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ABSTRACT 

DISPERSION AND DISSOLUTION KINETICS OF API PARTICLES IN 

PHARMACEUTICAL HOT MELT EXTRUSION 

 

by 

Wang Zhan 

 

Pharmaceutical Hot Melt Extrusion (HME) is essentially a special case of polymer 

compounding. The elementary steps involved in traditional plastics melt processing are 

handling of particulates, melting, dispersive and distributive mixing, devolatilization and 

stripping, and finally pressurization and pumping. However, for pharmaceutical HME, 

the dissolution of the API (Active Pharmaceutical Ingredient) is an additional and very 

important elementary step, along with the melting of the polymeric excipient that 

precedes it, and mixing which accelerates the dissolution process. A major concern in 

pharmaceutical HME is the thermal degradation of the API. To avoid overexposure of 

API to heat while ensuring complete dissolution of the API in the production of solid 

solution, the dissolution kinetics of the API must be known. This work employs a non-

dissolving, surrogate material in an attempt to deconvolute the phenomena of distribution, 

dispersion and dissolution of the API inside a molten polymeric matrix using a Brabender 

batch mixer, in order to determine the dissolution kinetics of the API.    
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CHAPTER 1 

INTRODUCTION 

1.1 Objective 

Pharmaceutical Hot-Melt Extrusion (HME) is currently pursued by both industry and 

academia as a method to produce solid oral dosages in a continuous and controlled 

fashion. One of the major concerns in pharmaceutical HME is the thermal degradation of 

the API. To achieve the balance between complete dissolution of the API and minimal 

thermal degradation of the API, the dissolution kinetics of the API particulates inside the 

molten polymeric matrix during extrusion must be known. In this work, we study the 

dissolution kinetics of the API during pharmaceutical HME by experiments, which 

attempt to separately determine the contributions of polymer melting, 

dispersion/distribution of API particulates, and API dissolution on the melt viscosity of 

the polymer matrix during melt-mixing in Brabender batch mixer. Since the last two of 

the three phenomena are taking place (at their own characteristic rate) simultaneously, 

this is not an easy task. 
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1.2 Background Information 

Pharmaceutical hot melt extrusion (HME) is currently investigated by both industry and 

academia as a method for producing solid oral dosages in a continuous and controlled 

fashion. Processing by HME can improve the bioavailability of the poorly water-soluble 

active pharmaceutical ingredients (APIs) by dissolving them into water-soluble polymers 

(products known as solid solutions). At the same time, oral dosages with controlled 

release characteristics can be produced by dispersing water-soluble APIs into 

water-insoluble polymers (products known as solid dispersions) (G. Terife, 2012).  

The elementary steps involved in the pharmaceutical HME are identical to the ones 

involved in conventional plastics melt processing by extrusion: (1) handling of 

particulates, (2) melting, (3) dispersive and distributive mixing, (4) devolatilization and 

stripping (5) pressurization and pumping (Z. Tadmor, C.G. Gogos, 2012). However, for 

pharmaceutical HME the dissolution of the API is an additional and very important 

elementary step, along with melting of the polymeric excipient that precedes it, and 

mixing which accelerates the dissolution process (C.G. Gogos, 2012).  

The thermal degradation of the API is one of the major concerns in pharmaceutical HME. 

Producing an extrudate that contains a molecularly dispersed (i.e. dissolved) API and at 

the same time not overexposing the API to high processing temperature for long periods 

is one of the major objectives during the extrusion of solid solutions (W. Thiele, 2003) . 
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To achieve the balance between complete dissolution of the API and minimal thermal 

degradation of the API, the dissolution kinetics of the API particulates inside the molten 

polymeric matrix during extrusion must be known.  

As mentioned above, melting of the polymeric excipient, dispersive/distributive mixing, 

and API dissolution can occur simultaneously during extrusion. Therefore to determine 

the dissolution kinetics of the API, the above phenomena must be isolated from each 

other. One way of achieving this is by exploiting the effect that polymer melting, 

dispersion/distribution of API particulates and API dissolution have on the melt viscosity 

of the polymer matrix: Melt viscosity decreases with heat. Addition of particulates in 

molten polymers increases the melt viscosity. Dissolution of an API into molten 

polymers generally decreases viscosity by virtue of plasticization. 

In this work, we attempt to study the dissolution kinetics of the API during 

pharmaceutical HME by separately determining the contribution of polymer melting, 

dispersion/distribution of API particulates and API dissolution on the melt viscosity of 

the polymer matrix during melt-mixing in Brabender batch mixer. The strategy we 

followed to achieve the separate determination of the above phenomena on the melt 

viscosity of the polymer included: (a) pre-melting the polymer alone in the batch-mixer 

(b) adding and mixing a non-dissolving, surrogate material that has the similar particulate 

properties with the API, (c) melt mixing the polymer with the API, and finally, 

subtracting the contribution on the melt viscosity of the polymer of step (b) from step (c). 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Pharmaceutical Hot-Melt Extrusion 

Hot-melt Extrusion is a term adopted by the Pharmaceutical industry to differentiate from 

traditional oral dosage manufacturing techniques, such as direct compression and 

tableting. Because of its potential of rendering poorly water-soluble active 

pharmaceutical ingredients (APIs) readily bioavailable to patients, both the industry and 

academic investigators have explored and studied it in the last several decades or so. The 

recent discoveries of a large number of promising, but basically crystalline, 

water-insoluble APIs, has resulted in more and more intensive academic and industrial 

investigations of HME for these Class II poorly-soluble APIs.  

HME typically involves the use of single but more often than not twin rotor extruders 

(also referred as SSE and Co-TSE respectively) for the melting of usually water-soluble 

polymeric excipients, mixing them with water-insoluble APIs, and pumping the 

homogeneous mixture through a die to form an extrudate. HME is a solvent-free 

continuous process and may lead to fewer processing steps, compared to the traditional 

drug production processes. Degradation of the drug (API) and excipient may occur 

during HME because of the high processing temperatures and heating which is due to 
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viscous energy dissipation (VED). Hence it is a serious concern and an area which is 

addressed in studies exploring the suitability of HME for new API/excipient systems.  

Pharmaceutical HME can be generally divided into two categories with the respect to the 

processing temperature. In the most common case (Case I), the processing temperature 

ought to be over the melting temperature of semi-crystalline polymers or (50-100)℃ 

above the glass transition temperature of amorphous polymers but below the melting 

temperature of the crystalline API. While in the other case (Case II), the processing 

temperature is above the melting temperature, the glass transition temperature of the 

polymer and the melting point of the API (C.G. Gogos, 2012). Typically, Case I is more 

preferred, since it means minimizing the chances of thermal degradation of the API.  

In general, HME involves five elementary steps: handling of particulate solids, melting, 

pressurization and pumping, mixing, and devolatilization and stripping (Tadmor and 

Gogos, 2006). Mixing plays a critical role in determining the key properties of final 

products, mainly in part of the API dissolution rate in the aqueous polymer or other 

medium.  

 

2.2 Distributive Mixing and Dispersive Mixing  

Mixing in single or twin screw extruders is induced by laminar flow and is generally 

categorized into two types: dispersive mixing and distributive mixing. Dispersive mixing 
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refers to the process involving the particle size reduction of particulate cohesive 

components such as fillers, polymer gels, or liquid droplets. Distributive mixing refers to 

expanding and stretching the interfacial area between the components lacking a cohesive 

force in between and distributing them uniformly throughout the volume of the molten 

polymer. Dispersive mixing is mainly controlled by the laminar shear and extensional 

forces and the type of flow generated by the processing equipment. On the other hand, 

distributive mixing is mainly controlled only by the flow-generated strains. According to 

the definitions, the mixing of miscible liquids is treated as distributive mixing, and 

mixing of hard solid agglomerates, immiscible liquids, and soft agglomerates is regarded 

as dispersive mixing (Tadmor and Gogos, 2006). The dispersive and distributive mixing 

of solid agglomerates is schematically shown in Figure 2.1. As the figure shows, the 

upper route is when the dispersive mixing happens before the distributive mixing and the 

lower route is the other way around. 
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Figure 2.1 Dispersive mixing and distributive mixing of solid agglomerates and 

immiscible liquid droplets (Tadmor and Gogos, 2006).  

Source: Z. Tadmor, C. G. Gogos (2006). Principles of Polymer Processing, John Wiley & Sons, Inc. 

Hoboken, NJ, USA. 

 

 

2.3 Dissolution of API Particles in Polymeric Melt 

The dissolution of API within the polymer largely depends on their physicochemical 

properties. Good miscibility between APIs and polymer excipients is the key requirement 

for solid dispersions to increase physical stability (Patrick J. Marsac, 2008). In practice, 

the majority of drug/polymer systems are likely to show only partial miscibility (Craig, 

2002). This means that there exists a certain thermodynamic solubility of drugs in 

polymer matrixes.  

HME can be carried out in two distinctly different conditions, referred to here as Cases I 

and II:  
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Case I: The processing temperature is above the melting temperature for a 

semi-crystalline polymer, or the softening temperature for an amorphous polymer, (Tg + 

50~100 ºC) but below the melting point of a drug.  

Case II: The processing temperature is above both the melting temperature and the 

softening temperature of semi-crystalline or amorphous polymers, respectively, and 

above the melting point of a drug. One thing needed to be noted that processing 

temperature should be the melt temperature instead of the set temperature of the 

processing equipment. It should also be noted that the incorporation of the API may 

decrease the glass transition temperature of an amorphous polymer or the melting 

temperature of a semi-crystalline polymer (Crowley et al., 2007).  
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Figure 2.2 Schematic representation of the morphological changes of the drug and 

polymer system in the solution formation process for Case I.  

Case I provides a viable method to circumvent the thermal degradation issues. In case I, 

the drug is processed below its melting point and mixed with a polymer melt, then the 

solid drug particles gradually dissolve into the polymer excipient melt. And this process 

should be able to provide a desirable polymer-drug solid dispersion or solid solution. In 

other words, the solid API is the solute and the polymeric melt is a highly viscous solvent, 

during the HME process. In addition, with higher temperature, the dissolution rate and 

solubility of the API in the polymer will increase. 

The dissolution process of the drug in the polymer melt is schematically shown in Figure 

2.2. Firstly, the drug particles (black) and polymer particles (white) are fed into the batch 

mixer or an extruder. Then, the polymer particles start melting due to the conductive heat 
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from the mixer or extruder barrel and frictional and plastic energy dissipation. These two 

phenomena result in a process charge state that the solid drug particles are suspended in a 

continuous polymer melt matrix. Then the polymer molecules start to heat up the API 

particles and create a mass transfer boundary layer. This layer shall be continuously 

wiped away and replaced with fresh polymer melt nearby. The drug molecules diffuse 

into the polymer melt through the boundary layer, and the size of the suspended drug 

particles will continue to decrease as the diffusion goes. Finally, a homogeneous solution 

will be formed.  
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Figure 2.3 Schematic representation of the morphological changes of the drug and 

polymer system in the solution formation process for Case II.  

Case II, on the other hand, includes miscible or partially miscible liquid-liquid mixing 

because both the polymer and drug will be melted. As shown in Figure 2.3, the drug 

(black) and polymer (white) particles are fed into an extruder and processed by the screw 

elements. Due to the heat transfer from the extruder barrel or a batch mixer, and frictional 

and plastic dissipation, the polymer particles will melt first. During or after the melting of 

the polymer, the drug particles will melt to droplets and be deformed by the mixing flows 

generated by the screws. The droplets will be deformed along the shear direction and 

blurred the contacting surface between the drug and polymer. As this process goes on and 

with diffusion continuously being carried on, we will finally get a homogeneous drug – 

polymer solution.  
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In both cases discussed above, the diffusion will happen, between either the dissolving 

API particles or the drug droplets and the molten polymer.  

The “characteristic diffusion time” tD is proportional to the square of the API phase 

droplet or ligament radius L or the thin dimension DAB of a sheet (Equation 2.1).  

AB

D
D

L
t

2

  
(2.1) 

In HME, similarly, the dissolution of drug particles in molten polymer excipients can be 

described by the Noyes- Whitney equation as follows: 

Vh

CCAD

dt

dC s






)(
 (2.2) 

where D is the diffusion coefficient of drug; A is the total surface area of the drug 

exposed to the dissolution media; Cs is the saturation solubility of the drug in the liquid 

which (for HME) is the excipient melt; C describes the concentration of the dissolved 

solid phase in the bulk at time t; h represents the diffusion boundary layer at the solid – 

liquid interface; and V is the volume of the dissolution medium. 

The equation shows that the drug particle size and size distribution are very important to 

the dissolution rate, since the total contacting surface area of the drug particles will be 

changed accordingly. We can expect a higher dissolution rate if the particle size gets 

smaller. Furthermore, the narrower the drug particle size distribution, the more uniform 
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the total dissolution time distribution needed for complete dissolution of drugs in polymer 

melt will be. (Gogos, 2012) 

Dispersive mixing may break up the drug agglomerates or even individual particles due 

to the high shear forces generated by the high shear screw elements such as wide 

kneading blocks or Maddock elements (Tadmor and Gogos, 2006). Then, the total 

contacting surface area of the drug particles to the polymeric melt will be increased, thus 

increasing the dissolution rate. Distributive mixing can homogenize the drug 

concentration dissolved in the polymeric melt, and bring more polymer melt into contact 

with the suspended drug particles. Both effects can raise or maintain the dissolution rate. 

If the mixer set temperature increases, on the one hand, the diffusion coefficient will 

increase due to the increased temperature and resultant decreased matrix viscosity; on the 

other hand, Cs also will increase. Both of these factors will contribute to an increase of 

the API dissolution rate in the molten polymer excipient. When the screw speed increases, 

the distributive mixing is improved within the chamber, and thus a higher concentration 

gradient around the drug particulates is available. Moreover, the thickness of the mass 

transfer boundary layer decreases as the screw speed increases. Both effects lead to an 

increased dissolution rate.  
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2.4 Characterization Methods 

2.4.1 Microscopy Methods 

Optical and electron microscopy can help determine the existence of drug crystal regions 

and the size. Although the resolution of polarized light microscopy (PLM) is 

approximately at 1μm, the birefringence of the crystal drug imparts a sharp and distinct 

contrast against the amorphous (dark) excipient. Yoo et al. studied the 

miscibility/stability for 24 binary solid dispersion systems and found that the sensitivity 

to crystal detection was PLM > DSC (Differential scanning calorimetry) > XRD (X-Ray 

Diffraction ) (Yoo S.U., 2009). Bruce et al. employed SEM for in-situ observation of 

crystal growth in melt extrudates (Bruce C., 2007).  

SEM makes use of a beam-scanning mode of operation. A fine electron beam scans the 

surface of the specimen previously coated with a conducting layer in a two-dimensional 

raster. The back-scattered or the secondary electrons are analyzed with a scintillation 

counter, and the signal from the counter is fed into a cathode-ray tube which is set to scan 

synchronously with the electron beam. As a result, a point-by-point image of the 

specimen is displayed on the cathode-ray tube. In order to increase the electric 

conductivity of the tantalum layer, a subsequent carbon layer has to be deposited by flash 

evaporation of carbon yarn (W. Doll, 1985).  
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2.4.2 Batch Mixer 

The batch mixer is a heated high-shear laminar mixer, and it has been used in the plastics 

and rubber industry to simulate the extrusion process or optimize the formulation. This 

laboratory scale batch mixer used in this work needs only 30-60 g of the material. With 

the equipment, many experiments can be performed in a short period, thus making it an 

attractive choice for the HME study (Ghebre-Sellassie and Martin, 2007). Furthermore, 

the screw speeds can be controlled separately without altering the residence time in a 

batch mixer, which is difficult to realize if an extruder is used.  

The Bradender batch mixer used in this work can be applied for the determination of 

thermoplastics, thermosets, elastomers, ceramic molding compounds, fillers, pigments 

and much more plastic and plastifying materials under praxis-oriented conditions, 

cost-effective, reliable and little expenditure of time and material.  

As for the measurement, the principle is based on making visible the resistance the 

sample material opposes to the rotating blades. The corresponding torque moves a 

dynamometer out of its zero position.  

In compliance with the existing standards and test specifications, a typical ‘Plastogram®’ 

(torque and stock temperature vs time) is recorded for each sample material. This 

diagram shows the relationship between torque (viscosity) and temperature/time in 

consideration of structural changes of the material. The measured data are displayed  
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Table 2.1 A Sample Data Table Gathered With a Batch Mixer. 

Time [s] Torque [Nm] Temperature [℃] Speed [rpm] 

0 0 130.5 50.3 

2 1.201789 87.7 50.4 

4 2.724987 87.9 50.5 

6 3.926776 88.6 50.5 

8 13.6948 91.2 50.5 

10 30.12857 96.7 50.5 

12 54.89101 113.5 50.4 

14 56.60985 120.3 50.4 

16 56.60985 129.7 49.7 

18 53.18615 132.2 50.5 

20 51.11795 134.4 50.6 

 

numerically as a table and/or graphically as a diagram during the measurement on a 

monitor and can be printed and stored. A sample of typical data table is shown in Table 

2.1. 
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CHAPTER 3 

MATERIALS AND METHODS 

3.1 Materials 

Acetaminophen (APAP) (Spectrum Chemicals, Gardena CA) was chosen as the model 

API. APAP is a crystalline BCS I drug with a melting point of 169°C. Soluplus (BASF, 

Tarrytown NY) was used as the model polymeric excipient. It is an amphiphilic polyvinyl 

caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer and is amorphous 

with a single glass transition temperature (Tg) of 73 °C ± 2 °C that exhibits 

pH-independent solubility in water. According to the criterion described in the literature 

(Greenhalgh D.J, 1999) (Forster A., 2001), APAP and Soluplus are likely to be miscible.  

Al, Al2O3 and four grades of CaCO3 were evaluated in terms of particle size/size 

distribution as non-dissolving surrogates for APAP. The 4 grades of CaCO3 will be 

referred as CaCO3 No.1 to 4 respectively according to the descending order of the 

average particle size printed on the brand tags. 

3.2 Scanning Electron Microscopy (SEM) and Light Microscopy (LM) 

Scanning Electron Microscopy (SEM) and Light Microscopy (LM) were used to 

determine the particle/particle size distribution of the all particulates used in this work. 
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To obtain representative results, 200 particle measurements were obtained from each 

material (diameter-based measurements using image-processing ImagePro 6.0).  

To determine the particle size distribution of the finer CaCO3, Aluminum, Al2O3, APAP, 

DMN and Indometacin, we use a scanning electron microscope (LEO Field Emission 

Gun 153 Digital SEM) operated at an accelerating voltage of 10 KeV. All samples except 

Aluminum were coated with a thin layer of carbon using a Bal-Tee Med 020 Sputter 

Coater in order to improve the electrical conductivity before imaging. 

Likewise, to determine the particle sizes and distributions of the coarser CaCO3 grades, 

we use a light microscope (Dino-Lite Pro digital microscope along with the Dino Capture 

2.0 software) since the particles are large enough to observe with a light microscope. 
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3.3 Batch Mixing 

 

(a) 

 

(b) 

Figure 3.1 The batch mixer (a) and roller screws (b) (Manufactured by Brabender Corp.) 

Source: Liu, H. (May 2010). Hot Melt Mixing/Extrusion and Dissolution of Drug (Indomethacin) in 

Acrylic Copolymer Matrices. Otto H. York Department of Chemical, Biological and 

Pharmaceutical Engineering. Newark, New Jersey Institute of Technology. Ph.D Dissertation. 
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Figure 3.2 The inside of the assembled Brabender batch mixer (without the front plate). 

 

A Brabender batch mixer (Shown as Figure 3.1 and 3.2) was used for compounding of 

the materials.  

All the experiment runs were performed in a Brabender FE-2000 batch intensive mixer 

utilizing counter-rotating screws, as illustrated in Figure 3.1. During mixing the torque 

arising from the resistance of material to the flow created by the counter-rotation of the 

screws, is recorded along with the melt temperature. The batch mixer barrel is heated 

with electrical power and cooled down by air.  
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All the materials were mixed at 50 rpm for 20 min, while the set temperature of the mixer 

was 130°C. The polymer will be processed for 10 minutes before we add the additive. 

The weight ratio of the materials was kept constant in all experiments at 70/30 

polymer/additive (exceptions will be noted when discussed about). 

3.4 Angle of Repose 

The angle of repose for a granular material is the steepest angle of descent or dip relative 

to the horizontal plane, where the material can be piled without slumping. The angle of 

repose is measured by a Hosokawa powder tester (PT-N) to characterize the flowability 

of all the particles used in the experiments carried on in the batch mixer, i.e. Soluplus, 

APAP, Aluminum and all 4 grades of CaCO3. The procedure used was the following 

steps:  

Obtain approximately a 250g sample of the powder which should be homogeneous and 

representative of the bulk material. Place the material in the jar container on a funnel over 

the base plate. Feed the powder into the funnel until nearly full. Start adding the powder 

into the funnel at a rate similar to its discharge rate. When the edge of the sample powder 

pile reaches the edge of the plate, stop feeding the powder. Using the calipers, measure 

the height of the cone. Return the tested specimen to the jar container and remix to 

homogenize. Repeat these steps two more times for each kind of powder and calculate 

the average of the angle of repose. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

4.1 Characterization of the Raw Materials 

4.1.1 Angle of Repose 

 

a b 

e 

c d 

f 
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Figure 4.1 The results of the tests of the angle of repose: (a) CaCO3 No.1, (b) CaCO3 

No.2 , (c) CaCO3 No.3, (d) CaCO3 No.4, (e) Soluplus (f) Aluminum (g) Acetaminophen 

(APAP) 

All the raw materials used in the Brabender batch mixer experiments are shown as above 

(Figure 4.1) (the respective particle sizes of the materials can be found in Table 4.2). 

From the pictures we can see that the CaCO3 No.1 has the angle of repose which is 

around 25, while the CaCO3 No.2 and CaCO3 No.3 are about 30, and CaCO3 No.4 is 

40. And The angle of repose for Soluplus is about 25, for Aluminum is around 30. 

APAP has the largest angle of repose which is about 70, indicating it has the worst 

flowability among all the materials.  

4.1.2 Bulk Density 

The bulk density of all the materials used in the Brabender batch mixer experiments are 

shown in the table below. 

 

g 
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Table 4.1 Bulk Densities of API and Surrogates 

Material Bulk Density 

[-] [g/cm
3
] 

Aluminum 1.23 

CaCO3 No.1 1.44 

CaCO3 No.2 1.45 

CaCO3 No.3 1.44 

CaCO3 No.4 0.46 

APAP 0.37 

 

4.2 Identification of a Suitable Non-Dissolving Surrogate for APAP 

4.2.1 Identification by Particle Size, Size Distribution and Particle Morphology 

During the addition of a soluble, particulate component in a molten polymeric matrix, 

distribution/dispersion of the particulates and concurrent/subsequent dissolution of the 

particulates take place. To determine the contribution of distribution/dispersion of the 

API on the melt viscosity alone, the particle size/size distribution of a number of 

insoluble, inorganic surrogates were determined by SEM or LM. Figure 4.2 shows the 

SEM/LM images of all the particles examined in this work. Table 4.2 summarizes the 
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average particle size and standard deviation of all the particulate materials as measured 

by the SEM/LM images.  

The increase in the melt viscosity of a polymer upon the addition of particulates depends 

not only on the particle size/size distribution but also: the volume fraction, the surface 

tension, the specific heat capacity and the aspect ratio of the added particles (Z. Tadmor, 

C.G. Gogos, 2012).  

From the results in Table 4.2 it can be seen that in terms of size and size distribution the 

Al particles are closer to the APAP particles (av. particle size: 10 µm, s. deviation: 7 µm 

for APAP and av. particle size: 8.5 µm, s. deviation: 3.5 µm for APAP). The literature 

mentions that the effect of aspect ratio of added particles to the melt viscosity of a 

polymer becomes noticeable when the aspect ratio exceeds critical value of 10 (Z. 

Tadmor, C.G. Gogos 2012). From Fig. 4.2a and Fig.4.2f it can be seen that the Al 

particles are spherical whereas the APAP particles are cuboid in shape with an aspect 

ratio of ~1:6. Therefore in terms of aspect ratio the Al particles are a suitable surrogate 

for APAP. However, Al and APAP have different densities, specific heat capacities and 

surface tensions. It is therefore very difficult to find an exact surrogate for APAP and 

consequently, assumptions and compromises have to be made. 
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Figure 4.2: (a) SEM of Al, (b) SEM of Al2O3, (c) LM of CaCO3 no.1, (d) LM of CaCO3 

no.2, (e) LM of CaCO3 no.3, (f) SEM of APAP (g) SEM of CaCO3 no.4, (h) SEM of 

Indometacin 

b 

c d 

e 

f e 

a 

h g 
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Table 4.2 Average Particle Size and Size Distribution of API and Surrogates  

Material Average Particle Size Standard Deviation 

[-] [µm] [µm] 

APAP 10 7 

Al 8.5 3.5 

Al2O3 37 9.5 

CaCO3 [no.1] 306 162 

CaCo3 [no.2] 260 101 

CaCO3 [no.3] 200 98 

CaCO3 [no.4] 30 20 

Indomethacin 20 14 
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4.2.2 Investigation of the Effect of Different Particle Properties on the Polymeric 

Melt Viscosity 

Figure 4.3 Torque traces of Soluplus upon the addition of different grades of CaCO3 or 

Al. 

Figure 4.4 Melt temperature traces of Soluplus upon the addition of different grades of 

CaCO3 or Al. 
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To determine the validity of the assumptions made and effect of compromises for particle 

properties on their effect on melt viscosity and identify a suitable surrogate for APAP, we 

decided to investigate the effect of different particle properties on the melt viscosity of 

Soluplus during melt mixing.  

Fig. 4.3 and Fig. 4.4 show the torque and temperature traces of pre-molten Soluplus upon 

the addition of different grades of CaCO3 or Al. In this set of experiments, we 

investigated two properties: particle size/size distribution and pre-mix temperature of the 

additive particles. In Fig. 4.3 it can be seen that the torque traces recorded during the 

addition of pre-heated (to processing temperature inside a laboratory oven) CaCO3 in 

sizes of 200, 260 and 300 µm (termed as SCA #1NH, #2NH, #3NH respectively) are 

practically identical, indicating that the size difference between them is not sufficient to 

process a notable effect in melt viscosity. However when particles like CaCO3 #4 

(referred to as SCA #4NH as preheated compared to SCA #4NC at RT ) or Aluminum 

(referred to as SALNH as preheated compared to SALNC at RT)  CaCO3 with 30 µm 

particle size was added the resulting viscosity increased. This is almost certainly a result 

of the much larger surface area that the small particles have, that in turn results into 

higher contact area between the particles and the polymer. A difference in the resulting 

viscosity of the polymer melt was observed when we preheated the particles to the 

processing temperature before adding them in the mixer. It appears that preheating the 

particles results into a higher viscosity melt as opposed to adding the particles at room 
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temperature. This may be related to the fact that heated particles are easier to become 

“wetted” by the polymer since the local viscosity and surface tension of the polymer 

around a heated particle will be lower compared to a colder particle. The reason for that 

is, if the particles, which are in agglomerated form when fed, are cold, then the polymer 

melt next to them will be cold and will not flow, mainly allowing flow of the pure melt. 

The extensive wetting the hot particulates, on the other hand, results in a greater and 

efficient contact between the particles and the melt, leading to de-agglomeration, and an 

increase in the melt viscosity of the Polymer/Particulate suspension. 
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4.3 Investigating the Dispersion and Dissolution Kinetics of APAP Added into 

Soluplus Melt Matrix 

 

Figure 4.5 Torque traces of Soluplus upon the addition of APAP and Aluminum. 

 

 

Figure 4.6 Temperature traces of Soluplus upon the addition of APAP and Aluminum. 
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After the screening and comparison of the results above, we decided to select and use 

Aluminum as the surrogate particulates and proceed to the next stage of the experiments. 

In this stage we took the same Brabender batch mixer runs in basically the same 

procedure with the previous experiments. This means the materials would still be mixed 

at 50 rpm for 20 min, while the set temperature of the mixer would be maintained at 

130°C and the additive will be added at 10 min. The only changed conditions are as 

followed. 

First, we changed the fixed weight ratio which was Soluplus/surrogate 70/30, into the 

fixed real volume ratio, as Soluplus/Aluminum or APAP 100/36.9. And the mass of 

Soluplus is also fixed simultaneously because of the total volume of the batch mixer 

(meaning the total volume of the material) will not be altered. The reason to take such a 

change is in order to ensure the same real volume of the API/surrogate and Soluplus 

between the different runs. Since the particle sizes of Aluminum and APAP are very 

similar, the numbers of particles dispersed within the polymer are expected to be 

approximately same.  

Second, the roller screws were changed into the intermeshing screw elements, as Figure 

4.7 shows. The reason will be demonstrated and discussed in the next section. Since in 

this stage of the experiment, the condition of the usage of the screw elements is consistent 

for both runs, the model of screws itself shouldn’t alter the results and conclusion.  
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Figure 4.7 The intermeshing screw elements. 
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Figure 4.8 Torque traces of Soluplus upon the addition of APAP and Aluminum 

(Magnified/Expanded scale) 

 

 

Figure 4.9 Temperature traces of Soluplus upon the addition of APAP and Aluminum 

(Magnified/Expanded scale) 
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The torque and temperature traces of these batch mixer runs are demonstrated in Figure 

4.5 and 4.6 respectively and the magnification of the key parts (Specified areas of the 

curves in the time range between 550s and 800s) are shown in Figures 4.8 and 4.9. The 

torque fluctuation before the point of the maximum torque after the surrogate/API added 

represents the feeding surge or the occurrence of melting on the particle surface. The 

equilibrium torque is associated with the apparent viscosity of the drug/polymer melt 

mixture in the mixing chamber. The difference between the set temperature and the actual 

melt temperature is related to flow-induced viscous energy dissipation (VED), which 

depends on the mixture viscosity and the screw speed. The relation between VED and the 

viscosity is as in the equation below (Z. Tadmor, C.G. Gogos, 2006) : 

2VED  (4.1) 

Where η represent viscosity and γ is the shear flow rate. Since the screw rotational speed 

is set in the machine and being constant, the flow rate is also treated as constant. Then the 

VED should be proportional to the viscosity of the melt mixture.  

We can use this equation to test the points on the curves. For example, at the start point of 

the surrogate/API addition, the temperatures for both polymeric matrices (point a and d in 

Figure 4.9) are almost the same which are around 145℃  (15℃  above the set 

temperature for the batch mixer) while the torques of them (point A in Figure 4.8 ) are 

about 14N*m. And when they reach the equilibrium, the torque is about 24N*m (point C 
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and hereafter in Figure 4.8) for the Al-Soluplus mixture and around 3.7 N*m (point F and 

hereafter in Figure 4.8) for APAP-Soluplus mixture. The temperatures at the equilibrium 

are 22 ℃ and 3.2 ℃  above the set temperature 130 ℃  for Al-Soluplus and 

APAP-Soluplus polymeric matrices respectively. So for each time point we mentioned 

above, we have the ratios of the raise of the temperature (related to VED) and torque of 

the matrix (related to viscosity) are 15:14, 24:22, 3.7:3.2 respectively, according to the 

order of the time points we have narrated above. These ratios are generally very close to 

each other and hence have followed the relation of the VED and viscosity demonstrated 

in the equation. So here through this method we can address the point that the data and 

the curves obtained from the experiments are quite solid and can be applied. 

From the Figure 4.8, because the all the conditions are same before 600 seconds where 

we added the APAP/Al and the torques at point A are almost identical as well, we can 

treat point A as the point of starting addition of the APAP/Al for both experiments. For 

the part of the curve which is from point A to point C (referred as AC, the others applied 

accordingly), it takes about 75 seconds to reach the equilibrium, while for APAP curve, 

the AF part, it takes about 100 seconds. Because there’s no dissolved phase in the 

processing of Aluminum particles, this extra period of time indicates the dissolution 

finished later than the dispersion phase. Compared to the temperature trace curve, we can 

see that from point c in Figure 4.9 (at about 650 seconds from the beginning), the 

APAP-Soluplus mixture reached at a stable temperature which is about 133℃ . 
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Simultaneously, the trace of the torque also reached a peak at about 650 seconds and start 

to decrease hereafter. In comparison, the curves of Aluminum didn’t act identically. So 

it’s presumed that from about 650s to 700s (EF on the torque curve), the dispersion of the 

APAP within Soluplus has already been finished and there was generally only dissolution 

carried on during this time period. The reasons are, as we know, that the viscosity of the 

polymer matrix will increase through dispersion and distribution of the suspended 

particulates, and decrease as dissolution proceeds.  

Hence, it’s also obvious that after the point F (about 700s), both the torque and 

temperature reaches equilibrium, indicating both dispersion and dissolution has finished 

and there’s only homogeneous Soluplus with dissolved APAP in the mixing chamber. 
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Figure 4.10 The cartoon visualization for the Soluplus and APAP compounding physics. 

As for the initial torque drop at the point when the APAP was added (600s), it is 

presumed that the API particles were agglomerated, and because of the high temperature 

difference (130°C compared with room temperature around 20°C) at the contacting 

surface, the APAP began to dissolve into the polymer and started to form a film covering 

the agglomerates. This film has a relatively low viscosity compared to either the polymer 

melt itself or the Soluplus-solid APAP matrix formed afterwards. So it starts to work as a 

local plasticized/slip layer and result in a significant drop of the viscosity. This “slip 

layer” effect is appreciable, and if the shear forces generated from the rotating screws is 

not enough to break the agglomerates and the formed film itself, the viscosity of the 



39 

mixture would even drop further. As a matter of fact this was the exact reason why we 

changed the configuration/design of the counter-rotating screw elements (as mentioned 

above) in this section of the experiment, because the non-intermeshing screws (Figure 3.1 

b) that we used in the previous stage of the research couldn’t generate the shear forces to 

break up the agglomerates and provide for the needed fast rates of dispersion and 

distribution of the API particulates for the dissolution, and dissolution alone, to proceed 

and be completed during a time period where we can estimate dissolution rates.  

In the DE part of the torque trace curve, the torque is rising along with the temperature so 

the dispersion of APAP particles had to be involved. And since the dissolution was also 

proceeding simultaneously, this part of the curve shall be generated as the co-effect of 

both dispersion and dissolution of the APAP particles.   
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Figure 4.11 Torque traces of Soluplus upon the addition of APAP (repeat 2 times) and 

Aluminum (Magnified/Expanded scale) 

 

Figure 4.12 Temperature traces of Soluplus upon the addition of APAP (repeat 2 times) 

and Aluminum (Magnified/Expanded scale) 

As we can see from the repeated experiments of Soluplus/APAP above in Figure 4.11 

and 4.12, although there are some variations that can be observed at the yellow curve in 

Figure 4.11 (referred as Soluplus+APAP repeat3) which may be due to the random 
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dispersion behaviour of the APAP agglomerates in the Soluplus melt, the basic trends of 

the curves are as described previously.  
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Figure 4.13 The dissolution estimation by the plot of ln M vs. Time. 

 

We can now proceed with the estimation of the exponential decay rate of dissolution of 

the APAP in the polymer melt suspension during the time period denoted Points E and F, 

from approximately 646 – 700 s, when we assume that only dissolution takes place. The 

result is shown and analyzed in the Figure 4.13 (the pink curve referred as 

Soluplus+APAP). According to Figure 4.13, it appears that the torque (referred as M) is 

proportional to the time through the exponential relationship. So the relation of the torque 

of the APAP-Soluplus polymeric melt M and time t can be expressed as below: 

KtNeM   (4.2) 

where N, K are constants. According to the figure, K=0.0190 and ln N=14.595. Because 

the temperature and the rotation speed are treated as constants in this time period, and the 
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torque is proportional to the viscosity of the polymeric melt matrix, we can presume that 

the amount of the undissolved APAP is proportional to the viscosity and hence have the 

similar relation to time as that of the torque.  

Using the same method, the estimation of the decay rate of the second experiment of 

APAP added into Soluplus can also be proceeded (shown in Figure 4.13 as the blue curve 

referred as Soluplus+APAP repeat2). The time period selected here is from 650s to 706s. 

In this case, K=0.0198 and ln N=15.071, both are close to the data of the original curve. 

The whole procedure of this interesting and complex “compounding physics” phenomena 

presented above in a physically reasonable cartoon representation form above shown as 

graph in Figure 4.10 for visualization. The APAP particles are shown in black, the molten 

Soluplus phase is the “white” matrix, and the “gray” background is the Soluplus/APAP 

solution. 
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CHAPTER 5  

SUMMARY CONCLUSIONS AND FUTURE WORK 

5.1 Summary 

In this work we selected a non-dissolving, surrogate material as an attempt to 

de-convolute the phenomena of distribution, dispersion and dissolution of the API inside 

a molten polymeric matrix using a Brabender batch mixer, in order to determine the 

dissolution kinetics of the API. Acetaminophen (APAP) and amphiphilic polyvinyl 

caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (PVCap- PVAc-PEG) 

(Soluplus) were chosen as the model API and polymer.  

During the stage of screening and choosing the appropriate surrogate, SEM and optical 

microscope were used in size/size distribution and morphology studies. After data 

collection, comparison and selection, Aluminum powder was chosen as the suitable 

non-dissolving surrogate. The increase in the melt viscosity of a polymer upon the 

addition of particulates depends not only on the particle size/size distribution but also the 

volume fraction, the surface tension, the specific heat capacity and the aspect ratio of the 

added particles. The aspect ratio can be neglected if it is below 10, which is true for both 

APAP and Al particles. However other properties, such as density, specific heat and 

surface tension are quite different for the particle types used in this work.  
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Because of these different values of these parameters, an investigation on the effect of 

different particle properties on the melt viscosity of Soluplus during melt mixing was also 

conducted. The experiments show that the particle size will affect the viscosity of the 

final surrogate/polymer melt matrix through different contacting areas. We also observed 

that the initial temperature of the added particles can also affect the viscosity. This is 

presumed to be because of the “wetting” effect leading to larger contacting surface area. 

From the above investigations we concluded that it is very difficult to find a “perfect” 

surrogate. We therefore decided to proceed with Al powder as the surrogate.  

As the surrogate was selected, two batch mixer runs has been conducted to compare the 

torque and temperature traces of the Al or APAP added into the Soluplus melt matrix. In 

the comparison and analysis, the different steps of the dispersion and dissolution can be 

identified. In this trial, the dispersion, distribution and dissolution phases are not 

completely separated but we have observed and identified a period where there is 

basically only the dissolution of the API that takes place, enabling us to estimate 

dissolution rates.  

The broader picture revealed in this study is vivid evidence that Pharma HME is 

essentially a special case of polymer compounding in which phenomena, in addition to 

the dissolution of the API into the polymer melt, occur at the same time and at different 

rates, at given processing periods.  
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5.2 Future Work 

The chosen surrogate, Al, is considered to be imperfect because of the different thermal 

conductivity, heat capacity and surface tension from those of the API particles. So, 

further efforts can be devoted to the searching of a better surrogate that will have similar 

characteristics with the API. Besides, the comparison of the Al and APAP can be 

conducted with the similar experiment but under other different conditions like altered set 

temperature of the mixer or changed rotation speed, in order to have a better view of the 

steps of dispersion, distribution and dissolution.  

It is also important to address the issue of using processing conditions and API/Excipient 

pairs which will yield fast particulate dispersion rates and slow dissolution rates. An 

example of this will be a series of lower processing temperatures. 
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