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ABSTRACT 

COMPARISON OF DIFFERENT DIFFERENTIAL 

EXPRESSION ANALYSIS TOOLS FOR RNA-SEQ DATA 

by 

Junfei Zhu 

In molecular biology research, RNA-seq is a relatively new method for transcriptome 

profiling. It utilizes the next generation sequencing technology to provide huge amount 

information about the variety and abundance of RNA present in an organism of interest at 

a specific state and a given time. One of the most important tasks of RNA-seq analysis is 

finding genes that are expressed differently in different subject groups. A lot of 

differential expression analysis tools for RNA-seq have been developed, but there is no 

golden standard in this field. In this research, four commonly used tools (DESeq, edgeR, 

limma, and cuffdiff) are studied by comparing their performances in the normalization of 

different subject group data, and also in the sensitivity and specificity of selection of 

genes with differential expression. In addition, their performances on genes which only 

express in one condition are compared. The data used are SEQC and melanoma. The 

result shows that in differential expression analysis, DESeq is slightly better than other 

tools in normalization, while DESeq, edgeR, and limma, in general, display good 

sensitivity and specificity, and limma outputs less false positive predictions. In cases 

where genes of interest are absent in one of the conditions, limma has the best 

performance. 
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CHAPTER 1 

INTRODUCTION 

1.1 Objective and Methods 

The objective of this study is to compare the performance of some of the most commonly 

used differential expression tools on RNA-seq data. These tools include DESeq
1
, edgeR

2
, 

limma
3
 and cuffdiff

4
. Several features such as the normalization, sensitivity and 

specificity of differential expression analysis, false positive rate, and performance when 

genes only express on one condition are taken into consideration.  

For the normalization comparison, a clustering was carried out based on the 

samples, and the distribution of the normalized counts was generated by boxplot. 

Normalization is a process to remove variances in data caused by differences in read 

coverage or other experimental procedure rather than by real biological differences. If the 

replicates of normalized data can cluster in the same condition group as the original data, 

it will be considered that the normalization procedure is acceptable. Also the differences 

of medians of samples should be reduced by normalization. 

For the sensitivity and specificity comparison, SEQC data was used in the study. 

Since a set of synthetic RNAs from the External RNA Control Consortium (ERCC) at 

known concentrations is mixed, the accuracy can be tested in different tools. 

Furthermore, there are around 1000 genes’ expression have been test by qT-PCR, a more 

comprehensive comparison can be conducted.  

To test the false positive rate of different tools, samples from the same condition 

were compared to detect the differential expressed genes. As expected, the distribution of 

p-value should be uniform
6
. 
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To test the performance of differential expression analysis tools when only one 

condition has expressed, such subset of genes were selected, and the ratios of signal to 

noise were computed
6
. A better model should assign more significant p-values to these 

genes which have higher ratio of signal to noise.  

1.2 Background Information 

Instead of microarray, RNA-seq has been used as a powerful tool in transcriptome 

profiling. One of the key tasks of transcriptome profiling is to quantify the expression 

levels of each transcript in different conditions, such as normal and cancer, or different 

time points. Several tools have been developed for this purpose, for example, DESeq, 

edgeR, limma and cuffdiff. These tools base on different statistics models, such as 

negative binomial, or Bayes.  

For the differential expression detection, there are two important steps. The initial 

step is normalization. During the preparation of libraries, due to different platform, the 

library sizes can differ in a large range
6
. To detect the differential expression genes, 

normalization is a core step
7
. The fundamental assumption for RNA-seq differential 

expression analysis is the number of reads which are aligned to the genes can present the 

expression level of these genes. Therefore, there are two biases: sequencing depth and 

gene length
8
. During the library preparation, larger library sizes will generate more reads. 

And the longer genes will have more reads aligned. One simple way to figure out the 

biases is to divide the counts number for each gene by the gene length and library size. 

FPKM
4
 (Fragments Per Kilobase of exon per Million fragments mapped) is introduced in 

cuffdiff to deal with such issue. However, according to the experiment experience, there 
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are always small amount genes which can generate larger proportion of reads
9
. They can 

affect the library size. It means that the proportions of reads which are generated by genes 

are dependent on other genes. 

After the normalization step, differential expression analysis will be conducted. 

To model the distribution of number of reads which are aligned to different genes, it is 

very common to think about Poisson distribution. But for the Poisson distribution, there 

is only one parameter λ. The mean and variance both equal to λ. However, in the RNA-

seq data, the variance is always larger than the mean
10

. Instead of Poisson distribution, 

negative binomial distribution
11

 is introduced, since in the negative binomial distribution, 

the variance is not necessary to be equal to mean. 
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CHAPTER 2 

DATASET 

 

2.1 SEQC  

The dataset is part of SEQC study. There are two conditions: condition A and condition 

B. Each condition has five replicates. For condition A, the sample is a mixture of ten 

human’s different cell types (B lymphocyte, brain, breast, cervix, liposarcoma, liver, 

macrophage, skin, testis, and T lymphocyte). For conditions B, the sample is a mixture of 

several brain regions from 23 adults. These replicates are technical replicates, because 

replicates of the same condition are from a single sample. Each sample was mixed with a 

set of synthetic RNAs from the External RNA Control Consortium (ERCC) at known 

concentrations. Samples from condition A contain 2% by volume of ERCC mix 1. 

Samples from condition B contain 2% by volume of ERCC mix 2.  

 

2.2 ERCC RNA Spike-In Mix and qRT-PCR 

In the ERCC spike-in control, there are 92 synthetic polyadenylated oligonucleotides of 

250-2000 nucleotides long. There are two mixtures, mixture 1 and mixture 2. The 92 

synthetic polyadenylated oligonucleotides are divided into four subgroups, A, B, C, and 

D. Each subgroup has 23 transcripts. And their concentrations ratios in mixture 1 and 

mixture 2 are 4, 0.5, 0.67 and 1 separately. In the differential expression analysis step, the 

subgroup D with concentration ratio 1 will be considered as true negative, and other three 

subgroups are considered as true positive.  
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Except for the 92 synthetic polyadenylated oligonucleotides, there are around 

1000 genes’ expressions in eight replicates (four replicates from condition A and four 

replicates from condition B) have been measure by qRT-PCR technology.  

 

2.3 Melanoma Dataset 

There are 14 samples which are divided into six conditions in melanoma dataset. The 

detailed information is showed in table 2.1. Four comparisons are conducted between 

these conditions: condition 1 vs. condition 2, condition 1 vs. condition 3, condition 4 vs. 

condition 6, condition 5 vs. condition 6. To conduct the false positive comparison, 

pairwise comparisons are carried out between the four replicates in condition 3. 

 

Table 2.1  Description  of the Melanoma Dataset 

 
Index Description 

Condition 1 

Index 1    Dermal stem cells in stem  cell media 

Index 7    Dermal stem cells in stem cell media 

Condition 2 

Index 8    Melanocytes in melanocyte media 

Index 9    Melanocytes in melanocyte media 

Condition 3 

s4 FF144SC p12 in StemPro 

s5 FF160SC p4 in StemPro 

s6 MSC p3 in StemPro 

s7 HMVECnd p4 in StemPro 

Condition 4 

Index 6     Melanocytes with Notch GFP in stem cell media 

Index 12   Melanocytes with Notch GFP in stem cell media 

Condition 5 

Index 5    Melanocytes with Notch GFP in melanocyte media 

Index 11   Melanocytes with Notch GFP in melanocyte media 

Condition 6 

Index 4    Melanocytes with control GFP in melanocyte media 

Index 10   Melanocytes with control GFP in melanocyte media 
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CHAPTER 3 

ALIGNMENT AND GENE COUNTS 

3.1 Sequence Alignment 

All the sequenced short reads are aligned to human genome hg19.gtf which is 

downloaded from UCSC. For SEQC dataset, the hg19.gtf file is mixed with ERCC 

transcript information which is downloaded from Life technology website 

http://www.lifetechnologies.com/order/catalog/product/4456740. Tophat2
12

 is used to 

carry out the alignment task. And the summary of the alignment is generated (Table 3.1, 

3.2). The average mapping rate of SEQC dataset is 86.19%. The average mapping rate of 

melanoma dataset is 82.22%. 

 

Table 3.1  Summary of the Alignment of SEQC Dataset 

Sample Condition Number of reads Number of aligned 

reads 

Mapping 

rate 

SRR950078 A_1 200,774,020 175,886,653 87.6% 

SRR950079 B_1 222,075,402 187,186,468 84.3% 

SRR950080 A_2 183,562,954 159,981,986 87.2% 

SRR950081 B_2 224,855,528 195,448,825 86.9% 

SRR950082 A_3 134,415,514 106,879,116 79.5% 

SRR950083 B_3 226,323,912 194,643,956 86.0% 

SRR950084 A_4 250,166,388 214,364,321 85.7% 

SRR950085 B_4 188,373,788 164,125,122 87.1% 

SRR950086 A_5 143,531,234 126,983,375 88.5% 

SRR950087 B_5 121,199,466 108,039,889 89.1% 

 

 

 

 

http://www.lifetechnologies.com/order/catalog/product/4456740
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Table 3.2  Summary of the Alignment of Melanoma Dataset 

Index Condition Number of reads 
Number of mapped 

reads 
Mapping 

rate 

Index 1    1 37,570,912 32,464,567 86.41% 

Index 7    1 56,635,435 48,494,193 85.63% 

Index 8    2 44,741,908 38,803,621 86.73% 

Index 9    2 68,465,092 57,907,439 84.58% 

s4 3 45,520,385 35,625,472 78.26% 

s5 3 45,501,178 34,288,113 75.36% 

s6 3 48,169,747 36,468,083 75.71% 

s7 3 51,460,718 39,280,037 76.33% 

Index 6     4 136,196,886 123,865,622 90.95% 

Index 12   4 51,146,404 41,794,202 81.71% 

Index 5    5 29,174,334 23,550,504 80.72% 

Index 11   5 44,654,136 37,660,136 84.34% 

Index 4    6 33,318,109 27,031,597 81.13% 

Index 10   6 37,683,524 31,361,331 83.22% 

 

3.2 Gene Counts 

HTSeq was used to generate the raw gene counts from the aligned bam files with the 

following parameters: -m intersection-strict –s no. With the paramater –m intersection, if 

there are reads which are aligned to multiple genes, these reads were excluded (Figure 

3.1). The distribution of raw counts numbers after log2 transformation is shown in Figure 

A.1 and B.1. 
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Figure 3.1  Illustration of the effect of the model in HTSeq-count. There are three models 

in HTSeq-count, and the model of intersection-strict was used in the thesis. 
Source: http://www-huber.embl.de/users/anders/HTSeq/doc/count.html, accessed September 23, 2013 

 

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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CHAPTER 4 

RESULTS 

 

4.1 Normalization 

The first step of differential expression analysis of RNA-seq data is normalization. It is 

very important to the downstream analysis. To compare the normalization methods of 

different tools, boxplots of distributions of normalized counts are generated and 

hierarchical clustering is used based on the normalized counts of each sample
6
. For a 

good normalization, the hierarchical clustering should group different samples from the 

same condition into a cluster. 

 From the boxplots of distributions of normalized counts by different tools (Figure 

A.2 to A.5 and Figure B.2 to B.5), the distributions of normalized counts by DESeq, 

limma and cuffdiff are good and very similar to each other. But for edgeR, the 

distributions of normalized counts do not change compared to raw counts. 

During the hierarchical clustering analysis, for the SEQC data, the result shows 

that all the tools perform very well (Figure C.1). Different replicates from same 

conditions are grouped together. But when the same clustering is performed in the raw 

counts, it still can separate samples based on their conditions (Figure 4.1). Admittedly, 

this method cannot prove the performance of normalization methods. As a result, Dunn 

cluster validity index
6
 is introduced to compare the clustering. A good clustering is a kind 

of one, in which, members in the same cluster have a small variance, and the means of 

different clusters should be different enough. A higher Dunn index indicates better 
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clustering. As a result, DESeq has a highest Dunn index, while cuffdiff has a lowest 

Dunn index (Figure E.1). 

0
   

   
   

 1
0

0
   

   
   

2
0

0
   

   
  3

0
0

   
   

  4
0

0
Raw_data Clustering

B_5   B_4    B_3    B_1    B_2    A_4    A_1    A_2    A_3   A_5
 

Figure 4.1  Hierarchical clustering based on the raw counts. Hierarchical clustering based 

only the raw counts of ten samples still can group samples from the same condtions 

together.  

 

For the melanoma dataset, the result of hierarchical clustering analysis is 

completely different. In comparsion between condition 1 and condition 2, index1 and 

index8 are grouped together, index7 and index9 are grouped together (Figure D.1). 

Actually, index1 and index8 are from the same individual, and index7 and index9 are 

from another individual. In another three comparisons, the performances of the four tools 

are very similar to each other. Samples from the same conditions are grouped together. 

Since around 1000 genes’ expression of eight samples in SEQC dataset (four 

replicates of condition A and four replicates of condition B) has been measured by qRT-

PCR, the correlation between the logFC (fold change by log transformation) of 
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expression measured by qRT-PCR and these differential expression analysis tools can be 

computed
6
. A higher correlation value indicates a better normalization. DESeq has a 

largest RMSD correlation 1.94 and limma has a smallest one 1.26 (Figure F.1). 

To sum up, there is no big difference in normalization step among these tools 

except for edgeR. DESeq performs a little better than others.  

 

4.2 Differential Expression Analysis 

In the SEQC data, there are total 22425 genes, and the numbers of detected differential 

expressed genes by different tools are showed in table 4.1. The average percentage of 

detected differential expressed genes is 71.96%. The overlaps of detected differential 

expressed genes by different tools are generated. To measure the level of overlap, the 

overlapping correlation is computed. For two sets, the number of overlapped elements 

divided by the minimum number of elements between the two sets is computed as the 

overlapping correlation. The minmium overlapping correlation is 0.94 which indicates 

that the detected differential expressed genes by different tools are very similar to each 

other. 

 

Table 4.1  Numbers of Detected Differential Expressed Genes by Tools in SEQC 

 

Number of Differential 
Expressed Genes Total Percentage 

DESeq 16042 22425 0.715362 

edgeR 16617 22425 0.741003 

limma 17000 22425 0.758082 

cuffdiff 14892 22425 0.664080 
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Figure 4.2  Overlapping correlation of differential expressed genes by four tools. The 

overlapping correlation of DESeq and edgeR is highest. 

 

In the SEQC dataset, there are 92 synthetic oligonucleotides which are mixed into 

two mixtures. The 92 synthetic oligonucleotides are divided by four groups, and each 

group has 23 synthetic oligonucleotides. The four groups have different concentration 

ratios in the two mixtures which are 4, 0.5, 0.67 and 1. In the comparison, the group with 

concentration ratio 1 is considered as true negative, and others are true positive. The 

sensitivity and specificity of differential expression detections are showed in Table 4.2. 

Also the ROC curve was computed (Figure 4.3). edgeR has a higher AUC value 0.793. 

 

Table 4.2  Sensitivity and Specificity of Differential Expression Detection 

 DESeq edgeR limma cuffdiff 

Total 68 74 73 59 

True Positive 58 62 62 48 

Sensitivity 84.1% 89.9% 89.9% 69.6% 

Specificity 56.5% 47.8% 52.2% 52.2% 
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Figure 4.3  ROC analysis of differential expression detection in ERCC control. edgeR 

has a higher AUC value. 

 

Another comparison is carried out on the around 1000 genes whose expression 

have been measured by qRT-PCR. First, calculate the log2 fold change ratios between 

two conditions. Then set the log2 fold change ratio 0.5 as the cutoff. It means that genes 

with log2 expression change larger than 0.5 are considered as differential expressed 

genes. Under this assumption, there are total 764 genes are differential expressed. The 

numbers of detected differential expressed genes by different tools are showed in table 

4.2. Furthermore, the ROC curve was also generated (Figure 4.4). The result shows that 

DESeq and edgeR have higher AUC value 0.888, and cuffdiff has a lower AUC value 

0.726. 
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Table 4.3  Numbers of Detected Differential Expressed Genes in TaqMan Data 

 

True Positive DESeq edgeR limma cuffdiff 

764 (Total 1001) 626 634 635 605 

 

 

 

Figure 4.4  ROC analysis of differential expression detection in TaqMan data. DESeq 

and edgeR have higher AUC values. 

 

 For the melanoma dataset, all the four comparisons are conducted by different 

four tools. And the overlapping correlations are generated (Figure G.1). For the 

comparison between group 4 and group 6, and comparison between group 5 and group6, 
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limma detected no differential expressed genes, only three tools’ overlapping correlations 

are computed. The overlapping correlation between DESeq and edgeR is highest 0.87, 

and the overlapping correlation between limma and cuffdiff is lowest 0.62. 

 

4.3 Test of Type-I Error 

During the differential expression analysis, it is better to reduce the type-I error. It means 

that people do not want to take genes which actually are not differential expressed into 

consideration. After the differential expression analysis, a biological process will be 

carried out to test the result. By controlling the type-I error, the cost in the following step 

can be reduced. To perform the test, samples from the same condition are compared. For 

SEQC dataset, three comparisons are conducted: A_1 and A_2 vs. A_3 and A_4, A_1 

and A_2 vs. A_3, A_4 and A_5, B_1 and B_2 vs. B_3 and B_4. For the melanoma 

dataset, three comparisons are conducted: s4 and s5 vs. s6 and s7, s4 and s6 vs. s5 and s7, 

s4 and s7 vs. s5 and s6. As expected, there should be no differential expressing genes. 

Furthermore, the distributions of p-value which are calculated by different methods 

should be uniform
6
. As shown in the result (Figure H.1 and H.2), for the SEQC dataset, 

the p-value is mostly uniform. Due to the noise to signal ratio is very large in the lower 

25% expressed genes, the distribution of p-value in these genes is a little different. 

Compared to other methods, cuffdiff outputs more false positive predictions. But for the 

melanoma dataset, only limma has very little false positive predictions.  

 

4.4 Performance When Genes Expressed in Only One Condition 

During the differential expression analysis, it is very common that there are a lot of genes 

which only express in only one condition. In such case, it is difficult to carry out 
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differential express analysis. Differential expression analysis tools cannot simply assign a 

significant p-value to these genes or do not take them into consideration. To evaluate 

these genes, an isotonic regression is carried out. The mean and variance of the 

expression values in only one condition are computed. As expected, the p-value should 

be consistent with the ratio of mean over standard deviation. As the ratios of mean 

divided by standard deviation increase, the p-value should be more significant. The 

advantage of isotonic regression compared with liner regression is that it does not assume 

any form of the target function. As the result shows, limma performs best in such kind of 

regression model, while other three methods have pool performances (Figure I.1). The 

ratio of mean divided by standard deviation 3 was set as a cutoff. Genes that have a ratio 

larger than 3 were considered as differential expressed. And ROC curve were generated. 

Limma has the highest AUC value 0.969. 

 Such test is also carried out in melanoma dataset (Figure I.2 to I.5). But only in 

comparison between condition 1 and condition 3, limma has very clear pattern as 

expected. 
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CHAPTER 5 

DISCUSSION 

 

 

There are several following evaluations can be carried out. Firstly, in the SEQC dataset, 

the library of each sample is very similar to each other. In the reality, it is very possible 

that the libraries sizes change a lot among different samples. To test the performance of 

these tools, the numbers of several samples’ reads can be amplified and others can be 

reduced. Then the differential expression analysis can be conducted to compare their 

performance. Secondly, during the evaluation of type-I error control, cuffdiff outputs a 

lot of very significant expressed genes. A clear and deep investigation can be conducted 

to check whether these genes are actually differential expressed even in the samples of 

same condition. Thirdly, the sensitivity and specificity comparison based on the 

melanoma dataset can be conducted. The fold change of the raw counts can be computed, 

and the genes with log2 transformation of fold change larger than 3 will be considered as 

differential expressed. Then, the sensitivity and specificity of these tools can be 

computed. 
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APPENDIX A 

DISTRIBUTION OF RAW AND NORMALIZED COUNTS OF SEQC DATASET 

Figure A.1 to A.5 show the distribution of SEQC dataset’s raw and normalized counts.  
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Figure A.1  The distribution of SEQC dataset’s raw counts. 
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Figure A.2  The distribution of SEQC dataset’s normalized counts by DESeq. 
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Figure A.3  The distribution of SEQC dataset’s normalized counts by edgeR. 
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Figure A.4  The distribution of SEQC dataset’s normalized counts by limma. 
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Figure A.5  The distribution of SEQC dataset’s normalized counts by cuffdiff. 
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APPENDIX B 

DISTRIBUTION OF RAW AND NORMALIZED COUNTS OF MELANOMA 

Figure B.1 to B.5 show the distribution of melanoma dataset’s raw and normalized counts 

(log2 transformation) in four comparisons. 
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Figure B.1  The distribution of melanoma dataset’s raw counts. 

 

 

 

Figure B.2  The distribution of melanoma dataset’s normalized counts in comparison 1. 
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Figure B.3  The distribution of melanoma dataset’s normalized counts in comparison 2. 
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Figure B.4  The distribution of melanoma dataset’s normalized counts in comparison 3. 
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Figure B.5  The distribution of melanoma dataset’s normalized counts in comparison 4 



 
 

24 

 

APPENDIX C 

CLUSTERING OF SEQC 

Figure C.1 shows the clustering results based on the normalization counts in SEQC 

dataset of four tools. 
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Figure C.1  The clustering based on the normalized counts. The clustering shows that 

samples from the same conditions are very well grouped together. 
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APPENDIX D 

CLUSTERING OF MELANOMA 

Figure D.1 to D. 4 show the clustering results based on the normalization counts in 

melanoma dataset of four tools. 
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Figure D.1  The clustering based on the normalized counts in comparison between 

condition 1 and condition 2. Samples from the same individual are grouped together. 
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Figure D.2  The clustering based on the normalized counts in comparison between 

condition 1 and condition 3. The result of cuffdiff can group samples from the same 

condition together very well. 
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Figure D.3  The clustering based on the normalized counts in comparison between 

condition 4 and condition 6. The performances of the four tools are same with each other. 
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Figure D.4  The clustering based on the normalized counts in comparison between group 

5 and group 6. The performances of the four tools are same with each other. Samples 

from the condition are grouped together. 
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APPENDIX E 

DUNN CLUSTER VALIDITY INDICES  

Figure E.1 shows the Dunn cluster validity indices of the clustering. 

 

 

Figure E.1  Dunn index is used to compare the clustering of normalized counts of four 

differential expression analysis tools, including the raw counts. DESeq and limma have 

higher Dunn index values.  
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APPENDIX F 

RMSD CORRELATION WITH TAQMAN FOLD CHANGES  

Figure F.1 shows the RMSD correlation with TaqMan fold changes. 

 

Figure F.1  RMSD correlation with TaqMan fold changes indicates that DESeq has a 

highest correlation accuracy value. 
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APPENDIX G 

OVERLAPPING CORRELATION OF DIFFERENTIAL EXPRESSION 

ANALYSIS TOOLS  

Figure G.1 shows the overlapping correlation of detected differential expressed genes by 

four tools in four comparisons. 

 

 

 

 

Figure G.1  The overlapping correlation of detected differential expressed genes by four 

tools in four comparisons. The overlapping correlation between DESeq and edgeR is 

highest 0.87, and the mapping correlation between limma and cuffdiff is lowest 0.62. 
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APPENDIX H 

DISTRIBUTION OF P VALUES  

Figure H.1 to H.2 show the distribution of p.value in different read counts quartiles. 

 

 

Figure H.1  The distributions of p-value in SEQC dataset are mostly uniform. Compared 

to other methods, cuffdiff has more false positive predictions. 
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Figure H.2  The distributions of p-value in melanoma dataset are mostly uniform. But 

only limma has very little false positive predictions. 
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APPENDIX I 

CORRELATION BETWEEN SIGNAL TO NOISE RATIO AND P VALUES  

Figure I.1 to I.5 show the correlation between signal to noise ratio and -10log10 

transformation of p values when genes only express in one condition. 
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Figure I.1  Limma performs best in the correlation evaluation of SEQC dataset.  
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Figure I.2  The correlation between signal to noise ratio and -10log10 transformation of 

p values when genes only express in one condition in comparison between condition 1 

and condition 2 of melanoma dataset. 
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Figure I.3  The correlation between signal to noise ratio and -10log10 transformation of 

p values when genes only express in one condition in comparison between condition 1 

and condition 3 of melanoma dataset. 
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Figure I.4  The correlation between signal to noise ratio and -10log10 transformation of 

p values when genes only express in one condition in comparison between condition 4 

and condition 6 of melanoma dataset. 
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Figure I.5  The correlation between signal to noise ratio and -10log10 transformation of 

p values when genes only express in one condition in comparison between condition 5 

and condition 6 of melanoma dataset. 
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APPENDIX J 

ROC CURVE WHEN SIGNAL TO NOISE RATIO 3 IS SET AS CUTOFF 

Figure J.1 shows the ROC curve when signal-to-noise ratio 3 is set as cutoff. 

 

Figure J.1  ROC curve when the cutoff of signal-to-noise ratio is 3. limma has the 

highest AUC value 0.969. 
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