissue. 
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3.3.3 Survival of IPC Clusters in 3D Tissues under Static and Flow Culture Conditions 

 

Figure 3.8  Live/Dead staining of collagen gels on Day 5. (A) and (B) show IPC clusters in 

flow gels with a flow rate of 0.02 ml/min. (C) and (D) show IPC clusters in static gels, (E) 

shows IPC clusters at a flow rate of 0.5 ml/min, from the previous work in our lab. Scale bar 

is 100 µm. 

 

The bioreactors were used to provide constant perfusion of differentiation medium through 

the collagen tissue, cells viability was compared under static and flow conditions after 5 days 

of culture, as shown in Figure 3.8. Firstly, by comparing viability of IPC clusters in static gels 

and flow gels, more dead cells were found in the static gels. The survivability of IPC clusters 

was better in flow gel condition than in static condition. It indicated that constant medium at 

proper flow rate enhances viability of IPC clusters, and providing sufficient nutrients to the 
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cells. Secondly, by comparing the survivability of IPC clusters in flow gels at different flow 

rate, it was found that more dead cells were generated when exposed the cells to the flow rate 

of 0.5 ml/min. The flow rate used in previous study in our lab was chosen to be 0.5 ml/min, 

as it was previously proven in previous work in our lab, this value corresponds to a shear 

stress of approximately 0.71 dyn/cm
2
. However, while the individual rat islets in vivo are 

normally exposed to a flow rate of 2 x 10
-5

 ml/min of blood [81], the flow rate was 

demonstrated to be high and caused the gels compaction. The flow rate at 0.02 ml/min in this 

study showed that a lower flow rate reduces cell death with a much smaller shear stress of 

0.156 dyn/cm
2
. 

3.4 Discussion 

In this study, we successfully further isolated the IPCs in the average size of 183 µm, whereas 

the average size of former isolated whole clusters was 369µm, the size of further isolated 

IPCs was similar to the size of native mouse islets [62]. Survival of IPCs in 2D suspension 

culture was examined during long-term culture of 7 days, and then the results showed that 

more dead cells were generated as well as IPCs lost their characteristic of DTZ positive 

gradually. The survival of IPCs was compared in 2D suspension culture and in 3D static 

collagen gel, but it was difficult to tell from the staining images. Further studies are needed to 

compare the survival in 2D and 3D culture conditions, including the expression of PDX1, 

Pax4 or Nkx6-1 and glucose challenge of IPCs.   

  Dissociation process was applied to remove the dead cells in the IPCs, the results 
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demonstrated that using trypsin and physical breaking helped to reduce dead cells in collagen 

gel tissue, and the dead cells were also much less than the whole clusters condition. 

Furthermore, the flow condition was used to examine whether the perfusion flow improves 

viability of IPCs in 3D collagen gel tissue. By comparing the survivability of IPCs at a flow 

rate of 0.02 ml/min with static gel conditions, it was obvious that IPCs in the flow condition 

were more viable than the IPCs in static condition. The flow rate was chosen to be 0.02 

ml/min based on the previous studies in our laboratory, which a flow rate of 0.5 ml/min was 

used. The value of 0.5 ml/min was related to a shear stress of approximately 0.71 dyn/cm
2
, it 

has been shown to be in the physiological range in microvessels in in vivo conditions [77]. 

However, the collagen gel underwent a compaction and caused IPCs death when exposed to 

the flow rate of 0.5 ml/min. In this study, a much lower flow rate of 0.02 ml/min was used to 

minimize the gel compaction due to the high velocity of flow. The shear stress was much 

lower as 0.156 dyn/cm
2 

based on the data from the research of a novel flow bioreactor [77]. 

By comparing the survivability with the IPCs in 0.5 ml/min flow rate, it demonstrated that the 

lower flow rate reduces compaction of the gels and enhances the viability of IPCs. The results 

demonstrated that reducing the flow rate is capable to enhance IPCs survivability.  

  In the future work, the shear stress needs to be calculated based on this flow rate, 

while in this study, the flow rate of 0.02 ml/min was chosen based on the previous study, the 

shear stress was still unknown. Pressure transducers needs to be applied to get the pressure, 

thus by the equations of Darcy’s law and modified Brinkman equation [77], it is easy to get 

the accurate shear stress and better study the influences of flow rate. In addition, as the 
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individual pancreas islet is exposed to the blood at the flow rate of 2 x 10
-5

 ml/min [81], it is 

still much lower than the flow rate in this study, lower flow rate needs to be studied in the 

future. 
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CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 

In summary, three optimization strategies including different time period for spontaneous 

formation of suspension culture, different cell seeding density for the induction of pancreatic 

cells differentiation and different collagen coating conditions for the induction of pancreatic 

lineage were investigated in this study.  

4.1 Achievements 

More than 7 groups of samples were used for statistical analysis to examine the significant 

difference of each optimization strategy, which makes the results more reliable. However, the 

statistical analysis showed that there was no significant difference between each condition. 

Two days and 3 days suspension culture of EBs for the spontaneous differentiation have no 

difference, as well as 2X digested cell seeding density was proven to be unable to improve 

the yield of IPC clusters compared with 1X seeding density by this differentiation protocol.  

  Though co-culture system with endothelial cells in differentiation process was 

demonstrated to be able to increase the production of IPCs in some studies [60, 66, 82], the 

co-culture system failed to increase the yield of IPC clusters in this study. The co-culture 

system was set up as the collagen coating gel with ECs for digested cells in the last stage of 

differentiation, to induce pancreatic cells from early progenitors. The co-culture system in 

other studies was used in the initial stage with embryonic bodies [60]. It is supposed that 

applying ECs may not be useful in the last stage of differentiation, or the density of ECs was 
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not high enough to provide the growth factors for the differentiation.  

  Furthermore, to investigate the MES cell-derived IPCs generated in this study, 

several trials were attempted to use western blotting to detect insulin, PDX1 and Glucagon, 

whereas the common methods for the detection are RT-PCR and immunofluorescence. 

Glucagon was successfully detected by western blotting but insulin and PDX1 were not 

shown up on the blotting membrane, even insulin was demonstrated by insulin ELISA from 

the same batch of IPC clusters. Glucose responsiveness of the MES cell-derived IPCs was not 

obvious by the results of ELISA, thus it is supposed that the high glucose medium used 

before glucose challenge affects the responsiveness, or the function of IPCs were destructed.  

  Even though the yield of IPC clusters and efficiency of differentiation were not 

obviously increased by these optimization strategies in this study, it was found that the 

generated IPC clusters were better in the quality than the IPC clusters generated by the 

original protocol in previous work. DTZ positive clusters showed dark red by the dense 

composition of IPCs while the IPC cluster showed pink in previous study, indicating lower 

density of IPCs generated in the clusters. In addition, it was found that the secreted insulin 

concentration was much higher than the previous study. An enhancement in quality was 

generated by these optimization strategies, though the increase was not obvious in quantity. 

  Finally, the 3D collagen gel tissue was developed by the isolated IPCs, while the 

dissociation method using trypsin and physical breaking was shown to be useful to improve 

the survivability of IPCs, the flow condition at the flow rate of 0.02 ml/min also resulted in a 

better IPCs survivability than the flow rate of 0.5 ml/min from previous work in our 
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laboratory. 

4.2 Limitations and Future Directions 

The calculation method for efficiency of differentiation is important for the research. Other 

studies used flow cytometry and immunofluorescences are used to count the IPCs and total 

cells [25, 83]. The efficiency was calculated as DTZ positive clusters/ total clusters in this 

study. This however, doesn’t precisely reflect the overall efficiency as there are many other 

cell types present in the culture and also not all clusters become DTZ positive clusters. 

However, relatively good approximation of the efficiency can be obtained from this simple 

method since most of the DTZ positive IPCs are from clusters.   

  For the influence of cell seeding density, testing a gradient cell seeding density in 

different differentiation stages is needed in the future works. The best cell seeding density is 

supposed to be lower than 2X but higher than 1X. Using a gradient cell seeding density such 

as 1X, 1.5X, 2X together may help to find out the best cell seeding density based on the 

original protocol. Moreover, to promote the generation of mature IPCs by co-culturing with 

ECs, more work needs to be done including using mixed medium, adding more ECs in the 

coating gels, and investigating the co-culture system in initial differentiation stage of 

spontaneous differentiation. Different types of ECs also need to be investigated for the 

co-culture system. 

  In addition, the results of glucose challenge are shown as secreted insulin/total 

intracellular protein in some of the current studies. In this study, the results were presented 
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the same way with the previous work with the secreted insulin concentration directly from 

ELISA assay. The extraction of intracellular protein can also be done in the future and present 

glucose challenge as secreted insulin/total intracellular protein. This will allow direct 

comparison of the results with the other studies. The low glucose medium should also be 

applied for the glucose challenge in the future, as the glucose responsiveness was weak in this 

study with the use of high glucose medium before glucose challenge. It was reported that 

exposure to high glucose medium de-sensitized the cells in response to glucose challenge 

[67-69]. It might be able to restore the function of glucose responsiveness by switching cells 

to a low glucose medium in the last stage of differentiation. Thus, future studies are needed to 

investigate the influence of high glucose culture medium. 

  Lastly, lower flow rate of 0.02 ml/min was demonstrated to reduce cell death in this 

study. However, the shear stress of 0.156 dyn/cm
2 

in this study was just calculated based on 

the previously reported data [77], it needs to be accurately estimated. The pressure difference 

at the inlet and the outlet of the bioreactor can be monitored in the future to accurately 

estimate the shear stress caused by the low flow rate. In addition, further studies are needed to 

examine whether there are improvements in functions of the IPCs, including glucose 

responsiveness and expression of transcription factors such as PDX1 and insulin. In addition, 

as it was demonstrated that a low flow rate is capable to reduce dead cells in 3D collagen gel 

for 5 days culture, longer time periods such as 7 days or 10 days are required to be 

investigated for the survivability of IPCs in 3D collagen tissue in perifusion system. Other 

assays are also required including RT-PCR and immunofluorescence to investigate the 
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expression of transcription factors, as well as glucose challenge to test the response to 

glucose stimulations. 
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APPENDIX A 

CELL CULTURE MEDIUM 

 

The culture medium recipes for all presented studies are shown below. The mediums were 

stored at 4 °C and made in sterile glass bottles. All the mediums were used within two or 

three months of preparation. 

 

Mouse Embryonic Fibroblast (MEF) Culture Medium: 

 

DMEM (High Glucose)     500 ml, Life Technologies, 11965-084 

FBS                  58 ml, Life Technologies, 16000044  

100 X L-Glutamine         5.8 ml, Life Technologies, 25030 

100 X Pen./Strep.          5.8 ml, Life Technologies, 15140 

100 X NEAA           5.8 ml, Life Technologies, 11140 

100X Na-pyruvate          5.8 ml, Life Technologies, 11360 

 

Mouse Embryonic Stem Cell Culture Medium 

 

DMEM (High Glucose)       500 ml, Life Technologies, 11965-084  

Knock Out Serum Replacement  90 ml, Life Technologies, 10828  

100 X L-Glutamine     6 ml, Life Technologies, 25030  

100 X Pen./Strep.      6 ml, Life Technologies, 15140 

100 X NEAA       6 ml, Life Technologies, 11140 

100X Na-pyruvate     6 ml, Life Technologies, 11360  

2-Mercaptoethanol      4.4ul, Sigma, M6250 

LIF is recommended to be thawed out freshly and added to the aliquots of media before use 

(100 ul/ 50 ml of medium). 

 

Differentiation Medium #1 

 

IMDM            400 ml, Life Technologies, 12440-061 

FBS                100 ml, Life Technologies, 10828 

100 X L-Glutamine         5 ml, Life Technologies, 25030 

100 X Pen/Strep.          5 ml, Life Technologies, 15140 

1-Thioglycerol          3.9 ul, Sigma, M6145 
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Differentiation Medium #2 

 

DMEM/F 12 medium        1000 mls, 12500-062 

Progesterone             10 ul [Stock 2mM; Final conc. 20 nM, Sigma] 

Putresciene            100 ul [Stock 1M; Final conc. 100 uM, Sigma] 

Laminin             1 ml, Sigma L2020 

Nicotinamide            1 ml [Stock 1M; final conc. 10mM, Sigma] 

Insulin              6.25 ml, Life Technologies, 12585-014 

Sodium Selenite         100 ul [Stock: 300 uM; Final conc 30 nM, Sigma] 

Apo transferrin      50 mg, Sigma T1147 

B 27               20 mls, Life Technologies, 17504-044 

Penn Strep            10 mls, Life Technologies, 15140 

 

Endothelial Cell Culture Medium 

 

MCDB 131 Medium        1000 ml, Sigma, M8537 

FBS                100 ml, Life Technologies, 10828 

Penn Strep            10 ml, Life Technologies, 15140 

Endogro             4 ml, VEC Technologies   
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APPENDIX B 

REAGENTS RECIPES 

 

This appendix includes all the recipes for the different reagents used in this study. The 

reagents were stored at 4 °C in the fridge. 

 

Krebs Ringer Bicarbonate Hepes (KRBH) Buffer 

 

Solution A: 

Sodium Chloride       6.92 gm. 

Potassium Chloride      0.36 gm. 

Monopotassium Phosphate    0.16 gm.  

Calcium Chloride      0.38 gm. 

Magnesium Sulfate Heptahydrate   0.3 gm. 

De-Ionized (DI) Water     200 mls. 

 

Solution B: 

Sodium Bicarbonate      2.08 gm. 

DI Water        160 mls. 

 

Solution A        200 mls. 

Solution B        160 mls. 

HEPES         2.4 gm. 

BSA         2 gm. 

 

The contents were mixed and the volume was set to 1 liter by DI water. The pH was adjusted 

to 7.4 and the solution was filtered through a 0.22 µm filter. The KRBH buffer was stored at 

4°C. 

 

All the reagents were purchased from Sigma. 

 

Blocking Buffer for Western Blot Applications 

 

A 5% BSA or 5% non-fat dry milk solution was prepared using TBS-Tween buffer (Boston 

Bioproducts). The solution was placed on a magnetic stir plate till the BSA was completely in 

solution. The solution was then stored at 4 °C. 

 

Lysis Buffer Cell Lysate Preparation 

RIPA Buffe        500 µl 

Protease Inhibitor      5 µl 

Triton-X 100        5 µl 
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APPENDIX C 

PROTEIN ASSAY PROTOCOLS 

 

This appendix describes the protocol used for the protein quantification by Bradford assay. 

 

Bradford Protein Assay 

 

Bradford reagent will be needed to perform this assay. 

 

1. Prepare and label the correct number of cuvettes: # of your sample + 1 blank + 7  

BSA standards (0.125mg/mL, 0.25 mg/mL, 0.5 mg/mL, 0.75 mg/mL, 1 mg/mL,  

1.5 mg/mL, 2 mg/mL). 

2. Add 20ul of each sample, standards or RIPA buffer to the cuvettes. 

3. Add 1 ml of Quick Start Bradford Dye Reagent, warmed to room temperature, into  

each cuvette. Pipette well to mix. At this point a color change will be observed. 

4. Incubate 5 minutes a room temperature before further processing.         

5. Start up the BioRad smart Spec plus Spectrophotometer. 

6. Measure the absorption values and the concentration of the sample. 
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