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ABSTRACT 

MEMS APPROACHES IN INFRARED IMAGING 

by 
George Papavieros 

The design and performance simulation of a novel Microelectromechanical System 

(MEMS) based infrared detector, that utilizes coefficient of thermal expansion, is 

discussed. The detector design uses a variety of thermal expansion coefficient materials, 

including alloys which are connected to ambient through a thermal conducting bridge. 

The thermal flux, due to the incident IR photons, is determined by the Extended 

Blackbody Calculator (BBC). These materials are physically interfaced with different 

types of piezoelectric resonators, constructed using the MEMS process. The expansion 

due to heating, applies stress to the piezoelectric resonator material. This thermally 

induced stress forces the resonator to alter its physical frequency and produces a voltage 

across its ends, as dictated by the piezoelectric effect. The device performance is 

characterized in terms of the resonator frequency and voltage as a function of the focal 

plane array’s (pixel’s) temperature. The detector performance is comparable to that of 

commonly used IR imaging systems currently available in the MWIR and LWIR spectral 

range. 
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CHAPTER 1 

INTRODUCTION 

 

 
In this study, the design and simulation of a Microelectromechanical (MEMS) based 

infrared (IR) detector is discussed. The detector consists of two parts; a heat-sensitive 

metal and a piezoelectric component that interfaces with the metal. 

In Chapter 2, the fundamentals of thermal expansion as well as the effects of 

temperature on the thermal and mechanical properties of materials are discussed. The 

isotropic and anisotropic behavior of materials is analyzed by introducing the thermal 

expansion coefficients and elastic properties. 

In Chapter 3, the fundamentals of piezoelectricity are discussed. A general 

discussion of the effects of pressure on materials precedes the introduction to 

ferroelectricity and dielectric properties of materials. The piezoelectric effect and its 

potential uses in sensors, actuators and resonators are presented in light of MEMS 

technology.    

In Chapter 4, the device under consideration, in this study, is introduced. The 

device components are analyzed utilizing the theory discussed in Chapters 2 and 3. 

Simulations of the thermal, voltage and frequency response are presented. The 

simulations consider various material candidates for both the components of the detector. 

Results and discussion are presented in Chapter 4. 

The conclusions of the present study, in Chapter 5, presents a summary of the 

results obtained along with future work and development of the proposed detector 

configuration. 
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CHAPTER 2 

FUNDAMENTALS OF THERMAL EXPANSION 

 
 

2.1 Introduction to Thermal Expansion  

In this Chapter, the fundamentals of thermal expansion as well as the effects of 

temperature on the mechanical properties of materials are discussed.   

When a material is heated, it will, in most cases, expand and when it is cooled, it 

will shrink. This is the fundamental physical phenomenon of thermal expansion. 

However, the increase in volume, upon heating, is not an absolute effect for every 

material. The result due to heating a material can be the exact opposite due to complex 

magnetic and phonon properties. In other words, there are materials that contract on 

heating [1]. 

Thermal expansion is caused by the anharmonicity of lattice vibrations. This 

means that the springs (bonds) that hold the atoms together do not exactly follow 

Hooke’s law. In order to investigate this further, because of Pauli’s Exclusion Principle, 

the atoms cannot get extremely close to each other. Therefore, the potential energy 

diverges when the inter-atomic distance, Δr, approaches zero. This asymmetry favors 

longer distances between the atoms rather than shorter ones (Figure 2.1). As a result, 

interatomic distances increase when a material is heated [1, 2]. 

The coefficient of thermal expansion, α, is given by:  

  α =
�������

���
                                                                   (2.1) 
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where, γ is Grüneisen’s parameter, CDebye  is the Debye specific heat, V is the volume and 

K is the bulk modulus.  

 

                                   � = −
����

����
   , θ is the Debye temperature                                   (2.2) 

 

The bulk modulus (K) along with the other elastic constants, Young’s modulus 

(E), Poisson’s ratio (ν) and shear modulus (G), describe the elastic properties of the 

material. 

 

--------- Potential energy 

                                                    - - - - -  average interatomic distance  

Figure 2.1 Potential energy for a typical bond as a function of interatomic distance. 
Source: [2] 

K and γ depend weakly on temperature while α shows a strong dependence similar 

to CDebye. 
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                                                                    ������ = 9���( 
�

�
 )� ∫

����

(����)�
��

�/�

�                                               (2.3) 

Therefore, the Volume is: 

                                            �(�) = �� +
��� � �

�
�( 

�

�
 )� ∫

��

����
��

�/�

�
                            (2.4) 

 

This is the theoretical thermal expansion which is used to fit the corresponding 

experimental data with refinement of θ, when γ and K are known. 

The coefficient of thermal expansion describes changes in physical dimensions 

with change in temperature. Specifically, it measures the fractional change in size per 

degree change in temperature at a constant pressure. Several types of coefficients have 

been developed to express this mathematically: volumetric, area, and linear. The choice 

of the coefficient depends on the particular application and the dimensions that are 

considered to be important in that particular application. For solids, one might only be 

concerned with the change in length, or over some area (that may include grains, grain 

boundaries, defects, dislocations etc.). 

The coefficient of volume expansion (��) is the most basic thermal expansion 

coefficient. In general, substances expand or contract when their temperature changes, 

with expansion or contraction occurring in all directions. Substances that expand at the 

same rate, in every direction, are called isotropic. For isotropic materials, the area and 

linear coefficients may be calculated from the coefficient of volume expansion as will be 

shown in the following sections. 
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2.2 General Volumetric Thermal Expansion Coefficient 

In general, the coefficient of volume expansion is given by: 

                                                           �� =
�

�
(
��

��
)�                                                         (2.5) 

 

where, � is the pressure, held constant during heating of the material, which leads to the 

expansion. Especially when dealing with the influence of heat on gas, the constant 

pressure plays an important role because it affects volume as well.  

In this study, the influence of heat on solids is considered. As described above, 

materials react to temperature fluctuations by changing their size. Commonly engineered 

solids have coefficients of thermal expansion that do not vary significantly over a range 

of temperatures. Because of this, high accuracy is not critical and calculations of change 

in physical dimensions can be made based on a constant average value of the coefficient. 

The change in physical dimensions can be distinguished in accordance with the 

way the solid reacts to the temperature change. The expansion can be volumetric, linear 

or area. 

 
2.2.1  Volumetric Expansion 

For a solid, the volumetric thermal expansion coefficient is given by: 

  

                                                         �� =
�

�

��

�� 
                                                              (2.6) 

 

where, V is the volume of the solid and dV/dT is the rate of change in volume. 
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Using the above equation and provided that the coefficient, ��, is known and does 

not change with temperature, the change in volume can be calculated using: 

                                                          
��

�
= ����                                                            (2.7) 

 

where, ΔV/V is the factional change in volume and ΔΤ is the change in temperature.   

If the coefficient of thermal expansion does change with temperature, then the 

integral form of the above has to be used. It is given by [3]: 

                                                  
��

�
= ∫ � �(�)���

����

��
                                                 (2.8) 

 

where, T0 is the initial temperature and T0+τ is the final temperature. 

 
2.2.2  Area Expansion 

In area expansion, the areal thermal expansion coefficient is connected with the change in 

the area dimensions of the heated material.  It is given by: 

                                                              �� =
�

�

��

�� 
                                                         (2.9) 

              

where, A is the area of interest and dA/dT is the change in area per unit change in 

temperature. 

 Similarly, the areal thermal expansion coefficient can be used to calculate the 

change in area.   

                                                              
 ��

�
= ����                                                     (2.10) 

If the coefficient, ��, changes with temperature, the above equation needs to be 

modified as [3]: 
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��

�
= ∫ � �(�)���

����

��
                                            (2.11) 

 

2.2.3  Linear Expansion 

For one dimensional change in the material, the linear coefficient of thermal expansion, 

which describes the change in length per degree of change in temperature, is utilized  

[3, 4]: 

  

                                                                �� =
�

�

��

�� 
                                                      (2.12) 

 

where, L is the length of the material and dL/dT is the rate of change of the dimension L 

per unit change of the temperature.  

Again provided that � is known, change in length can be calculated using the 

equation: 

                                                                
 ��

�
= ����                                                   (2.13) 

 

In this case, if α changes with temperature, integration is required: 

                                                        
��

�
= ∫ � �(�)���

����

��
                                          (2.14) 
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Table 2.1 Coefficient of Thermal Expansion for Common Elements at 20 0C 

Substance  Linear Coefficient Volumetric Coeff. 

α (1/ οC) β = 3α (1/ oC)

Aluminum  24 x 10-6 72 x 10-6

Brass  19 x 10-6 57 x 10-6

Copper 16.6x 10-6 51 x 10-6

Zn  29.7 x 10-6 27 x 10-6

ZnO  4.31 x 10-6 9 x 10-6

Iron/Steel 12 x 10-6 36 x 10-6

Lead  29 x 10-6 87 x 10-6

Ice  51 x 10-6 153 x 10-6

Diamond  1.18x10-6 950 x 10-6

Mercury  180 x v 

AlN  5.27x 10-6 15.81 x 10-6

Source: [4, 5] 

 

 
2.3 Isotropic and Anisotropic Materials 

Isotropy, in general, means uniformity in all directions/orientations. In materials science, 

isotropic materials are those that have identical properties in all directions. Metals are 

good examples of isotropic materials. 
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Figure 2.2 Crystalline structures of isotropic and anisotropic materials.  
Source: [6] 

 
 

 Most metallic alloys are considered isotropic. Such materials, as mentioned 

earlier, have four elastic constants: Young’s modulus (E), shear modulus (G), bulk 

modulus (K) and the Poisson’s ratio (ν). The relationship between the elastic constants 

can be reduced to two independent equations: 

 

                                                  � = �/[3(1 − 2�)]                                                  (2.15a) 

                                                  � = �/[2(1 + �)]                                                    (2.15b) 

 

 The simplest crystalline lattice structure is the cubic, as illustrated by the 

molecular model of sodium chloride in Figure 2.2 (a), an arrangement where all of the 

sodium and chloride ions are ordered with uniform spacing along three mutually 

perpendicular axes. Each chloride ion is surrounded by (and electrostatically bonded to) 

six individual sodium ions and vice versa for the sodium ions. It is a perfect example of 

an isotropic crystal [2, 6].  

For Isotropic materials, and for small expansions, because of the uniformity in all 

directions, the volumetric thermal expansion coefficient is three times the linear 

expansion coefficient. 
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                                                            �� = 3��                                                          (2.16) 

 

To further investigate the above, the volume composition of these materials has to 

be analyzed. In isotropic alloys, three mutually orthogonal directions are found. 

Therefore, for small changes in the material’s size, one third of the volumetric expansion 

is placed on each of the three axes.  

For a metal cube with side length L, = ��. After the metal is heated, the new 

volume will become:  

� + �� = (� + ��)� = �� + 3���� + 3���� + ��� , 

ΔL2 <<1 and ΔL3 <<1 => 

�� + 3���� = � + 3�
��

�
→ � � + ������ =  �� + 3������ => 

�� = 3�� 

 

The terms ignored are due to the fact that small changes in volume and 

temperature are considered. If large changes are utilized, then the third and fourth term 

have to be taken into consideration. 

Similarly, the relationship between areal and linear coefficient is derived: 

� + �� = (� + ��)� = �� + 2��� + ��� 

ΔL2 <<1   => 

�� + 2��� = � + 2�
��

�
→ � � + ������ = �� + 2������ => 

�� = 2�� 
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Anisotropic materials behave differently. They have anisotropic structure which 

leads to different values of properties being obtained when specimens are probed from 

several directions within the same material. Observed properties often vary depending on 

whether the observed phenomena are based on optical, acoustical, thermal, magnetic, or 

electrical properties. As mentioned earlier, isotropic properties remain symmetrical, 

regardless of the direction of measurement. In the section on thermal property, the linear 

expansion coefficient, αL, is different in different directions. The result is that, upon 

heating, they will expand unequally among the three axes [6].   

The lattice structure illustrated in Figure 2.2 (b) represents the mineral calcite 

(calcium carbonate), which consists of a rather complex, but highly ordered three-

dimensional array of calcium and carbonate ions. Calcite has an anisotropic crystalline 

lattice structure that interacts with light in a totally different manner than isotropic 

crystals. The polymer illustrated in Figure 2.2 (c) is amorphous and devoid of any 

recognizable periodic crystalline structure. Polymers often possess some degree of 

crystalline order and may or may not be optically transparent.  

 

Figure 2.3 Silica Glass -  No long range order of SiO4 tetrahedra. 
Source: [7] 
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Figure 2.4 Crystal structures. 
Source: Image taken from http://www4.nau.edu/meteorite/meteorite/book-
glossaryc.html, Glossary c by James Wittke (2009), Northern Arizona University,  
Meteorite page, College of Engineering, Forestry & Natural Sciences. Accessed 
October 2 2013 

 
 

If the crystal symmetry is monoclinic or triclinic, even the angles between these 

axes are subject to changes due to thermal cycles. In such cases, the coefficient of 

thermal expansion is treated as a tensor, with up to six independent elements. A good 

way to determine the elements of the tensor is to study the expansion by powder 

diffraction. 

 
 

2.4 Mechanical Properties 

 
2.4.1  Young’s Modulus Of Elasticity 

Young’s modulus or elastic modulus is a way to measure stiffness and is a property that 

can be used to characterize materials.  Elasticity is a material property which will restore 

its original shape after distortion. A spring is an example of an elastic object which, when 

stretched, exerts a restoring force which tends to bring it back to its original length. This 



13 
 

restoring force is, in general, proportional to the stretch described by Hooke's Law. 

Young’s modulus is defined as the ratio of the stress along a specified axis over the strain 

along the same axis.  In solid mechanics, the slope of the stress-strain curve at any point 

is called the tangent modulus. The tangent modulus of the initial, linear portion of a 

stress-strain curve is called Young's modulus and it can be experimentally determined 

from the slope of a stress-strain curve created during tensile tests conducted on a sample 

of the material. In anisotropic materials, Young's modulus may have different values 

depending on the direction of the applied force with respect to the material structure [8].  

Young’s modulus can be used to calculate the change in dimensions of an 

isotropic elastic material and predict how much the material extends under tension or 

how much it contracts under pressure and vice versa.  

Young’s modulus is not always the same in all directions depending on the nature 

of the material. Most metals and ceramics are isotropic; thus, their mechanical properties 

will remain the same no matter the orientation. If we consider the impurities that can be 

found in metals and grain structures, then, in such cases, the materials are anisotropic and 

the corresponding Young’s modulus is different depending on the direction of the strain 

or force vector.  

The calculation of Young’s modulus is performed by dividing the tensile stress by 

the tensile strain [9]: 

 

                                                            � =
�

�
=

�/��

��/��
                                                   (2.17) 
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where, E is the Young’s modulus, F is the force under tension, Ao is the cross sectional 

area where the force is applied, ΔL is the change in length, Lo is the materials’ original 

length. 

The force produced under specific strain is determined by: 

 

                               � = �
���

��
� �� = �� ,  where,  �

���

��
� = � and �� = �                 (2.18) 

 

The above equation can be used to calculate the force that the material applies in 

one direction after thermal expansion. In (Table 2.2) the Young’s modulus and elastic 

properties of some common materials are summarized. 
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Table 2.2 Young’s Modulus and Elastic Properties of some Common Materials  

 
 

Material Young's Modulus (Modulus of Elasticity) Ultimate Tensile Strength Yield Strength

- E - - Su - - Sy -

(106  psi) (109 N/m2, GPa) (106 N/m2, MPa) (106 N/m2, MPa)

ABS plastics 2.3 40

Acrylic 3.2 70

Aluminum 10 69 110 95

Aluminium Bronze 120

Antimony 11.3

Aramid 70 - 112

Beryllium (Be) 42  287

Bismuth 4.6

Bone, compact 18 170

(compression)

Bone, spongy 76

Boron 3100

Brass 102 - 125 250

Brass, Naval 100

Bronze 96 - 120

Cadmium 4.6

Carbon Fiber Reinforced Plastic 150

Carbon nanotube, single-walled 1000+

Cast Iron 4.5% C, ASTM A-48 170

Chromium 36

Cobalt 30

Concrete 17

Concrete, High Strength (compression) 30 40

(compression)

Copper 17 117 220 70

Diamond (C) 1220

Douglas fir Wood 13 50

(compression)

Fiberboard, Medium Density 4

Flax fiber 58

Glass 50 - 90 50

(compression)

Glass reinforced polyester matrix 17

Graphene 1000

Grey Cast Iron 130

Gold 10.8  74

Granite 52

Hemp fiber 35

Iridium 75

Iron 28.5  210

Lead 2

Magnesium metal (Mg) 6.4 45

Manganese 23

Marble 15

MDF - Medium-density fiberboard 4

Mercury

Molybdenum (Mo) 40  329

Nickel 31  170

Niobium (Columbium) 15

Nylon 4-Feb 75 45

Oak Wood (along grain) 11

Osmium (Os) 80  550

Phosphor Bronze 116

Pine Wood (along grain) 9 40

Platinum 21.3

Plutonium 14  97

Polycarbonate 2.6 70

Polyethylene HDPE (high density) 0.8 15

Polytehylene, LDPE (low density) 0.11 - 0.45

Polyethylene Terephthalate, PET 2 - 2.7 55

Polyimide 2.5 85

Polypropylene, PP 1.5 - 2 40

Polystyrene, PS 3 - 3.5 40
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Table 2.2 Young’s Modulus and Elastic Properties of some Common Materials 
(Continued) 

 

 1 N/m2 = 1x10-6 N/mm2 = 1 Pa = 1.4504x10-4 psi 
 1 psi (lb/in2) = 144 psf (lbf/ft

2) = 6,894.8 Pa (N/m2) = 6.895x10-3 N/mm2  
Source: [10] 

 
 
2.4.2  Poisson’s Ratio 

When a material is compressed in one dimension, it tends to expand in the two 

perpendicular directions to the direction it was compressed. This phenomenon is called 

the Poison effect. The ratio of transverse contraction strain to longitudinal extension 

strain in a stretched bar is called Poison’s Ratio (ν). In case of a material that is being 

stretched, it tends to contract in the perpendicular directions. Again, here, Poison’s ratio 

is the ratio of relative contraction to relative stretching and will have the same value as in 

the previous case. If the material shrinks in the transverse direction when compressed (or 

expand when stretched), then the Poison’s ratio will yield a negative value [11, 12]. 

Material Young's Modulus (Modulus of Elasticity) Ultimate Tensile Strength Yield Strength

- E - - Su - - Sy -

(106  psi) (109 N/m2, GPa) (106 N/m2, MPa) (106 N/m2, MPa)

Potassium

Rhodium 42

Rubber, small strain 0.01 - 0.1

Sapphire 435

Selenium 8.4

Silicon 16  130 - 185

Silicon Carbide 450 3440

Silver 10.5

Sodium

Steel, stainless AISI 302 180 860 502

Steel, Structural ASTM-A36 200 400 250

Steel, High Strength Alloy ASTM A-514 760 690

Tantalum 27

Teflon. PTFE 0.5

Thorium 8.5

Tin 47

Titanium 16

Titanium Alloy 105 - 120 900 730

Tooth enamel 83

Tungsten (W) 400 - 410

Tungsten Carbide (WC) 450 - 650

Uranium 24  170

Vanadium 19

Wrought Iron 190 - 210

Zinc 12
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Figure 2.5 Representation of poison’s effect. 
Source: [11] 

 

Mathematically,  

                                      � = −
�������

�������
= −

���

���
= −

���

���
                                               (2.19) 

 

where, ν is Poisson’s ratio,  εtrans is the transverse strain and εaxial, the axial strain. 

For a rod with thickness d under longitudinal tension, it will cause a change ΔL in 

its thickness given by: 

                                                        ��′ = −� ∙ �
��

�
                                                    (2.20) 

 

 

If we consider a cube stretched in the x-direction with ΔL representing the change 

in length in x direction and ��′ is the change in length in y and z directions, then the 

infinitesimal diagonal strains for each axis will be as follows: 

                                                                  ��� =
��

�
                                                   (2.21a) 

                                                                 ��� =
��

�
                                                    (2.21b) 
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                                                                 ��� =
��

�
                                                     (2.21c) 

                                    −� ∫
��

�

����

�
= ∫

��

�

����’

�
= ∫

��

�

����’

�
                                (2.21d) 

 

 

The above equations yield the relationship between ΔL and ��′: 

                                               (1 +
��

�
)�� = 1 −

���

�
                                                     (2.22) 

                                         For ΔL, ��′<<1   � ≈
���

��
 

The relative change in volume, ΔV/V, of the cube is given by: 

                                                       V = L3                                                                                                   (2.23a) 

                                         � + �� = (� + ��)(� − ���)�                                         (2.23b) 

                                          
��

�
= �1 +

��

�
� �1 −

���

�
�
�

− 1                                           (2.23c) 

We obtain: 

                                 
��

�
= �1 +

��

�
�
����

− 1   
��

�
≈ (1 − 2�)

��

�
                            (2.23d) 

Hooke’s law can now be generalized in three dimensions; for an isotropic 

material, the deformation in one axis can cause deformations along the perpendicular 

axes in three dimensions: 

                                         ��=
�

�
[��(1 + �) − ����+��+��)�                                    (2.24) 

 

where, εx, εy, εz  are strains in the directions x, y, z; σx, σy, σz  represent stress in the 

directions x, y and z, E is the Young’s modulus and ν is the Poison’s ratio. 
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2.4.3  Bulk Modulus 

Bulk modulus (K) measures the physical reaction of materials to uniform compression. It 

is defined as the ratio of the change in pressure to the fractional volume compression: 

                                                                 � = �
��

��
                                                      (2.25) 

where, P is the pressure and V is the volume. 

Bulk modulus is proportional to the amount of energy that can be stored in a material 

[13]. 

 
2.4.4  Shear Modulus 

Shear modulus (G) defines the rigidity of the material. It describes the response of a 

substance to shear or strain. It quantifies the deformation of a solid when an external 

force is applied parallel to one of its surfaces, while its opposite face experiences an 

opposite force.  

 

 

Figure 2.6 Shear deformation. 
Source: www.spaceflight.esa.int/impress/text/education/Mechanical%20Properties/MoreModuli.html 
Access date: 10/02/2013 

 

                                                                � =
�/�

��/�
                                                        (2.26)  
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where, F/A is the shear stress, F is the force, A is the area, Δx is the transverse 

displacement and l is the original length. The Shear modulus for some common materials 

is presented in Table 2.3. 

Table 2.3 Shear Modulus of some Common Materials 

Material
Typical values for Shear 
Modulus (Gpa) at 298 K

Diamond 478

Steel 79.3

Copper 44.7

Titanium 41.4

Glass 26.2

Aluminium 25.5

Polyethylene 0.117

Rubber 0.0006
 

Source:  http://homepages.which.net/~paul.hills/Materials/MaterialsBody.html, 

http://www.thefreelibrary.com/Cure+system+effect+on+low+temperature+dyn

amic+shear+modulus+of...-a0111451108 Access date: 11/02/2013 [14] 

  
 
                                       

2.5 Negative Thermal Expansion (NTE) 

As mentioned earlier, in nature, there are materials that have an opposite response to heat; 

i.e., instead of expanding with temperature rise, they contract. For the past two decades, 

the field of NTE has undergone a rapid expansion. The potential for applications of NTE 

materials in controlled thermal expansion composites has been thoroughly investigated 

and a number of possible applications in electronics, fiber optics and others have been 

proposed. Some of the common NTE materials are presented in Table 2.4 [2, 15].  
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Table 2.4 Typical NTE Materials  

 

Source: [2] 

 

The mechanisms for NTE can be separated into three categories. (i) flexible 

network (transverse vibrational modes), (ii) atomic radius contraction, (iii) magneto 

volume effect. 

 
2.5.1 Flexible Network 

The materials in this category are characterized by strong atomic bonds. As bonds 

strengthen, the corresponding potential well becomes more symmetric and the vibrations 

more harmonic. If the bonds are very strong, then it is possible not to experience any 

expansion at all. Negative thermal expansion occurs when dynamic deformation takes 

over free space in the crystal lattice provided that the thermal expansion of the core unit 

is suppressed. 
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Figure 2.7 Flexible network mechanism.  
 Source: [2] 

 

Structural allowance in necessary for this mechanism [2, 15]. 

 
2.5.2 Atomic Radius Contraction 

This type of NTE occurs from the variation of the atomic radius depending on the 

valency. When an atom accepts a charge (electron), it expands and when it loses one, it 

shrinks. This variation depends on the electronic configuration of the element. The total 

net volume will contract if the expansion of an electron –accepting atom is relatively 

smaller than the contraction of an electron-donating atom. NTE can occur when this 

electron transfer is thermally induced. 

Generally though, the atomic radius depends also on the spin configuration of the 

atom. So, for a given valency, the high spin state has a larger radius than that with a low 
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spin because of the Pauli’s exclusion principle that forbids to put the electrons in the 

same orbital and the same state [2].  

 
2.5.3 Magneto Volume Effect 

A large volume of a magnetic metal is likely to have a magnetic moment. The magneto 

volume effect is the induced change in volume due to a variation in the amplitude of the 

magnetic moment. From the electronic theory of solids, it can seen that an increase in 

volume suppresses the overlap of electronic orbitals and therefore reduces the width of 

electronic bands. Narrowing of the bandwidth can increase the density of states ρ(E) with 

Fermi energy Ef, which favors magnetism [2].  

Magneto volume effect corresponding to a lattice expansion can be defined as: 

 

                                                         ��
��� (�,�,�)

��
/�                                                  (2.27) 

 

where, ωs is the spontaneous volume magnetostriction, Fm(M,T,V) is the magnetic 

contribution of free energy, M  is the amplitude of the magnetic moment and K is the 

bulk modulus.  

 

                                      �� (�, �,�) =
�

�
�(�, �)�� +

�

�
�(�, �)�� + ⋯                    (2.28) 

 

where, �, b are coefficients that depend on the density of states near the Fermi 

energy. 

Combining the above equations yields: 
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                                                            �� = �� �/�                                                    (2.29) 

 

where,  � = −
�

�

��(�,�)

��
 is the magnetovolume coupling constant. 

 

  

 

Figure 2.8 Volume thermal expansion ΔV/V of Fe64.5Ni35.5.  
  Source: [2] 

 

ωs  can be estimated by subtracting the ideal lattice thermal expansion (equation 2.4) from 

the measured value. 

 
 
 

2.6 Effect of Temperature on Resistance and Resistivity 

The electrical resistance (R) of a conducting material is the impedance to an electrical 

current through the conducting material. The inverse is the electrical conductance (G) 

which shows instead how easy the current flows through the conductor [4].  
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The resistance of a conductor is the ratio of the applied voltage to the current that 

runs through it: 

 

                                                           � =
�

�
   , � =

�

�
                                                  (2.30) 

 

The resistance of a conductor depends on the shape of the material. It is inversely 

proportional to the cross-sectional area and proportional to its length: 

 

                                                           � = �
�

�
 ,  � = �

�

�
                                             (2.31) 

 

where, l is the length, A is the cross sectional area, ρ is the electrical resistivity and σ is 

the conductivity.  

The resistivity and conductivity are proportionality constants (ρ = 1/σ) and 

depend on the material. Resistivity is a measure of the material's ability to oppose electric 

current. It is given by:   

 

                                                           � = �
�

�
 ,  � = �

�

�
                                             (2.32) 

Resistivity determines if the material under consideration is a metal, semimetal, 

semiconductor, insulator or superconductor. 

Metals are characterized by delocalized or free electrons. These electrons are free 

to move within the metal. The resistivity of metals increases with temperature. This can 

be explained in many ways. A simple explanation is that, at high temperatures (energies), 

the atoms of a metal vibrate more (phonon energy increases); therefore, it is more likely 
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for a collision to occur as the electrons move, hence higher resistance/ resistivity. 

Another way to look at it is by examining the number of free electrons in a metal. Upon 

heating, more electrons are liberated from the atoms. More electrons mean more 

collisions and therefore bigger resistance. An even better explanation is on the level of 

quantum theory in combination with the above. In order for an electron to interact with an 

atom and lose some of its energy, there needs to be an appropriate change in energy level. 

When the temperature increases, the distribution of energy level in an atom widens and 

the possibilities for such interaction multiply. In this way, the energy gets lost quicker; 

this is the same as the resistance being larger.  

If the temperature does not vary too much, then a linear approximation can be 

made for the resistance: 

                                                      �(�) = ��[1 + �′(� − ��)]                                  (2.33) 

  

α' is the temperature coefficient of resistance (different reference temperatures), To is the 

fixed temperature of reference, Ro is the resistance at To [4].  

 
 

2.7 Effect of Temperature on Semiconductor Band Gap 

 In semiconductors, upon heating, the electrons move from the valence energy band to the 

conduction energy band due to the thermal energy. This leads to both the electrons 

moving free in the conduction band and the holes they leave behind also to flow freely in 

the valence band. Hence, the resistivity decreases with increasing temperature. 
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Figure 2.9 Semiconductor band structure. 

 

The electrical resistance of an undoped semiconductor decreases exponentially 

with temperature:  

                                                                  � = ���
���                                                 (2.34) 

 

An even better approximation of the temperature – resistivity relation is given by 

the Steinhart-Hart equation: 

                                                      
�

�
= � + ���(�) + �(ln(�))�                                (2.35) 

where, A, B, C are the Steinhart-Hart coefficients. 

Unlike metals, in semiconductors, there are not as many free electrons. At 

absolute zero, a semiconductor behaves like a perfect insulator.  When it is heated, 

because of the creation of electron-hole pairs, the resistivity decreases as temperature 

increases [4, 16]. 

Generally, the band-gap energy of semiconductors tends to decrease with 

increasing temperature. When temperature increases, the amplitude of atomic vibrations 
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increases, leading to larger interatomic spacing. The interaction between the lattice 

phonon and the free electrons and holes will also affect the band gap to a smaller extent. 

The relationship between band gap energy and temperature can be described by Varshni’s 

empirical expression. 

                                                          ��(�) = ��(0) −
���

���
                                        (2.36) 

where, Eg(0), �, β are material constants [16]. 

 

 

Ge (bottom/black curve), Si (blue curve) and GaAs (top/red curve) 

Figure 2.10 Temperature dependence of the energy bandgap of germanium, 
silicon and Gallium Arsenide. 
Source:  [16] 

 
 
 
 

2.8 Effect of Temperature on Reflectivity, Refractive Index and Absorption 

The electron-phonon collision frequency in a metal depends on the temperature of the 

material because of the temperature dependence of the phonon population. This is 

because, when a metal is heated, the lattice vibrations increase and hence, the free 
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electrons collide with the atoms. The temperature dependence of the collision frequency 

determines the optical properties of metals [4]. 

In order to investigate the effects of temperature on the optical properties of 

metals, the optical constants and their dependence on temperature need to be examined. 

We consider an average collision frequency of the free electrons with the vibrating lattice 

ωc. These electrons moving between the lattice atoms are under the influence of an 

electric field of optical perturbation. The dielectric constant is given by: 

 

                                            � = �� + ��� = 1 −
� �
�

� ��� �
� − �

� �
�� �

(���� �
�)�

                          (2.37) 

 

where, ε1, ε2 are the real and imaginary parts of the dielectric constant, respectively, and 

ωp is the electron plasma frequency. 

The above result is due to the Drude model. The reflectivity (R) in terms of the 

complex refractive index is: 

 

                                                                 � = �
��/���

��/���
�
�

                                               (2.38) 

 

ωc  and ωp are temperature dependent parameters. However, due to volume expansion, if 

small temperature dependence of ωp is ignored and there is no induced band structure 

with temperature rise, then the only term that depends on temperature is ωc. When 

temperature rises, ωc increases. This is because, from the Debye phonon spectrum model, 

ωc  is: 
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                                                      ��(��⃗) = ����⃗��� ∫
��

����

�/�

�
��                                (2.39) 

where, ��⃗ is the wave vector, K is a constant including the total scattering cross section of 

an isolated atom, the ion mass, the ion density, the Debye wave number, the Debye 

temperature (θ), and T is the temperature in Kelvin. Here, it is assumed that θ does not 

change with temperature. ωc  is the average of ��(��⃗) .  

For most metals, because kBT is small compared to the Fermi energy (kB is the Boltzman 

constant), even near the melting point, we can assume that the electron distribution 

remains the same as the temperature changes. So we can write: 

                                                      �� = �′�� ∫
��

����

�/�

�
��                                         (2.40) 

 

 

Figure 2.11 Electron-phonon collision frequency with 
temperature.  
Source: [1] 
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The above discussions show that the phonon population increases with 

temperature and so does the electron scattering in the lattice. The real part of the 

dielectric constant ε1 is negative and gives a large absolute value at room temperature and 

is an increasing function of ωc and T. ε2 is always negative and, at T=0 (absolute), it 

approaches zero. It reaches a minima at ωc=ω. 

Writing ωc in terms of ε1, ε2 yields: 

 

                                            (�� − 1 + � �
�/2��)� + �� = ��

�/4��                            (2.41) 

This is a circle with the circumference being the point (ε1, ε2), with a center 

(1 −
� �
�

�� �
, 0) and radius ��

�/2��. As temperature rises, the point moves counterclockwise 

[1]. 

The refractive index and the absorption coefficient are given by: 

                                                             �
�

� = � − ��                                                     (2.42) 
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                                     (2.44) 
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Figure 2.12 Refractive index and absorption coefficient with 
temperature for Cu.  
Source: [1] 
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CHAPTER 3 

FUNDAMENTALS OF PIEZOELECTRICITY 

 
 

3.1 Introduction 

In this chapter, the fundamentals of Piezoelectricity will be discussed. The objective is to 

present the effects of pressure on materials, introduce the piezoelectric effect and discuss 

the potential applications of piezoelectricity. 

 
 

3.2 Effect of Pressure on Materials 

Pressure is an important thermodynamic variable. The application of pressure in materials 

processing is vital to most experiments and, like temperature, it plays a critical role in 

materials science and technology.   

Pressure has a variety of influence on materials. Depending on the material and 

the intensity of the applied pressure, it may cause catastrophic results. In order to analyze 

the effects of pressure on materials, one has to investigate the mechanical properties of 

materials. Perhaps the most natural test can be that of the tension test, in which a sample 

of the material, having a length L and a cross sectional area A, is subjected to a load P at 

one of its ends. As the load increases, the displacement δ of the specimen increases. After 

a certain load, the material will experience catastrophic results such as breaking into one 

or more parts if critical fracture load is exceeded, or fail mechanically in other ways. The 

length of the specimen will be different at the end of the experiment. Also, the material 
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fracture load will be different now, which means that, besides the dimensional change, 

the load has influenced the material microstructure. 

This is an outcome of the fact that the strength of a uniaxially loaded object is 

proportional to the magnitude of its cross sectional area or to the number of bonds 

available.  

The strength of a material loaded in tension is: 

 

                                                                      �� =
��

��
                                                     (3.1) 

where, σf is the ultimate tensile stress, Pf is the breaking load and A0 is the original cross 

sectional area. If the load P is less than the breaking limit, then the tensile stress is given 

by: 

 

                                                                      � =
�

��
                                                       (3.2) 

Tensile stress is a fundamental measurement of internal force within the material 

[9]. 

In the field of superconductors, high temperature studies have shown that the 

superconducting transition temperature Tc (temperature at which the electrical resistivity 

drops to zero) decreases under pressure [17]. 
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Figure 3.1 Pressure dependence of Tc for Pb. 
Source: [17] 

 

In semiconductors, we find a temperature and pressure dependence of the 

dielectric constant. The pressure effect is due to the change in the polarizability with 

volume. Generally, the dielectric constant can be written as: 

 

                                                               � = �� +
���� �

�

��� ��
�                                                (3.3) 

where, ��  is the high-frequency or optical (electronic) dielectric constant, N is the 

number of unit cells per unit volume, ��  is the reduced mass of the crystal, eΤ is the 

transverse dynamic effective charge, and ωΤΟ is the long-wavelength transverse optical 

(TO)-mode frequency. 
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The second term is defined as ε1 and is the pressure and temperature dependent 

component obtained by ε(Τ,P): 
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where, εl is the lattice contribution [18]. 

 

Figure 3.2 Hydrostatic pressure dependence of the static dielectric constant of cubic ZnS 
at two temperatures.  
Source: [19]  

 

In some ferroelectric materials (like BaTiO3), an applied pressure will produce a 

voltage across the material, which, as we will see in the following section, results from a 

change in the population of negative and positive charge centers by different amounts.  
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3.3 Ferroelectricity and Piezoelectricity  

 
3.3.1 Ferroelectricity and Dielectric Properties 

The dielectric constant determines the storage capacity (capacitance C) of a dielectric 

material inserted between two parallel plates of a capacitor or in an electric field [4]. 

 

                                                               � = ���
�

�
                                                         (3.5) 

                                                                 � =
�

����
                                                          (3.6) 

where, A is the area of the plates, L is the distance between the plates, �� is the 

permittivity of empty space, Cvac is the capacitance of vacuum. 

The increasing capacitance of a dielectric, when inserted in an electric field, is 

due to certain processes that take place in the dielectric. Under the influence of an 

external electric field, dipoles (negatively charged electron cloud displaced with respect 

to the positive core) are created which possess an electric dipole moment �. 

                                                                     � = � ∙ �                                                    (3.7) 

where, x is the distance between positive and negative charge and q is the total electronic 

charge. 

This dipole formation process is called polarization. The electric field lines within 

the material are effectively weakened due to polarization and therefore, 

 

                                                                     � =
����

�
                                                     (3.8) 

 Within the material, the field is replaced by the displacement, D given by: 
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                                          � = ���� =
�

�
 , A is the surface                                          (3.9) 

The displacement is also the superposition of: 

 

                                                               � = ��� + �                                                  (3.10) 

where, P is the dielectric polarization.  

 

Table 3.1  DC Dielectric Constants of some Common Materials  

 
Source: [4] 
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Table 3.2 Electrical Properties of Nitride Piezoelectric Materials 

 
Source: [20] 

 
 

Certain materials exhibit spontaneous polarization. This behavior occurs in the 

absence of an external E-field and such a field can be used to reverse that behavior. These 

materials possess dielectric dipoles. For this reason, their dielectric constants are much 

larger than those of common materials of non-polar dielectrics by many magnitudes 

(Table 3.2).  

 

Figure 3.3  Representation of a hesteresis loop for a ferroelectric material in an E- Field. 
Source:[4] 
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In ferroelectric materials, in the presence of an external field, these dipoles can be 

reoriented. If the applied field is strong enough, the dipoles can become increasingly 

aligned with the field and almost all of them end up being close to parallel to the field. As 

a result, we have a saturation of polarization Ps. If the external field is removed, then a 

remnant polarization, Pr, is left behind. This can be removed only by applying a reversed 

field. By increasing the strength of the reversed field, a hysteresis loop can be obtained 

(Figure 3.3).  

There is a critical temperature above which the ferroelectric effects are destroyed 

and the material becomes paraelectric. This temperature is known as the Curie 

Temperature Tc. Above Tc, the temperature dependence of the dielectric permittivity 

follows a Curie-Weiss law: 

                                                           
�

��
=

�

����
                                                            (3.11) 

 

Below Tc, the dependence of the displacement D on the electric field E is highly 

nonlinear and shows a characteristic hysteresis loop (Figure 3.3) [21]. 

 As mentioned above, there are materials that can possess spontaneous 

polarization. A perfect example is BaTiO3. This can be explained by examining its 

structure (Figure 3.4). 
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Figure 3.4 Tetragonal crystal structure of BaTiO3 (Room 
temperature). 
Source: [4] 

 

The negatively charged oxygen ions and the positively charged titanium ion are 

displaced slightly from their symmetrical positions and therefore a permanent dipole 

moment exists along the c axis.  

 

Figure 3.5 Spontaneous alignments of dipoles within a domain and random alignment of 
the dipole moments of several domains in a ferroelectric material. 
Source: [4] 

 

Within a ferroelectric material, a number of these dipoles line up in domains. 

Without an external E field, the domains have random orientation so that there is no total 
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polarization. When an external field is applied, it causes a reorientation of the 

spontaneous polarization. At the same time, it orients the favorably oriented domains 

parallel to E so that the domains with a favorable orientation to the polarity field direction 

grow at the expense of those that have unfavorable orientation. The domain walls are 

shifted in the crystal lattice. After polarization, most of the reorientations are preserved 

even without the application of an electric field (Figure 3.5) However, a small number of 

the domain walls are shifted back to their original position, e.g., due to internal 

mechanical stresses [22]. 

 

(1) Unpolarized ceramic,  
               (2) Ceramic during polarization and 

       (3) Ceramic after polarization 

Figure 3.6 Orientation of the spontaneous polarization within a piezo ferroelectric 
ceramic. 
Source: [22] 
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Application of pressure on some ferroelectric materials such as BaTiO3 results in 

the generation of a small voltage across the sample. This is due to the displacement of the 

negative and positive charge centers by different amounts, because of the mechanical 

deformation, which causes a change in the polarization. This effect is called 

Piezoelectricity. The piezoelectric effect in which stress is used to generate voltage to the 

material is called direct piezoelectric effect whereas if the converse mechanism is 

considered, where an applied voltage to the piezo-material will induce a change to its 

dimensions, then the effect is called converse piezoelectric effect. 

 
3.3.2 Piezoelectric Effect 

Piezoelectricity is mathematically described in the materials’ constitutive equations. 

Constitutive equation defines how the materials’ stress (T), charge displacement (D), 

strain (S) and electric Field (E) interact.  

In order to form the equation, the following are considered:  

a) Hooke’s law:  

                                                                     � = � ∙ �                                                  (3.12) 

 where, s is the compliance (the inverse of stiffness) 

b) The equation for common dielectrics, since piezoelectric materials have electrical 

properties, is given by: 

                                                         � = � ∙ �                                                 (3.13) 

where, D is the electrical displacement, ε is the permittivity and E, the electrical field. 

Combining the above equations, we have the piezoelectric constitutive law. 
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                                                              � = �� ∙ � + �
� ∙ �                                         (3.14) 

                                                              � = � ∙ � + �� ∙ �                                          (3.15) 

where, the matrix d contains the piezoelectric coefficients of the material and is the 

matrix for the direct piezoelectric effect, dt is the matrix for the converse piezoelectric 

effect, εT is the permittivity and sE is the elasticity constant. 

 In order to model a piezoelectric material, we must know its mechanical 

properties (compliance or stiffness), its electrical properties (permittivity) and its 

piezoelectric coupling properties [23]. 

Generally, D and E are Cartesian tensors of rank-1 and permittivity ε is Cartesian 

tensor of rank 2. Strain and stress are, in principle, also rank-2 tensors. Because strain and 

stress are all symmetric tensors, the subscript of strain and stress can be re-labeled in the 

following fashion: 11 → 1; 22 → 2; 33 → 3; 23 → 4; 13 → 5; 12 → 6. 

There are totally four piezoelectric coefficients: dij, eij, gij, hij 
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where, dij defines the ratio of strain in j direction to the electric applied field in the i 

direction for constant external strains, gij is the ratio of strain applied in j direction to the 
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charge deposited perpendicular to i direction, eij is the dielectric coefficient and hij is the 

ratio of mechanical stress to applied electric displacement or electric field to mechanical 

strain. The first set of terms corresponds to the direct effect and the rest of them to the 

converse piezoelectric effect. 

A wide variety of materials are piezoelectric, including poled polycrystalline 

ceramics (e.g., lead zirconate titanate, PZT), single-crystal or highly oriented 

polycrystalline ceramics (e.g. zinc oxide and quartz), organic crystals (e.g., ammonium 

dihydrogen phosphate), and polymers (e.g. polyvinylidiene fluoride) [23, 24]. In Table 

3.3, some common piezoelectric materials are listed along with their piezoelectric 

properties. 

Table 3.3 Properties of some Piezoelectric Materials  

 
Source: [24] 
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3.4 Microelectromechanical Systems (MEMS) Technology 

Microelectromechanical systems (MEMS) refers to devices that, have a characteristic 

length between 1μm and 1mm, combine electrical and mechanical components and are 

fabricated using integrated circuit batch processing technologies. This field has grown 

exponentially over the past decades and the devices that are being manufactured using 

this technology are numerous. Electromagnetic, pneumatic, magnetic and thermal 

actuators, motors, valves, switches and many more of a size less than 100μm have been 

fabricated using MEMS technology.  The devices can be used as sensors for temperature, 

velocity and pressure, among many other physical quantities. 

Like all new technologies, over the past dozen years, MEMS emphasized on new 

materials and manufacturing methods in order to construct new microdevices. The 

technological advantages of MEMS are due to the contributions of various researchers 

whose focus has been on the mechanical testing of materials that are used to fabricate 

MEMS devices. These mechanical properties of materials include three main categories: 

elastic, inelastic and strength.  

The strength of the material must be known so that the allowable operating limits 

can be set while the elastic properties are important in order to predict the amount of 

deflection from an applied force, or vice versa as it will be utilized for the IR detector 

considered in this research. Also, if the material is ductile, then the inelastic behavior is 

important. In any case, for the design and fabrication of any MEMS device, the 

relationship between processing and properties of the materials need to be considered 

[25]. 
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3.5 Piezoelectric Sensors 

Utilizing the piezoelectric effect, piezoelectric transducers are suitable for sensor 

applications. In this section, the performance characteristics of a piezoelectric sensor will 

be investigated.   

Under small field conditions, the constitutive relations for a piezoelectric material 

can be rewritten as: 

                                                         �
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�                                            (3.20) 

When a piezoelectric element is subjected to a stress field, and assuming there is 

no electric field applied, the resulting displacement vector can be written as: 
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where,  � = �

��
��
��

�, � =

⎣
⎢
⎢
⎢
⎢
⎡
��
��
��
��
��
��⎦
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡
���
���
���
���
���
���⎦

⎥
⎥
⎥
⎥
⎤

 and � = �
0 0
0 0
��� ���

    

0 0
0 ���
��� 0

   
��� 0
0 0
0 0

� 

D1,2,3 are the electrical displacements in all 3 directions. For a sheet of piezo 

material, the poling direction is usually along the thickness (3-axis) and 1,2 are the plane 

axis. The above equation summarizes the principle of operation of piezo sensors. That is, 

a stress field generates an electric displacement because of the piezoelectric effect. The 

electric displacement D is now related to the generated charge by: 
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                                             � = ∬ [��  ��  ��]�
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�                                    (3.22) 

where, dA1,2,3 are the infinitesimal electrode areas in the 1-2, 2-3 and 1-3 planes 

respectively. As viewed, the charge depends on the dA area normal to the displacement 

D. 

The charge q and the voltage V are connected by the capacitance of the sensor Cp 

by the following equation [26]: 

                                                      � = �/��                                                   (3.23) 

 

Figure 3.7 Piezoelectric sensors. 
Source: [27] 

 If the strain/stress is applied along 1-axis, we have: 

                                                       � = �� �����                                             (3.24) 

                                                         � = ���                                                   (3.25) 
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By combining the above, 

                                                      � =
���������

�
                                             (3.26) 

where, the normal to the plane induced strain can be calculated from equations: 

                                                                        � =
�

�
                                                   (3.27a) 

                                                                       � =
��

�
                                                  (3.27b) 

where, σ is the applied stress, normal to the plane (A): 

                                                                       � = �/�                                                (3.28) 

The generated voltage from a piezoelectric material can be also calculated from 

the following equation [27, 28]: 

 

                                                                     � = �� ∙ � ∙ �                                          (3.29) 

 

where, V is the Piezoelectric generated voltage (Volts), SV is the voltage sensitivity of the 

material (V*m / N), P is the pressure (N/m2) and D is the thickness of material (m). Sv is 

provided by the material manufacturer. 
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3.6 Piezoelectric Resonators 

When exposed to an AC voltage, a piezoelectric ceramic element changes dimensions 

with the same frequency of the voltage. This change in dimensions can be viewed as a 

vibration. The frequency at which the material vibrates most readily or converts electrical 

energy into mechanical energy most efficiently is called resonance frequency.  

The pattern of an element's response is depicted in Figure 3.8. As the frequency is 

increased, the element's oscillations first approach a frequency at which impedance is 

minimum (maximum admittance). This minimum impedance frequency, fm, approximates 

the series resonance frequency, fs, the frequency at which impedance in an electrical 

circuit, describing the element, is zero, if resistance caused by mechanical losses is 

ignored. The minimum impedance frequency is also the resonance frequency, fr. The 

maximum impedance frequency is also the anti-resonance frequency, fa.  Maximum 

response from the element will be at a point between fm and fn. The composition of the 

ceramic material and the shape and volume of the element determine the resonance 

frequency. Generally, a thicker element has a lower resonance frequency than a thinner 

element of the same shape [29] 

 

Figure 3.8 Impedance as a function of frequency. 
Source:  [29] 
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As the cycling frequency is further increased, impedance increases to a maximum 

(minimum admittance). The maximum impedance frequency, fn, approximates the 

parallel resonance frequency, fp, the frequency at which parallel resistance in the 

equivalent electrical circuit is infinite, if resistance caused by mechanical losses is 

ignored. The maximum impedance frequency is also the anti-resonance frequency, fa.  

Maximum response from the element will be at a point between fm and fn. 

Values for minimum impedance frequency, fm, and maximum impedance frequency, fn, 

can be determined by measurements [29]. 

For a piezoelectric structure, the resonance frequency depends on the material size 

(or the distance between the electrodes), Young’s modulus Eeq and the density of the 

material as shown in Equation 3.30:     

                                                      � =
�
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�
���

���
                                                             (3.30) 

where, f is the resonance frequency, λ is the distance between the electrodes on the 

piezoelectric material or the material length, Eeq and ρeq are the materials’ Young’s 

modulus and density respectively. It is clear that, in the presence of a stress force, the 

distance between the electrodes will alter; hence, this will cause a change in the 

resonance frequency [30].   

Piezoelectric resonators are electronic components designed for electronic 

oscillators. They can be: 

 Crystal  

 Ceramic  

 MEMS 
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Crystal oscillators use the mechanical resonance of a piezo crystal to create 

electrical signals of precise frequencies. Likewise, ceramic resonators can generate 

oscillations at specific frequencies when combined with appropriate components. When 

voltage is applied to them, their piezoelectric vibration produces oscillating signals. 

MEMS structures, as well, produce highly stable reference frequencies and have a range 

of advantages over crystal resonators. 

Electrical Characteristics of a lossless ceramic resonator can be expressed by 

unified formulae with three basic parameters: clamped capacitance, electromechanical 

coupling factor and the gravest resonant or antiresonant frequency. While valid for a wide 

frequency range, these formulae are not easy to calculate due to transcendental functions 

involved. There are two types of piezoelectric vibrational modes, stiffened and 

unstiffened (Figures 3.9 and 3.10) [31]. 

 

Figure 3.9 Resonators vibrating in piezoelectrically stiffened 
mode.  
Source: [31] 
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Figure 3.10 Resonators vibrating in piezoelectrically unstiffened 
modes. 
Source: [31] 

 

3.6.1 Unstiffened Mode 

In the unstiffened mode, the electric field is transverse to the elastic wave’s direction; so 

there is no effect on the shape of vibration. The electrical admittance V of the resonator 

is: 

                                                   � = ���� �1 + �
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��� ���(�)�                                   (3.31) 

where, k is the coupling factor, CD is the clubbed capacitance, ω the angular frequency 

and M(X) a function of the normalized frequency X: 
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where, εD is the dielectric constant, d is the frequency determining dimension of the 

resonator, u is the face velocity of the elastic wave, A and t are the area and thickness of 
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the resonator respectively, f is the frequency and Fr and X1 are the gravest resonant 

frequency and its normalized value [31]. 

 
3.6.2 Stiffed mode 

In stiffed mode, the electric field is parallel to the direction of the elastic wave and it 

affects the shape of vibration. Here [31]: 

                                                       � = ���� /(1 − �
��)                                           (3.34) 

                                                           � = ����/�                                                      (3.35) 

                                                        � =
��

��
= (

�

�
)(

�

��
)                                                (3.36) 

                                                     

3.6.3 Approximate Formulae 

As mentioned earlier, because of the difficulty in calculations, approximate formulae 

need to be derived. The approximation is based on the expansion of M: 

                                       � =
���

�
+ �� + ��� + � ��� + ⋯ ≈

���

�
+ � �                       (3.37) 

                                           n=(X-X1)/X1 (normalized frequency deviation)                (3.38) 

From equations (3.31) and (3.37), we get: 
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The coefficients α=-C-1 and b depend on the mode. When the coupling factor is low, b 

can be neglected and we can write [31]: 
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3.7 Applications 

Piezoelectric materials are widely used in electromechanical sensors and actuators like 

telephone sensors (transmitters and receiver insets) in handsets, ultrasonic transducers for 

medical imaging or transducers sensitive in other frequency ranges like upper MHz 

range, robotic sensors, surface acoustic wave devices and many more.  

Piezoelectricity is utilized in devices that are designed to convert mechanical 

strain into electricity. These devices are called transducers. Sonar transducers apply an 

electrical pulse to a piezoelectric crystal to create a pressure wave and then produce a 

current when the reflected wave deforms the crystal. The time gap between the two 

currents is used to estimate distances. Small piezoelectric crystals can produce enough 

voltage to create a spark large enough to ignite gas. These igniters are used in many gas-

powered appliances such as ovens, grillers, room heaters, and water heaters. One of the 

best known applications is the electric cigarette lighter. While pressing the button in an 

electric cigarette lighter, a spring-enabled hummer is released to hit a piezoelectric 

crystal. The strain is transformed by the crystal to a high voltage electric current that 

flows to a small spark gap, which eventually lights the igniting gas. Applications also 

include strain gauges, phonographs, microphones among many others.  

Devices that utilize the converse effect (converse piezoelectric effect) can also be 

designed. The magnitude of the converse effect can be up to 6x10-10 m/V for PbZrO3 and 

PbTiO3 materials. Industrial inkjet printers use the converse piezoelectric effect to move 

ink through the hundreds of nozzles in their print heads fuel injectors. An electric current 

makes a tiny crystal in each nozzle bend, creating a pressure pulse that forces the ink out. 

Ink is drawn into the nozzle when the current stops and the crystal relaxes. We can also 
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find examples in earphones and diesel fuel injectors. One of the most important 

applications is the quartz crystal resonator, which is used in electronic devices as a 

frequency selective element. Specifically, a periodic strain is applied to a quartz crystal 

by an alternating electric field, which excites this crystal to vibrations. These vibrations 

are monitored, in turn, by piezoelectricity. If the applied frequency coincides with the 

natural resonance frequency of the molecules, then amplification occurs. In this way, 

very distinct frequencies are produced, which are utilized for clocks or radio frequency 

signals [4]. 

During recent years, the study of micro-electromechanical systems (MEMS) has 

shown that there are significant opportunities for microsensors and microactuators based 

on various physical mechanisms such as piezoresistive, capacitive, piezoelectric, 

magnetic, and electrostatic. MEMS themes include miniaturization, multiplicity, and 

microelectronics manufacturing and integration. These devices can replace bulky 

actuators and sensors with micro-scale devices that can be produced in integrated circuit 

photolithography. MEMS are miniature versions of traditional electrical and mechanical 

devices (Figures 3.11 and 3.12) - such as valves, pressure sensors, hinged mirrors, gears 

etc. The principle of sensors is based on a variety of physical phenomena: piezoresistive, 

capacitance, resonance, piezoelectric, pyroelectric and thermoelectric. Microactuators use 

mainly these phenomena: thermal expansion forces, shape memory alloys, piezoelectric 

layers, electrostatic and electromagnetic forces [32]. Huge technology opportunities for 

MEMS are present in automotive applications including: medicine, defense, controls, and 

communications. Other applications include biomedical pressure sensors and projection 

displays [24]. 
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Figure 3.11 Microscopic view of C-HEMT structure – MEMS pressure sensor. 
Source: [32] 

 

Figure 3.12 SiC substrate and AlGaN/GaN/AiN layers of MEMS sensor. 
Source: [32] 

 

MEMS can be classified into two major categories: sensors and actuators. MEMS 

sensors, or microsensors, usually rely on integrated microfabrication methods to realize 

mechanical structures that predictably deform or respond to a specific physical or 

chemical variable. Such responses can be observed through a variety of physical 

detection methods including electronic and optical effects. Structures and devices are 

designed to be sensitive to changes in resistance (piezoresistivity), changes in 
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capacitance, and changes in charge (piezoelectricity), with amplitude usually proportional 

to the magnitude of the stimulus sensed. Examples of microsensors include 

accelerometers, pressure sensors, strain gauges, flow sensors, thermal sensors, chemical 

sensors and biosensors.  

A really good example of a thermal detector (Figure 3.12) was introduced by 

Northeastern University. 

“Here a heat absorbing element and a temperature sensitive 

microelectromechanical system (MEMS) resonator are perfectly overlapped but separated 

by a microscale air gap. This unique design guarantees efficient and fast (10s;µs) heat 

transfer from the absorbing element to the temperature sensitive device with a thermal 

power as low as 150nW and enables high resolution thermal power detection (nW), 

thanks to the low noise performance of the high quality factor (Q¼2305) MEMS resonant 

thermal detector” [33].  

 

Figure 3.13 3-D schematic representation of the proposed 
micromechanical resonant thermal detector and its equivalent thermal 
circuit 
Source: [33] 
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Table 3.4 PI Ceramic Material Properties 

   PIC151  PIC153  PIC255/252  PIC050 

Physical and Dielectric Properties             

Density ρ [g/cm
3
]   7.8  7.6  7.8  4.7 

Curie temperature Tc [°C]  250  185  350  >500 

Relative permittivity in the polarization direction 
ε33

T
/ε0

2400  4200  1750  60 

Perpendicular to the polarization ε11/ε0 1980     1650  85 

Dielectric loss factor tan δ [10-3]   20  30  20  <1 

Acousto-Mechanical Properties             

Elastic compliance coefficient             

s11
E [10-12 m2 /N]   15     16.1    

s33
E [10-12 m2 /N]  19     20.7    

Mechanical quality factor Qm   100  50  80    

Electro-Mechanical Properties             

Piezoelectric deformation coefficient, piezo 
modulus* 

           

d31 [pm/V]  -210     -180    

d33 [pm/V]  500  600  400  40 

d15 [pm/V]        550  80 

Source: [22] 

MEMS actuators or microactuators are usually based on electrostatic, 
piezoelectric, magnetic, thermal, and pneumatic forces. Examples of microactuators 
include positioners, valves, pumps, deformable mirrors, switches, shutters, and resonators 
[24]. In Table 3.4, the physical and dielectric properties of some actuator materials (from 
PI Ceramic) are summarized. 
 
 
3.7.1 Actuators 

Actuators can be divided into four categories depending on their displacement mode.  

3.7.1.1 Longitudinal Stack Actuators. “In longitudinal piezo actuators, the electric field 

in the ceramic layer is applied parallel to the direction of polarization. This induces an 

expansion or displacement in the direction of polarization. Individual layers provide 

relatively low displacements. Many individual layers are mechanically connected in 
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series and electrically connected in parallel (Figure 3.13), in order to achieve technically 

useful displacement values”[22]. 

 

                                                           ������ = ����(��)�                                          (3.41) 

 

where, ΔL is the displacement, d33(GS) is the longitudinal piezoelectric large-signal 

deformation coefficient [m/V], n is the number of stacked ceramic layers and V is the 

operating voltage. 

“Longitudinal stack actuators (Figure 3.14) are highly efficient in converting 

electrical energy to mechanical energy. They achieve nominal displacements of around 

0.1 to 0.15% of the actuator length. The nominal blocking forces are on the order of 30 

N/mm2 in relation to the cross-sectional area of the actuator. Values of up to several 

10,000 Newtons can thus be achieved in the actuator. Longitudinal stack actuators are 

excellently suited for highly dynamic operation due to their high resonant frequencies. A 

mechanical preloading of the actuator suppresses dynamically induced tensile forces in 

brittle ceramic material, allowing response times in the microsecond range and a high 

mechanical performance” [22]. 
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Figure 3.14 Longitudinal actuators.  
Source: [22] 

 

3.7.1.2 Shear Actuators. “In piezoelectric shear actuators (Figure 3.15), the electric field 

in the ceramic layer is applied orthogonally to the direction of polarization; so the 

displacement is in the direction of polarization. The displacement of the layers, added up 

as in stacked actuators, is given by” [22]: 

  

                                                            ������� = ����(��)�                                       (3.42) 

 

where, ΔL is the shear displacement, d15(GS) is the shear piezoelectric large-signal 

deformation coefficient [m/V], n is the number of stacked ceramic layers and V is the 

operating Voltage. 

“The shear deformation coefficients d15 are normally the largest piezoelectric 

coefficients. When controlled with nominal voltages, PIC ceramics achieve d15(GS) values 

of up to 2000 pm/V. The permissible controlling field strength is limited in order to 

prevent a reversal of the vertically oriented polarization. When lateral forces act on the 
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actuator, the shear motion is additionally superimposed by bending. The same effect 

occurs in dynamic operation near the resonant frequency. Furthermore, shear stresses 

cannot be compensated by a mechanical preload. Both limit the practical stacking height 

of shear stacks. Shear actuators, combined with longitudinal actuators, yield very 

compact XYZ stacks with high resonant frequencies” [22]. 

 

Figure 3.15 Shear actuators.  
Source: [22] 

 

3.7.1.3 Tube Actuators. “Tube actuators are radially polarized and take advantage of the 

transversal piezoelectric effect to generate displacement. The electrodes are applied on 

the outer surfaces, so that the field parallel to the polarization also runs in a radial 

direction. Axial displacements or changes in length (Figure 3.16a), lateral motions such 

as changes in the radius (Figure 3.16b), as well as bending (Figure 3.16c) are all possible. 

In order to cause a tube to bend, the outer electrode is segmented into several sections” 

[22]: 

 

                                                           ������� = ���(��)
�

�
�                                         (3.43) 
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                                                         ��������� = 0.9���(��)
��

��
�                                 (3.45) 

 

where, ΔLaxial is the axial displacement, ΔLradial the radial displacement, ΔLlateral the 

lateral tube displacement, l the tube length, ID the internal tube diameter and t the 

thickness of the tube. 

 

 

  a)axial displacement    b)Radial Displacement   c)Bending actuator XY scanning tubes       
Figure 3.16 Tube actuators. 
Source: [22] 

 

“When the respectively opposite electrodes are controlled, the tube bends in a 

lateral direction. Undesirable tilting or axial motions that occur during this process can be 

prevented by more complex electrode arrangements” [22].  

3.7.1.4 Contracting Actuators. “Typically, piezo contracting actuators are low-profile 

components. Their displacement occurs perpendicularly to the polarization direction and 

to the electric field.  Like in the case of tube actuators, the displacement of contracting 
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actuators is based on the transversal piezoelectric effect. Multilayer elements offer 

decisive advantages over single-layer piezo elements in regard to technical realization. 

Due to the larger cross-sectional area, they generate higher forces and can be operated 

with a lower voltage” [22] (Figure 3.17): 

 

                                                              ������� = ���(��)
�

�
�                                     (3.46) 

where, ΔLtrans is the transversal displacement, l the length of the piezo ceramic and h the 

height of the ceramic layer. 

 

Figure 3.17 Contracting actuators. 
Source: [22] 

 

 As a result of the contraction, tensile stresses occur that can cause damage to the 

brittle piezo ceramic.  

3.7.1.5 Bending Actuators. “When attached to a substrate, contracting actuators can act 

as bending actuators (Figure 3.18). For the construction of all-ceramic benders, two 

active piezoceramic elements are joined and electrically controlled. For example, if a 

passive substrate made of metal or ceramic material is used, one refers to them as 

composite benders” [22].  
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The piezoceramic elements can be designed as individual layers or as multilayer 

elements. Piezoelectric bending actuators function according to the principle of 

thermostatic bimetals. 

 

Figure 3.18 Bending actuators. 
Source: [22] 

  

“When a flat piezo contracting actuator is coupled to a substrate, the driving and 

contraction of the ceramic creates a bending moment that converts the small transversal 

change in length into a large bending displacement vertical to the contraction. Depending 

on the geometry, translation factors of 30 to 40 are attainable, although at the cost of the 

conversion efficiency and the force generation. With piezoelectric bending actuators, 

displacements of up to several millimeters can be achieved with response times in the 

millisecond range. However, the blocking forces are relatively low. They are typically in 

the range of milli Newton to a few Newton” [22]. 
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CHAPTER 4 

DEVICE MODELING, SIMULATIONS AND DISCUSSION 

                                                                      
 

4.1 Introduction 

Infrared Imaging technology has made impressive progress during the past decades. 

Various types of cooled and uncooled infrared (IR) detectors have been designed 

including diodes, quantum wells (InGaAs, HgCdTe), thermoelectrics, bolometers, 

piezoelectrics, Schottky barrier detectors and many others. Present CMOS, Charge 

Couple Devices (CCD) and microbolometer detectors require complex and precise 

photon to electron conversion techniques at the quantum semiconductor level. This 

complexity and precision means that reliable manufacturing techniques are utilized and 

hence the costs to set up, build and maintain such devices is big. In this chapter, the 

fundamentals described in the previous two chapters are utilized and combined in order 

to present and discuss the design concept of a MEMS based IR detector [34]. 

Every pixel of the device has two parts: the metal-piezoelectric component 

(Figures 4.1 and 4.2) and the optics (for example, microlens) (Figure 4.3), constructed 

using the MEMS process, for improved performance of the metal-piezoelectric detector.  

The metal part uses the thermal expansion coefficient of a metal to translate the 

temperature change in the metal (due to the incident IR radiation) into a stress induced in 

the piezo. The piezoelectric material utilizes the applied strain from the metal to produce 

a voltage which is indirectly related to the scene temperature. The optics part of the 

device consists of an infrared (micro) lens which also works as a band pass filter 

operating in the wavelength range of 8 to 14 microns. 
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Figure 4.1 MEMS detector schematic. 
Source: [34] 

 

Figure 4.2 Schematic of the detector. 
Source: [34] 

 
 
                                                    

4.2 Optics  

 The modeling of the optics is done by utilizing the Blackbody Calculator (BBC) [35]. An 

extended blackbody source is assumed, with specific lens (Optics), dewar window 

(Window), and filter transmission values. The filter can have up to two different 

wavelength bands. The blackbody temperature and the various elements that determine 

the system are manually inputted by the user and have the ability to specify the units for 

the resulting values on the focal plane area that corresponds to the location of the pixel. If 
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a unit is changed, the value displayed is converted according to the new units. The 

calculated parameters are shown in the beige box in real-time and include the total 

integrated focal plane flux (or radiance) in photon or power units along with the 

sensitivity of this flux (radiance) to a 1 K temperature change [35]. The BBC is shown in 

Figure 4.3. 

 

 

 

Figure 4.3 Blackbody Calculator (BBC). 
Source: [35] http://www.sbfp.com/fluxcalc/fluxcalculator.html Access Date: 10/25/2013 

 

For a black body scene temperature of 300 K, a bandwidth of 8 to 14 μm and the 

rest of the parameters set for maximum performance, the corresponding thermal flux on 

the pixel is 2.48x10-3 Watts/cm2.  
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4.3 Interaction of IR Radiation with Metal-Piezo Detector Configuration 

For the pixel, a simple linear model is assumed, where the pixel (absorber) is a block that 

is thermally connected to ambient by a thermally conductive PbSe multiple bridge 

design.  Convection and radiation are ignored. The detector dimensions are chosen to be 

50x50x10 microns and the bridge to be consisting of 50 bridges of 5μm (length) x 1μm2. 

Therefore, the total amount of energy available to the detector at 300 K is 2.48x10-9 

W/cm2. In order to determine the temperature of the detector, the thermal conductivity of 

the bridge, along with its thermal resistance, must be considered.   

 

For a metal, the thermal conductance is given by: 

                                                    � =
���

�
                                                           (4.1) 

where, CT is the material’s thermal conductivity, A is the detector’s incident area and L 

the thickness.    

Thermal resistance is the inverse of conductance and is given by: 

                                                     �� =
�

�
                                                           (4.2) 

To calculate the pixel temperature (above ambient), the product of the bridge’s 

thermal resistance and the energy available to the detector is determined. Copper is 

considered to be the material of the detector and, for a scene temperature range of 300 to 

370 K (with a step of 5 degrees), by acquiring the thermal flux for each scene 

temperature, the pixel temperature is calculated. In Table 4.1, the material thermal 

properties are presented. The calculated results are summarized in Table 4.2. In Figures 

4.4 and 4.5, the pixel temperature, above ambient, with respect to the scene temperature 

and pixel temperature, with respect to detector displacement, respectively are presented. 
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Table 4.1 Thermal Properties of Materials 

Metal Cu Zinc Brass PbSe PbTe PbS

Thermal 
Conductivity 

(W/mK) (300K) 401 116 109 1.6 2.1 2.55

Melting point  (K) 1358 692 1193

(CTE) linear 16.6*10-6 29.7*10-6 18.7*10-6 5.27*10-6

(CTE) Area 33.2*10-6 5.94x10-5 3.74x10-5

(CTE) Volume 49.8*10-6 89.1*10-6 56.1*10-6

Source: [36] 

Table 4.2 Pixel Temperature and Detector Displacement with Respect to Scene 
Temperature 

Scene 
temp 

(K)

thermal flux* 
(Watts/cm^2)

pixel flux 
(Watts)(50x50)

pixel temp above 
ambient (K) 

(50x50)

Detectors 
displacement 

(m)

300 2.48E-03 6.20E-08 9.69E+00 1.61E-09

305 2.68E-03 6.70E-08 1.05E+01 1.74E-09

310 2.88E-03 7.20E-08 1.13E+01 1.87E-09

315 3.09E-03 7.72E-08 1.21E+01 2.00E-09

320 3.31E-03 8.28E-08 1.29E+01 2.15E-09

325 3.54E-03 8.85E-08 1.38E+01 2.30E-09

330 3.78E-03 9.45E-08 1.48E+01 2.45E-09

335 4.05E-03 1.01E-07 1.58E+01 2.63E-09

340 4.28E-03 1.07E-07 1.67E+01 2.78E-09

345 4.54E-03 1.14E-07 1.77E+01 2.94E-09

350 4.81E-03 1.20E-07 1.88E+01 3.12E-09

355 5.10E-03 1.28E-07 1.99E+01 3.31E-09

360 5.39E-03 1.35E-07 2.11E+01 3.50E-09

365 5.68E-03 1.42E-07 2.22E+01 3.68E-09

370 5.99E-03 1.50E-07 2.34E+01 3.88E-09
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Figure 4.4 Pixel temperature as a function of scene temperature for Cu 
using a PbSe multiple thermal bridge. 
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Figure 4.5 Detector displacement as a function of scene temp. 
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4.4 Performance Analyses of Candidates for Metal- Piezo Detector Configuration 

As mentioned above, the detector’s pixel consists of a metal part physically interfaced to 

a piezo part. The structure is constructed using the MEMS process and its schematic is 

presented in Figures 4.1 and 4.2.   

Chapter 1 of this thesis presented an overview of the reaction of metals to heat, 

i.e., change in their dimensions according to their coefficient of thermal expansion 

(CTE). Most materials are isotropic and change their dimensions uniformly in all 

directions. This change in dimensions with temperature can be used to create a stress 

force applied to other materials such as piezoelectrics as will be seen in the following 

section. 

 
4.4.1 Metal and Thermal Response 

In this section, calculations for three different metals are presented: copper, zinc and 

brass. We consider two different sizes for the materials: 1x1x1 microns and 10x10x10 

microns. Taking into consideration the coefficient of thermal expansion for each metal 

and equations (2.7), (2.9) and (2.13), linear, area and volume displacements are 

calculated for each metal. A range of temperatures is used so as to not to exceed 60% of 

their melting point. Using Young’s modulus and Equation (2.18), the stress force due to 

the expansion of each material is derived.  In Table 4.1, the thermal properties of the 

three metals, under consideration, are presented. In Tables 4.3, 4.4 and 4.5, the calculated 

results with the corresponding plots (Figures 4.6, 4.7 and 4.8) of the linear displacement 

of the metals with temperature are presented. 
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Table 4.3 Copper - Results 1x1x1 and 10x10x10 (microns)  
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Figure 4.6 Linear displacement of Copper as a function of temperature. 

               1x1x1 (micron)                    10x10x10(micron)

T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress force (N) T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress Force (N)

300 3.32E-11 6.64E-17 9.96E-23 3.88E-06 300 3.32E-10 6.64E-15 9.96E-20 3.88E-04

304 9.96E-11 1.99E-16 2.99E-22 1.17E-05 304 9.96E-10 1.99E-14 2.99E-19 1.17E-03

308 1.66E-10 3.32E-16 4.98E-22 1.94E-05 308 1.66E-09 3.32E-14 4.98E-19 1.94E-03

312 2.32E-10 4.65E-16 6.97E-22 2.72E-05 312 2.32E-09 4.65E-14 6.97E-19 2.72E-03

316 2.99E-10 5.98E-16 8.96E-22 3.50E-05 316 2.99E-09 5.98E-14 8.96E-19 3.50E-03

320 3.65E-10 7.30E-16 1.10E-21 4.27E-05 320 3.65E-09 7.30E-14 1.10E-18 4.27E-03

324 4.32E-10 8.63E-16 1.29E-21 5.05E-05 324 4.32E-09 8.63E-14 1.29E-18 5.05E-03

328 4.98E-10 9.96E-16 1.49E-21 5.83E-05 328 4.98E-09 9.96E-14 1.49E-18 5.83E-03

332 5.64E-10 1.13E-15 1.69E-21 6.60E-05 332 5.64E-09 1.13E-13 1.69E-18 6.60E-03

336 6.31E-10 1.26E-15 1.89E-21 7.38E-05 336 6.31E-09 1.26E-13 1.89E-18 7.38E-03

340 6.97E-10 1.39E-15 2.09E-21 8.16E-05 340 6.97E-09 1.39E-13 2.09E-18 8.16E-03

344 7.64E-10 1.53E-15 2.29E-21 8.93E-05 344 7.64E-09 1.53E-13 2.29E-18 8.93E-03

348 8.3E-10 1.66E-15 2.49E-21 9.71E-05 348 8.30E-09 1.66E-13 2.49E-18 9.71E-03

352 8.96E-10 1.79E-15 2.69E-21 1.05E-04 352 8.96E-09 1.79E-13 2.69E-18 1.05E-02

356 9.63E-10 1.93E-15 2.89E-21 1.13E-04 356 9.63E-09 1.93E-13 2.89E-18 1.13E-02

360 1.03E-09 2.06E-15 3.09E-21 1.20E-04 360 1.03E-08 2.06E-13 3.09E-18 1.20E-02

364 1.1E-09 2.19E-15 3.29E-21 1.28E-04 364 1.10E-08 2.19E-13 3.29E-18 1.28E-02

368 1.16E-09 2.32E-15 3.49E-21 1.36E-04 368 1.16E-08 2.32E-13 3.49E-18 1.36E-02

372 1.23E-09 2.46E-15 3.69E-21 1.44E-04 372 1.23E-08 2.46E-13 3.69E-18 1.44E-02

376 1.29E-09 2.59E-15 3.88E-21 1.51E-04 376 1.29E-08 2.59E-13 3.88E-18 1.51E-02

380 1.36E-09 2.72E-15 4.08E-21 1.59E-04 380 1.36E-08 2.72E-13 4.08E-18 1.59E-02

384 1.43E-09 2.86E-15 4.28E-21 1.67E-04 384 1.43E-08 2.86E-13 4.28E-18 1.67E-02

388 1.49E-09 2.99E-15 4.48E-21 1.75E-04 388 1.49E-08 2.99E-13 4.48E-18 1.75E-02

392 1.56E-09 3.12E-15 4.68E-21 1.83E-04 392 1.56E-08 3.12E-13 4.68E-18 1.83E-02

396 1.63E-09 3.25E-15 4.88E-21 1.90E-04 396 1.63E-08 3.25E-13 4.88E-18 1.90E-02

400 1.69E-09 3.39E-15 5.08E-21 1.98E-04 400 1.69E-08 3.39E-13 5.08E-18 1.98E-02



74 
 

Table 4.4 Zinc - Results 1x1x1 and 10x10x10 (microns)  

 

300 350 400

0.00E+000

5.00E-009

1.00E-008

1.50E-008

2.00E-008

2.50E-008

3.00E-008

3.50E-008

L
in

e
a

r 
D

is
p

la
ce

m
e

n
t 
(m

)

Temperature (K)

 Dl Zinc
  Dl (10x10x10)

 

Figure 4.7 Linear displacement of Zinc as a function of temperature. 

 

               1x1x1 (micron)                    10x10x10(micron)

T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress force (N) T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress Force (N)

300 5.94E-11 1.19E-16 1.78E-22 4.91E-06 300 5.94E-10 1.19E-14 1.78E-19 4.91E-04

304 1.78E-10 3.56E-16 5.35E-22 1.47E-05 304 1.78E-09 3.56E-14 5.35E-19 1.47E-03

308 2.97E-10 5.94E-16 8.91E-22 2.46E-05 308 2.97E-09 5.94E-14 8.91E-19 2.46E-03

312 4.16E-10 8.32E-16 1.25E-21 3.44E-05 312 4.16E-09 8.32E-14 1.25E-18 3.44E-03

316 5.35E-10 1.07E-15 1.60E-21 4.42E-05 316 5.35E-09 1.07E-13 1.60E-18 4.42E-03

320 6.53E-10 1.31E-15 1.96E-21 5.40E-05 320 6.53E-09 1.31E-13 1.96E-18 5.40E-03

324 7.72E-10 1.54E-15 2.32E-21 6.39E-05 324 7.72E-09 1.54E-13 2.32E-18 6.39E-03

328 8.91E-10 1.78E-15 2.67E-21 7.37E-05 328 8.91E-09 1.78E-13 2.67E-18 7.37E-03

332 1.01E-09 2.02E-15 3.03E-21 8.35E-05 332 1.01E-08 2.02E-13 3.03E-18 8.35E-03

336 1.13E-09 2.26E-15 3.39E-21 9.33E-05 336 1.13E-08 2.26E-13 3.39E-18 9.33E-03

340 1.25E-09 2.49E-15 3.74E-21 1.03E-04 340 1.25E-08 2.49E-13 3.74E-18 1.03E-02

344 1.37E-09 2.73E-15 4.10E-21 1.13E-04 344 1.37E-08 2.73E-13 4.10E-18 1.13E-02

348 1.49E-09 2.97E-15 4.46E-21 1.23E-04 348 1.49E-08 2.97E-13 4.46E-18 1.23E-02

352 1.6E-09 3.21E-15 4.81E-21 1.33E-04 352 1.60E-08 3.21E-13 4.81E-18 1.33E-02

356 1.72E-09 3.45E-15 5.17E-21 1.42E-04 356 1.72E-08 3.45E-13 5.17E-18 1.42E-02

360 1.84E-09 3.68E-15 5.52E-21 1.52E-04 360 1.84E-08 3.68E-13 5.52E-18 1.52E-02

364 1.96E-09 3.92E-15 5.88E-21 1.62E-04 364 1.96E-08 3.92E-13 5.88E-18 1.62E-02

368 2.08E-09 4.16E-15 6.24E-21 1.72E-04 368 2.08E-08 4.16E-13 6.24E-18 1.72E-02

372 2.2E-09 4.40E-15 6.59E-21 1.82E-04 372 2.20E-08 4.40E-13 6.59E-18 1.82E-02

376 2.32E-09 4.63E-15 6.95E-21 1.92E-04 376 2.32E-08 4.63E-13 6.95E-18 1.92E-02

380 2.44E-09 4.87E-15 7.31E-21 2.01E-04 380 2.44E-08 4.87E-13 7.31E-18 2.01E-02

384 2.55E-09 5.11E-15 7.66E-21 2.11E-04 384 2.55E-08 5.11E-13 7.66E-18 2.11E-02

388 2.67E-09 5.35E-15 8.02E-21 2.21E-04 388 2.67E-08 5.35E-13 8.02E-18 2.21E-02

392 2.79E-09 5.58E-15 8.38E-21 2.31E-04 392 2.79E-08 5.58E-13 8.38E-18 2.31E-02

396 2.91E-09 5.82E-15 8.73E-21 2.41E-04 396 2.91E-08 5.82E-13 8.73E-18 2.41E-02

400 3.03E-09 6.06E-15 9.09E-21 2.51E-04 400 3.03E-08 6.06E-13 9.09E-18 2.51E-02
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Table 4.5 Brass - Results 1x1x1 and 10x10x10 (microns)  
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Figure 4.8 Linear displacement of Brass as a function of temperature. 

               1x1x1 (micron)                    10x10x10(micron)

T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress force (N) T (K) Δl (m) ΔA (m^2) ΔV (m^3) Stress Force (N)

300 3.74E-11 7.48E-17 1.12E-22 4.49E-06 300 3.74E-10 7.48E-15 1.12E-19 4.49E-04

304 1.12E-10 2.24E-16 3.37E-22 1.35E-05 304 1.12E-09 2.24E-14 3.37E-19 1.35E-03

308 1.87E-10 3.74E-16 5.61E-22 2.24E-05 308 1.87E-09 3.74E-14 5.61E-19 2.24E-03

312 2.62E-10 5.24E-16 7.85E-22 3.14E-05 312 2.62E-09 5.24E-14 7.85E-19 3.14E-03

316 3.37E-10 6.73E-16 1.01E-21 4.04E-05 316 3.37E-09 6.73E-14 1.01E-18 4.04E-03

320 4.11E-10 8.23E-16 1.23E-21 4.94E-05 320 4.11E-09 8.23E-14 1.23E-18 4.94E-03

324 4.86E-10 9.72E-16 1.46E-21 5.83E-05 324 4.86E-09 9.72E-14 1.46E-18 5.83E-03

328 5.61E-10 1.12E-15 1.68E-21 6.73E-05 328 5.61E-09 1.12E-13 1.68E-18 6.73E-03

332 6.36E-10 1.27E-15 1.91E-21 7.63E-05 332 6.36E-09 1.27E-13 1.91E-18 7.63E-03

336 7.11E-10 1.42E-15 2.13E-21 8.53E-05 336 7.11E-09 1.42E-13 2.13E-18 8.53E-03

340 7.85E-10 1.57E-15 2.36E-21 9.42E-05 340 7.85E-09 1.57E-13 2.36E-18 9.42E-03

344 8.6E-10 1.72E-15 2.58E-21 1.03E-04 344 8.60E-09 1.72E-13 2.58E-18 1.03E-02

348 9.35E-10 1.87E-15 2.81E-21 1.12E-04 348 9.35E-09 1.87E-13 2.81E-18 1.12E-02

352 1.01E-09 2.02E-15 3.03E-21 1.21E-04 352 1.01E-08 2.02E-13 3.03E-18 1.21E-02

356 1.08E-09 2.17E-15 3.25E-21 1.30E-04 356 1.08E-08 2.17E-13 3.25E-18 1.30E-02

360 1.16E-09 2.32E-15 3.48E-21 1.39E-04 360 1.16E-08 2.32E-13 3.48E-18 1.39E-02

364 1.23E-09 2.47E-15 3.70E-21 1.48E-04 364 1.23E-08 2.47E-13 3.70E-18 1.48E-02

368 1.31E-09 2.62E-15 3.93E-21 1.57E-04 368 1.31E-08 2.62E-13 3.93E-18 1.57E-02

372 1.38E-09 2.77E-15 4.15E-21 1.66E-04 372 1.38E-08 2.77E-13 4.15E-18 1.66E-02

376 1.46E-09 2.92E-15 4.38E-21 1.75E-04 376 1.46E-08 2.92E-13 4.38E-18 1.75E-02

380 1.53E-09 3.07E-15 4.60E-21 1.84E-04 380 1.53E-08 3.07E-13 4.60E-18 1.84E-02

384 1.61E-09 3.22E-15 4.82E-21 1.93E-04 384 1.61E-08 3.22E-13 4.82E-18 1.93E-02

388 1.68E-09 3.37E-15 5.05E-21 2.02E-04 388 1.68E-08 3.37E-13 5.05E-18 2.02E-02

392 1.76E-09 3.52E-15 5.27E-21 2.11E-04 392 1.76E-08 3.52E-13 5.27E-18 2.11E-02

396 1.83E-09 3.67E-15 5.50E-21 2.20E-04 396 1.83E-08 3.67E-13 5.50E-18 2.20E-02

400 1.91E-09 3.81E-15 5.72E-21 2.29E-04 400 1.91E-08 3.81E-13 5.72E-18 2.29E-02
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4.4.2 Piezoelectric Material - Voltage Response 

In this section, three piezoelectric materials: AlN, BaTiO3 and PZT, in two different sizes 

1x1x1 micron3 and 10x10x10 micron3, are considered. The strain force from the metal 

calculated in the previous section is transformed into stress via equation (3.28) and then 

into strain through equation (3.27). Knowing the strain together with the mechanical, 

electrical and piezoelectric constants of the piezo material, the output voltage of the 

piezo, using equation (3.26), is calculated. The capacitance is derived from equation 

(3.5).  

 

Table 4.6 Voltage Calculations for Cu-AlN Pair 

 

                     1x1x1              10x10x10

T (K) C (F) σ (N/m^2) ε Voltage (V) C (F) σ (N/m^2) ε Voltage (V)

300 7.97E-17 3.88E+06 1.13E-05 2.49E-01 7.97E-16 3.88E+06 1.13E-05 2.49E+00

304 7.97E-17 1.17E+07 3.38E-05 7.46E-01 7.97E-16 1.17E+07 3.38E-05 7.46E+00

308 7.97E-17 1.94E+07 5.63E-05 1.24E+00 7.97E-16 1.94E+07 5.63E-05 1.24E+01

312 7.97E-17 2.72E+07 7.89E-05 1.74E+00 7.97E-16 2.72E+07 7.89E-05 1.74E+01

316 7.97E-17 3.50E+07 1.01E-04 2.24E+00 7.97E-16 3.50E+07 1.01E-04 2.24E+01

320 7.97E-17 4.27E+07 1.24E-04 2.73E+00 7.97E-16 4.27E+07 1.24E-04 2.73E+01

324 7.97E-17 5.05E+07 1.46E-04 3.23E+00 7.97E-16 5.05E+07 1.46E-04 3.23E+01

328 7.97E-17 5.83E+07 1.69E-04 3.73E+00 7.97E-16 5.83E+07 1.69E-04 3.73E+01

332 7.97E-17 6.60E+07 1.91E-04 4.23E+00 7.97E-16 6.60E+07 1.91E-04 4.23E+01

336 7.97E-17 7.38E+07 2.14E-04 4.72E+00 7.97E-16 7.38E+07 2.14E-04 4.72E+01

340 7.97E-17 8.16E+07 2.37E-04 5.22E+00 7.97E-16 8.16E+07 2.37E-04 5.22E+01

344 7.97E-17 8.93E+07 2.59E-04 5.72E+00 7.97E-16 8.93E+07 2.59E-04 5.72E+01

348 7.97E-17 9.71E+07 2.82E-04 6.22E+00 7.97E-16 9.71E+07 2.82E-04 6.22E+01

352 7.97E-17 1.05E+08 3.04E-04 6.71E+00 7.97E-16 1.05E+08 3.04E-04 6.71E+01

356 7.97E-17 1.13E+08 3.27E-04 7.21E+00 7.97E-16 1.13E+08 3.27E-04 7.21E+01

360 7.97E-17 1.20E+08 3.49E-04 7.71E+00 7.97E-16 1.20E+08 3.49E-04 7.71E+01

364 7.97E-17 1.28E+08 3.72E-04 8.20E+00 7.97E-16 1.28E+08 3.72E-04 8.20E+01

368 7.97E-17 1.36E+08 3.94E-04 8.70E+00 7.97E-16 1.36E+08 3.94E-04 8.70E+01

372 7.97E-17 1.44E+08 4.17E-04 9.20E+00 7.97E-16 1.44E+08 4.17E-04 9.20E+01

376 7.97E-17 1.51E+08 4.39E-04 9.70E+00 7.97E-16 1.51E+08 4.39E-04 9.70E+01

380 7.97E-17 1.59E+08 4.62E-04 1.02E+01 7.97E-16 1.59E+08 4.62E-04 1.02E+02

384 7.97E-17 1.67E+08 4.84E-04 1.07E+01 7.97E-16 1.67E+08 4.84E-04 1.07E+02

388 7.97E-17 1.75E+08 5.07E-04 1.12E+01 7.97E-16 1.75E+08 5.07E-04 1.12E+02

392 7.97E-17 1.83E+08 5.29E-04 1.17E+01 7.97E-16 1.83E+08 5.29E-04 1.17E+02

396 7.97E-17 1.90E+08 5.52E-04 1.22E+01 7.97E-16 1.90E+08 5.52E-04 1.22E+02

400 7.97E-17 1.98E+08 5.74E-04 1.27E+01 7.97E-16 1.98E+08 5.74E-04 1.27E+02
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Table 4.7 Voltage Calculations for Cu-BaTiO3 Pair 

 

 

 

 

 

 

 

 

                                   1x1x1                                      10x10x10    

T (K) C (F) ε Voltage C (F) ε Voltage (V)

300 1.11E-14 5.80E-05 2.74E-02 1.11E-13 5.80E-05 2.74E-01

304 1.11E-14 1.74E-04 8.21E-02 1.11E-13 1.74E-04 8.21E-01

308 1.11E-14 2.90E-04 1.37E-01 1.11E-13 2.90E-04 1.37E+00

312 1.11E-14 4.06E-04 1.92E-01 1.11E-13 4.06E-04 1.92E+00

316 1.11E-14 5.22E-04 2.46E-01 1.11E-13 5.22E-04 2.46E+00

320 1.11E-14 6.38E-04 3.01E-01 1.11E-13 6.38E-04 3.01E+00

324 1.11E-14 7.54E-04 3.56E-01 1.11E-13 7.54E-04 3.56E+00

328 1.11E-14 8.70E-04 4.11E-01 1.11E-13 8.70E-04 4.11E+00

332 1.11E-14 9.86E-04 4.65E-01 1.11E-13 9.86E-04 4.65E+00

336 1.11E-14 1.10E-03 5.20E-01 1.11E-13 1.10E-03 5.20E+00

340 1.11E-14 1.22E-03 5.75E-01 1.11E-13 1.22E-03 5.75E+00

344 1.11E-14 1.33E-03 6.30E-01 1.11E-13 1.33E-03 6.30E+00

348 1.11E-14 1.45E-03 6.84E-01 1.11E-13 1.45E-03 6.84E+00

352 1.11E-14 1.57E-03 7.39E-01 1.11E-13 1.57E-03 7.39E+00

356 1.11E-14 1.68E-03 7.94E-01 1.11E-13 1.68E-03 7.94E+00

360 1.11E-14 1.80E-03 8.49E-01 1.11E-13 1.80E-03 8.49E+00

364 1.11E-14 1.91E-03 9.03E-01 1.11E-13 1.91E-03 9.03E+00

368 1.11E-14 2.03E-03 9.58E-01 1.11E-13 2.03E-03 9.58E+00

372 1.11E-14 2.15E-03 1.01E+00 1.11E-13 2.15E-03 1.01E+01

376 1.11E-14 2.26E-03 1.07E+00 1.11E-13 2.26E-03 1.07E+01

380 1.11E-14 2.38E-03 1.12E+00 1.11E-13 2.38E-03 1.12E+01

384 1.11E-14 2.49E-03 1.18E+00 1.11E-13 2.49E-03 1.18E+01

388 1.11E-14 2.61E-03 1.23E+00 1.11E-13 2.61E-03 1.23E+01

392 1.11E-14 2.72E-03 1.29E+00 1.11E-13 2.72E-03 1.29E+01

396 1.11E-14 2.84E-03 1.34E+00 1.11E-13 2.84E-03 1.34E+01

400 1.11E-14 2.96E-03 1.40E+00 1.11E-13 2.96E-03 1.40E+01
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Table 4.8 Voltage Calculations for Cu-PZT Pair 

 

 

In Tables 4.6, 4.7 and 4.8, the calculated results for the output voltage of the three 

piezoelectric materials, when physically attached to copper, are summarized. In Figures 

4.9 and 4.10, voltage as a function of temperature, for detector dimensions 1x1x1 and 

10x10x10 micron3, respectively, is presented. 

                              1x1x1                                         10x10x10    

T (K) C (F) ε Voltage (V) C (F) ε Voltage (V)

300 1.51E-14 6.17E-05 3.02E-02 1.51E-13 6.17E-05 3.02E-01

304 1.51E-14 1.85E-04 9.06E-02 1.51E-13 1.85E-04 9.06E-01

308 1.51E-14 3.08E-04 1.51E-01 1.51E-13 3.08E-04 1.51E+00

312 1.51E-14 4.32E-04 2.11E-01 1.51E-13 4.32E-04 2.11E+00

316 1.51E-14 5.55E-04 2.72E-01 1.51E-13 5.55E-04 2.72E+00

320 1.51E-14 6.78E-04 3.32E-01 1.51E-13 6.78E-04 3.32E+00

324 1.51E-14 8.02E-04 3.93E-01 1.51E-13 8.02E-04 3.93E+00

328 1.51E-14 9.25E-04 4.53E-01 1.51E-13 9.25E-04 4.53E+00

332 1.51E-14 1.05E-03 5.13E-01 1.51E-13 1.05E-03 5.13E+00

336 1.51E-14 1.17E-03 5.74E-01 1.51E-13 1.17E-03 5.74E+00

340 1.51E-14 1.29E-03 6.34E-01 1.51E-13 1.29E-03 6.34E+00

344 1.51E-14 1.42E-03 6.94E-01 1.51E-13 1.42E-03 6.94E+00

348 1.51E-14 1.54E-03 7.55E-01 1.51E-13 1.54E-03 7.55E+00

352 1.51E-14 1.66E-03 8.15E-01 1.51E-13 1.66E-03 8.15E+00

356 1.51E-14 1.79E-03 8.76E-01 1.51E-13 1.79E-03 8.76E+00

360 1.51E-14 1.91E-03 9.36E-01 1.51E-13 1.91E-03 9.36E+00

364 1.51E-14 2.03E-03 9.96E-01 1.51E-13 2.03E-03 9.96E+00

368 1.51E-14 2.16E-03 1.06E+00 1.51E-13 2.16E-03 1.06E+01

372 1.51E-14 2.28E-03 1.12E+00 1.51E-13 2.28E-03 1.12E+01

376 1.51E-14 2.40E-03 1.18E+00 1.51E-13 2.40E-03 1.18E+01

380 1.51E-14 2.53E-03 1.24E+00 1.51E-13 2.53E-03 1.24E+01

384 1.51E-14 2.65E-03 1.30E+00 1.51E-13 2.65E-03 1.30E+01

388 1.51E-14 2.77E-03 1.36E+00 1.51E-13 2.77E-03 1.36E+01

392 1.51E-14 2.90E-03 1.42E+00 1.51E-13 2.90E-03 1.42E+01

396 1.51E-14 3.02E-03 1.48E+00 1.51E-13 3.02E-03 1.48E+01

400 1.51E-14 3.14E-03 1.54E+00 1.51E-13 3.14E-03 1.54E+01
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Figure 4.9 Voltage as a function of temperature for 1x1x1 micron3 Cu-piezo 
pairs.  
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Figure 4.10 Voltage as a function of temperature for 10x10x10 micron3 Cu-
piezo pairs.  
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Table 4.9 Voltage Calculations for Zinc-AlN Pair 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     1x1x1              10x10x10

T (K) C (F) σ (N/m^2) ε Voltage (V) C (F) σ (N/m^2) ε Voltage (V)

300 7.97E-17 4.91E+06 1.42E-05 3.14E-01 7.97E-16 4.91E+06 1.42E-05 3.14E+00

304 7.97E-17 1.47E+07 4.27E-05 9.43E-01 7.97E-16 1.47E+07 4.27E-05 9.43E+00

308 7.97E-17 2.46E+07 7.12E-05 1.57E+00 7.97E-16 2.46E+07 7.12E-05 1.57E+01

312 7.97E-17 3.44E+07 9.97E-05 2.20E+00 7.97E-16 3.44E+07 9.97E-05 2.20E+01

316 7.97E-17 4.42E+07 1.28E-04 2.83E+00 7.97E-16 4.42E+07 1.28E-04 2.83E+01

320 7.97E-17 5.40E+07 1.57E-04 3.46E+00 7.97E-16 5.40E+07 1.57E-04 3.46E+01

324 7.97E-17 6.39E+07 1.85E-04 4.09E+00 7.97E-16 6.39E+07 1.85E-04 4.09E+01

328 7.97E-17 7.37E+07 2.14E-04 4.72E+00 7.97E-16 7.37E+07 2.14E-04 4.72E+01

332 7.97E-17 8.35E+07 2.42E-04 5.34E+00 7.97E-16 8.35E+07 2.42E-04 5.34E+01

336 7.97E-17 9.33E+07 2.71E-04 5.97E+00 7.97E-16 9.33E+07 2.71E-04 5.97E+01

340 7.97E-17 1.03E+08 2.99E-04 6.60E+00 7.97E-16 1.03E+08 2.99E-04 6.60E+01

344 7.97E-17 1.13E+08 3.28E-04 7.23E+00 7.97E-16 1.13E+08 3.28E-04 7.23E+01

348 7.97E-17 1.23E+08 3.56E-04 7.86E+00 7.97E-16 1.23E+08 3.56E-04 7.86E+01

352 7.97E-17 1.33E+08 3.85E-04 8.49E+00 7.97E-16 1.33E+08 3.85E-04 8.49E+01

356 7.97E-17 1.42E+08 4.13E-04 9.12E+00 7.97E-16 1.42E+08 4.13E-04 9.12E+01

360 7.97E-17 1.52E+08 4.42E-04 9.75E+00 7.97E-16 1.52E+08 4.42E-04 9.75E+01

364 7.97E-17 1.62E+08 4.70E-04 1.04E+01 7.97E-16 1.62E+08 4.70E-04 1.04E+02

368 7.97E-17 1.72E+08 4.99E-04 1.10E+01 7.97E-16 1.72E+08 4.99E-04 1.10E+02

372 7.97E-17 1.82E+08 5.27E-04 1.16E+01 7.97E-16 1.82E+08 5.27E-04 1.16E+02

376 7.97E-17 1.92E+08 5.56E-04 1.23E+01 7.97E-16 1.92E+08 5.56E-04 1.23E+02

380 7.97E-17 2.01E+08 5.84E-04 1.29E+01 7.97E-16 2.01E+08 5.84E-04 1.29E+02

384 7.97E-17 2.11E+08 6.13E-04 1.35E+01 7.97E-16 2.11E+08 6.13E-04 1.35E+02

388 7.97E-17 2.21E+08 6.41E-04 1.41E+01 7.97E-16 2.21E+08 6.41E-04 1.41E+02

392 7.97E-17 2.31E+08 6.70E-04 1.48E+01 7.97E-16 2.31E+08 6.70E-04 1.48E+02

396 7.97E-17 2.41E+08 6.98E-04 1.54E+01 7.97E-16 2.41E+08 6.98E-04 1.54E+02

400 7.97E-17 2.51E+08 7.27E-04 1.60E+01 7.97E-16 2.51E+08 7.27E-04 1.60E+02
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Table 4.10 Voltage Calculations for Zinc-BaTiO3 Pair 

 

 

 

 

 

 

 

 

                                   1x1x1                                      10x10x10    

T (K) C (F) ε Voltage C (F) ε Voltage (V)

300 1.11E-14 7.33E-05 3.46E-02 1.11E-13 7.33E-05 3.46E-01

304 1.11E-14 2.20E-04 1.04E-01 1.11E-13 2.20E-04 1.04E+00

308 1.11E-14 3.67E-04 1.73E-01 1.11E-13 3.67E-04 1.73E+00

312 1.11E-14 5.13E-04 2.42E-01 1.11E-13 5.13E-04 2.42E+00

316 1.11E-14 6.60E-04 3.12E-01 1.11E-13 6.60E-04 3.12E+00

320 1.11E-14 8.07E-04 3.81E-01 1.11E-13 8.07E-04 3.81E+00

324 1.11E-14 9.53E-04 4.50E-01 1.11E-13 9.53E-04 4.50E+00

328 1.11E-14 1.10E-03 5.19E-01 1.11E-13 1.10E-03 5.19E+00

332 1.11E-14 1.25E-03 5.89E-01 1.11E-13 1.25E-03 5.89E+00

336 1.11E-14 1.39E-03 6.58E-01 1.11E-13 1.39E-03 6.58E+00

340 1.11E-14 1.54E-03 7.27E-01 1.11E-13 1.54E-03 7.27E+00

344 1.11E-14 1.69E-03 7.96E-01 1.11E-13 1.69E-03 7.96E+00

348 1.11E-14 1.83E-03 8.66E-01 1.11E-13 1.83E-03 8.66E+00

352 1.11E-14 1.98E-03 9.35E-01 1.11E-13 1.98E-03 9.35E+00

356 1.11E-14 2.13E-03 1.00E+00 1.11E-13 2.13E-03 1.00E+01

360 1.11E-14 2.27E-03 1.07E+00 1.11E-13 2.27E-03 1.07E+01

364 1.11E-14 2.42E-03 1.14E+00 1.11E-13 2.42E-03 1.14E+01

368 1.11E-14 2.57E-03 1.21E+00 1.11E-13 2.57E-03 1.21E+01

372 1.11E-14 2.71E-03 1.28E+00 1.11E-13 2.71E-03 1.28E+01

376 1.11E-14 2.86E-03 1.35E+00 1.11E-13 2.86E-03 1.35E+01

380 1.11E-14 3.01E-03 1.42E+00 1.11E-13 3.01E-03 1.42E+01

384 1.11E-14 3.15E-03 1.49E+00 1.11E-13 3.15E-03 1.49E+01

388 1.11E-14 3.30E-03 1.56E+00 1.11E-13 3.30E-03 1.56E+01

392 1.11E-14 3.45E-03 1.63E+00 1.11E-13 3.45E-03 1.63E+01

396 1.11E-14 3.59E-03 1.70E+00 1.11E-13 3.59E-03 1.70E+01

400 1.11E-14 3.74E-03 1.77E+00 1.11E-13 3.74E-03 1.77E+01
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Table 4.11 Voltage Calculations for Zinc-PZT Pair 

 

 

In Tables 4.9, 4.10 and 4.11, the calculated results, for the output voltage of the 

three piezoelectric materials when physically attached to Zinc, are presented. In Figures 

4.11 and 4.12 the output voltage as a function of temperature for the two different 

dimensions of the detector (1x1x1 micron3and 10x10x10 micron3) are shown. 

                                   1x1x1                                      10x10x10    

T (K) C (F) ε Voltage C (F) ε Voltage (V)

300 1.51E-14 7.80E-05 3.82E-02 1.51E-13 7.80E-05 3.82E-01

304 1.51E-14 2.34E-04 1.15E-01 1.51E-13 2.34E-04 1.15E+00

308 1.51E-14 3.90E-04 1.91E-01 1.51E-13 3.90E-04 1.91E+00

312 1.51E-14 5.46E-04 2.67E-01 1.51E-13 5.46E-04 2.67E+00

316 1.51E-14 7.02E-04 3.44E-01 1.51E-13 7.02E-04 3.44E+00

320 1.51E-14 8.58E-04 4.20E-01 1.51E-13 8.58E-04 4.20E+00

324 1.51E-14 1.01E-03 4.96E-01 1.51E-13 1.01E-03 4.96E+00

328 1.51E-14 1.17E-03 5.73E-01 1.51E-13 1.17E-03 5.73E+00

332 1.51E-14 1.33E-03 6.49E-01 1.51E-13 1.33E-03 6.49E+00

336 1.51E-14 1.48E-03 7.26E-01 1.51E-13 1.48E-03 7.26E+00

340 1.51E-14 1.64E-03 8.02E-01 1.51E-13 1.64E-03 8.02E+00

344 1.51E-14 1.79E-03 8.78E-01 1.51E-13 1.79E-03 8.78E+00

348 1.51E-14 1.95E-03 9.55E-01 1.51E-13 1.95E-03 9.55E+00

352 1.51E-14 2.11E-03 1.03E+00 1.51E-13 2.11E-03 1.03E+01

356 1.51E-14 2.26E-03 1.11E+00 1.51E-13 2.26E-03 1.11E+01

360 1.51E-14 2.42E-03 1.18E+00 1.51E-13 2.42E-03 1.18E+01

364 1.51E-14 2.57E-03 1.26E+00 1.51E-13 2.57E-03 1.26E+01

368 1.51E-14 2.73E-03 1.34E+00 1.51E-13 2.73E-03 1.34E+01

372 1.51E-14 2.89E-03 1.41E+00 1.51E-13 2.89E-03 1.41E+01

376 1.51E-14 3.04E-03 1.49E+00 1.51E-13 3.04E-03 1.49E+01

380 1.51E-14 3.20E-03 1.57E+00 1.51E-13 3.20E-03 1.57E+01

384 1.51E-14 3.35E-03 1.64E+00 1.51E-13 3.35E-03 1.64E+01

388 1.51E-14 3.51E-03 1.72E+00 1.51E-13 3.51E-03 1.72E+01

392 1.51E-14 3.66E-03 1.79E+00 1.51E-13 3.66E-03 1.79E+01

396 1.51E-14 3.82E-03 1.87E+00 1.51E-13 3.82E-03 1.87E+01

400 1.51E-14 3.98E-03 1.95E+00 1.51E-13 3.98E-03 1.95E+01
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Figure 4.11 Voltage as a function of temperature for 1x1x1 micron3 Zinc-
piezo pairs.  
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Figure 4.12 Voltage as a function of temperature for 10x10x10 micron3 
Zinc-piezo pairs.  
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Table 4.12 Voltage Calculations for Brass-AlN Pair 

 

 

 

 

 

 

 

 

 

 

                     1x1x1              10x10x10

T (K) C (F) σ (N/m^2) ε Voltage (V) C (F) σ (N/m^2) ε Voltage (V)

300 7.97E-17 4.49E+06 1.30E-05 2.87E-01 7.97E-16 4.49E+06 1.30E-05 2.87E+00

304 7.97E-17 1.35E+07 3.90E-05 8.62E-01 7.97E-16 1.35E+07 3.90E-05 8.62E+00

308 7.97E-17 2.24E+07 6.51E-05 1.44E+00 7.97E-16 2.24E+07 6.51E-05 1.44E+01

312 7.97E-17 3.14E+07 9.11E-05 2.01E+00 7.97E-16 3.14E+07 9.11E-05 2.01E+01

316 7.97E-17 4.04E+07 1.17E-04 2.59E+00 7.97E-16 4.04E+07 1.17E-04 2.59E+01

320 7.97E-17 4.94E+07 1.43E-04 3.16E+00 7.97E-16 4.94E+07 1.43E-04 3.16E+01

324 7.97E-17 5.83E+07 1.69E-04 3.73E+00 7.97E-16 5.83E+07 1.69E-04 3.73E+01

328 7.97E-17 6.73E+07 1.95E-04 4.31E+00 7.97E-16 6.73E+07 1.95E-04 4.31E+01

332 7.97E-17 7.63E+07 2.21E-04 4.88E+00 7.97E-16 7.63E+07 2.21E-04 4.88E+01

336 7.97E-17 8.53E+07 2.47E-04 5.46E+00 7.97E-16 8.53E+07 2.47E-04 5.46E+01

340 7.97E-17 9.42E+07 2.73E-04 6.03E+00 7.97E-16 9.42E+07 2.73E-04 6.03E+01

344 7.97E-17 1.03E+08 2.99E-04 6.61E+00 7.97E-16 1.03E+08 2.99E-04 6.61E+01

348 7.97E-17 1.12E+08 3.25E-04 7.18E+00 7.97E-16 1.12E+08 3.25E-04 7.18E+01

352 7.97E-17 1.21E+08 3.51E-04 7.76E+00 7.97E-16 1.21E+08 3.51E-04 7.76E+01

356 7.97E-17 1.30E+08 3.77E-04 8.33E+00 7.97E-16 1.30E+08 3.77E-04 8.33E+01

360 7.97E-17 1.39E+08 4.03E-04 8.90E+00 7.97E-16 1.39E+08 4.03E-04 8.90E+01

364 7.97E-17 1.48E+08 4.29E-04 9.48E+00 7.97E-16 1.48E+08 4.29E-04 9.48E+01

368 7.97E-17 1.57E+08 4.56E-04 1.01E+01 7.97E-16 1.57E+08 4.56E-04 1.01E+02

372 7.97E-17 1.66E+08 4.82E-04 1.06E+01 7.97E-16 1.66E+08 4.82E-04 1.06E+02

376 7.97E-17 1.75E+08 5.08E-04 1.12E+01 7.97E-16 1.75E+08 5.08E-04 1.12E+02

380 7.97E-17 1.84E+08 5.34E-04 1.18E+01 7.97E-16 1.84E+08 5.34E-04 1.18E+02

384 7.97E-17 1.93E+08 5.60E-04 1.24E+01 7.97E-16 1.93E+08 5.60E-04 1.24E+02

388 7.97E-17 2.02E+08 5.86E-04 1.29E+01 7.97E-16 2.02E+08 5.86E-04 1.29E+02

392 7.97E-17 2.11E+08 6.12E-04 1.35E+01 7.97E-16 2.11E+08 6.12E-04 1.35E+02

396 7.97E-17 2.20E+08 6.38E-04 1.41E+01 7.97E-16 2.20E+08 6.38E-04 1.41E+02

400 7.97E-17 2.29E+08 6.64E-04 1.46E+01 7.97E-16 2.29E+08 6.64E-04 1.46E+02
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Table 4.13 Voltage Calculations for Brass-BaTiO3 Pair 

 

 

 

 

 

 

 

 

                                   1x1x1                                      10x10x10    

T (K) C (F) ε Voltage C (F) ε Voltage (V)

300 1.11E-14 6.70E-05 3.16E-02 1.11E-13 6.70E-05 3.16E-01

304 1.11E-14 2.01E-04 9.49E-02 1.11E-13 2.01E-04 9.49E-01

308 1.11E-14 3.35E-04 1.58E-01 1.11E-13 3.35E-04 1.58E+00

312 1.11E-14 4.69E-04 2.21E-01 1.11E-13 4.69E-04 2.21E+00

316 1.11E-14 6.03E-04 2.85E-01 1.11E-13 6.03E-04 2.85E+00

320 1.11E-14 7.37E-04 3.48E-01 1.11E-13 7.37E-04 3.48E+00

324 1.11E-14 8.71E-04 4.11E-01 1.11E-13 8.71E-04 4.11E+00

328 1.11E-14 1.00E-03 4.74E-01 1.11E-13 1.00E-03 4.74E+00

332 1.11E-14 1.14E-03 5.38E-01 1.11E-13 1.14E-03 5.38E+00

336 1.11E-14 1.27E-03 6.01E-01 1.11E-13 1.27E-03 6.01E+00

340 1.11E-14 1.41E-03 6.64E-01 1.11E-13 1.41E-03 6.64E+00

344 1.11E-14 1.54E-03 7.27E-01 1.11E-13 1.54E-03 7.27E+00

348 1.11E-14 1.67E-03 7.91E-01 1.11E-13 1.67E-03 7.91E+00

352 1.11E-14 1.81E-03 8.54E-01 1.11E-13 1.81E-03 8.54E+00

356 1.11E-14 1.94E-03 9.17E-01 1.11E-13 1.94E-03 9.17E+00

360 1.11E-14 2.08E-03 9.81E-01 1.11E-13 2.08E-03 9.81E+00

364 1.11E-14 2.21E-03 1.04E+00 1.11E-13 2.21E-03 1.04E+01

368 1.11E-14 2.34E-03 1.11E+00 1.11E-13 2.34E-03 1.11E+01

372 1.11E-14 2.48E-03 1.17E+00 1.11E-13 2.48E-03 1.17E+01

376 1.11E-14 2.61E-03 1.23E+00 1.11E-13 2.61E-03 1.23E+01

380 1.11E-14 2.75E-03 1.30E+00 1.11E-13 2.75E-03 1.30E+01

384 1.11E-14 2.88E-03 1.36E+00 1.11E-13 2.88E-03 1.36E+01

388 1.11E-14 3.01E-03 1.42E+00 1.11E-13 3.01E-03 1.42E+01

392 1.11E-14 3.15E-03 1.49E+00 1.11E-13 3.15E-03 1.49E+01

396 1.11E-14 3.28E-03 1.55E+00 1.11E-13 3.28E-03 1.55E+01

400 1.11E-14 3.42E-03 1.61E+00 1.11E-13 3.42E-03 1.61E+01
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Table 4.14 Voltage Calculations for Brass-PZT Pair 

 

 

In Tables 4.12, 4.13 and 4.14, the calculated results, for the output voltage of the 

three piezoelectric materials when physically attached to brass, are presented. In Figures 

4.13 and 4.14, voltage as a function of temperature for detector dimensions 1x1x1 

micron3 and 10x10x10 micron3, respectively, are shown. 

 

 

                                   1x1x1                                      10x10x10    

T (K) C (F) ε Voltage C (F) ε Voltage (V)

300 1.51E-14 7.12E-05 3.49E-02 1.51E-13 7.12E-05 3.49E-01

304 1.51E-14 2.14E-04 1.05E-01 1.51E-13 2.14E-04 1.05E+00

308 1.51E-14 3.56E-04 1.74E-01 1.51E-13 3.56E-04 1.74E+00

312 1.51E-14 4.99E-04 2.44E-01 1.51E-13 4.99E-04 2.44E+00

316 1.51E-14 6.41E-04 3.14E-01 1.51E-13 6.41E-04 3.14E+00

320 1.51E-14 7.84E-04 3.84E-01 1.51E-13 7.84E-04 3.84E+00

324 1.51E-14 9.26E-04 4.54E-01 1.51E-13 9.26E-04 4.54E+00

328 1.51E-14 1.07E-03 5.23E-01 1.51E-13 1.07E-03 5.23E+00

332 1.51E-14 1.21E-03 5.93E-01 1.51E-13 1.21E-03 5.93E+00

336 1.51E-14 1.35E-03 6.63E-01 1.51E-13 1.35E-03 6.63E+00

340 1.51E-14 1.50E-03 7.33E-01 1.51E-13 1.50E-03 7.33E+00

344 1.51E-14 1.64E-03 8.02E-01 1.51E-13 1.64E-03 8.02E+00

348 1.51E-14 1.78E-03 8.72E-01 1.51E-13 1.78E-03 8.72E+00

352 1.51E-14 1.92E-03 9.42E-01 1.51E-13 1.92E-03 9.42E+00

356 1.51E-14 2.07E-03 1.01E+00 1.51E-13 2.07E-03 1.01E+01

360 1.51E-14 2.21E-03 1.08E+00 1.51E-13 2.21E-03 1.08E+01

364 1.51E-14 2.35E-03 1.15E+00 1.51E-13 2.35E-03 1.15E+01

368 1.51E-14 2.49E-03 1.22E+00 1.51E-13 2.49E-03 1.22E+01

372 1.51E-14 2.64E-03 1.29E+00 1.51E-13 2.64E-03 1.29E+01

376 1.51E-14 2.78E-03 1.36E+00 1.51E-13 2.78E-03 1.36E+01

380 1.51E-14 2.92E-03 1.43E+00 1.51E-13 2.92E-03 1.43E+01

384 1.51E-14 3.06E-03 1.50E+00 1.51E-13 3.06E-03 1.50E+01

388 1.51E-14 3.21E-03 1.57E+00 1.51E-13 3.21E-03 1.57E+01

392 1.51E-14 3.35E-03 1.64E+00 1.51E-13 3.35E-03 1.64E+01

396 1.51E-14 3.49E-03 1.71E+00 1.51E-13 3.49E-03 1.71E+01

400 1.51E-14 3.63E-03 1.78E+00 1.51E-13 3.63E-03 1.78E+01
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Figure 4.13 Voltage as a function of temperature for 1x1x1 micron3 Brass-
piezo pairs.  
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Figure 4.14 Voltage as a function of temperature for 10x10x10 micron3 
Brass-piezo pairs.  
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4.4.3 Frequency Response 

In order to test the frequency response of the pixel, Equation 3.30 is utilized as well as 

Equations 3.27a, 3.27b and 3.28 in order to calculate the change in the piezo dimensions 

(distance between the electrodes). The results are shown in Tables 4.18a, 4.18b, 4.19a 

4.19b, 4.20a and 4.20b for copper, zinc and brass as the metal component of the detector 

respectively. a and b point to the detector dimensions (1x1x1 micron3 and 10x10x10 

micron3, respectively). Resonance frequencies at room temperature (298 K) and density 

of the piezoelectric materials are listed in Table 4.15.  

 

Table 4.15 Resonance Frequency of AlN, BaTiO3 and PZT at Room Temperature 

AlN (Hz) BatiO3 (Hz) PZT (Hz)

F0 (298) 514237478.26 1666804881.76 1449137674.62

ρ(Kg/m^3) 3260 6029 7500

 

Table 4.16a Frequency Response of AlN, BaTiO3 and PZT with Cu as the Metal Part 
Dimensions 1x1x1 micron3 

 

T (K) ΔL(AlN) (m) ΔL(BaTiO3) (m) ΔL(PZT) (m) Fq (AlN) (Hz) Fq(BaTiO3) (Hz) Fq(PZT) (Hz) ΔF (AlN) (Hz) ΔF (BaTiO3) (Hz) ΔF (PZT) (Hz)

300 1.13E-11 5.80E-11 6.17E-11 5142432710.48 1666901522.24 1449227029.82 57927.86 96640.48 89355.20

304 3.38E-11 1.74E-10 1.85E-10 5142548570.13 1667094836.83 1449405773.28 173787.51 289955.07 268098.66

308 5.63E-11 2.90E-10 3.08E-10 5142664434.99 1667288196.25 1449584560.83 289652.38 483314.50 446886.21

312 7.89E-11 4.06E-10 4.32E-10 5142780305.08 1667481600.54 1449763392.50 405522.46 676718.79 625717.88

316 1.01E-10 5.22E-10 5.55E-10 5142896180.39 1667675049.71 1449942268.30 521397.77 870167.95 804593.68

320 1.24E-10 6.38E-10 6.78E-10 5143012060.92 1667868543.76 1450121188.24 637278.30 1063662.00 983513.62

324 1.46E-10 7.54E-10 8.02E-10 5143127946.67 1668062082.72 1450300152.35 753164.05 1257200.96 1162477.73

328 1.69E-10 8.70E-10 9.25E-10 5143243837.65 1668255666.60 1450479160.63 869055.03 1450784.85 1341486.01

332 1.91E-10 9.86E-10 1.05E-09 5143359733.84 1668449295.42 1450658213.11 984951.23 1644413.66 1520538.49

336 2.14E-10 1.10E-09 1.17E-09 5143475635.27 1668642969.19 1450837309.80 1100852.65 1838087.44 1699635.18

340 2.37E-10 1.22E-09 1.29E-09 5143591541.91 1668836687.93 1451016450.72 1216759.29 2031806.18 1878776.10

344 2.59E-10 1.33E-09 1.42E-09 5143707453.78 1669030451.66 1451195635.88 1332671.16 2225569.90 2057961.26

348 2.82E-10 1.45E-09 1.54E-09 5143823370.87 1669224260.38 1451374865.30 1448588.25 2419378.63 2237190.69

352 3.04E-10 1.57E-09 1.66E-09 5143939293.19 1669418114.12 1451554139.00 1564510.57 2613232.37 2416464.38

356 3.27E-10 1.68E-09 1.79E-09 5144055220.73 1669612012.89 1451733457.00 1680438.11 2807131.14 2595782.38

360 3.49E-10 1.80E-09 1.91E-09 5144171153.50 1669805956.71 1451912819.30 1796370.88 3001074.96 2775144.68

364 3.72E-10 1.91E-09 2.03E-09 5144287091.49 1669999945.59 1452092225.93 1912308.88 3195063.84 2954551.31

368 3.94E-10 2.03E-09 2.16E-09 5144403034.71 1670193979.55 1452271676.90 2028252.10 3389097.80 3134002.28

372 4.17E-10 2.15E-09 2.28E-09 5144518983.16 1670388058.61 1452451172.23 2144200.54 3583176.85 3313497.61

376 4.39E-10 2.26E-09 2.40E-09 5144634936.83 1670582182.77 1452630711.93 2260154.22 3777301.01 3493037.31

380 4.62E-10 2.38E-09 2.53E-09 5144750895.73 1670776352.06 1452810296.03 2376113.12 3971470.30 3672621.41

384 4.84E-10 2.49E-09 2.65E-09 5144866859.86 1670970566.49 1452989924.53 2492077.24 4165684.73 3852249.92

388 5.07E-10 2.61E-09 2.77E-09 5144982829.22 1671164826.07 1453169597.46 2608046.60 4359944.32 4031922.85

392 5.29E-10 2.72E-09 2.90E-09 5145098803.80 1671359130.83 1453349314.84 2724021.18 4554249.08 4211640.22

396 5.52E-10 2.84E-09 3.02E-09 5145214783.61 1671553480.78 1453529076.67 2840000.99 4748599.03 4391402.05

400 5.74E-10 2.96E-09 3.14E-09 5145330768.65 1671747875.94 1453708882.97 2955986.04 4942994.18 4571208.35
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Table 4.16b Frequency Response of AlN, BaTiO3 and PZT with Cu as the Metal Part 
Dimensions 10x10x10 micron3 

 

 

Table 4.17a Frequency Response of AlN, BaTiO3 and PZT with Zinc as the Metal Part 
Dimensions 1x1x1 micron3 

 

 

T (K) ΔL(AlN) (m) ΔL(BaTiO3) (m) ΔL(PZT) (m) Fq (AlN) (Hz) Fq(BaTiO3) (Hz) Fq(PZT) (Hz) ΔF (AlN) (Hz) ΔF (BaTiO3) (Hz) ΔF (PZT) (Hz)

300 1.13E-10 5.80E-10 6.17E-10 514243271.05 166685320.06 144922702.98 5792.79 4831.88 8935.52

304 3.38E-10 1.74E-09 1.85E-09 514254857.01 166694984.67 144940577.33 17378.75 14496.49 26809.87

308 5.63E-10 2.90E-09 3.08E-09 514266443.50 166704650.40 144958456.08 28965.24 24162.22 44688.62

312 7.89E-10 4.06E-09 4.32E-09 514278030.51 166714317.25 144976339.25 40552.25 33829.07 62571.79

316 1.01E-09 5.22E-09 5.55E-09 514289618.04 166723985.22 144994226.83 52139.78 43497.04 80459.37

320 1.24E-09 6.38E-09 6.78E-09 514301206.09 166733654.31 145012118.82 63727.83 53166.14 98351.36

324 1.46E-09 7.54E-09 8.02E-09 514312794.67 166743324.53 145030015.23 75316.41 62836.35 116247.77

328 1.69E-09 8.70E-09 9.25E-09 514324383.76 166752995.86 145047916.06 86905.50 72507.69 134148.60

332 1.91E-09 9.86E-09 1.05E-08 514335973.38 166762668.32 145065821.31 98495.12 82180.15 152053.85

336 2.14E-09 1.10E-08 1.17E-08 514347563.53 166772341.90 145083730.98 110085.26 91853.73 169963.52

340 2.37E-09 1.22E-08 1.29E-08 514359154.19 166782016.60 145101645.07 121675.93 101528.43 187877.61

344 2.59E-09 1.33E-08 1.42E-08 514370745.38 166791692.43 145119563.59 133267.12 111204.25 205796.13

348 2.82E-09 1.45E-08 1.54E-08 514382337.09 166801369.38 145137486.53 144858.83 120881.20 223719.07

352 3.04E-09 1.57E-08 1.66E-08 514393929.32 166811047.45 145155413.90 156451.06 130559.27 241646.44

356 3.27E-09 1.68E-08 1.79E-08 514405522.07 166820726.64 145173345.70 168043.81 140238.47 259578.24

360 3.49E-09 1.80E-08 1.91E-08 514417115.35 166830406.96 145191281.93 179637.09 149918.78 277514.47

364 3.72E-09 1.91E-08 2.03E-08 514428709.15 166840088.40 145209222.59 191230.89 159600.22 295455.13

368 3.94E-09 2.03E-08 2.16E-08 514440303.47 166849770.96 145227167.69 202825.21 169282.79 313400.23

372 4.17E-09 2.15E-08 2.28E-08 514451898.32 166859454.65 145245117.22 214420.05 178966.48 331349.76

376 4.39E-09 2.26E-08 2.40E-08 514463493.68 166869139.47 145263071.19 226015.42 188651.29 349303.73

380 4.62E-09 2.38E-08 2.53E-08 514475089.57 166878825.40 145281029.60 237611.31 198337.23 367262.14

384 4.84E-09 2.49E-08 2.65E-08 514486685.99 166888512.46 145298992.45 249207.72 208024.29 385224.99

388 5.07E-09 2.61E-08 2.77E-08 514498282.92 166898200.65 145316959.75 260804.66 217712.48 403192.28

392 5.29E-09 2.72E-08 2.90E-08 514509880.38 166907889.96 145334931.48 272402.12 227401.79 421164.02

396 5.52E-09 2.84E-08 3.02E-08 514521478.36 166917580.40 145352907.67 284000.10 237092.22 439140.20

400 5.74E-09 2.96E-08 3.14E-08 514533076.87 166927271.96 145370888.30 295598.60 246783.78 457120.83

T (K) ΔL(AlN) (m) ΔL(BaTiO3) (m) ΔL(PZT) (m) Fq (AlN) (Hz) Fq(BaTiO3) (Hz) Fq(PZT) (Hz) ΔF (AlN) (Hz) ΔF (BaTiO3) (Hz) ΔF (PZT) (Hz)

300 1.42E-11 7.33E-11 7.80E-11 5142448040.92 1666927099.36 1449250678.91 73258.30 122217.60 113004.29

304 4.27E-11 2.20E-10 2.34E-10 5142594563.77 1667171588.34 1449476740.36 219781.16 366706.58 339065.74

308 7.12E-11 3.67E-10 3.90E-10 5142741094.98 1667416149.05 1449702872.35 366312.36 611267.29 565197.73

312 9.97E-11 5.13E-10 5.46E-10 5142887634.54 1667660781.52 1449929074.91 512851.92 855899.77 791400.29

316 1.28E-10 6.60E-10 7.02E-10 5143034182.45 1667905485.79 1450155348.07 659399.83 1100604.03 1017673.45

320 1.57E-10 8.07E-10 8.58E-10 5143180738.71 1668150261.87 1450381691.86 805956.09 1345380.12 1244017.24

324 1.85E-10 9.53E-10 1.01E-09 5143327303.33 1668395109.82 1450608106.32 952520.71 1590228.06 1470431.70

328 2.14E-10 1.10E-09 1.17E-09 5143473876.30 1668640029.65 1450834591.48 1099093.68 1835147.89 1696916.86

332 2.42E-10 1.25E-09 1.33E-09 5143620457.62 1668885021.40 1451061147.38 1245675.00 2080139.64 1923472.76

336 2.71E-10 1.39E-09 1.48E-09 5143767047.30 1669130085.10 1451287774.04 1392264.68 2325203.34 2150099.42

340 2.99E-10 1.54E-09 1.64E-09 5143913645.33 1669375220.78 1451514471.51 1538862.71 2570339.02 2376796.89

344 3.28E-10 1.69E-09 1.79E-09 5144060251.72 1669620428.47 1451741239.80 1685469.10 2815546.72 2603565.18

348 3.56E-10 1.83E-09 1.95E-09 5144206866.47 1669865708.22 1451968078.96 1832083.85 3060826.46 2830404.35

352 3.85E-10 1.98E-09 2.11E-09 5144353489.57 1670111060.03 1452194989.03 1978706.95 3306178.28 3057314.41

356 4.13E-10 2.13E-09 2.26E-09 5144500121.03 1670356483.96 1452421970.02 2125338.41 3551602.21 3284295.40

360 4.42E-10 2.27E-09 2.42E-09 5144646760.86 1670601980.03 1452649021.99 2271978.24 3797098.27 3511347.37

364 4.70E-10 2.42E-09 2.57E-09 5144793409.04 1670847548.27 1452876144.95 2418626.42 4042666.52 3738470.33

368 4.99E-10 2.57E-09 2.73E-09 5144940065.58 1671093188.72 1453103338.94 2565282.96 4288306.96 3965664.32

372 5.27E-10 2.71E-09 2.89E-09 5145086730.48 1671338901.40 1453330604.00 2711947.87 4534019.65 4192929.38

376 5.56E-10 2.86E-09 3.04E-09 5145233403.75 1671584686.36 1453557940.16 2858621.13 4779804.60 4420265.54

380 5.84E-10 3.01E-09 3.20E-09 5145380085.38 1671830543.61 1453785347.45 3005302.76 5025661.85 4647672.84

384 6.13E-10 3.15E-09 3.35E-09 5145526775.37 1672076473.19 1454012825.91 3151992.75 5271591.43 4875151.30

388 6.41E-10 3.30E-09 3.51E-09 5145673473.73 1672322475.14 1454240375.57 3298691.11 5517593.38 5102700.95

392 6.70E-10 3.45E-09 3.66E-09 5145820180.45 1672568549.48 1454467996.47 3445397.83 5763667.73 5330321.85

396 6.98E-10 3.59E-09 3.82E-09 5145966895.54 1672814696.26 1454695688.62 3592112.92 6009814.50 5558014.01

400 7.27E-10 3.74E-09 3.98E-09 5146113618.99 1673060915.49 1454923452.08 3738836.37 6256033.73 5785777.46
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Table 4.17b Frequency Response of AlN, BaTiO3 and PZT with Zinc as the Metal Part 
Dimensions 10x10x10 micron3 

 

 

Table 4.18a Frequency Response of AlN, BaTiO3 and PZT with Brass as the Metal Part 
Dimensions 1x1x1 micron3 

 

 
 

T (K) ΔL(AlN) (m) ΔL(BaTiO3) (m) ΔL(PZT) (m) Fq (AlN) (Hz) Fq(BaTiO3) (Hz) Fq(PZT) (Hz) ΔF (AlN) (Hz) ΔF (BaTiO3) (Hz) ΔF (PZT) (Hz)

300 1.42E-10 7.33E-10 7.80E-10 514244804.09 166692709.94 144925067.89 7325.83 12221.76 11300.43

304 4.27E-10 2.20E-09 2.34E-09 514259456.38 166717158.83 144947674.04 21978.12 36670.66 33906.57

308 7.12E-10 3.67E-09 3.90E-09 514274109.50 166741614.91 144970287.23 36631.24 61126.73 56519.77

312 9.97E-10 5.13E-09 5.46E-09 514288763.45 166766078.15 144992907.49 51285.19 85589.98 79140.03

316 1.28E-09 6.60E-09 7.02E-09 514303418.25 166790548.58 145015534.81 65939.98 110060.40 101767.34

320 1.57E-09 8.07E-09 8.58E-09 514318073.87 166815026.19 145038169.19 80595.61 134538.01 124401.72

324 1.85E-09 9.53E-09 1.01E-08 514332730.33 166839510.98 145060810.63 95252.07 159022.81 147043.17

328 2.14E-09 1.10E-08 1.17E-08 514347387.63 166864002.96 145083459.15 109909.37 183514.79 169691.69

332 2.42E-09 1.25E-08 1.33E-08 514362045.76 166888502.14 145106114.74 124567.50 208013.96 192347.28

336 2.71E-09 1.39E-08 1.48E-08 514376704.73 166913008.51 145128777.40 139226.47 232520.33 215009.94

340 2.99E-09 1.54E-08 1.64E-08 514391364.53 166937522.08 145151447.15 153886.27 257033.90 237679.69

344 3.28E-09 1.69E-08 1.79E-08 514406025.17 166962042.85 145174123.98 168546.91 281554.67 260356.52

348 3.56E-09 1.83E-08 1.95E-08 514420686.65 166986570.82 145196807.90 183208.38 306082.65 283040.43

352 3.85E-09 1.98E-08 2.11E-08 514435348.96 167011106.00 145219498.90 197870.70 330617.83 305731.44

356 4.13E-09 2.13E-08 2.26E-08 514450012.10 167035648.40 145242197.00 212533.84 355160.22 328429.54

360 4.42E-09 2.27E-08 2.42E-08 514464676.09 167060198.00 145264902.20 227197.82 379709.83 351134.74

364 4.70E-09 2.42E-08 2.57E-08 514479340.90 167084754.83 145287614.49 241862.64 404266.65 373847.03

368 4.99E-09 2.57E-08 2.73E-08 514494006.56 167109318.87 145310333.89 256528.30 428830.70 396566.43

372 5.27E-09 2.71E-08 2.89E-08 514508673.05 167133890.14 145333060.40 271194.79 453401.96 419292.94

376 5.56E-09 2.86E-08 3.04E-08 514523340.38 167158468.64 145355794.02 285862.11 477980.46 442026.55

380 5.84E-09 3.01E-08 3.20E-08 514538008.54 167183054.36 145378534.75 300530.28 502566.19 464767.28

384 6.13E-09 3.15E-08 3.35E-08 514552677.54 167207647.32 145401282.59 315199.28 527159.14 487515.13

388 6.41E-09 3.30E-08 3.51E-08 514567347.37 167232247.51 145424037.56 329869.11 551759.34 510270.10

392 6.70E-09 3.45E-08 3.66E-08 514582018.05 167256854.95 145446799.65 344539.78 576366.77 533032.18

396 6.98E-09 3.59E-08 3.82E-08 514596689.55 167281469.63 145469568.86 359211.29 600981.45 555801.40

400 7.27E-09 3.74E-08 3.98E-08 514611361.90 167306091.55 145492345.21 373883.64 625603.37 578577.75

T (K) ΔL(AlN) (m) ΔL(BaTiO3) (m) ΔL(PZT) (m) Fq (AlN) (Hz) Fq(BaTiO3) (Hz) Fq(PZT) (Hz) ΔF (AlN) (Hz) ΔF (BaTiO3) (Hz) ΔF (PZT) (Hz)

300 1.30E-11 6.70E-11 7.12E-11 5142441712.06 1666916540.29 1449240915.78 66929.44 111658.53 103241.16

304 3.90E-11 2.01E-10 2.14E-10 5142575576.16 1667139902.23 1449447442.24 200793.54 335020.47 309767.62

308 6.51E-11 3.35E-10 3.56E-10 5142709447.24 1667363324.04 1449654027.58 334664.62 558442.28 516352.96

312 9.11E-11 4.69E-10 4.99E-10 5142843325.28 1667586805.74 1449860671.81 468542.66 781923.99 722997.19

316 1.17E-10 6.03E-10 6.41E-10 5142977210.29 1667810347.36 1450067374.96 602427.68 1005465.61 929700.34

320 1.43E-10 7.37E-10 7.84E-10 5143111102.28 1668033948.92 1450274137.06 736319.66 1229067.16 1136462.44

324 1.69E-10 8.71E-10 9.26E-10 5143245001.24 1668257610.44 1450480958.13 870218.62 1452728.69 1343283.51

328 1.95E-10 1.00E-09 1.07E-09 5143378907.17 1668481331.96 1450687838.19 1004124.55 1676450.20 1550163.58

332 2.21E-10 1.14E-09 1.21E-09 5143512820.07 1668705113.48 1450894777.28 1138037.45 1900231.72 1757102.67

336 2.47E-10 1.27E-09 1.35E-09 5143646739.94 1668928955.04 1451101775.42 1271957.33 2124073.28 1964100.80

340 2.73E-10 1.41E-09 1.50E-09 5143780666.79 1669152856.66 1451308832.63 1405884.18 2347974.90 2171158.01

344 2.99E-10 1.54E-09 1.64E-09 5143914600.62 1669376818.36 1451515948.94 1539818.00 2571936.61 2378274.32

348 3.25E-10 1.67E-09 1.78E-09 5144048541.42 1669600840.18 1451723124.37 1673758.80 2795958.42 2585449.75

352 3.51E-10 1.81E-09 1.92E-09 5144182489.19 1669824922.13 1451930358.96 1807706.57 3020040.37 2792684.34

356 3.77E-10 1.94E-09 2.07E-09 5144316443.94 1670049064.23 1452137652.71 1941661.32 3244182.47 2999978.09

360 4.03E-10 2.08E-09 2.21E-09 5144450405.67 1670273266.52 1452345005.67 2075623.05 3468384.76 3207331.05

364 4.29E-10 2.21E-09 2.35E-09 5144584374.37 1670497529.01 1452552417.85 2209591.75 3692647.25 3414743.23

368 4.56E-10 2.34E-09 2.49E-09 5144718350.05 1670721851.73 1452759889.28 2343567.43 3916969.98 3622214.66

372 4.82E-10 2.48E-09 2.64E-09 5144852332.71 1670946234.71 1452967419.98 2477550.09 4141352.95 3829745.36

376 5.08E-10 2.61E-09 2.78E-09 5144986322.35 1671170677.97 1453175009.99 2611539.73 4365796.21 4037335.37

380 5.34E-10 2.75E-09 2.92E-09 5145120318.97 1671395181.53 1453382659.32 2745536.35 4590299.77 4244984.70

384 5.60E-10 2.88E-09 3.06E-09 5145254322.57 1671619745.41 1453590368.01 2879539.95 4814863.66 4452693.39

388 5.86E-10 3.01E-09 3.21E-09 5145388333.14 1671844369.65 1453798136.07 3013550.53 5039487.89 4660461.45

392 6.12E-10 3.15E-09 3.35E-09 5145522350.70 1672069054.27 1454005963.54 3147568.08 5264172.51 4868288.92

396 6.38E-10 3.28E-09 3.49E-09 5145656375.24 1672293799.28 1454213850.43 3281592.62 5488917.52 5076175.81

400 6.64E-10 3.42E-09 3.63E-09 5145790406.77 1672518604.72 1454421796.78 3415624.15 5713722.96 5284122.16



91 
 

Table 4.18b Frequency Response of AlN, BaTiO3 and PZT with Brass as the Metal Part 
Dimensions 10x10x10 micron3 

 

In Figures 4.15 - 4.20, the frequency response with pixel temperature, for the three piezo 

when combined with each metal, are shown. 
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Figure 4.15 Frequency response of AlN (1x1x1 micron3). 

T (K) ΔL(AlN) ΔL(BaTiO3) ΔL(PZT) Fq (AlN) Fq(BaTiO3) Fq(PZT) ΔF (AlN) ΔF (BaTiO3) ΔF (PZT)

300 1.30E-10 6.70E-10 7.12E-10 514244171.21 166691654.03 144924091.58 6692.94 11165.85 10324.12

304 3.90E-10 2.01E-09 2.14E-09 514257557.62 166713990.22 144944744.22 20079.35 33502.05 30976.76

308 6.51E-10 3.35E-09 3.56E-09 514270944.72 166736332.40 144965402.76 33466.46 55844.23 51635.30

312 9.11E-10 4.69E-09 4.99E-09 514284332.53 166758680.57 144986067.18 46854.27 78192.40 72299.72

316 1.17E-09 6.03E-09 6.41E-09 514297721.03 166781034.74 145006737.50 60242.77 100546.56 92970.03

320 1.43E-09 7.37E-09 7.84E-09 514311110.23 166803394.89 145027413.71 73631.97 122906.72 113646.24

324 1.69E-09 8.71E-09 9.26E-09 514324500.12 166825761.04 145048095.81 87021.86 145272.87 134328.35

328 1.95E-09 1.00E-08 1.07E-08 514337890.72 166848133.20 145068783.82 100412.45 167645.02 155016.36

332 2.21E-09 1.14E-08 1.21E-08 514351282.01 166870511.35 145089477.73 113803.75 190023.17 175710.27

336 2.47E-09 1.27E-08 1.35E-08 514364673.99 166892895.50 145110177.54 127195.73 212407.33 196410.08

340 2.73E-09 1.41E-08 1.50E-08 514378066.68 166915285.67 145130883.26 140588.42 234797.49 217115.80

344 2.99E-09 1.54E-08 1.64E-08 514391460.06 166937681.84 145151594.89 153981.80 257193.66 237827.43

348 3.25E-09 1.67E-08 1.78E-08 514404854.14 166960084.02 145172312.44 167375.88 279595.84 258544.98

352 3.51E-09 1.81E-08 1.92E-08 514418248.92 166982492.21 145193035.90 180770.66 302004.04 279268.43

356 3.77E-09 1.94E-08 2.07E-08 514431644.39 167004906.42 145213765.27 194166.13 324418.25 299997.81

360 4.03E-09 2.08E-08 2.21E-08 514445040.57 167027326.65 145234500.57 207562.30 346838.48 320733.10

364 4.29E-09 2.21E-08 2.35E-08 514458437.44 167049752.90 145255241.78 220959.18 369264.73 341474.32

368 4.56E-09 2.34E-08 2.49E-08 514471835.01 167072185.17 145275988.93 234356.74 391697.00 362221.47

372 4.82E-09 2.48E-08 2.64E-08 514485233.27 167094623.47 145296742.00 247755.01 414135.30 382974.54

376 5.08E-09 2.61E-08 2.78E-08 514498632.24 167117067.80 145317501.00 261153.97 436579.62 403733.54

380 5.34E-09 2.75E-08 2.92E-08 514512031.90 167139518.15 145338265.93 274553.64 459029.98 424498.47

384 5.60E-09 2.88E-08 3.06E-08 514525432.26 167161974.54 145359036.80 287953.99 481486.37 445269.34

388 5.86E-09 3.01E-08 3.21E-08 514538833.31 167184436.97 145379813.61 301355.05 503948.79 466046.15

392 6.12E-09 3.15E-08 3.35E-08 514552235.07 167206905.43 145400596.35 314756.81 526417.25 486828.89

396 6.38E-09 3.28E-08 3.49E-08 514565637.52 167229379.93 145421385.04 328159.26 548891.75 507617.58

400 6.64E-09 3.42E-08 3.63E-08 514579040.68 166965685.50 145442179.68 341562.41 285197.33 528412.22
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Figure 4.16 Frequency response of BaTiO3 (1x1x1 micron3). 
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Figure 4.17 Frequency response of PZT (1x1x1 micron3). 
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Figure 4.18 Frequency response of AlN (10x10x10 micron3). 

300 350 400

166700000

166800000

166900000

167000000

167100000

167200000

167300000

F
re

q
u

e
n

cy
 (

H
z)

Temperature (K)

 Zinc-BaTiO3 10x10x10
 Cu-BaTiO3 10x10x10
 Brass-BaTiO3 10x10x10

 

Figure 4.19 Frequency response of BaTiO3 (10x10x10 micron3). 
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Figure 4.20 Frequency response of PZT (10x10x10 micron3). 

                                                     

                                                         

4.5 Discussion of the Results 

The Black Body Calculator (BBC) [35] was utilized to calculate the amount of energy 

that reaches the detector. By choosing the parameters, BBC outputs the thermal flux 

available to the focal array plane (FPA). Because of their large thermal conductivities 

copper, zinc and brass cannot be exposed directly to ambient. Hence a bridge made of 

PbSe [36] was designed with a thermal conductivity of 1.6 W/m K at 300 K.  The thermal 

conductivity coefficient, λ, of PbSe can be seen in Figures 4.21, along with that of PbS 

and PbTe. 
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Figure 4.21 Variation in total thermal conductivity of polycrystalline PbS, PbSe and 
PbTe. 
Source: [36] 

 

The temperature sensitivity is approximately 0.2 K of pixel temperature per 1 K of 

scene temperature change which is 200mK per 1 K of scene temperature change. 

As expected from the linear expansion coefficients, the performance of zinc in 

terms of displacement is better than that of copper and brass. Zinc and brass show a better 

response as the pixel temperature rises above ambient. Since zinc has a lower melting 

point, questions on the performance of the metal may arise (although pixel temperatures 

will not attain temperatures close to its melting point). Brass is a mixture of Cu and Zn, 

usually 70% copper and 30% zinc, which makes brass harder than copper. However, 

because heat transfer will occur at higher rates, across materials of high thermal 
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conductivity, the use of copper as the detecting pixel element outperforms the others in 

terms of response time.  

In the piezoelectric part, it is clear that AlN has the best performance over BaTiO3 

and PZT. The performances of PZT and BaTiO3 are almost close to each other and this is 

due to their comparable mechanical and electrical properties. In summary, the 

combination of copper and AlN provides the best configuration for the proposed infrared 

detector based on coefficient of thermal expansion.  In Table 4.19, the performance 

characteristics, i.e., voltage response, of this metal-piezo configuration is summarized. 

 

Table 4.19 Voltage Calculations for Pixel Temperature above Ambient of Table 4.2 

 

 

From the above Table, a voltage change of approximately 1 V for 5 K change in 

scene temperature is determined, which is a promising resolution.   

300 1.94E+00 1.88E+07 5.46E-05 1.99E-14 1.20E+01

305 2.09E+00 2.03E+07 5.90E-05 1.99E-14 1.30E+01

310 2.25E+00 2.18E+07 6.34E-05 1.99E-14 1.40E+01

315 2.41E+00 2.34E+07 6.80E-05 1.99E-14 1.50E+01

320 2.59E+00 2.51E+07 7.28E-05 1.99E-14 1.61E+01

325 2.77E+00 2.69E+07 7.79E-05 1.99E-14 1.72E+01

330 2.95E+00 2.87E+07 8.32E-05 1.99E-14 1.84E+01

335 3.17E+00 3.07E+07 8.91E-05 1.99E-14 1.97E+01

340 3.34E+00 3.25E+07 9.42E-05 1.99E-14 2.08E+01

345 3.55E+00 3.44E+07 9.99E-05 1.99E-14 2.20E+01

350 3.76E+00 3.65E+07 1.06E-04 1.99E-14 2.34E+01

355 3.98E+00 3.87E+07 1.12E-04 1.99E-14 2.48E+01

360 4.21E+00 4.09E+07 1.19E-04 1.99E-14 2.62E+01

365 4.44E+00 4.31E+07 1.25E-04 1.99E-14 2.76E+01

370 4.68E+00 4.54E+07 1.32E-04 1.99E-14 2.91E+01

Stress 

(N/m^2)

Voltage 

(V)

Strain Capacitance 

(F)

Scene temp 

(K)

pixel temp above 

ambient (K) 
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As far as the frequency response of the piezo materials is concerned, AlN displays 

the highest resonance frequency in the pixel temperature range of 300 to 400 K. 

Performing frequency calculations, for data in Table 4.2, we get: 

 

Table 4.20 Frequency Response for Pixel Temperature Above Ambient of Table 
4.2 for AlN  

Scene temp (K) F(Hz) ΔF(Hz)

300 514392274.4 154796.1434

305 514394536.9 157058.6243

310 514396799.4 159321.1251

315 514399163.7 161685.4597

320 514401663.8 164185.5692

325 514404265.8 166787.5189

330 514406980.9 169502.6249

335 514410058 172579.7797

340 514412637.4 175159.1879

345 514415578.9 178100.6498

350 514418633.5 181155.2804

355 514421914.5 184436.2204

360 514425195.5 187717.2023

365 514428476.5 190998.226

370 514431979.3 194501.0478
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Table 4.21 Frequency Response for Pixel Temperature Above Ambient of Table 
4.2 for PZT  

Scene temp (K) F(Hz) ΔF(Hz)

300 144957059.1 43291.68646

305 144960551.5 46784.07847

310 144964044.1 50276.63876

315 144967694 53926.54409

320 144971553.7 57786.2133

325 144975570.7 61803.28187

330 144979762.7 65995.24294

335 144984513.9 70746.42522

340 144988496.7 74729.27383

345 144993038.8 79271.38579

350 144997756 83988.49558

355 145002822.8 89055.3628

360 145007890 94122.58415

365 145012957.6 99190.15966

370 145018368.1 104600.6243

 
 
Table 4.22 Frequency Response for Pixel Temperature above Ambient of Table 4.2 
for BaTiO3  

Scene 
temp (K)

F(Hz) ΔF(Hz)

300 166727308.8 46820.66743

305 166731085.8 50597.67393

310 166734863 54374.85157

315 166738810.4 58322.18506

320 166742984.5 62496.36302

325 166747328.9 66840.75207

330 166751862.4 71374.26897

335 166757000.7 76512.55281

340 166761308.1 80819.88764

345 166766220.2 85732.03226

350 166771321.6 90833.41183

355 166776801.2 96313.01901

360 166782281.2 101792.9863

365 166787761.5 107273.3137

370 166793612.6 113124.4332
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Therefore, for a scene temperature change of 5K, a frequency change of 

approximately 3 kHz is determined for AlN, 4.4 kHz for PZT and 4.8 kHz for BaTiO3. 

AlN performs well at higher frequencies than BaTiO3 and PZT. The clock speed of the 

circuit developed will be determined by the piezo material. Measuring higher frequencies 

is always more expensive. From the results, it is also clear that the resolution of the lower 

frequency materials (PZT and BaTiO3) is higher. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

 
 
 

5.1 Summary 

The design and simulation of a MEMS based IR detector was discussed. Theoretical 

analysis and simulation suggests that good resolution and sensitivity can be obtained in 

the wavelength range of 8 to 14 microns. 

In the present study, three different materials were considered for the detector 

metal part and three for the piezoelectric part, in the simulations for the voltage 

displacement and frequency response. 

Further investigation on the bridge design has to be conducted since significant 

changes to its thermal resistance and the overall improvement in detector performance is 

attainable. Combined with the conceptual design of the detector and further research on 

the piezoelectric ceramic alloys, the proposed resolution for both frequency and pixel 

temperature may even be exceeded. 

An issue that needs further investigation is the potential need for a thermal 

insulation layer between the metal and the piezoelectric material. In the present design, it 

is certain that the piezo part will counteract to the metal displacement due to the fact that 

heat will be exchanged between the metal and the piezo. The heat transfer will cause a 

thermal expansion of the piezo and will change its resonance frequency. 

The effects of the shear and bulk modulus were also ignored in the present study, 

but will have to be considered in the future. A key feature of the thermal expansion 
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material is also the product between Young’s modulus and the coefficient of thermal 

expansion as it determines the induced stress intensity by being proportional to it. 

                                                     � = ����                                                     (5.1) 

Future work which involves fabrication of the device, experimental tests and 

research on potential material and different more complex designs, may provide better 

results.                                        

                                               
                                                                                                                                    

5.2 Multiple Rod Design 

A more complex design that annihilates a few of the problems mentioned above and 

improves the overall performance is being investigated. The model can be seen in Figure 

5.1. 

 

 

Figure 5.1 COMSOL model of a multi pillar MEMS IR imager design.   
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In this design, multiple pillars made of a thermal expanding material are 

physically attached to a Si3N4 layer. The Si3N4 layer is grown on a piezoelectric block 

layer (Quartz, PZT, AlN etc).  The pillars are coated with an IR absorbing material (PbSe 

for MIR, or of BCB/PolyAnilene (PANI)[37] for 10 m IR). On top of the pillars, there is 

a cubic shaped IR trap (AR coating) which acts like a perfect black body (SiC, CaF2 

ZnSe, ZnS). Its intention is to absorb and trap the incident IR photons between 3-14 μm. 

The trapped IR photons will be absorbed by the pillar coating material, which acts like a 

Fabry-Perot cavity and its intention is to heat up the metal rod-core. Each rod will expand 

applying a stress to the Si3N4 layer. This layer has to be hard, with a low thermal 

expansion coefficient. Its dual purpose is to provide insulation between the thermal 

expanding material and the resonator and uniformly transport the stress to the resonator.   

The key element of the structure is the mechanical and thermal properties of the core 

material of the pillars. The material must have a high Young’s modulus and thermal 

expansion coefficient and a large bulk modulus value, as mentioned in the previous 

section. At the same time, it must act as a perfect thermal sink in order to quickly absorb 

the thermal energy from the coating material. 

The advantages of the design over the block model are many. First of all, by using 

a pillar model for the expanding material, potential shear stresses can be avoided. The 

multi rod design provides significantly better resolution and the pixel size can be chosen, 

depending on the range of wavelengths. Finally, the pillar coatings do not have to be all 

from the same material, which means that the same structure can be sensitive to different 

IR spectral regions. In this way, the design can serve as a multi-region IR imager. Future 

COMSOL simulations and research on the material candidates will determine the right 
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course of material choices and provide the necessary calibration data, as well as 

information on the performance and integrity.            
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