CHE 312-001: Chemical Process Safety

Richard Cimino

Follow this and additional works at: https://digitalcommons.njit.edu/cme-syllabi

Recommended Citation
https://digitalcommons.njit.edu/cme-syllabi/182

This Syllabus is brought to you for free and open access by the NJIT Syllabi at Digital Commons @ NJIT. It has been accepted for inclusion in Chemical and Materials Engineering Syllabi by an authorized administrator of Digital Commons @ NJIT. For more information, please contact digitalcommons@njit.edu.
CHE-312: Chemical Process Safety – Section 001 and HM1 – Fall 2021

Instructor: Dr. Richard T. Cimino, Senior Lecturer

Office: 376 Tiernan Hall, Phone: 973-596-5729, E-mail: cimino@njit.edu

Class: Tuesday, Thursday, 8:30-9:50 AM; Face-To-Face

Room: Please check the NJIT Course Schedule for room
https://uisnetpr01.njit.edu/courseschedule/

Office Hours: By arrangement only - please sign up online at https://drcimino.youcanbook.me

Office hours this semester will take place using my personal WebEx room:
njit.webex.edu/meet/ciminonjit.edu

Course Description and Requirements

A study of the technical fundamentals of chemical process safety: includes impact of chemical plant accidents and concepts of societal and individual risk; hazards associated with chemicals and other agents used in chemical plants, including toxic, flammable and reactive hazards: concepts of inherently safer design; control and mitigation of hazards to prevent accidents, including plant procedures and designs; major regulations that impact safety of chemical plants; consequences of chemical plant incidents due to acute and chronic chemical release and exposures; hazard identification procedures; introduction to risk assessment.

Prerequisites: CHE 342, CHE 370, CHE 375

Corequisites: CHE 349

Course Objectives

Taking this course, a motivated student will learn to:

1. Calculate and interpret common process safety indicators (PSI) such as injury and fatality rates.
2. Explain and apply the principles of Inherently Safer Design to improve the safety of a process.
3. Apply Probit Analysis to determine the outcomes of exposure to harmful chemicals and to overpressure from explosions.
4. Identify Globally Harmonized System (GHS) pictograms and guidewords for material and energy hazards and their severity.
5. Evaluate the magnitude of exposure to hazardous chemical vapors in various scenarios.
6. Utilize source models to determine the mass flow rate of liquid and vapor releases from vessels.
7. Utilize the Pasquill-Gifford Model of atmospheric dispersion to determine the concentration of hazardous materials downwind from a chemical release.
8. Characterize the flammability of mixtures using upper and lower flammability limit calculations.
9. Calculate the peak side-on overpressure and TNT-equivalency of an explosion using scaling models.
10. Determine the number of pressure/vacuum purge cycles and the amount of inert gas necessary to completely inert a vessel with a flammable atmosphere.
11. Describe procedures necessary to prevent the buildup of static electric charges in process vessels.
12. Identify compatible/incompatible chemical mixtures using charts, tables, and chemical compatibility software.
13. Utilize reaction calorimetry to determine the maximum temperature of a reaction (MTR).
14. Design a spring-operated relief valve for vapor or liquid service.
15. Identify equipment necessary to handle effluent exiting through reliefs.
16. Perform a Hazard and Operability Analysis (HAZOP) on a simple process.
17. Calculate the probability of failure and mean time between failure for multicomponent chemical processes in parallel and in series.
18. Perform a Layer of Protection Analysis (LOPA) for a process safety incident scenario and determine the risk level associated with it.
19. Write a professional process hazard analysis report based upon a process safety scenario, incorporating numerical calculations and recommendations for reducing the risk of such a scenario from occurring.
20. Recognize the social and ethical dimensions of process safety, including the impact of process safety incidents on societal and global scales.
21. Participate in collaborative teamwork and learn to establish goals and meet deadlines, while recognizing the importance of diversity and inclusion in effective teamwork.
22. Use online e-learning tools and obtain SACHE certificates while recognizing the need for life-long learning in chemical process safety.

Learning Materials

Textbook


Online Learning Materials: Students will complete online learning courses developed for the Safety And Chemical Engineering Education (SACHE) program by the AIChE. The program is described and courses accessed at https://www.aiche.org/ccps/community/technological-communities/safety-and-chemical-engineering-education-sache/certificate-program/Level-One-Basic-Curriculum
CHE-312: Chemical Process Safety – Section 001 and HM1 – Fall 2021

**Chemical Safety Board Videos:** Videos to view will be assigned during the course. These videos are accessed at www.csb.gov. Click on the 'video room' tab near the top of the page.

**Calculator:** A high-end calculator (TI-83, TI-84 or TI-84SE) is required for solving numerical problems.

**Required Hardware:** A working computer running either Windows or MacOS.

**Course Outline**

<table>
<thead>
<tr>
<th>Week</th>
<th>Date(s)</th>
<th>Topic (preliminary, subject to minor changes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/2-7</td>
<td>Ch. 1 : Intro to Process Safety</td>
</tr>
<tr>
<td>2</td>
<td>9/9-14</td>
<td>Ch. 2 : Toxicology</td>
</tr>
<tr>
<td>3</td>
<td>9/16-21</td>
<td>Ch. 3 : Industrial Hygiene</td>
</tr>
<tr>
<td>4</td>
<td>9/23-28</td>
<td>Ch. 4 : Source Models</td>
</tr>
<tr>
<td>5</td>
<td>9/30-10/5</td>
<td>Ch. 4: Source Models; Ch. 5 - Dispersion</td>
</tr>
<tr>
<td>6</td>
<td>10/7-12</td>
<td>Exam 1 Review, Exam 1</td>
</tr>
<tr>
<td>7</td>
<td>10/14-19</td>
<td>Ch. 5 Dispersion, Ch. 6 Fires and Explosions</td>
</tr>
<tr>
<td>8</td>
<td>10/21-26</td>
<td>Ch. 6 Fires and Explosions, Ch. 7 Mitigating Fires and Explosions,</td>
</tr>
<tr>
<td>9</td>
<td>10/28-11/2</td>
<td>Ch. 8 Reactive Hazards</td>
</tr>
<tr>
<td>10</td>
<td>11/4-9</td>
<td>Exam 2 Review, Exam 2</td>
</tr>
<tr>
<td>11</td>
<td>11/11-16</td>
<td>Process Safety Ethics, Ch. 9 Relief System Concepts</td>
</tr>
<tr>
<td>12</td>
<td>11/18-23</td>
<td>Ch. 10 Relief System Design, Ch. 11 HAZOPS</td>
</tr>
<tr>
<td>13</td>
<td>11/30</td>
<td>Ch. 12 Risk Analysis</td>
</tr>
<tr>
<td>14</td>
<td>12/2-7</td>
<td>Ch. 12 Risk Analysis, Project Time</td>
</tr>
<tr>
<td>15</td>
<td>12/9</td>
<td>Final Exam Review</td>
</tr>
</tbody>
</table>

**Assessment and Grading**

**Homework:** Homework assignments will be posted weekly on Canvas. Homework assignments are due one week after they are assigned, and must be submitted electronically on Canvas. No late homework will be accepted. Students must submit homework individually.

**SAChE Certificates:** These will be due at fixed points throughout the semester. Students will upload completed SAChE certificates to Canvas. Each completed certificate carries the same weight (100% for each completion). Failure to upload your certificates by the specified deadlines will result in deductions for those certificates.
Team Assignments & Project: Other assignments will require you to work in teams of up to 4 students. The instructor will designate the teams.

Peer Evaluation: You will use the Comprehensive Assessment of Team Effectiveness (CATME, www.catme.org) to evaluate the teaming behaviors of yourself and your teammates. These evaluations will be incorporated into the assignment of final grades.

Quizzes: Regular reading quizzes will be given based on the weekly reading material, including both concepts and problems. The quizzes will be due BEFORE the topic is covered in class. No make-up quizzes will be allowed. All quizzes will be closed book with no material allowed. The quizzes will take place asynchronously on Canvas.

Exams: There will be two midterm exams (80 min long) and one final exam (2.5 hours long). All exams will be open book, and a handwritten sheet (double-sided, letter size) with materials used to prepare for exams will be allowed for the midterm exams. Two sheets will be allowed for the final exam. Shared or copied preparation sheets, as well as use of any electronic materials including e-books will be considered as a violation of academic integrity.

Special Honors Requirements: To receive honors credit for this course, you must complete the four additional Level 2 SACHE certificates listed on Canvas. You must also complete the oral presentation on Chemical Process Safety Ethics. All of these assignments are in addition to the normal coursework for the non-honors class.

Grading: Your final course grade will be calculated by weighted average, using the following weights:

<table>
<thead>
<tr>
<th>Category</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework (individual work)</td>
<td>15%</td>
</tr>
<tr>
<td>Project (team and individual work)</td>
<td>10%</td>
</tr>
<tr>
<td>SACHE Certificates</td>
<td>10%</td>
</tr>
<tr>
<td>Reading Quizzes</td>
<td>5%</td>
</tr>
<tr>
<td>Midterms (x2)</td>
<td>40%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Final course grades will be assigned according to the following rubric:

<table>
<thead>
<tr>
<th>Lower Bound</th>
<th>Letter Grade</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>A</td>
<td>100</td>
</tr>
<tr>
<td>87</td>
<td>B+</td>
<td>92</td>
</tr>
<tr>
<td>83</td>
<td>B</td>
<td>86</td>
</tr>
<tr>
<td>77</td>
<td>C+</td>
<td>82</td>
</tr>
<tr>
<td>73</td>
<td>C</td>
<td>76</td>
</tr>
<tr>
<td>67</td>
<td>D</td>
<td>72</td>
</tr>
<tr>
<td>0</td>
<td>F</td>
<td>66</td>
</tr>
</tbody>
</table>

Important Dates

Add/Drop: Sep 8 2021

Midterm exam #1: Oct 12, 2021

Midterm exam #2: Nov 9, 2021

Withdraw Deadline: Nov. 10, 2021

Final Exam: Week of Dec. 13, 2021

Policies

NJIT Honor Code: The NJIT Honor Code will be upheld and any violations will be brought to the immediate attention of the Dean of Students.

Special Needs: If you need accommodations due to a disability please contact Chantonette Lyles, Associate Director of Disability Support Services, Fenster Hall Room 260 to discuss your specific needs. A Letter of Accommodation Eligibility from the Disability Support Services office authorizing your accommodations will be required.

Lectures

This course is a face-to-face course. This means that each lecture will take place in-person during the class hours. Attending the sessions in person is mandatory. Failure to attend may result in being marked as "unattended" for the course, which may negatively impact your financial aid status. Additionally, the examples discussed in the class are not necessarily from the main textbook and therefore missing a class will have consequences for your preparation for
CHE-312: Chemical Process Safety – Section 001 and HM1 – Fall 2021

quizzes and exams. *Note, if at any point the course is forced to go converged or completely online due to COVID-19, you will be provided with additional information on how to access the course lectures.*

Classes start at 8:30 AM, and students must be in the classroom by that time. Being late to class may have consequences for your final course grade.

No audio or video recording is allowed. All sessions will be automatically recorded for you to review at a later date.

Cellphones should be turned off during both lectures and exams and not allowed under any circumstances.

**Course materials, office hours and correspondence**

The course Canvas page is the main platform for delivering information about the course. All relevant course materials and assignments will be posted on Canvas, so a student should check it regularly.

Students must upload a professional-looking head shot for their Canvas profile.

Students are strongly encouraged to attend Office Hours. Long questions which require derivations will be discussed only during the Office Hours and will not be answered by email. Questions regarding grades can be discussed only during the Office Hours.

E-mail and Canvas correspondence is intended only for quick questions. Questions which require a detailed discussion should be discussed in person during the Office Hours.

All correspondence should be conducted in a professional style, using formal English.

To assure a quick response to your emails, please add "ChE312" in the subject of your emails.

The instructor reserves the right not to respond to emails at his personal discretion.

**Exams, Quizzes, Homework and Grades**

A letter grade is based on the final score, calculated using Canvas in accordance with the Tables given in this syllabus. The assigned letter grade is final and cannot be negotiated.

A student can dispute the exam scores within a week after the announcement of the score. Exam scores can only be disputed during the official Office Hours, not during class time or via email.

Students will get zero for not coming to quizzes, exams, or any other course activity. If students miss an exam due to extreme circumstances (such as a medical problem), they need to notify the instructor via email before the beginning of the exam, and bring proof of the circumstance to the
Dean of Student's office. Only in the case of official approval from the Dean of Student's office, may a make-up be given at the discretion of the instructor.

A student must show full details when solving a problem during an exam or a quiz. Not showing the work will cause the losing points even if the final answer is correct.

Partial credit can be given for solving the exam and quiz problems, though no partial credit will be given if there are not enough details to follow.

The final answer should be always evaluated with respect to its reasonability. No partial credit will be given if the final answer is wrong and unreasonable, and it is not stated.

If a student misses a quiz due to a legitimate reason (absence approved by the Dean of Students), this quiz is excluded from the quiz average calculation.

Student handwriting must be legible in order to receive points.