Spring 2022

ENGR 301-HM2: Engineering Applications of Data Science

Joshua Young

Follow this and additional works at: https://digitalcommons.njit.edu/cme-syllabi

Recommended Citation

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Chemical and Materials Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
ENGR 301 Syllabus – Spring 2021

ENGR 301 HM 2 – Honors Engineering Applications of Data Science
Otto H. York Department of Chemical and Materials Engineering
New Jersey Institute of Technology

Instructor: Dr. Joshua Young, Assistant Professor of Chemical and Materials Engineering
- email: jyoung@njit.edu
- office: York 322

Office Hours: Tuesdays (3pm to 4pm) and Thursdays (11am to noon), starting January 25, 2022. Office hours will be held virtually in Professor Young’s Webex room: https://njit.webex.com/meet/jyoung

Date, Time, and Location: Class will meet twice a week, once for a lecture (2 hours/week) and once for a hands-on laboratory (2 hours/week).

Date: Monday and Wednesday
Time: 11:30am to 1:30pm EST.
Location: Faculty Memorial Hall 207 and Webex

Monday sessions will consist of a longer lecture and in-class discussion time, while Wednesday sessions will consist of a shorter lecture and hands-on coding time.

As required by NJIT administration, this course will meet ONLINE ONLY until January 30, 2022. After that, the class will meet in person at the above location.

The Canvas website will be the primary place for finding and submitting assignments and for grades.

Teaching Assistant: Daniel Mottern, ddm3@njit.edu

Course Description: ENGR 301 – Engineering Applications of Data Science (2:2:0), 3 credits. This is a course for junior level undergraduates in any engineering discipline focusing on the use of data science techniques to solve problems in engineering. We will first discuss the Python programming language and how it can be used to access, manipulate, explore, and visualize scientific datasets. We will discuss statistics and probability as it applies to engineering problems such as safety factors and probability of part failure; this includes conditional probability, probability distributions, hypothesis testing, and Bayesian inference. We will then discuss more advanced statistical models (“machine learning”), including linear and logistic regression, decision trees, and clustering. Possible applications of these methods will be demonstrated in such disciplines and topics as (but not limited to): chemical, mechanical and electrical engineering (optimization and controls), materials engineering (structure and property databases), biomedical engineering (medical diagnosis and medical imaging) and electrical and computer engineering (signal processing, target tracking, robotic navigation). Students will gain hands-on experience in implementing and utilizing these various methods through computational laboratory assignments and reports and a semester-long engineering design project.

Honors Addendum: The Honors section of this course will require additional work beyond that required for the non-Honors version. The requirements for Honors section students will be different from the non-Honors students in 3 ways. (1) There will be additional questions on the laboratory reports which could range from reading additional articles and providing a write up to building more complex models for data analysis. (2) Course participation will be weighted more heavily. In particular, each Honors student will be asked to lead one class discussion after spring break which will count towards the participation grade.
(3) An additional laboratory report (Laboratory Report 8), focusing on text and data mining, will be assigned; this is a topic covered during lecture but not assigned as a lab in non-Honors ENGR 301.

Prerequisites: This course is intended for engineering majors.

Prerequisite: Any ONE of the following: CS 100 (Roadmap to Computing); CS 101 (Computer Programming and Problem Solving); CS 106 (Roadmap to Computing for Engineers); CS 113 (Introduction to Computer Science I); CS 115 (Introduction to Computer Science); BME 210 (Computing for Biomedical Engineers)

Prerequisite OR corequisite: Any ONE of the following: MATH 225 (Survey of Probability and Statistics); MATH 244 (Introduction to Probability Theory), MATH 279 (Statistics and Probability for Engineers); MATH 305 (Statistics for Technology), MATH 333 (Probability and Statistics); ECE 321 (Random Signals and Noise)

Course Objectives: At the end of this course, students will be able to:
1. access, read, construct, and manipulate datasets and databases using Python.
2. visualize data in a variety of forms such as bar charts and scatter plots using matplotlib.
3. implement statistical models and learning algorithms in Python to analyze datasets, with application to engineering systems.
4. describe the properties of datasets using central tendencies.
5. analyze probabilities using statistical distributions such as the normal (“Gaussian”), Poisson, and binomial distribution, with application in detection, estimation, and tracking.
6. form statistical hypotheses and test them using p-test, constructing confidence intervals, and using Bayesian inference, with application in decision support in engineering design, medical diagnostics, industrial manufacturing and radar.
7. measure the strength of and describe the nature of relationships between data using linear and logistic regression.
8. classify data and predict outcomes using decision tree methods such as random forest, with applications to robotic vision and automated navigation.
9. analyze unlabeled data through the use of unsupervised learning algorithms (i.e., clustering), with applications in nondestructive testing.
10. perform cross-validation to prevent overtraining of models.
11. prepare an effective technical report describing design project goals, progress, and results.
12. disseminate results through oral presentations to classmates.

This course addresses the following ABET student outcomes: 1, 2, 3, 5, 7

Learning Materials:

Textbook: Practical Statistics for Data Scientists, 2nd Edition by Bruce, Bruce, and Gedeck.

Hardware: A working computer with a functioning microphone and webcam is required.

Software: Python3 and Jupyter are required and will be used throughout the class. Week 1 will describe how to install these, and they are required to be installed by Monday of Week 2.

Grading: The final grade for the course is divided as follows:
- Laboratory Reports = 40% of grade (8 due throughout the semester, 5% each)
- Class participation = 5%
- Interim design update reports = 25% of grade (2 due throughout the semester)
Class Participation: Every Monday lecture session (and during the first lecture), there will be a short discussion session. Students will be broken up randomly into breakout rooms on Webex to discuss a data science topic, article, or problem. Participation in these sessions counts towards your final grade.

Laboratory Reports: On weeks a laboratory report is assigned, the assignment will be published Tuesday night before the Wednesday lab session. Wednesday in-class sessions will consist of a short lecture, with the rest of the time dedicated to working on the lab alone or in groups. The instructor will be available to answer questions and clear up topics. Some laboratory sessions will be reserved for working on your final project.

Laboratory reports should be submitted as Jupyter notebooks, INCLUDING the discussion portion, written as markup text in the cells. The first cell of the laboratory notebook should include your name, UCID, and any people you collaborated with on the report. The Jupyter notebook laboratory report should be fully runnable without errors.

The Jupyter notebook laboratory report is due the FOLLOWING TUESDAY AT 11:59pm. The code for the report should be easily digestible and well commented, and any discussion should be clearly written.

Design Project: The final project consists of small groups selecting an engineering application that is reliant on analyzing large data sets. A list of potential topics will be provided to you, but you are of course free to come up with your own as well. If you have difficulty finding a useful data set, the instructor can assist you. You are allowed to self-select your group with the constraint that it should have no less than 3 people and no more than 5. If you have difficulty finding a group, email the instructor and he will assign you one. Group selection is due Monday of Week 4.

Two interim progress reports will be due throughout the semester. The first report should summarize the problem your group will tackle, why it is important, where you will find the data set, discussion regarding the suitability and useability of the data set, and any potential problems. The second report should consist of the methodology you are using/will use to analyze this data set, why it is appropriate, and any initial results/preliminary investigations of the data set. These two reports should NOT be written in Jupyter, but instead submitted as a PDF. Code used to generate figures and results for the report should be submitted as a separate Jupyter notebook. More detail will be given later about the contents and layout of these reports.
A final written report detailing selection the challenge, methodology, data science approach selected, and results is required at the end. A 30 minute presentation defending your selection and methodology will also be required: 20 minutes for presenting and 10 minutes for answering questions. More details will be provided about this after interim report 2. Each group will present either Monday or Wednesday of Week 15. The final report is due Monday of Finals Week, May 10, 2021.

Academic Integrity: Academic Integrity is the cornerstone of higher education and is central to the ideals of this course and the university. Cheating is strictly prohibited and devalues the degree that you are working on. As a member of the NJIT community, it is your responsibility to protect your educational investment by knowing and following the academic code of integrity policy that is found at: http://www5.njit.edu/policies/sites/policies/files/academic-integrity-code.pdf.

Please note that it is my professional obligation and responsibility to report any academic misconduct to the Dean of Students Office. Any student found in violation of the code by cheating, plagiarizing or using any online software inappropriately will result in disciplinary action. This may include a failing grade of F, and/or suspension or dismissal from the university. If you have any questions about the code of Academic Integrity, please contact the Dean of Students Office at dos@njit.edu.

Code will be provided to you for this course but under no circumstances should it be distributed outside of the course without the express written consent of the instructor.

Detailed Schedule:

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignment</th>
</tr>
</thead>
</table>
| 1 | - What is data science?
- Data science across engineering disciplines
- Introduction to Python and Jupyter
- Manipulating data: introduction to *pandas*
- NO CLASS MONDAY | No assignment |
| 2 | - Data visualization: introduction to *matplotlib*
- Statistics: Central tendencies
- Statistics: Correlation and outliers
- Probability Basics | Laboratory Report 1 assigned |
| 3 | - Hypothesis generation and testing
- The p-test
- Confidence intervals | Laboratory Report 1 due
Laboratory Report 2 assigned |
| 4 | - What is machine learning?
- Overfitting and underfitting
- Training and test sets
- Linear regression | Laboratory Report 2 due
Laboratory Report 3 assigned |
| 5 | - Advanced linear regression
- Regularization
- Feature selection | Laboratory Report 3 due
Interim Report 1 assigned |
| 6 | - Logistic regression
- Evaluating classification models | Interim Report 1 due
Laboratory Report 4 assigned |
| 7 | - Naïve Bayes classification
- Principal components analysis | Laboratory Report 4 due
Laboratory Report 5 assigned |
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignments</th>
</tr>
</thead>
</table>
| 8 | - K-Nearest Neighbors algorithm
- Variable encoding | Laboratory Report 5 due
No assignment |
| 9 | SPRING BREAK, NO CLASS MONDAY OR WEDNESDAY | |
| 10 | - Decision Trees
- Random Forest
- Bagging and Boosting | Laboratory Report 6 assigned |
| 11 | - Introduction to unsupervised learning
- Clustering algorithms | Laboratory Report 6 due
Interim Report 2 assigned |
| 12 | - Neural networks | Interim Report 2 due
Laboratory Report 7 assigned |
| 13 | - Text and data mining
- Databases
- Introduction to BeautifulSoup | Laboratory 7 due
Laboratory 8 assigned |
| 14 | - Scaling data science/machine learning up
- Review and work on projects
- Open questions and help | Laboratory 8 due |
| 15 | - Final presentations | Final Presentation due |
| 16 | - Industry and visit day
- NO CLASS WEDNESDAY | |
| 17 | - FINALS - Final report due (Monday May 10, 2021) | Final Report due |