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ABSTRACT 

RISK PREDICTION WITH GENOMIC DATA  

 

by 

Bharati Jadhav 

 

 

Genome wide association study (GWAS) is widely used with various machine learning 

algorithms to predict disease risk. This thesis investigates this widely used approach of 

GWAS using Single Nucleotide Polymorphism (SNP) genotype data and a novel approach 

of disease risk prediction with whole exome sequencing data, namely Whole Exome Wide 

Association Study (WEWAS). It further applies a discriminating machine learning 

algorithm, namely a Support Vector Machine (SVM) with different Kernel functions. For 

this study, only SNPs generated using genotyping technology, which focuses more on 

common variants, are used initially for disease prediction. Later, the whole exome data 

generated using Next Generation Sequencing (NSG) technology is used in the prediction. 

Another distinction between traditional GWAS and the new approach, WEWAS, presented 

in this thesis is the use of insertions and deletions in the genomic sequence (INDEL) 

together with SNPs as a feature for prediction. A substantial improvement in the prediction 

accuracy is achieved using the latter approach. The success of the approach of using NSG 

data shows that it contains valuable information which the SNP genotyping method is 

unable to capture. 
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CHAPTER 1  

INTRODUCTION 

 

This research investigates the use of machine learning algorithm for diseases prediction 

using case-control association analysis. This study tested SNP genotype data, as used in 

traditional GWAS, as well as NSG data with this machine learning approach to determine 

the prediction accuracy. In the first part of this study, prediction is done using GWAS data. 

This study uses three sets of features for prediction. First set of features includes only 

significant SNPs found using univariate method, second set includes the pair of SNPs 

interacting with each other significantly and third set comprises the SNPs from previous 

two sets, univariate as well as interacting SNPs. This study is further extends to the novel 

approach, WEWAS, of using NGS data with machine learning algorithm.  

In genetic case-control studies, the frequency of allele is compared between the 

group of affected individuals and the group of healthy individuals. If there is a significant 

difference in the allele frequency between these two groups then that allele is consider to 

be a causal variant, and it may increase the disease risk. In the machine learning approach, 

these variants are further used as a feature vector with classification algorithm to predict 

the disease risk. For prediction of risk, one of the state of art machine learning algorithms, 

Support Vector Machine (SVM)[1], is used. SVM has already proven its success in many 

computational biology applications [2].  

This thesis is organized as follows: Chapter 2 gives introduction of GWAS, and its 

evolution to current state. Chapter 3 discusses the data and methods in depth used for this 

thesis. Although the approach of this study with both types of data is similar, there are 
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differences in the Quality Control measures and feature encoding required for SVM due to 

the nature of data. The methodology section in this chapter also covers the feature selection 

and ranking using chi-square statistical test, multiplicity control, SVM and its different 

Kernel functions used for classification. Chapter 4 discusses the analysis of results of 

predictions accuracy obtained with different sets of feature and different Kernel functions 

of SVM.  
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CHAPTER 2  

GENOME-WIDE ASSOCIATION STUDIES 

2.1 What is Genome-wide Association Study? 

GWAS is a method to study many common genetic variants in different individuals to see 

if they are associated with particular disease. There exists many kinds of genetic variants 

in human genome. This includes insertion, deletions, inversion, replication of segment of 

DNA within a chromosome, or segment of DNA moved to a different location in the same 

or different chromosome. GWAS seeks to identify one simple and common type of variant, 

Single Nucleotide Polymorphism (SNP), which happens when single nucleotide base in 

DNA sequence is replaced with a different base. There are an estimated 10 million SNPs 

that are commonly occur in human genome [3]. In GWAS, the distribution of SNP is 

determined in hundreds or thousands of subjects with and without particular disease. The 

researchers can calculate the co-existence of SNP with disease status and can make 

statistical estimate regarding the increased risk associated with each SNP. In the era of 

2005-2007 many GWAS were published which led to the identification of common genetic 

variants associated with several common disease. These studies includes but not limited to 

Type 1 and Type 2 diabetics, Crohn’s disease, rheumatoid arthritis, etc.[4]. 

DNA microarray play a vital role in GWAS which made possible to genotype 

hundreds of thousands of SNPs quickly and relatively at low-cost. Many manufactures of 

DNA microarray now offers to genotype more than million SNPs. These huge number of 

genotyped data is assessed to find the association of SNPs with disease. Even though 

GWAS using SNP markers has widely used for discovery of genetic risk factors in human 

disease, this approach has its limitations. For example, this method focuses only on variants 
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that are common in population. Also, the genetic variants that are low in frequency and 

have small effects on traits are difficult to detect using GWAS [5]. Additionally, genetic 

variants that are of high frequency with strong effects are very unusual for common 

diseases. Lastly, population stratification, linkage disequilibrium, and DNA Pooling can 

bias the results. These short comings of GWAS, can be addressed using NGS data which 

not only focuses on common variants but also includes the rare variants.  

2.2 Evolution of Genome-wide Association Study 

NGS technology allows researcher to address diverse range of biological problems at 

detailed levels never than before, because of its high throughput, scalability, and speed. 

NGS provides high flexibility in adjusting the level of resolution required for the 

experiment. The custom-made sequencing run allows to zoom into particular region of 

genome and produce high resolution data or provide bigger picture of genome with less 

resolution. This leads to two broad categories of DNA sequencing using NGS technology: 

Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES). WGS reads 

entire DNA of individual. It is possible to reveal all de-novo and low frequency alleles that 

contributes to the disease risk with WGS. Despite this fact, WGS is still expensive to 

perform on very large sample size. The WES fills the gap between GWAS and WGS. The 

WES captures only DNA which code for proteins, exome, also known as coding regions. 

The exome comprise around 1-2% of whole genome but many cancer causing variants are 

found within this coding regions. This reduces the sequencing need up to 98%. It is faster 

and cheaper as compare to WGS. Due to the high coverage obtained using exome 
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sequencing, this technique constitutes an interesting approach for the identification of point 

mutations and small INDELs with high accuracy. 

This flexibility of NGS technology becomes very useful to find rare variants by 

having a high resolution to detect the rare variants in the human genome which is hard with 

GWAS. The variants which occur at low frequency requires large number of samples to be 

sequence and today it is possible to with this technology in a few days. With the advent in 

the DNA sequencing technology, now it is possible to perform GWAS using NGS data and 

extent these studies to rare variants. 
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CHAPTER 3   

METHODS AND DATA  

3.1 Data Sets 

Five different cancer data sets are used in this experiment. All the data sets are available 

on The Database of Genotype and Phenotypes (dbGaP) [6]. It is a repository of results from 

the studies such as GWAS and medical sequencing. First four datasets from GWAS are 

generated using SNP genotyping technology and the last dataset of WEWES is generated 

using WES. The Table 3.1 below describes the details of data used in this study. 

Table 3.1 Description of Datasets Used In This Study 

Dataset No. of 

Cases 

No. of 

Controls 

dbGaP Study 

Accession 

GIC 3523 2100 phs000361.v1.p1 

BC 3527 5119 phs000346.v1.p1 

RCC 1311 3424 phs000351.v1.p1 

PC 1563 2593 phs000206.v3.p2 

CLL 169 169 phs000435.v2.p1 

    

Source: Database of Genotypes and Phenotypes (dbGaP). Bethesda (MD): National Center for 

Biotechnology Information, National Library of Medicine. 

 

3.1.1 GWAS Data 

The first dataset of Bladder Cancer (BC) consist of collection of 8646 individuals and 

approximately one million SNPs. This dataset consist of five subsets of data genotyped on 

different platforms. The Gastro-Intestinal Cancer (GIC) dataset contains data from two 

consent group genotyped on same platform and consist of 5754 individuals and 
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approximately 600,000 SNPS. The third dataset of Pancreatic Cancer (PC) contains 5,078 

individuals and approximately 630,000 SNPs. The last SNP genotype data, Renal Cell 

Carcinoma (RCC) consists of 4735 individuals and approximately 700,000 SNPs. 

Additional details are given in the Table 3.2 below. 

Table 3.2 Description of Datasets Platform Used in this Study 

Dataset No. of 

Cases 

No. of 

Controls 

Platform 

GIC 3523 2100 Illumina Human 660 W 

BC 3527 5119 Illumina Human 610 

HumanHap 250 

HumanHap 300 

HumanHap 550 

Illumina Human 1M 

RCC 1311 3424 Illumina Human 610 

Illumina Human 660 W 

Illumina HumanHap 550 

PC 1563 2593 Illumina Human 610 

HumanHap 550 

CLL 169 169 Illumina Whole Exome Sequencing 

Source: Database of Genotypes and Phenotypes (dbGaP). Bethesda (MD): National Center for 

Biotechnology Information, National Library of Medicine. 

 

3.1.2 WEWAS Data 

The whole exome sequencing data used in later part of the thesis is whole exome sequences 

of 169 chronic lymphocytic leukemia patients. For each of 169 patients, data is sequenced 

for tumor and matched healthy cell. The whole exome sequencing libraries were 

constructed and sequenced on Illumina platform (Genome Analyzer II and Hiseq2000) and 
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exomic regions were captured using Agilent Sureselect All Human exome kit by Broad 

Institute and comprises 76 bp pair-end-reads [7]. The data was sequenced to obtain 

approximately mean coverage of 140X. Additional details are given in the Table 3.2 above. 

3.2 Analysis Procedure 

The main goal of case control association study is to test the difference between allelic 

frequency in cases and controls to find the variants that are associated with disease. As this 

study usually includes large number of samples to detect the small effect and studies 

hundreds of thousands of markers, even small artifact in allelic frequency can leads to false 

signals [8]. The overall quality control play important role in downstream analysis and if 

not properly done can result in false positive results. Therefore, before starting actual data 

analysis it is necessary to apply appropriate filters to achieve accuracy in downstream 

analysis and avoid bias in the study. The same experimental design is applied to SNP 

genotype data and whole exome data for association study and classification, however, the 

quality control steps are quite distinct due to the nature of data as each one used different 

technology. The quality filtering steps are described in the Sections 3.2.1 and 3.2.2 below.  

Next step after filtering data is to find the significant variants and rank them 

according to their significance from most significant to least significant. This is achieved 

by chi-square test and described in the Section 3.3 below. 

In both types of data called variants were used for further statistical analysis which 

includes ranking variants, multiplicity control, and classification. Feature vectors were 

formed by encoding SNPs and INDELs, and classification was done to predict accuracy of 

cancer risk.  
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The traditional association study considers SNPs which are in Linkage 

Disequilibrium (LD) and do not consider the interaction between the SNP which are 

located far apart from each other in large genome. To investigate the inclusion of 

interacting SNPs in risk prediction, a new approach of using interacting SNPs pairs along 

with SNPs found by univariate method was used with GWAS GIC and BC dataset. The 

pair of interacting SNPs were found using SIXPAC program [9]. The prediction accuracy 

with the set of interacting SNPs alone as well as combining with set of significant SNPs 

found using univarite method was tested with different Kernel functions. The overview of 

experimental design of GWAS is given in Figure 3.1 below. 

 

 

Figure 3.1 Experimental design of GWAS. 

 

The WEWES data involved many data manipulation steps before quality control and 

variant calling. The first was to map the raw reads to the human reference genome Hg19 

using BWA-mem [10] program (version 0.7a-r405). After this step various operations were 
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perform on the mapped reads such as sort, index, merge the alignment map files using 

Samtools [10] (version 0.1.18) and add read group information using PICARD (version 

1.8). The sketch of experimental design of WEWAS is given in the Figure 3.2 below. 

Rigorous quality control steps were performed on WEWES data at different stages before 

calling variants as described in the Section 3.3.2 below. 

 

 

Figure 3.2 Experimental design of WEWAS. 

 

3.2.1 Quality Control of GWAS Data 

Even though genotyping technology and allele calling algorithms are continue to improve 

and make sure that only reliable markers and samples are included, the sex or familial 

relationship can cause sample identity problems such as, sample relatedness which lead to 

Type I and Type II errors. To avoid such problems rigorous quality control measures were 

taken on SNP genotype data. The quality control was performed on each of four genotype 

data using PLINK [11] (version 1.06). This step include merging subset of datasets, 
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removing duplicated or related individual to follow the basic feature of standard, 

population based case-control studies that all samples should be unrelated. Otherwise, it 

introduces bias to studies because of over representation of genotypes within families. The 

samples with missing phenotype status were also removed. The chromosomes X, Y, and 

MT are haploid and counted only once. Not all genotype calling algorithm automatically 

set heterozygous haploid genotype missing [12]. Therefore, the genotypes for these 

chromosomes were set to missing. Next, the SNPs with missing rate 1% more were 

excluded from the analysis. Finally, the SNPs which deviates from HWE principle were 

remove with cutoff 5%, because these SNPs can be indication of genotyping or genotype 

calling error. 

3.2.2 Quality Control of WEWAS Data 

The NGS technology generate huge number of sequencing data. Checking the quality of 

generated data is the first step in the variant calling pipeline. There are two main steps 

involved to extract variants from raw sequencing data. First step is to map the reads to the 

reference genome HG19 and then identify variant sites and determine the genotypes for 

those variants. But the variant identification step suffers from high error rate due to the low 

quality read, especially at the tail which prevent reads from being properly mapped. Also, 

the PCR artifact create bias in the results. There are some quality control steps which can 

be applied to the sequencing data before mapping, such as checking quality of reads, trim 

low quality read tails if needed and other steps can be applied after mapping the reads to 

the reference genome. For example, remove low quality reads, unmapped read and remove 

PCR duplicates. The pre-alignment quality control steps such as check raw read quality 

using FASTQC and trimming lower quality read tails using Trimmomatic [13], were 
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applied to few samples on experimental basis, but did not find any significant improvement 

in mapping. Additionally, given the huge number of samples to process, these two steps 

were skipped and used only the raw reads for mapping to the reference genome. After 

mapping step, unmapped reads were removed. Furthermore, reads with MAPQ, which is 

score lower than 15 were also removed using Samtools. Duplicates in the reads arises from 

the artifacts during PCR amplification and sequencing. These duplicate reads, sampled 

from the DNA molecule, map to the same position on the reference genome many times. 

This uneven representation of that DNA molecule introduces bias in identification of 

variant. Therefore, the duplicate reads were removed using PICARD tool. The QC steps 

are depicted in the Figure 3.3 below. 

 

 

Figure 3.3 QC steps of WES data. 
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3.3 Feature Selection 

In machine learning feature selection play important role when it comes to hundreds and 

thousands of features. Feature selection is a process of selecting subset of relevant features 

from the set of irrelevant or redundant features and use them in the model construction. 

The redundant features do not provide additional information and the irrelevant features do 

not contribute any information which create unnecessary noise in the data. Feature 

selection helps to resolve this issue. Many studies have demonstrated that the use of feature 

selection approach with high dimensional data such as DNA sequencing data generated by 

high throughput sequencing technology, can improve the prediction accuracy with machine 

learning algorithms [2]. Feature selection methods in machine learning are broadly divided 

into filter, wrapper and embedded methods. Filter methods for genetic feature selection are 

the most common in GWAS due to the simplicity of their implementation and low 

computational complexity. The filter methods calculate a univariate test statistic separately 

for each genetic feature, and the features are then ranked based on the observed statistic 

values. The highest ranked features form the final set of selected features, on which a 

predictive model can be trained. This thesis focuses on the finding the risk related variants 

and not finding the interaction among the variants, therefore, the chi-square test was used 

for feature ranking. The Chi-square univariate test is a standard method of feature selection 

in GWAS [14]. This method investigates each SNP independently and tests if there is 

difference in the frequency of alleles observed in the cases vs controls. If this difference is 

significant, then the SNP is associated with disease. In this research study, the chi-square 

method was applied on both data types to find contributing features. The p-value of this 

statistics was used to find the statistical significance between disease status and genetic 
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variants. Then the variants were ranked in the order of decreasing p-value. The highly 

ranked variants were used as a features with machine learning algorithm, SVM, to predict 

the accuracy of classification. 

3.4 Multiple Comparison Problem and Bonferroni Correction 

The multiple comparison problem arises when number of comparisons increases in the 

statistical testing such as Chi-square. The standard p-value cutoff used is 5%. This means 

that there are 5% chances of having false positive. The GWAS scans hundreds of thousands 

of variants to identify candidate variants that are associated with disease. With such high 

number of tests the error rate multiples and generates huge number of false positive variants 

which are not significant at all. This leads to the Type I error, which occurs when there is 

no real association between variants and disease but results into false positive. GWAS are 

more prone to Type I error because of multiple testing. The standard threshold of p-value 

cutoff used with most of the statistical method to reject the null hypothesis is not enough 

with GWAS data, because even with 0.05, it produces hundreds and thousands of false 

positive variants. This makes interpretation of association study difficult. 

This multiple comparison problem in GWAS can be solved by adjusting p-value. 

The Bonferroni correction is one of the approaches used for controlling Type I error [15]. 

It is an adjustment made to the p-value to control when multiple statistical tests are 

performed. It is achieved by dividing the critical p-value by the number of comparison 

being made. This correction reduces the chances of introducing false positives (Type I 

error).  

  
0.05

 p-value  
.    

Adjusted
No of SNPs

  (3.1) 
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3.5 Feature Encoding 

The machine learning algorithm requires features in numeric format, hence all the variants 

were encoded from text to numeric format. 

3.5.1 GWAS Data 

Each individual can have 0, 1 or 2 copies of minor allele and contribution of each copy of 

minor allele make a numeric value of phenotype. The basic allelic test for association, done 

using PLINK, counts the frequency of minor allele in cases and controls and perform a chi-

square test with 1-degree of freedom.  

3.5.2 WEWAS Data 

In whole exome sequencing data SNPs were encoded in 0, 1 or 2 based on if it is 

homozygous reference, heterozygous, or homozygous alternate. The INDELs were 

encoded as a difference between the length of allele string in the reference and alternate, 

where the negative number indicate deletion in the sequence and positive number indicate 

insertion in the given sequence. If INDEL is not present in some sample it is encoded as 0.  

3.6 Machine Learning: Classification with SVM 

Many Machine learning methods are extensively use in the field of Bioinformatics, such 

as genomics, microarrays, proteomics to name a few to extract knowledge from the huge 

amount of data [16]. One of the application of machine learning is a classification which 

is widely used in GWAS to measure and analyze genetic variation in DNA sequence across 

the human genome to identify disease causing variants. There exists many classifier to 

serve this purpose, but there is no one size fits all classifier. The SVM is one of the best 
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performing supervised learning algorithm because of its high accuracy, capacity to handle 

high dimensional data [17] and hence it is widely for GWAS applications [2]. Additionally, 

it has the ability to generate nonlinear decision boundaries to classify non-linearly 

separated data by constructing linear boundaries in the transformed version using Kernel 

function of the features, which are genomic variants in this case.  

The significant variants were encoded in the numerical format required for SVM-

light (Version 6.02) [18]. The SVM training algorithm was applied to the set of significant 

variants and prediction was done by discriminating between cases and controls. This risk 

prediction model was build using the 90% of total data to form training dataset and 

remaining 10% was used as test dataset. The grid search on SVM parameter C and 

prediction error of model was assessed using cross validation technique.  

3.6.1 SVM Kernel Functions  

This study also evaluated the performance of different Kernel functions of SVM such as 

Linear, Polynomial Degree 2 and Radial Basis Function (RBF). A Kernel method is an 

algorithm that depends on the data only through dot products. The Kernel function 

computes a dot products in some high dimensional feature space. This leads to generate 

nonlinear decision boundaries and allows to apply a classifier to the data that have no fix 

dimensional vector space representation which is applicable to the genomic data [17]. As 

machine learning is data dependent, the best way to find the Kernel suitable for particular 

data is to try different Kernels. Based on this fact, the motive behind testing different 

Kernel functions with each datasets used in the study, was to see if the prediction accuracy 

increases if data is transformed in another feature space. Initially, Linear Kernel was 

applied to assess the prediction accuracy and then Polynomial Degree 2 and RBF Kernels 
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were applied on each dataset. With GWAS data all the Kernels were used with default 

settings. Whereas, with WEWAS data the value of SVM penalty parameter C, which 

controls misclassification, was found by grid search and all the other parameters were used 

with the default setting. 

3.6.2 Cross Validation 

The method of cross validation leads to good estimate of algorithm performance [19]. The 

performance measure from the k-fold cross validation can be used to tune the algorithm. 

In this method the dataset is randomly split into k exclusive subsets of approximately same 

size. These data sets are further used to train and test the algorithm. The cross validation 

accuracy estimate is the number of correct classification divided by the number of 

randomly split data sets. The grid search on penalty parameter C was also performed using 

cross validation with the values ranging from 0.01 to 100 and the best cross validation 

accuracy was picked for all the Kernel functions. In this thesis the methodology explain 

above was used only with WEWAS and not with the GWAS. 

 

 



 

18 

 

CHAPTER 4  

RESULTS 

4.1 GWAS Data  

For this thesis four cancer GWAS dataset were studied to predict the disease risk. To test 

the usability of each dataset, whole data association analysis was performed in the initial 

stage of the study. The details of the initial whole data association are shown in the Table 

4.1. This analysis helped to provide good idea about each of the BC, GIC, RCC, and PC 

datasets and based on it the PC and RCC datasets were eliminated from the further study. 

The RCC data contained many noisy signals which were more than found in the original 

study [20]. On the other hand, PC data showed only two signals which were not enough 

for prediction. Therefore, first 100 SNPs from the set of ranked SNPs of PC were used for 

prediction but resulted into only 48% of accuracy. The other two datasets, BC and GIC 

were used further in the downstream analysis. Each dataset was divided into random split 

of 90/10. The quality control steps were applied on the 90% of training dataset and was 

used to build a model which further used with 10% data to predict the accuracy. Table 4.2 

shows the QC details of BC and GIC before performing QC and Table 4.3 shows the details 

after QC. 

Table 4.1 Whole Data Association 

Dataset No. of Sample No. of SNPs No. of Signals 

GIC 5,623 491,777 7 

BC 8,646 200,315 5 

PC 5,078 425,510 2 

RCC 4,909 481,932 247 
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Table 4.2 Train and Test Dataset Details Of BC and GIC before QC 

Dataset No. of Sample No. of Cases No. of Controls No. of SNPs 

GIC Train 5,052 3,188 1,864 592,839 

GIC Test 571 325 236 592,839 

BC Train 7,792 3,171 4,621 1,116,724 

BC Test 854 356 498 1,116,724 

 

Table 4.3 Train and Test Dataset Details of BC and GIC after QC 

Dataset No. of SNPs before Cleaning No. of SNPs after cleaning 

GIC Train 592,839 491,884 

BC Train 1,116,724 200,840 

 

4.1.1 GIC Data 

The GIC dataset performed well with this investigation. The association analysis reported 

total seven SNPs (rs3781264, rs753724, rs11187842, rs3765524, rs2274223, rs12263737, 

and rs3740360) which passed the Bonferroni correction threshold. Out of these 7 SNPs 

five SNPs (rs3781264, rs753724, rs11187842, rs3765524, and rs2274223) are in 

concordance with the SNPs found in the original study [21]. The Q-Q plot of GIC shows 

the distribution of association (X-axis) across the set of significant SNPs compared to the 

observed values (Y-axis). The deviation from X=Y line implies a consistent difference 

between cases and controls across the genome. The plot in the Figure 4.1 shows that a line 

of observed frequency matches the line of expected frequency until the little deviation at 

the tail which shows the small number of SNPs among the genome with true association 
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with disease. The blue dot in the Figure 4.1 shows the true disease related variants in the 

GIC data. 

  These significant SNPs were used as features with SVM Linear, Polynomial, and 

RBF Kernel for classification. In the Figure 4.2, it can be seen that there is approximately 

1.5% variation in prediction accuracy among the feature set formed by Chi-square, pairs 

of interacting SNPs and combination both with Linear, Polynomial and RBF Kernel 

methods. All the combination gives approximately 58% accuracy. Among these nine 

combinations, Linear and Polynomial Degree 2 Kernel work similar with the three types 

of feature sets and their performance is better than RBF Kernel.  

 

 

Figure 4.1 QQ plot of GIC data. 
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Figure 4.2 Prediction accuracy of GIC. 

 

4.1.2 BC Data 

The BC data comprised of five subsets of data and each one was genotyped on different 

platform ranging from Illumina HumanHap250Sv1.0 to ILLUMINA_Human_1M. After 

merging all these subsets, there were only 200,840 SNPs available for analysis. A total 5 

SNPS were found as a significant which passed the Bonferroni correction cutoff.  

The QQ plot in Figure 4.3 shows a line of observed frequency deviating from the 

line of expected frequency and at the tail it shows the small number significant SNPs. The 

blue dot in the figure shows the true disease related variants in the BC data. The deviation 

of observed frequency from expected frequency can result due to population stratification 

[22]. The samples for BC are collected from European decedents from USA and Spain 

[23]. The Q-Q plot of BC data shows the population stratification present in this data 

collected from heterogeneous population. On the contrary, the GIC data is collected from 
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specific region in China which is much more homogeneous [24]. It is evident from the Q-

Q plot of GIC data that there is no population stratification and the SNPs are truly 

associated with disease. The differences between these two plot shows the biases induced 

in the GWAS data as it relies on common variants.  

 

Figure 4.3  QQ plot of BC data. 

 

The following Figure 4.4 shows 1% variation in prediction accuracy among the 

feature set formed by Chi-square, pairs of interacting SNPs and combination both with 

Linear, Polynomial and RBF Kernel methods. All combinations have prediction accuracy 

around 58%. Among these nine combinations, Linear Kernel with the pair of interacting 

SNPs has higher accuracy. 
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Figure 4.4 Prediction accuracy of BC. 

 

4.2 WEWAS Data 

The Section 3.2.2 describes in details the method used to obtain feature vectors from raw 

exome sequences. In the case of whole exome data the features are counts of SNPs and 

INDELs. The collection of variants from exome dataset is referred as feature vectors.  

Table 4.4 CLL Variant Details 

CLL WEWAS Data Total No. of Variants 

335 Samples 
(180 cases, 155 controls) 

680814 

Train Dataset 278 

Test Dataset 57 

 

The processed exome sequence data with 155 controls and 180 cases yielded around 

680814 variants. This data was divided in training and testing dataset by randomly 
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selecting 90% of total cases and 90% of total controls for training dataset and remaining 

10% data was used for testing. The details about variant can be found in the Table 4.4. The 

Bonferroni cutoff was applied on the ranked variants which provided ten significant 

variants consisting nine SNPs and one INDEL. Top 100 variants were used for 

classification using SVM. The Linear and Ploynomial Kernel gave same accuracy of 89%, 

while the RBF Kernel performed worse with accuracy of 50%. 

 

 

Figure 4.5 Prediction accuracy of CLL. 

 

 The linear separation between the two classes of data was tested using the PCA plot 

as shown in the Figure 4.6 below. The PC 1 and PC 2 are the first and second principal 

component respectively. The red circles representing controls and blue circles representing 

cases shows clear separation in the PCA plot.  
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Figure 4.6 PCA plot of CLL on train data. 
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CHAPTER 5  

CONCLUSION 

 

This investigation shows that the risk prediction using SVM can be equally or potentially 

more effective with NGS data than with GWAS data.   

In the first part of the study, the association analysis of GIC data found seven 

significant SNPs. Surprisingly, when these SNPs were used for predicting disease risk, it 

showed very low predictive power and resulted into low accuracy around 58%.  The 

analysis of BC data also resulted in very few signals and low accuracy.  

This study extended the risk prediction using single SNPs to the interacting SNPs 

in the great hope to get more predictive power. However, this approach when used with 

interacting pair of SNPs only as well as combining it with single SNPs did not make any 

improvement in the prediction accuracy. The possible reason might be the inflated p-value 

of interacting SNPs generated by the software. This problem can be verify by using another 

software to find interacting SNPs and use them in the classification. 

To overcome the limitations of GWAS, when the same methodology was applied 

to CLL WES data, interesting finding were observed. More investigation is underway. But 

one of the interesting observation was, significant improvement in the prediction accuracy. 

Future work includes to find the contribution of INDELs and uncommon SNPs in the 

prediction accuracy.  

The performance of Linear, Polynomial and RBF Kernel function were also 

assessed with each dataset. With the GIC and BC data, performance of each kernel function 

was similar and accuracy was low. It might be possible because of two reasons. First, the 

classes in these data are not separable at all. The second reason is, both the data sets are 
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highly imbalanced. This imbalance of data might be producing classifier as a majority class 

classifier. On the other hand, the Linear and Polynomial Kernels perform well with the 

CLL WES data. The RBF kernel performed worst with the CLL WES data. This is expected 

due to the linearity in the data.  
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