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ABSTRACT

USING THE PIEZOELECTRIC BACKSCATTER SIGNAL FOR REMOTE
SENSING OF NEURAL SIGNALS

by
Eren Alay

In recent studies, various methods to sense neural signals are used and new methods for

remote sensing of neural signals are being developed. However, there are still major

difficulties in building long-term implantable neural interface systems that can reliably

record neural activity and serve as the basis of brain-machine interfaces (BMI).

Therefore, this research is conducted to design a remote neural sensing system that is

based on modulation of the backscatter signal from a piezoelectric element by the neural

signals. The hypothesis is that if the neural signal is detected with a simple amplifier and

the output of this amplifier is connected in parallel to a piezoelectric element, the

backscattered signal from the piezoelectric element should be modulated by the neural

signal amplitudes. To this end, the echo signal from the piezoelectric element is analyzed

and the effect of a load resistor is demonstrated. And then, an electronic circuit to

implement the modulation function is simulated on the computer and constructed. The

experimental results support the main hypothesis of the project.
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CHAPTER 1

INTRODUCTION

1.1 Background

1.1.1 Ultrasound: As a Way of Recording

Several studies indicated that the ultrasound can produce significant impact on neural

tissue. It has been used as a way of stimulation of receptors in the skin and soft tissue,

peripheral nerves, the brain, cochlea and also used for pain management and treatment of

spasticity (Colucci, Strichartz, Jolesz, Vykhodtseva, & Hynynen, 2009; Gavrilov,

Tsirulnikov, & Davies, 1996). But, it has major challenges before it can become a way of

a tetherless, high density, low power neural recording method. Currently, the recordings

of neural activities from different regions of the nervous system are done via direct

electrical connections using fine wires. Thus, ultrasonic approach could set the stage for a

unique method of a wireless neural interface.

1.1.2 Remote Neural Signal Sensing

Use of implantable multi-electrode arrays (MEAs) has become popular in modern

neuroscience research to investigate neural activity in the central nervous system. By

observing the action potentials of many neurons in specific brain areas or in a localized

region of the spinal cord, it is possible to obtain the functional information related to the

motor, auditory, olfactory, and visual activities (Gosselin, 2011; Harrison, Jan 2007;

Obeid, Nicolelis, & Wolf, 2004; Roy & Wang, 2012). Data is acquired through the

implanted electrodes using wired connections. Thus, it is inevitable to face the risk of
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infection, wire breakage, tissue damage, and, and interfering signals due to the high

impedance electrodes in the context of low signal levels associated with neural signal

(Ferguson & Redish, 2011; N. Neihart & Harrison, 2004; N. M. Neihart & Harrison,

2005). To alleviate these problems, wireless transmission and recording of the

electrophysiological data should be developed. In addition, according to the recent

theoretical study, an ultrasonic, low power solution for recording neural signals is

feasible (Seo, Carmena, Rabaey, Alon, & Maharbiz, Jul 2013).

Although wireless radiofrequency telemetry systems are also being tested in

recent studies, due to the low transmission efficiency through biological tissues and large

power demands, new approaches are needed (Ferguson & Redish, 2011). Undoubtedly,

several issues such as safety, insertion method, tissue response, and power should be

taken into consideration in the development of implantable, wireless neuroprostheses

(Ferguson & Redish, 2011).

1.2 Objective

The aim of this thesis is to investigate a remote neural activity sensing method that does

not require large penetrating shank electrodes into the CNS parenchyma. The thesis

proposes a novel method for sensing the neural signals using an implanted piezoelectric

piece and transmitting the signals to an outside receiver using the backscattering of

ultrasound waves generated externally. In this paradigm, each piezoelectric piece serves

as a single channel of recording. To this end, the backscattered echo signal detected by

external piezoelectric element was analyzed. The modulation of the backscatter signal by

varying the load resistor of the implanted unit was investigated.

2



As a starting point, the type of piezoelectric material that would be most suitable

for this study was evaluated, and lead zirconate titanate (PZT) was chosen for the

circuitry. Resonance and anti-resonance frequencies of the material were measured.

Furthermore, to observe the effect of the load resistor and backscatter signal modulation,

a potentiometer (1000 n) was connected parallel to the PZT assembly. As the final step,

the circuitry was designed in light of these preliminary measurements and a series of

computer simulations.

The thesis is divided into six chapters. This chapter presents the objectives and

background information including the review of related studies conducted by other

researchers and explains the significance of the work performed. Chapter 2 and Chapter 3

review the theoretical background for this work. A brief view of the experimental set-up

developed for load resistor effect measurements is given in Chapter 4 and Chapter 5 deals

with simulation, practical results and discussion. Finally, Chapter 6 presents the summary

of the work along with conclusions and future outlook.
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CHAPTER 2 

PERTINENT ASPECTS OF ULTRASONIC WAVE THEORY 

2.1 Ultrasonic Wave Properties 

Ultrasound can trave l through the tissues of the body either longitudinally or transversely. 

In general, bone is the only medium in which transverse waves (shear waves) are 

important. For soft tissue and liqu id, ul trasound waves propagate as longitudinal waves. 

t-- Propagation 

1 cycle 
Wavelength 

Figure 2.1 Where particles in adj acent regions have moved towards each other, a region 
of compression (increased pressure) resul ts, but where particles have move apart a region 
of rarefaction (reduced pressure) results. 
Source: (Hoskins, Jun 2010). 

2.1.1 Frequency, Velocity and Wavelength 

One cyc le of an ultraso und wave comprises of a region of compression an adj acent region 

of rarefaction. The distance included by one cyc le is the wavelength of the ultrasound 

wave. The number of cycles per un it ti me is referred to as the freq uency of the wave. The 

relationship between frequency and wave length is expressed using the equation: 
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where 2 is the wavelength of the ultrasound wave , f is the frequency, c is the speed of

the wave. In ultrasound, the term propagation speed is preferred over the term velocity

(Hendee, 2002).

Figure 2.2 Characteristics of an ultrasound wave. A wave cycle can be represented as a
graph of local pressure (particle density) in the medium versus distance in the direction of
the ultrasound wave.
Source (Hendee, 2002).

The molecular velocity describes the velocity of the individual molecules in

medium, whereas the wave velocity describes the velocity of the ultrasound wave

through the medium (Hendee, 2002). Therefore, it can be stated that the velocity of

ultrasound in a medium is virtually independent of the ultrasound frequency (Hendee,

2002). As another property, phase describes the position within a cycle of oscillation.
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Table 2.1 Approximate Velocities of Ultrasound in Selected Materials

Nonbiologic Material Velocity (m/s) Biologic Material Velocity (m/s)

Acetone 1174 Fat 1475

Air 331 Brain 1560

Aluminum (rolled) 6420 Mineral oil 1480

Ethanol 1207 Spleen 1570

Glass (Pyrex) 5640 Blood 1570

Mercury 1450 Muscle 1580

Nylon (6-6) 2620 Lens of eye 1620

Polyethylene 1950 Skull bone 3360

Water (distilled), 25°C 1498 Soft tissue (mean value) 1540

Source: (Hendee, 2002).

2.1.2 Intensity and Power

As the sound wave passes through the medium, it transmits energy from the source into

the medium. The rate of energy transmission is referred as power. The ultrasound

produced by the source travels through the tissues of body along an ultrasound beam, and

the associated power is not distributed evenly across the beam, but might be more

concentrated near the center (Hoskins, Jun 2010). The intensity is the measure of the

amount of power flowing through an area of the beam cross section (Hoskins, Jun 2010).

Intensity is usually defined relative to some reference intensity (Hendee, 2002). In

acoustics, the decibel scale is used, with the decibel defined as:

where I0 is the reference intensity. It may be also stated that ultrasound wave intensity is

related to maximum pressure (P m ) in the medium by the following equation:



where p is the density of the medium in grams per cubic centimeter and c is the velocity

of sound in the medium.

2.2 Possible Interactions of Ultrasonic Wave

When an ultrasound wave propagating through one type of medium, it encounters

different medium and several occasions arise like scattering, reflection, refraction,

absorption or transmission. Due to the acoustic impedance difference between types of

tissues, the energy of the ultrasonic wave is reflected back towards the source of the

wave, while the remainder is transmitted into the second tissue.

Acoustic impedance of a medium is a measure of the response of the particles of

the medium in terms of their velocity (Hoskins, Jun 2010). Acoustic impedance is

determined by either the equation relied on medium's density and stiffness or the

equation depended on the parameters of both velocity of the sound in the medium and

medium's density:

Table 2.2 Acoustic Impedance of Selected Materials

Material Z, MRayls Material Z, MRayls

PZT(ceramic) 30 Muscle 1.70

PVDF 2.7 Blood 1.67

Air 0.0004 Brain 1.60

Water 1.54 Bone 6.47
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2.2.1 Attenuation

During the travel of the ultrasound beam, several processes demonstrated in Figure 2.3

can arise. Briefly, attenuation is a term used to account for loss of wave amplitude due to

all mechanisms (Hendee, 2002). This loss is defined as the ratio of two amplitudes:

where Aout and Ain denote the amplitude with and without attenuation, respectively.

Contributions to attenuation of an ultrasound beam may include absorption,

reflection, refraction, scattering, diffraction, interference, divergence (Hendee, 2002).

Figure 2.3 Summary of interactions of ultrasound at boundaries of materials.
Source: (Hendee, 2002).

The attenuation of the medium leads to loss which is proportional to the

propagation distance, i.e., the total loss can be expressed as:

8



where d is the propagation distance, f is the frequency of incident ultrasound beam and a

is the so-called attenuation coefficient. Attenuation coefficient of different media shows

complex patterns as a function of frequency.

Figure 2.4 Ultrasound attenuation coefficient as a function of frequency for various
tissue samples.
Source: (Hendee, 2002).

The attenuation of ultrasound in a material is defined by attenuation coefficient a

in units of decibels per centimeter and it is the sum of the individual coefficient for

scattering and absorption.

Severe attenuation usually occurs only at high frequencies while at low

frequencies beam spread is the predominant cause of loss over large propagation

distances.
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Table 2.3 Attenuation Coefficients for 1 MHz Ultrasound

Material α(dB/cm) Material α(dB/cm)
Blood 0.18 LimoLung 40

Fat 0.6 Liver 0.9

Muscle (across fibers) 3.3 Brain 0.85

Muscle (along fibers) 1.2 Kidney 1.0

Aqueous and vitreous humor of eye 0.1 Spinal cord 1.0

Lens of eye 2.0 Water 0.0022

Skull bone 20 Caster oil 0.95

Source: (Hendee, 2002).

As it is shown in Table 2.3, in bone tissue, attenuation of ultrasound is high

whereas little attenuation appears in water because of the fact that attenuation coefficients

are very large and small respectively in each medium.

2.2.2 Absorption

Ultrasound is "absorbed" by the medium if part of the beam's energy is converted into

other forms of energy, such as an increase in the random motion of molecules.

Absorption is the main form of attenuation. . It happens that as sound travels through soft

tissue, the particles that transmit the waves vibrate, cause friction, a loss of sound energy

occurs and heat is produced. Absorption is likely to be stronger at frequencies which

excite natural modes of vibration of the particular molecules of the medium as it is at

such frequencies that they are most out of step with the passing wave (Hoskins, Jun

2010).

As it is seen in Equation (2.7), there is a complementary relationship between the

individual coefficients of scattering and absorption. While scattering accounts for the

larger part of attenuation in some materials such as polycrystalline metals and ceramics,

absorption is the dominant loss in others such as polymers and fluids (Nagy). For

10



example, in water, which is often used as a coupling medium, the absorption coefficient

can be expressed:

where f denotes frequency.

2.2.3 Scattering

Scattering can be described as the event that refers to the change with a less orderly

fashion in the ultrasound beam direction. The behavior of a sound beam when it

encounters an obstacle depends upon the size of the obstacle compared with the

wavelength of the sound (Hendee, 2002). If the size of the obstacle is smaller than the

wavelength of the ultrasound, the obstacle will scatter energy uniformly in various

directions whereas for targets of the order of a wavelength in size, scattering will not be

uniform in all directions but will still over a wide range (Hendee, 2002; Hoskins, Jun

2010). Some of the ultrasound energy may return to its original source after non-specular

scatter, but probably not until many scatter events have occurred (Hendee, 2002).

The total ultrasound power scattered by a very small target is much less than that

for a large interface and is related to the size d of the target and the wavelength 2 of the

wave. For the situation in which the targets are much smaller than a wavelength (d A),

scattered power can be expressed:

where f is the frequency of the wave. And this scattering process is referred to as

Rayleigh scattering (Hendee, 2002; Hoskins, Jun 2010).

11



2.2.4 Reflection

When an ultrasound wave propagating through one medium meets an interface with a

second medium of different acoustic impedance, some of the wave is transmitted into the

second medium and some is reflected back to the first one.

For an ultrasound wave incident perpendicularly upon an interface, the fraction α R

of the incident energy that is reflected (i.e., the reflection coefficient α R) is:

where Z1 and Z2 are the acoustic impedances of the two media. The fraction of the

incident energy that is transmitted across an interface is described by the transmission

coefficient aT, where

And it should be stated that

This is the basis of ultrasound as different organs in the body have different

densities and acoustic impedance and this creates different degrees of reflections. In some

cases the acoustic impedance can be so great that all the sound wave energy can be

reflected. This happens when sound comes in contact with bone and air. This is the

reason why ultrasound is not used as a primary imaging modality for bone, digestive tract

and lungs.

2.2.5 Refraction

When an ultrasound beam obliquely crosses an interface between two different media, its

direction will be changed. If the velocity of ultrasound is higher in the second medium,

12



then the beam enters this medium at a more oblique (larger angle with the normal) angle.

This behavior of ultrasound transmitted obliquely across an interface is termed as

refraction (Hendee, 2002). The relationship between incident and refraction angles is

described by Snell's law:

where θi and θr are the incidence and refractive angle also c i and cr denote velocity in

incidence medium and velocity in refractive medium, respectively.

13



CHAPTER 3

GENERATION AND DETECTION OF ULTRASONIC WAVES

3.1 Piezoelectric Materials and Their Basic Properties

3.1.1 Piezoelectricity and Piezoelectric Effects

All dielectric materials when subjected to an external electric field by the effect of the

displacement of positive and negative charges within the material undergo change in

dimensions (Vijaya, 2013).

Figure 3.1 The dielectric materials can be classified in terms of their response to
external stimuli.
Source: (Vijaya, 2013).

Different material characteristics are classified in a hierarchy as it is shown ir.

Figure 3.1. Fundamentally, piezoelectric materials behave electrically polarized when the

stress is introduced on it. And they can convert the mechanical energy to electrical energy

14



vice versa. On the other hand, pyroelectric materials are spontaneously polarizable and

they are sensible to temperature. If the material spontaneously polarized and can remain

like this with the absence of the electric field, they are called specifically as ferroelectric

materials.

Piezoelectricity (electricity by pressure) was proposed by Hankel in 1881 to the

name the phenomenon discovered a year before by the Pierre and Jacques Curie brothers

who observed that positive and negative charges appeared on several parts of the crystal

surfaces when comprising the crystal in different directions (Arnau, 2004; Safari, 2008).

The piezoelectric effect refers to the voltage produced between surfaces of a solid

dielectric when a mechanical stress is applied to it. This process is specifically called

direct piezoelectric effect (Vijaya, 2013).

Figure 3.2 Direct piezoelectric effect: (a) Poled piezoelectric material. (b) When tensile
stress is applied to the material, the material develops voltage across its face with the
same polarity as the poling voltage. (c) When a compressive stress is applied to the
material, the material develops voltage with polarity opposite to that of the poling
voltage.
Source: (Vijaya, 2013).
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Conversely, when a voltage is applied across certain surfaces of a solid which exhibits

the piezoelectric effect, the solid undergoes a mechanical distortion. This is defined as

indirect piezoelectric effect (Vijaya, 2013).

Figure 3.3 Indirect piezoelectric effect: (a) Poled piezoelectric material. (b) When a DC
field is applied with the same polarity as the poling field, the material develops a tensile
strain. (c) When a DC field is applied in the reverse direction, the material develops
compressive strain.
Source: (Vijaya, 2013).

The alternating field makes the material to extend and contract alternately at the

same frequency as the applied field. The vibration produces an ultrasonic field in the

vicinity of the material. This effect is used for the generation of acoustic field (Vijaya,

2013).
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Figure 3.4 Effect of AC field on a piezoelectric material: (a) Poled piezoelectric
material. (b) AC field is applied to the material.
Source: (Vijaya, 2013).

The direct and indirect piezoelectric effects have several applications such as

generation and detection ultrasonic waves, pressure sensors, and actuators because of the

fact that they have the ability to convert mechanical energy to electrical energy (direct

piezoelectric effect) and electrical energy to mechanical energy (indirect piezoelectric

effect).

3.1.2 Material Properties

As it is stated in the previous section, there are two forms of piezoelectric effect. In terms

of the direct piezoelectric effect, the input is mechanical energy such as stress or strain

and output refers the electrical energy that can be form of surface charge density, electric

field or voltage. On the other hand, for the indirect piezoelectric effect, input denotes the

electrical energy while output is mechanical energy. From this point, a brief description

of some of relevant properties is stated below to understand the parameters those have an

impact on behavior of a piezoelectric material or input and output parameters.
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Piezoelectric coefficients, elastic constants and permittivity relate tensors and

vectors. Hence, they each have matrix notations and they can be expressed with right-

handed Cartesian coordinate system. That means in each direction, both input and output

are represented. Due to the components of the tensors are all not independent, they can

get reduced.

The stress produced in a piezoelectric material by the help of the electric field is

called the piezoelectric constant e which has a unit of NN m (Vijaya, 2013). The larger

the magnitude of the stress constant leads to the greater the coupling between elastic and

electrical effects. As another coefficient, piezoelectric strain constant d is the produced

strain while applying the electrical field with no external stress and it can be called as a

transmitting constant with the unit of m/V (Vijaya, 2013). The electrical field produced

per unit of applied stress is known as the receiving constant g, with the unit of V m/N

(Vijaya, 2013). The dielectric parameter of interest in piezoelectric materials is the

permittivity c, which relates the vectors of the coefficients d and e (Vijaya, 2013). It

determines the electrical impedance of the piezoelectric material. A large dielectric

constant affects enabling a good electrical impedance match to the system electronics

(Devaraju, 2013). The relationship between the d and e coefficients is defined as (Vijaya,

2013)

d = se (3.1)

If the dielectric permittivity of a piezoelectric material is low, then the input

electrical impedance will be high, that means higher drive voltage to generate the

required acoustic output power (Devaraju, 2013). Furthermore, another parameter is the

piezoelectric coupling coefficient k which reflects the efficiency of a piezoelectric
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material as a transducer (Vijaya, 2013). It quantifies the ability of the piezoelectric

material to convert the mechanical energy into electrical and vice versa. If loss of energy

occurs during the conversion process, it will cause both loss of sensitivity and bandwidth

(Devaraju, 2013). It is defined by Equation (3.2) (Vijaya, 2013).

It also can be obtained in terms of piezoelectric constants. The coupling

coefficient is the ratio of usable energy delivered by the piezoelectric element to the total

energy taken up by the element itself (Vijaya, 2013). The larger the value of k leads to

the higher the piezoelectric coupling between the acoustic and electrical properties of the

material. It is one of the important factors to get higher acoustic output power by means

of dielectric constant relation. Higher acoustic output power gives the better measure of

the acoustic radiating power of the transducer (Devaraju, 2013). Theoretically,

manufacturers regularly determine the k values in the range of 30%-75% and practically,

k values depend on the design of the device and the directions of the applied stimulus and

the measured response (Vijaya, 2013). In addition to these properties, dissipation factors,

electrical and mechanical loss tangent, are also taken into account. The larger mechanical

loss decreases the response time resulting in improvement in the sharpness of the

response, although it reduces the response amplitude considerably (Devaraju, 2013).

Moreover, the mechanical quality factor Q„, is the reciprocal of the mechanical loss

tangent whereas the electrical quality factor is the reciprocal of the electrical loss tangent.

With increase in electrical loss tangent, conversion loss will increase due to dissipation of

energy within the transducer. The dielectric loss will not affect the response time but the

amplitude will be decreased slightly (Devaraju, 2013).
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3.1.3 Dynamic Behavior of a Piezoelectric Material

For the analysis of dynamic behavior of a vibrating piezoelectric material, either

mechanical or electrical equivalent systems can be used. In this case, to focus on the

electrical representation would be more meaningful (Figure 3.5).

The vibrating force applied to the material is analogous to an alternating voltage.

The piezoelectric element behaves as a capacitor of capacitance C o

where E is the permittivity of the material and A and d are the area and thickness of the

element, respectively. Inductance L is equivalent to the mass of the piezoelectric element

and compliance constant is equivalent to the capacitor C. Furthermore, the energy loss

because of the friction is equivalent to the energy loss because of the electrical resistance

r in the circuit.

Figure 3.5 Equivalent electrical circuit representation of vibrating piezoelectric element.
Source: (Vijaya, 2013).

The impedance of vibrating system is a function of frequency. The impedance has

a minimum and a maximum. When the impedance is a minimum, the frequency for this
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situation is called resonance frequency and for the maximum impedance, the frequency is

called antiresonance frequency.

At the resonance frequency fr the piezoelectric system's output reaches maximum

amplitude. The resonance frequency fr is equal to the series resonance frequency f S at

which the impedance of the equivalent circuit is zero, assuming that the resistance in the

absence of the mechanical loss is zero:

The antiresonance frequency fa approximates to the parallel resonance frequency f p of the

equivalent circuit, assuming that the resistance in the absence of the mechanical loss is

zero:

By the help of fr and fa, electromechanical coupling coefficient k can be evaluated (San

Emeterio, 1997; Vijaya, 2013).

3.2 Piezoelectric Materials

Several piezoelectric materials according to their features are used in various applications

such as detection of mechanical vibrations, fabrication of micro-electrical-mechanical-

systems (MEMS) generation of ultrasonic and acoustic vibration and ultrasonic medical

imaging.

3.2.1 Quartz

The most common material utilizes the piezoelectric effect of a certain crystalline

material such as quartz which is a non-ferroelectric, natural occurring material. Due to
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the piezoelectric effect profile of the quartz, it can be used in a feedback system to get an

extremely stable frequency control (Vijaya, 2013). It has some unique sides that make it

advantageous over other materials such as robust mechanical properties, high stiffness

constant, high Q factor, good reliability, and long life (Vijaya, 2013).

3.2.2 Piezoceramic

Many piezoelectric materials besides quartz are available like lead zirconate titanate

(PZT) which is a kind of ceramics. PZT is a ferroelectric ceramic that is commonly used

in most of the transducer and actuator applications. The reason to be highly preferred is

its good electromechanical coupling coefficient in thickness mode (k = 0.50), high

relative dielectric constant (600), and low mechanical loss (tanδ m  = 0.004), and dielectric

loss (tank = 0.002) (Devaraju, 2013). But the fact that it is fragile, low reproducibility,

and fabrication difficulties are listed as its disadvantages.

Because of the high acoustic impedance of piezoceramic (34 MRayls) compared

to human tissue (1.7 MRayls), there is an acoustic mismatch (Devaraju, 2013). Owing to

this mismatch, great amount of reflection of acoustic waves at the interface causes a very

sharp resonant peak, resulting in narrow bandwidth. It also leads to an impulse response

ringing for several cycles, and inefficient power transfer. To overcome these problems,

between the ceramic and tissue matching layers that have intermediate impedances are

required (Schwartz, 2003). Because of PZT's recognized limitations such as high

acoustic impedance and brittle nature, above 15 MHz it is usually not the material of

choice (Foster, Harasiewicz, & Sherar, 2000; Zhang, 2008).
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3.2.3 Piezopolymer

According to the research of Kawai in 1969, the discovery of a large remnant polarization

in oriented films of PVDF was stated (Brown, 2000). It is the best known and most

commercially active example of semicrystalline polymer and its dielectric and

piezoelectric properties of PVDF depend on temperature except electromechanical

coupling coefficient. Specifically, center frequency and bandwidth vary with temperature

while the acoustic velocity of PVDF decreases. Therefore, the acoustic impedance and

the resonance frequency of the PVDF-made-transducer decrease similarly with

temperature.

Due to its highly flexible constitution, low acoustic impedance and other superior

mechanical properties, PVDF becomes a new opportunity to design and develop more

efficient transducers in high frequency ranges. Because the acoustic impedance of PVDF

(4 MRayls) is close to that of water (1.5 MRayl) and muscle (1.7 MRayl), the reflection

at the interface between transducer and the medium of propagation is minimized. Hence

there is no need for matching layers which limits the bandwidth generally. Early polymer

transducers demonstrating spectacular bandwidths of over 100% were routinely achieved

(Foster et al., 2000). However, the comparatively low coupling efficiencies of 0.15 to

0.20 of the polymer material compromised performance in the diagnostic frequency range

(Foster et al., 2000). By far, the optimum frequencies for successful applications of

piezopolymer materials have stated at frequencies above 15 MHz (Foster et al., 2000).

According to the research, it was shown that planar PVDF transducers can produce plane

wave performance in the acoustic near field, which makes piezopolymer materials better

than piezoceramics (Foster et al., 2000).
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On the other hand, its low thickness mode electromechanical coupling factor (k =

0.20), which governs the transmitting efficiency, causes less acoustic output generation

compared to PZT. Larger k contributes to the increase in the response amplitude. It has

large dielectric loss factor (tanδe = 0.25), which will lead to electric power being

dissipated in the transducer itself (Foster et al., 2000). It has low relative dielectric

constant, which will result in very high input electrical impedance in comparison to that

of a PZT (Foster et al., 2000). Therefore, to generate equal amount of output acoustic

power, a higher drive voltage is required for PVDF transducer. The capacitance of the

transducer is proportional to the dielectric constant, which implies that the voltage

developed across the transducer in the receiving mode is inversely proportional to its

dielectric constant (Foster et al., 2000). Low dielectric constant is advantageous in terms

of developing large voltage signal.

3.2.4 Piezocomposite

Piezocomposite materials are made of the combination of piezoelectric ceramic and

ferroelectric polymer. In recent research, they are getting more popular since they exhibit

high piezoelectric and pyroelectric properties, low acoustic impedance matching with

water, and the feature of easy to be tailored to various requirements (Zhang, 2008). Their

electro-acoustic efficiency can be improved with electromechanical coupling coefficient

and they generate a short pulse with increase in amplitude compared to PZT resulting in

increased bandwidth (Devaraju, 2013; Zhang, 2008). As a result, ceramic-polymer

composites are the promising materials for applications in high-pressure sensors,

hydrophones and shock accelerometers (Zhang, 2008).

24



3.3 Vibration Modes of Piezoelectric Materials

As it is mentioned at the beginning of the Chapter 3, vibration of the materials exhibits

acoustic energy. The mode of vibration is related to the geometry of the piezoelectric

material (Devaraju, 2013). In a regular way, the vibration is required in one direction

only but if there is some in other directions, that will cause artifacts and energy loss

(Devaraju, 2013).

Usually, there are three modes of vibration: plate, thickness and bar mode.

According to the plate mode, the width and the length are much larger than the thickness

of the material. For the thickness mode, the length (1) is much larger than the width (w)

and thickness (t). To reach the optimum efficiency in the thickness mode, the ratio of

width (w) and thickness (0 should be smaller than 0.7 (Devaraju, 2013). In the bar mode,

the thickness (t) is much larger than the length (/) and width (w). The acoustic velocity

varies in different modes of vibration. To get effective performance, only one mode of

the vibration should be aimed by selecting optimum relationship between length, width

and thickness. Otherwise, obtaining poor performance can be an inevitable result.

3.4 Ultrasonic Transducers

The piezoelectric material is the functional component of an ultrasonic device which is

called as ultrasonic transducer. The main components of the ultrasonic transducer are the

active element, backing, and wear plate.
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Figure 3.6 Typical ultrasonic transducer. 
Source: Olympus NDT, 2006. 
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To drive the active element effective ly, its thickness should equal to half of the 

wavelength, so that a compression wave reaches the opposite face of the material just as 

expansion is beginning to occur (Hendee, 2002). Despite the fact that a similar result is 

obtained for any odd multiple of half wavelengths (e.g., 3)J2, 5)J2), because of the 

additional attenuation effect, that is not reliable (Hendee, 2002). The resonance freq uency 

of a material of half-wavelength thickness is calculated from Equation (2. 1) where ;\.=21. 

Another important point for the efficiency is acoustic impedance of the coupling medium. 

Transmission with minimum energy loss occurs when the impedance of the coupling 

medium is intermediate between the impedances of the piezoelectric material and the 

medium. The ideal impedance of the coupling medium is: 

ZcouPling medium = J Ztransducer X Zmedlum (3 .6) 
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3.4.1 The Active Element

The active element, which is piezoelectric or ferroelectric material, converts electrical

energy into ultrasonic energy. Materials used as active element are explained briefly in

Subsection 1.5.4.

3.4.2 Backing

The backing is usually a highly damper, high density material that is used to control the

vibration of the transducer by absorbing the energy radiating from the back face of the

active element. When the acoustic impedance of the backing matches the acoustic

impedance of the active element, the result will be a heavily damped transducer that

displays good range resolution but may be lower in signal amplitude. If there is a

mismatch in acoustic impedance between the element and the backing, more sound

energy will be reflected forward into the test medium. Therefore, there is a trade-off

between resolution and signal amplitude. If the low resolution is preferred, this may lead

to high signal amplitude or great sensitivity.

3.4.3 Wear Plate

Mainly, the wear plate is used for protecting the transducer element from the testing

medium. For some different purpose transducers, this component can be served to

function as an acoustic transformer high acoustic impedance of the active element and the

water.
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3.5 Basic Parameters of Ultrasonic Transducer 

3.5.1 Sound Field 

The sound field of a transducer is divided into two zones; the near field and the far field. 

The near field is the region directly in front of the transd ucer where the echo amplitude 

goes through a series of maxima and minima and ends at the last maximum, at distance N 

from the transducer. 

NEAR FIELD 

FARFELO 

AmpIlrude variations 
10 ~ nearffefd 

Figure 3.7 Demonstration of the near and far fi eld of the transducer. 
Source: Olympus NDT. 2006. 

The near field distance can be calculated by the help of transducer frequency, 

element diameter, and the sound ve locity of the test material as shown by Equation (3.7). 

o'f N=-
4c 

(3.7) 

where N denotes the near field , D is the element diameter, f is the frequency of the 

transducer and c is the material sound ve loc ity. 
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3.5.2 Beam Diameter 

The smaller the beam diameter, the greater the amount of energy is reflected by a testing 

material. The -6 dB pulse-echo beam diameter at the focus can be calculated with 

Equation (3.8). 

BD[- 6dB] = 1.02Fc 
to (3.8) 

where BD denotes the beam diameter, F is the foca l length, c refers to material sound 

ve locity, fis the frequency of the transducer and D is the element diameter. 

3.5.3 Focal Zone 

The starting and ending points of the focal zone are located where the on-axis pulse-echo 

signal amplitude drops to - 6 dB of the amplitude at the foca l point. The length of the 

focal zone is given by Equation (3 .9): 

F.-N!.. 2 
( ) 2 [ ] 

Z - N (1+0.S~) 

where Fz denotes the focal zone, N is the near field and F refers to focal length. 

-&dB BEAM DIA. 
Z. Ze .12dB BEAM 

----F2-

LINE 

POINT OF MAXIMUM ECHO FROM 
A FLAT PLATE TARGET (FPF) 

POINT OF MAXIMUM ECHO FROM 
A POINT TARGET (PTF) 

(3.9) 

Figure 3.8 Other parameters of a sound beam. ZB refers to beginning of the focal zone 
while ZE is the ending of the focal zone. 
Source: O lympus NDT, 2006. 
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CHAPTER 4 

DESCRIPTION OF EXPERIMENTAL SYSTEM SET UP 

4.1 Overall System Description 

The system 's mam component is the piezoe lectric material, PZT. In order to make 

acoustic signal measurements the experimental configuration is set up as shown in Figure 

4.1. 

Oscilloscope-

Rt Output ~s;:y.:c:-L _____ .J 

tThnsolk 
Pulser·Receh"er 

lficroauIpulilor 

Figure 4.1 Experimental set up for acoustic measurements. 

Designed 
circuit 

The transducer was mounted on a micromanipu lator so that it was able to move 

the transducer in three orthogonal axes. The transducer was used in a transmitter-receiver 

mode. The piezoelectric material was glued on a metal piece for stabilization in the dish 

and kept at a distance of I cm from the transducer. The distance between the transducer 

and face of the piezoelectric material was determined according to the near field distance 

/ 
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and point target focus parameters of the transducer. Thus, I cm separation distance was 

chosen to evaluate the performance of the transducer effectively. To test the feasibility, 

modulated ultrasonic pulses reflected from the piezoelectric material was captured 

through the transmitter-receiver device, which has its own amplification and basic signa l 

conditioning circuitry. The output of the transducer was displayed on the osci lloscope. 

4.2 Ultrasound PulserlReceiver 

The ultrasonic square wave pulser/receiver mode l 5077PR (Olympus), shown in Figure 

4.2, is a broadband ultrasonic pulser/receiver unit with a variable receiver gain. 

Figure 4.2 The ultrasonic square wave pu lser/receiver (Olympus 5077PR). 

The pulser section of the instrument generates short, large-amplitude electric 

pulses. When these pulses applied to an ultrasonic transducer, they are converted into 

short acoustic pulses. These ultrasonic pulses are received either by the transmitting 

transducer (pulse-echo method), or by a separate receiving transducer (through­

transmission method). 
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4.3 Ultrasonic Transducer 

In th is research, centrascan composite focused immersion transducer, which has 3.5 MHz 

center frequency and 6.35 mm element diameter, was chosen. The focal length of the 

transducer was 9.9 mm. The calculated near fie ld distance using Equation (3 .7) was 

obtained as 23.22 mm. By considering these specifications, the transducer was placed in 

the medium with optimum distance from the piezoelectric material. 

AlI2S--SIJoHK..c::f l .DOIN 

Figure 4.3 Different cases of immersion transducer. 

4.4 Piezoelectric Material 

In this thesis, the sample of PZT (Piezo Systems Inc.) with 500 J.lm thickness was cut in 

dimension of 0.5 mmXO.5 mm. To make wire connections to the material, 0.11 mm thick 

insulated stain less stee l wires were used. Because of the high temperature sensitivity of 

PlT, instead of soldering, the all-purpose grade, very fast setting epoxy adhesive (Epoxy 

Technology) was preferred for connection. 
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Figure 4.4 Prepared PZT sample attached to a heat sink for mechanical stability. 

4.5 Other System Components 

In addition , 15 MHz function/arbitrary waveform generator (Agilent 33120A) was used 

to generate the square wave pulses with regulated voltage amplitude for the implanted 

circuitry that wou ld modulate the backscattered signals. The amplified output signal from 

the pulser/receiver was sent to oscilloscope (100 MHz, 400 MS/sec, Gould DSO 4074). A 

synchron izing pulse is also provided by pulser/receiver and was connected to the trigger 

input of the oscilloscope. The synchronizing pulse is necessary for obtaining steady view 

of the received signal. 
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Figure 4.5 Agilent 33120A function/arbitrary waveform generator and Gould DSO 4074 
oscilloscope. 
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CHAPTER 5

BACKSCATTER SIGNAL EVALUATION PROCESSES

5.1 Determining and Testing the Resonance Frequency of PZT

After the preparation of the piezoelectric assembly, electrical impedance of the

piezoelectric material was measured as a function of frequency. In principle, the circuit

relied on basic voltage divider concept (Figure 5.1). Then, the output voltage of the

circuit shown in Figure 5.1 was plotted as a function of frequency to determine the

resonance and anti-resonance frequencies for the PZT material with the given

dimensions.

Figure 5.1 Circuit schematic for determining minimum impedance (resonance frequency)
and maximum impedance (antiresonance frequency) of the piezoelectric element.

At the resonance frequency, the output (through R 2) voltage amplitude is at a

maximum, because the piezoelectric impedance reaches its minimum. Therefore, the

frequency when the output reaches a maximum is the resonance frequency, f-, for the
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piezoelectric piece, and the frequency when the output reaches its minimum IS the 

antiresonance freq uency, fa. 

5.1.1 Results and Discussion 

By applying 5 V pp sinusoidal wave varying from 50 kHz to 15 MHz, resonance and anti-

resonance frequencies were obtained. According to the measurement results, two 

resonance freq uencies were observed but specificall y, In this work the resonance 

frequency that we are interested In is the second one (thickness mode), which was 

obtained at 4.1 MHz. 
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Figure 5.2 Determining the resonance frequency of PZT using the circuit output vo ltage 
in Figure 5. 1. 

In light of these results for investigating the resonance frequencies of the 

piezoelectric materials, a small difference was seen in comparison to the theoretically 

calculations. According to the calculations using Equation (2.1), by taking the speed of 

sound in PZT as 3970 mls (Shung, 1996)), for a 500 ~m thick, 0.5 mm x 0.5 mm PZT 

plate, thickness mode resonance frequency should be 3.97 MHz. The differences in the 
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resonance frequencies between the theoretical and experimental values may be caused by

the epoxy sealing of the wire connection points on the material. Also, the material

dimensions may not be exact since the piece was cut manually.

5.2 Testing the Feasibility of Modulation Effect

According to the Zhu and colleagues, if the load resistor is connected in series to two

piezoelectric layers, the current, the voltage and the power dissipated depend on the value

of the load resistance The value of the load resistance also significantly influences the

vibrational characteristics of piezoelectric material, including the vibrational amplitude

and the resonant frequency (Zhu, Worthington, & Njuguna, 2009). In addition, they

stated that the maximum power output of piezoelectric material does not occur at the

maximum vibrational displacement, nor does the maximum power output coincide with

the optimum load resistance (Zhu et al., 2009). In this direction, first, the optimum

potentiometer (500 Q) was connected to the PZT to investigate the feasibility of

modulation using a load resistor. Once the change in the amplitude of the echo signal was

detected by varying the resistor then the optimum resistance value for the maximum

modulation was calculated. This value was used as a design parameter in implementation

of the electronic circuit that would function as a variable resistor that would use the

neural signals as the input and shunt different amounts of current from the piezoelectric

element as a function of neural signal amplitudes.

5.2.1 Results and Discussion

To visualize the observed change and the related frequency band for this change in the

amplitude of the echo signal, the data was transferred to the computer from the
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5.4 Simulation and Implementation of the Design

LTspice (version 4.19u) is used to simulate the circuit before the implementation step.

The design and its components are determined with reference to a previous Master's

thesis carried out in the same laboratory (Hua & Sahin, 2013; Meng, 2012). In this

simulation, the biological signal is defined as 100 μVp p , 1 kHz sine wave and PZT is

simulated as a current source and a resistance in parallel to the source. Also, in the model

of PZT, frequency of the source voltage is determined from the frequency of the echo

pulses. Thevénin equivalent of this source and parallel resistance is taken into account as

a model of PZT and the value of the optimum load resistance that was obtained earlier.

Figure 5.12 Circuit design for modulating the backscattered signal.

5.4.1 Simulation Results and Discussion

In the first stage of the circuit, the input, 100 μVpp 1 kHz sine wave signal is amplified

by 37.48 dB. Then, this output appears as a 20 mVpp AC signal riding on a DC level of
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1.022 V as shown in Figure 5.11 . In this specific application, it was difficult to 

compensate the gain and reach optimum modulation index by trial and error method. 

At I kHz and 4 MHz, most significant frequency components of the output signal 

of the circuit were observed by applying FFT shown in Figure 5.14 and Figure 5.15. It 

proves that the simulation accurately predicted the modulation effect. Besides, because of 

the capacitive effects the square wave at 4 MHz looks distorted as shown in Figure 5.16. 

This problem might be arisen from the parasitic capacitors in the MOSFETs. 

Figure 5.13 I kHz modulated signal from the simulations. 
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Figure 5.14 FFT of the simulated output signal. 

Figure 5.15 FFT of the simulated output signal as zoomed in at 4 MHz. 
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Figure 5.16 4 MHz square wave pulses at the output of the MOSFET that are modulated 
by the I kHz sine wave. 

5.4.2 Implementation Resnlts and Discussion 

The circuit is built following the results of simulation and connected to the experimental 

set up. 

Figure 5.17 Constructed circu it on a breadboard and connected to the PZT. 
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Then, after driving the PZT without using any power suppl y, the backscattered 

signal is received by the transducer with the modulation of 12 mVpp of message wave. 

Figure 5.18 Modulated signal that has an amplitude (12mVpp) near the value predicted 
by simulation results. 
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In most recent studies, there are major difficulties in achieving reliable implantable

neural recording systems that can serve as brain-machine interfaces (BMI). Therefore,

wired connections from implanted electrodes to the extracorporeal system are often

preferred. To this end, this research was conducted to test the feasibility of an ultrasonic

neural interface system that is based on modulation of the backscattered signal. We

proposed that if the neural signal is sensed effectively by the internal unit and used to

modulate the reflected signal off of a piezoelectric piece, the neural signal can be

extracted by an external unit that receives this echo signal. To demonstrate the feasibility

of this technique, the echo signal from a piezoelectric element was analyzed and the

effect of the load resistor was demonstrated. Next, an electronic amplifier circuit was

built to demonstrate that the modulation of the echo signal can be controlled as a function

of the neural signal.

As the piezoelectric material, a PZT piece with 500 μm thickness was chosen. It

was cut into the dimension of 0.5 mm x 0.5 mm. In order to achieve low impedance and

high energy transfer through the medium, the coupling factor, dielectric constant, wave

velocity of the piezoelectric materials were taken into account. Once the PZT was

fabricated, it was tested to see if the desired resonance frequency could be obtained.

Then, measurements of power and load resistance of the circuit design were made. To

verify the experimental results, computer simulations were also conducted. All of these

results were used for the implementation of the circuit design of such a wireless
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implanted recording system. The amplifier with 37.48 dB gain was assembled and 12

mVpp modulated signal was obtained without using any kind of power supply to drive the

circuitry. Therefore, it should be emphasized that, the circuit does not need battery since

it uses the power harvested from the incoming acoustic signal sent by the external unit.

6.2 Future Work

The PZT material finds widespread usage as a transducer material in medical and

biological ultrasound applications. Better optimized PZTs can be fabricated and even

copolymer designs can be tested to improve the results in this project. Also, as a

complementary subsystem, external unit design should be optimized, which was out of

the scope of this project. A system based integrated design including the transducer,

pulser, and receiver combined together can be an effective way of miniaturizing. this

system.
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