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ABSTRACT

SOLAR ECLIPSE OBSERVATION ON MAY 21, 2012 FROM JVLA

by
                     Shaheda Begum Shaik

The annular solar eclipse occurred on May 21, 2012 is studied using the radio data from 

the Jansky Very Large Array (JVLA), Sorrocco, Mexico. The eclipse is observed in the 

solar minimum activity period of solar cycle 24. The centimeter wavelength observation 

of  the  Sun's  surface  during  the  solar  eclipse  helps  in  determining  the  spatially  well 

resolved features not obtained by the man made advanced technology. Even though, the 

activity on the Sun is observed to be low in the period of eclipse, the study provides a 

good opportunity to understand the quiet  Sun features  in the regions occulted by the 

Moon.

Rather than observing the Sun during the eclipse as a whole map of the entire 

field of view, differential technique is used to map strips of the field of view covered and 

obscured  by  the  Moon's  limb.  This  study  is  an  attempt  to  understand  the  emission 

mechanism in the active region structures and the quiet  Sun regions by realizing the 

change in the intensity  levels  of the observation than the intensity  itself.  During this 

work,  it  is  discovered at  least  one anomaly in the data,  called delay clunking,  which 

reduces the frequency resolution to 125 MHz in 16 frequencies over the 2-4 GHz band. 

At the selected frequency of 2.56 GHz, the peak brightness temperature corresponding to 

both the active regions observed show 90% increase over the quiet Sun region value.



Even though the bright source like feature in the synthesis map does not show 

much variations in its size, it shows intensity enhancement at the peak occultation than 

the regions (quiet Sun) where the Moon is away from the active region. The correlation 

of the radio maps with the Solar Dynamo Observatory (SDO) show a good response to 

further study the JVLA data with a recheck in the calibration and with a higher frequency 

resolution.
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CHAPTER 1

INTRODUCTION

1.1 Solar Eclipse Observation on May 21, 2012

An  annular  solar  eclipse  was  observed  on  May  21,  2012  with  the  National  Radio 

Astronomy Observatory’s Jansky Very Large Array (JVLA), near Socorro, New Mexico 

at a microwave frequency range of 2-4 GHz. The interferometric complex visibility data 

from 23 antennas is analyzed to image the occulted regions on the Sun's surface by the 

Moon during the eclipse. The activity level of the Sun is quiet with few less-complex 

bipolar active regions. There are no intense flare events observed on the day and during 

the eclipse.

The quiet Sun observations in the frequency range of 2 to 4 GHz (or 15 to 7.5  

centimeter  wavelength)  range  are  helpful  to  reveal  the  spatially  resolved  small  scale 

structures of the quiet Sun surface and the low level activities occurring in the active 

regions.

The microwave interferometric studies of solar eclipses have helped over years to 

achieve the high spatial resolution of active regions with free-free emission and gyro-

resonance emissions (e.g., Gary and Hurford, 1987). Studies using interferometric data 

from seven antennas  (21 baselines) were used to obtain synthesis  maps of 2.5˝x12.7˝ 

resolution, which showed a small number of compact sources in the quiet Sun regions 

with mean angular  size and peak brightness temperature in the range 9˝- 25˝ and (6-8) x 

104 K (Marsh,  Hurford and Zirin,  1980). At relatively short  wavelengths (<6cm), the 

most intense emission is usually located above the sunspots where high magnetic fields 
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allow the detection of thermal gyroresonance radiation at coronal heights (Alissandrakis, 

Kundu, and Lantos, 1980; Lang and Willson, 1982). In the current study, with a large 

number of baselines (253) of 23 antennas it is aimed to determine the source structures in 

the  microwave  radiation  of  the  active  regions  from  the  images  obtained  from  the 

interferometric technique in comparison with the high resolution SDO (Solar Dynamic 

Observatory) images and to determine the characteristics of the observed radiation at free 

free and gyroresonance emission.  The main advance is potentially the high frequency 

resolution of the VLA after its recent expansion, which provides thousands of frequencies 

over the 2-4 GHz range, although these observations were taken in the “Shared Risk” 

period when the VLA is not guaranteed to perform to its ultimate capabilities.  During the 

work on this thesis, it is discovered at least one anomaly in the data, so-called “delay 

clunking,” which causes the measured phases to deviate from their optimum values for IF 

(intermediate frequency) channels away from the band centre.  Due to this limitation,  it 

is chosen to integrate over each IF band of 125 MHz, so that the frequency resolution is 

only 125 MHz, providing 16 frequencies over the 2-4 GHz band.

1.2 Solar Eclipse

Any astronomical  object  moving in  its  orbit  may obscured/occulted  by another  body 

passing between it and the observer, leading to an eclipse. In our solar system, solar and 

lunar eclipses are predominantly observed, with shadows falling on the Earth and the 

Moon by the light from the Sun. These eclipses occur when the Sun, Earth and Moon are 

aligned in a straight line casting shadows. In a lunar eclipse, the Earth is between the Sun 

and Moon, where the Moon passes through the shadow cast  by the Earth.  In a solar 
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eclipse, the Moon passes between the Earth and Sun, where the Moon occults the Sun as 

viewed from the Earth and casts its shadow on the Earth's surface. As the purpose of this  

study is  to  observe  a  solar  eclipse,  in  particular  the  geometry  of  solar  the  eclipse  is 

discussed here.

In the solar eclipse, the Sun can be obscured either fully or partially, depending on 

the distance of the Earth from the Moon (i.e., relative distance of the Moon from Earth 

ranging from its apogee to perigee) and the observing point in the region of shadow on 

the Earth's surface. The Moon's orbit is elliptical and is tilted by 5 degrees to the Earth's 

ecliptic plane. With this geometry, the Sun, Earth and Moon line up at least twice a year 

leading to an eclipse of the Sun that can be observed from the region of shadow of the 

Moon. 

During a solar eclipse, the Moon's shadow is observed to have three parts on the 

Earth's  surface because of the elliptical  orbit  of the Moon. The umbra,  the region of 

observation with dark inner shadow in which the Moon fully obscures the Sun, is shown 

in the Figure 1.1 The antumbra, the region beyond the end of the umbra, is farther from 

the Moon, making it too small to cover the Sun's surface completely. The penumbra is the 

region of faint outer shadow in which the Moon partially covers the Sun.

3



Figure 1.1  A comparative geometry of the Moon's shadow on the Earth's surface in the 
solar eclipse for the nearest and the farthest Moon-Earth distances.

Source: http://en.wikipedia.org/wiki/File:Solar_eclipse_types.svg and http://flatrock.org.nz

Observing the Sun from any point on the Earth's surface with these three parts of 

shadows classify the solar eclipse in four general classes. 

1. Total solar eclipse

2. Partial solar eclipse

3. Annular solar eclipse

4. Hybrid solar eclipse

A total solar eclipse occurs when the Moon completely obscures the Sun as it is 

observed from the region on the Earth's surface where umbra of the Moon's shadow falls 

(Figure 1.1, case A). The moon on its orbit has to be closer to the Earth (near perigee) for 
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a total eclipse to occur. As the angular diameter of the Moon (30 arc minute) at this stage  

is about the same as that of the Sun, the former covers the solar disk i.e., the photosphere, 

allowing the outer corona to be visible. Thus, a total eclipse serves as a rare opportunity 

to study the faint corona.

A partial  solar eclipse (as shown in Figure 1.1,  case C) is  seen in  penumbra, 

which occurs when the Moon partially obscures the Sun, as the name reflects. In this 

case, the Sun, Earth and Moon are not aligned exactly, but the eclipse can be observed 

from the larger area of the Moon's shadow, the penumbra. Depending on the observer's 

location in the area of penumbra the extent of the partial obscuring of the Sun varies. 

An annular or ring eclipse passes across the centre of the solar disk when the 

Moon is in a distant part (near apogee) of its orbit from the Earth. The apparent size of 

the Moon is smaller than that of the Sun making the Sun's surface to appear as a bright 

ring or annulus around the Moon as shown in the Figure 1.1, case B. As the moon is 

farther from the Earth, the umbral shadow of the Moon never reaches Earth, but rather 

the ring occurs for observers within the antumbral shadow.

Basically, the difference in occurrence of total and annular eclipse is due to the 

Moon's elliptical orbit, and the varying distance between the Moon and Earth, leading to 

the different apparent sizes of the Moon. To a lesser extent, the elliptical orbit of the 

Earth around the Sun also leads to variations in the apparent size of the Sun. The width of 

the path track of the eclipse on the Earth's surface depends on the relative apparent sizes 

of the Moon and Sun.

As shown in the Figure 1.2, different phases are observed during an eclipse. These 

phases over time provide different stages of covering and revealing Sun's surface leading 
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to understand the structures and phenomena on the Sun and the Moon.

Figure 1.2 The points of contact in a total (left) and an annular solar eclipse (right). A 
partial eclipse has only first and fourth point of contacts.

Source: Totality Eclipses of the Sun , Mark Littmann , Fred Espenak & Ken Willcox 

Along the path of eclipse on the Earth's surface a hybrid eclipse is viewed as a 

total and an annular eclipse. Because of the Earth's curvature, the Moon's umbra falls on 

some locations along the path while the antumbra falls on the more distant locations.
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1.3 Interferometry

Interferometry is the important technique used in astronomy to study the electromagnetic 

waves  when  superimposed.  A  single  antenna  or  a  telescope  is  used  to  collect 

electromagnetic  radiation  from  the  astronomical  objects,  with  the  angular  resolution 

depending on the size (diameter) of the antenna used and the wavelength observed. An 

interferometer is an array of antennas used to combine signals giving a resolution more 

than  a  single  antenna.  In  the  case  of  an  interferometer,  resolution  is  given  by  the 

maximum distance between the antennas in the array. The spread of the antennas gives 

the same angular resolution as an antenna of the size of the entire spread.

Interferometry  is  used  to  diagnose  the  original  state  of  the  waves  before  the 

superposition by determining the phase difference between waves of the same frequency. 

The waves in phase superimpose constructively, giving peak amplitude and the waves 

that  are  out  of  phase  superimpose  destructively,  giving  a  smaller  amplitude.  An 

interferometer uses the technique of aperture synthesis with a cluster of antennas in a 

pattern,  with  longer  baselines  allowing  arcsecond  or  sub-arcsecond  resolution 

observations. A baseline is the separation between two antennas in the interferometer, 

whose number in an array is given by n(n-1)/2, where n is the total number of antennas. 

Each antenna in the interferometer measures the amplitude and the phase of the 

incoming signal from the far away object observed. Combining all the signals from each 

antenna, the output from the interferometer is the Fourier transformed information of the 

brightness distribution of the observed object. 
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The complex visibility is that Fourier transformed output which is given by

 

∫ V(u,v) = I(l,m) exp[-i2π(ul + vm)] dl dm
  

where u,v are the projected baseline lengths measured in the units of wavelength, I(l,m) is 

the sky brightness distribution with  l,m as the sky components relative to a reference 

position in the E-W and N-S directions.  The sampled visibility  function is the output 

provided by the interferometric  array.  The dirty image is  obtained by performing the 

inverse Fourier transform given as,                                         

    

∫  ID(l,m) = S(u,v)V(u,v)exp[i2π(ul + vm)] du dv
 

where S is the so-called sampling function provided by the positions of the antennas in 

the array.

As the dirty map is obtained from the sampled visibility function, it does not give 

the complete picture of the sky brightness distribution observed, but is affected by gaps in 

the  coverage  (missing  u,v spacings).  These  gaps  are  filled  to  have  more  complete 

information by using an image reconstruction technique like CLEAN, MEM, etc. The 

method of  processing the  interferometer  data  is  further  discussed  in  the  forthcoming 

chapters.

There are many interferometer sites available all over the world to attempt the 

desired benefits expected from interferometry.  The Very Large Array (VLA), and the 

Very  Long  Baseline  Array  (VLBA)  are  some  radio  astronomical  interferometers 

currently used to observe astronomical bodies in their range of observing frequency of 

radio radiation.

8
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The VLA consists of 27 independent antennas each with a diameter of 25 meters 

spread as an array along linear three arms in a 'Y' shape, with an observing frequency 

range of 75 MHz to 40 GHz, although only portions of this range can be observed at any 

one  time.  The  longest  baseline  is  36  km (acts  as  an  antenna  with  36  km diameter) 

reaching a good angular resolution of 0.05 arcsec at  7 mm of observing wavelength. 

VLBI technique uses many antennas that are widely spaced around the world giving a 

very large baseline extent over the size of a continent or even greater. VLBI achieves 

milli-arcsec resolution to accurately measure small sources and their positions, although 

it has not proven useful for studying the relatively nearby sun.

1.4. Importance of Solar Eclipse Radio Observations

There are a vast  number of advanced techniques to observe the solar corona and the 

magnetic features in that region of the solar atmosphere. The angular resolution plays a 

main limitation in the observations. As discussed in Section 1.3, the size of the antenna or 

an interferometer required to be suitable for a given observing frequency to probe the 

solar  atmosphere  and  the  magnetic  structures  in  it  with  arcsec  resolution.  The  Sun 

presents  a  difficult  challenge  for  high-resolution  imaging,  because  it  is  a  very  large, 

complex, and constantly changing source. Not only high resolution (provided by long 

baselines) is needed, but simultaneously very good image quality (requiring many, many 

baselines).  At present, no radio telescope exists that can image the complex full disk of 

the Sun all at once with high resolution. 

A solar eclipse provides a means to limit the extent and complexity of the region 

of the Sun to be imaged.  It potentially can provide extremely high angular resolution 
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images of a portion of the Sun's surface due to the trajectory of the Moon over it. The 

Earth-Moon distance plays the important factor in determining the angular resolution, but 

not the size of the antenna used. Even a small portable antenna of a few meters can be 

used to observe corona, with the Earth-Moon distance of ~0.38 million km, giving an 

angular resolution of ~12 arcsec at 100 MHz (http://www.iiap.res.in/solareclipse/eclipse_ 

annular).

The moving Moon's limb gives snapshots of the region over which it is passing by 

taking a difference in the two successive visibility measurements as discussed earlier. 

Each difference contains the brightness distribution contributed by the features in the 

region of the Sun's surface covered or uncovered by the Moon during the integration 

time. This is the differential technique for mapping, which is used in the current study. 

Providing a very high resolution while at the same time limiting the region of the Sun to 

be imaged is the main benefit in making a solar eclipse observation.
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CHAPTER 2

BACKGROUND OF THIS STUDY

The objective of this study is to analyze the structures observed on the surface of the Sun 

during the eclipse,  when the Moon passes  over  the Sun as  viewed from the  path  of 

annularity. In this chapter, a background of some characteristics of the Sun's surface and 

phenomena, relevant to the current study is discussed.

2.1 Solar Magnetic Phenomena

The  Sun  has  different  layers  with  different  depths  and  temperatures.  The  layer  of 

photosphere is where the granulation takes place and where in the limb bright patches of 

faculae are seen. The photosphere is the layer where one can see dark regions of higher 

magnetic field; the magnetic field breaks through the surface from below to produce dark 

regions  called  sunspots.  These  sunspots  last  from  a  few  hours  to  several  months 

depending on the activity of the solar cycle they are in. This photosphere is the visible 

layer with temperature ranging from 4500 to 6000 K. 

Above this layer lies the chromosphere extending to 2,000 km of height with a 

density less than the photosphere. The corona, the outermost layer of the Sun, lies beyond 

the chromosphere with very low density compared to the lower layers of the Sun, but 

with very high temperature in the millions of kelvin. The magnetic phenomena, which are 

slowly  or  rapidly  varying  are  observed  in  the  chromosphere  and  extending  into  the 

corona.
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According to the activity level of the solar cycle, the Sun's outer surface consists 

of complex magnetic structures in active regions, prominences, coronal holes, streamers 

or  quiet  regions.  Active  regions  are  area  of  concentrated  magnetic  flux  above  and 

surrounding sunspots. Active regions have a temperature ranging from < 104 K to > 106 K, 

which makes them to visible at wavelengths from infrared through X-rays. This magnetic 

field breaking through the surface (photosphere and chromosphere) can form giant arches 

of hot plasma (Mason & Tripathi, 2008).

2.1.1 Quiet Sun

The chromosphere has some interesting phenomena such as spicules,  prominences,  H 

alpha  network,  active  regions,  and solar  flares.  During  an  eclipse,  the  chromosphere 

appears as a red or pink ring surrounding the Sun. At the chromospheric boundary or 

limb, jets and spicules are observed distinctly when observed during a total solar eclipse. 

The phenomena of spicules, active regions, plages, filaments, and flares can be seen on 

the chromospheric disk.

The phenomena of the eclipse and the coincidence of the nearly same angular 

diameter  of the Sun and the Moon helped to  show the existence  of the solar  corona 

around the Sun, including streamers and prominences. A total solar eclipse, in addition to 

blocking the solar disk, reduces the sky brightness by around 4 orders of magnitude to 

make it possible to view the less dense corona.

The solar corona is a region of complex magnetic loops that are been generated 

within the Sun and emerge through the surface. The corona consists of helmet streamers, 

plumes extending from near the surface to the far interplanetary medium.
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Figure 2.1 Total solar eclipse showing solar corona with streamers extending out in the 
space. A small portion of the pink chromosphere is also seen on the top left of the disk.

Source: http://www.mreclipse.com

The solar magnetic field plays an important role in defining the corona for its 

structure. The corona is optically thin in visible wavelengths, therefore coronal features 

on the solar disk are not seen in visible light. The on disk features of corona are seen in 

short wavelengths of X-rays and UV, which are not produced in the cooler photosphere. 

Figure 2.2 A comparison of the radiation from the Sun at different wavelengths. The 
VLA centimeter wavelength images are compared with the YOHKOH X-ray and EIT 
extreme ultraviolet images for the observation on 2 July, 2005.

Source: Willson and Groff, 2008
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In the quiet corona, the radio radiation arises due to the thermal bremsstrahlung, 

the free-free emission. Over the intense magnetic fields of sunspots and active regions, 

gyroresonance emission plays role in the emission of radio waves. This radio emission 

from the Sun's surface is further discussed in the next sections.

2.1.2 Active Sun

The activity of the Sun in all the layers depends on the phase of the solar cycle. 

The  photosphere  has  sunspots  and  faculae  with  strong  magnetic  fields,  both 

varying with time, magnitude and location. Over the solar cycle, the sunspots appear and 

disappear as a source of solar activity. Magnetic field lines from the sunspots emerge to 

the chromospheric layer to form magnetic active regions. Magnetic reconnection, particle 

acceleration and instabilities in these complex magnetic field in the chromospheric and 

coronal surfaces lead to the dynamic phenomena like flares, coronal mass ejections, and 

solar bursts.

 During  flares,  radio  emission  is  observed  in  the  flaring  active  region,  at  the 

coronal  layers  of lower densities,  and up to several  solar radii  from the Sun. Highly 

energetic electrons produced in the flaring region produce impulsive hard X-rays and the 

microwave radiations.  

Aschwanden and Benz (1997)  used  synchrotron  radiation  from the  relativistic 

electrons having energy of order a few MeV to locate the acceleration site in low corona. 

Imaging the locations  of some of the impulsive radiation in the low corona over the 

active regions, and just above the top of coronal EUV and soft-X-ray loops, can be done 

using VLA measurements (Lang, 1998). At times outside of flares, it is recognized that 
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the radio detection of gyroresonance emission at microwave wavelengths could be used 

to determine the coronal magnetic field in the active region (Ginzburg and Zheleznyakov, 

1961).

2.2 Radio Observations

Radio  observations  cover  a  broad  frequency  range  from sub-millimeter  to  kilometer 

wavelengths,  and  sample  different  heights  and  physical  conditions  in  the  solar 

atmosphere.  Radio emission and the propagation  of radiation in the solar  atmosphere 

leads  to  changes  in  the  spectrum,  which  can  be  used  to  understand  the  atmospheric 

parameters along the line of sight of the observation.  

            The three relevant frequencies (Gary & Hurford, 1988) in the emission  mechanis-

ms are the plasma frequency,

The free-free emission frequency with unity optical depth, 

and the electron gyro frequency

Here ne is the electron density in cm-3, Te is the electron temperature in K, L is the scale 

length for free emission in cm, and B is the magnetic field strength in G.

           The characteristics radio frequencies to height in the solar atmosphere of a nomin-

al solar model is shown in Figure 2.3. The characteristic frequency that appears highest 

determines the emission mechanism of the radiation. The frequencies from 30 KHz to 
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few hundred MHz is dominated by plasma emission covering heights greater than 0.2 Rsun 

(Solar  radius)  above  the  photosphere  because  of  τff=1  level.  At  the  decimetric 

frequencies,  τff=1  level  with  the  plasma  emission  is  important  because  of  the 

inhomogeneity of the corona and the extremely high brightness of the coherent plasma 

emission reaching 1015 K.

Figure 2.3 characteristics radio frequencies for the solar atmosphere (Gary & Hurford, 
2004).

            The cyclotron frequency and its harmonics are shown in three lines, where ν= 3 νB 

line lies above the τff=1 level down to 1-2 GHz and extending to ~20 GHz. At  ν=10 νB, 

gyroemission during bursts extend to 800-900 MHz in the decimetric range. Free-free 

gyroemission is dominated in mm wavelengths ~100GHz. 

            The incoherent emission mechanism of the radio radiation observation relevant to 

the current study can be described in two ways: Bremsstrahlung or free-free radiation and 

gyromagnetic radiation (Bastian, 2004). 
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2.2.1 Free-free Emission

The thermal free-free emission is due to the collisions between thermal electrons and ions 

on the Sun. This radiation can be used to diagnose quiet Sun, active regions, and flare 

decay phase. 

            2.2.2 Gyroresonance Radio Emission

Thermal gyroresonance emission is due to the gyrating motion of thermal electrons in the 

presence of magnetic field. This radiation is helpful in measuring the magnetic fields of 

active  regions,  where the magnetic  field strength is  high enough to make the corona 

optically thick to absorption in the frequency range of 1-18 GHz.

         Thermal and non thermal gyrosynchrotron emission in the frequency range >1-2 

GHz are generated by extremely hot electrons or a non thermal distribution of electrons. 

This radiation can be used to diagnose flaring sources.

            In gyroresonant sources above the active regions νb > νp (ne=1010 cm-3 and B>=300 

G). There are two circularly polarized electromagnetic modes in such plasma conditions. 

Extraordinary or 'x' mode gyrates the magnetic field like an electron and resonates with 

the thermal electron population. The ordinary or 'o' mode is another mode that gyrates the 

magnetic field in the opposite direction to that of an electron. 

2.2.3 Coronal Magnetic Field Measurement

The  absolute  value  of  coronal  magnetic  field  strength  is  important  to  determine  the 

energetics of the corona, free energy stored in magnetic fields which may be useful to 

understand flares and coronal heating. 
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          The outer edges of the radio sources contain information on the magnetic field 

strength at the base of the corona. In each mode of radiation several harmonics can be 

identified required for determining absolute values of B (Gary & Hurford, 1994). 

             A physical model of an active region is proposed by Mok et al. 2004 extrapolated 

from an actual  vector magnetogram. Assuming the volumetric  heating rate is  directly 

proportional to the local magnetic field strength, the thermal structure is computed (Gary 

& Hurford, 2004). The radio emission that would be observed is predicted with a given 

three dimensional model. The spectra with maps at 100 frequencies is shown in Figure 

2.4.

             In both the polarization spectra, the ratio between the sharp edges detected is 2:1, 

implying that they are first and second harmonics. Determining the harmonic number, the 

frequency of the edge is detected and the magnetic  field at the base of the corona is 

determined. 
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Figure 2.4 The right-hand (solid curve) and left-hand circular polarization radio emission 
spectra at two lines of sight in a model active region calculated at 100 frequencies from 
1-24 GHz.
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CHAPTER 3

DATA AND OBSERVATION

3.1 JVLA Interferometer

The Very Large Array, one of the world's premier astronomical radio interferometers, 

consists of 27 radio antennas in a Y-shaped configuration on the Plains of San Agustin 

fifty miles west of Socorro, New Mexico (latitude = 34.1, longitude = 107.6, elevation = 

2124 m (6970 ft)). Each antenna is 25 meters (82 feet) in diameter. The data from the 

antennas is combined electronically to give the resolution of an antenna up to 36 km (22 

miles)  across,  with  the  sensitivity  of  a  dish  130  meters  (422  feet)  in  diameter.  The 

resolution of the VLA is set by the size of the array. At its highest frequency (43 GHz) 

this gives a resolution of 0.04 arcseconds (http://www.vla.nrao.edu/).

EVLA (Expanded VLA) is the major expansion of the VLA with the upgraded 

telescope, referred to as the Karl G. Jansky Very Large Array (JVLA). JVLA aims to 

have a full frequency coverage from 1 to 50 GHz (30 to 0.7 cm) with 8 frequency bands: 

L (1-2 GHz), S (2-4 GHz), C (4-8 GHz), X (8-12 GHz), Ku (12-18 GHz), K (18.0-26.5 

GHz), Ka (26.5-40.0 GHz), and Q (40.0-50.0 GHz) providing improved observational 

capabilities over the original VLA.
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Figure 3.1 VLA array in Y shape configuration.

Source: http://www.cv.nrao.edu/course/astr534/Interferometers2.html

The JVLA is a sensitive instrument  which provides high spatial  and temporal 

resolution to  study the radio emission from the coronal  loops and to  study the radio 

bursts, but its longer baselines resolve out the relatively large-scale features of the Sun, 

making it most useful in its two smallest array configurations (C and D).

To observe the on-disk signatures of the Sun in this study, JVLA is used in the S-

band, 2 to 4 GHz of observing frequency. On the day of eclipse, out of total 27 antennas 

23  are  used  for  the  observation  in  both  right  and  left  polarization.  The  number  of 

frequency  channels  is  16  in  the  range  of  2  to  4  GHz.   The  array  at  the  time  of 

observations was in its (non-optimum) C and B configuration, in which the E and W arms 

were  in  the  C  configuration  (3.6  km)  and  the  N  arm was  in  the  more  extended  B 

configuration (10 km).
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3.2 Observational Setup

The annular solar eclipse is observed from the JVLA interferometer on May 21 2012 in 

the early hours of the day starting from 00:34 UT to 00:57 UT. The path of the annularity 

of the eclipse is shown in the Figure 3.2 indicating the extent of the Sun obscured by the 

Moon when observed from the regions on the Earth's surface.

Figure 3.2 The path of annularity over the globe. The dark strip shows the locations from 
the Moon moves completely annular in the centre of the Sun, where JVLA site falls in. 
The shaded red shows locations with lesser part of solar disk obscured. The fainter red 
shows even less the Sun's disk obscured during the eclipse.

Source: http://www.timeanddate.com/eclipse

            The study concentrates more on the on-disk observation after the first contact than 

the total annular observation of the Sun, because annularity occurred too late, when the 

Sun was already below the elevation limit of the antennas. On the solar disk, either an 

active  region  or  quiet  Sun  region  can  be  observed  during  the  eclipse.  The  eclipse 

observation on an active region leads to image the spatially resolved magnetic structure 

of the active region. Before and after the occultation of the active region the quiet Sun 

region can be imaged. 
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            On the day of the May 21, 2012 annular eclipse, in the field of view of JVLA, two 

active regions 11482 (N15W44) between 00:34-00:45 UT, 11484 (N10W17) between 

00:51-00:57 UT are observed in the path of occultation.  The 23 antennas in the array 

progressively track the regions on the Sun's surface occulted by the Moon's passage. The 

array response of complex visibility data is recorded in both right and left hand circular 

polarization at 13 channels in the frequency band of 2 to 4 GHz with integration time of 

1, 5 and 10 s. The two active regions are named as AR1 and AR2 throughout this study. 

Figure 3.3 The uneclipsed Sun as seen in HMI magnetogram (left). The eclipse geometry 
(right) showing the Moon at first contact+40 minutes. The two regions are well occulted 
by the Moon as it passes through, which is shown in the dull shaded circle. The smaller 
black circles are the full width half power (FWHP) primary beam at 3 GHz and the two 
different-sized blue circles show the FWHP beams at 2 and 4 GHz correspondingly.

       Source: http://sdo.gsfc.nasa.gov/data/aiahmi
            

            Figure 3.3 (left) shows the HMI (Helioseismic and Magnetic Imager) magneto-

gram from SDO on orbit at 23:45 UT of May 20,2012. The active regions show a clear,  

simple   bipolar  structure.  The  geometry  of  the  eclipse  is  pictured  with  the  HMI 

intensitygram on May 19, 2012 at  12:00:08 UT and the first  contact  of the Moon is 

shown in the Figure 3.3. The corresponding full width half maximum (FWHM) primary 
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beam sizes of the observing frequency in 2 to 4 GHz range are marked in circles over the 

field of view. 

  

Figure 3.4 Close-ups of and AR 11482 (left panel) and AR 11484 (right panel). These 
are oriented with solar north up (i.e., no P angle).  The x,y centres in arcsec W and N are 
250, 210 (left panel) and 650, 270 (right panel). The AR 11479 is at 740, 240 arcsec in 
the right panel.

Source: http://sdo.gsfc.nasa.gov/data/aiahmi/

           The close up images of the active regions AR1 and AR2 from the HMI images 

show the  clear  bipolar  structure  in  Figure  3.4.  AR 11479 (paired  with  AR1) is  also 

occulted in the field of view, which does not have much role in the brightness distribution 

from the observation.
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3.3 Data Structure and Tools Used

The two-dimensional complex visibility data from the eclipse observation is obtained in 

1s, 5s and 10s of integration for the 13 frequency channels in all the baselines. The 10 s  

.fits (Flexible Image Transport System) and .uv visibility extension data files of the two 

active regions are studied separately.  For analyzing these data sets of 'uv' visibility data, 

programming packages as shown below are used in different stages of the analysis. 

AIPY-MIRIAD

AIPY (Astronomical Interferometry in Python) is a package which collects together tools 

for data from radio astronomical interferometry. Miriad is a Fortran interferometry data 

reduction package used for the reduction of continuum and spectral  line observations 

from beginning to end, starting with the loading of the data  through to image synthesis,  

analysis and display with publication quality graphics.  Miriad  supports calibration and 

analysis  of  polarimetric  data,  multi-frequency  synthesis  imaging,  mosaicing,  and 

specialized spectral line observations. 

AIPY-MIRIAD includes interfaces  to MIRIAD-PYTHON, in addition to pure-

python phasing, calibration, imaging, and deconvolution code.

MIRIAD-PYTHON

The MIRIAD-python is a open-source software package that provides a bridge between 

the Python programming language and the MIRIAD package. It provides facilities for:

• reading and writing MIRIAD datasets in Python,

• executing MIRIAD tasks from Python, and

25



• implementing MIRIAD tasks in Python.

AIPY-MIRIAD is used to read the uv dataset which consist of two parts, variables 

and the data. Variables include the observing frequency, source name, (u,v) coordinates, 

baseline number and other  parameters.  Data is  the actual  intensity  complex visibility 

from the interferometer.

IDL 

IDL (Interactive Data Language) is a programming language used for data analysis in 

particular areas of science, such as astronomy and medical imaging. It has been widely 

applied in space science and in solar physics.  It includes many advantages in working 

with image processing and in interactively processing large amounts of data.
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CHAPTER 4

DATA ANALYSIS – MAPPING

The complex visibility calibrated data in 10 second integration of both the active regions 

are mapped, cleaned and analyzed individually in nominally the 16 frequency bands of 

125 MHz each that  cover  the 2-4 GHz range.  However,  radio frequency interference 

(RFI) badly affected the calibration of bands 2, 3, and 4, leaving only 13 bands (1, and 5-

16). The synthesis mapping technique for the analysis is employed with the same method 

used in previous eclipse studies. The difference between the visibilities in two successive 

integrations  is  due  entirely  to  the  emission  from the  narrow strip  of  the  Sun that  is 

covered or revealed by the Moon’s motion during the integration.  This technique has 

been demonstrated successfully several times (Gary et al. 1993, White & Kundu 1994, 

Marsh, Hurford, and Zirin 1980, Gary and Hurford 1987). 

4.1 Calibration

Calibration of observations is not only important for tracking instrumental phase and gain 

drifts,  atmospheric  and ionospheric  gain and phase variations,  but  for  monitoring  the 

quality and sensitivity of the data and for spotting the occasional gain and phase jumps 

(https://science.nrao.edu).

        A sufficiently  strong source is chosen as a calibrator  closest  to the source in 

observation.  Atmospheric  phase  fluctuations  are  better  calibrated  if  the  calibrator  in 

calibration is within 10 degrees. 
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           Before observing the Sun for eclipse, calibration is done with a known calibrator 

source for 2 minutes observation. For the Sun and for calibration the bandwidth is 8 GHz.

The phase calibrator used was J0555+3948, and the absolute flux calibrator was 3C48. 

The phase calibration is made more difficult because of the extremely low elevation of 

the Sun near the end of the observations.  To obtain the longest possible time on the Sun, 

the dishes are tracked as low as 8 degrees of elevation, meaning that the signal path was 

traveling through a long path through the Earth’s atmosphere, which leads to increased 

phase fluctuations,  especially  for the very long baselines  with the antennas  in the B-

configuration N arm of the array.

4.2 Light Curves and Spectra

The 10 s averaged visibility amplitude and phase time series in a selected baseline at 2.56 

GHz  for  both  the  active  regions  is  shown  below  in  the  Figure  4.1.  The  amplitude 

oscillations and the phase variations are characteristic of a moving “knife edge” covering 

and uncovering the extended solar brightness distribution (Marsh et al 1981).
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Figure 4.1 Peak brightness distribution in amplitude and phase variations of AR1 (upper 
panel) in right hand polarization at 2.56 GHz. The peak around 00:36:45 UT in the upper 
plot show the brightness enhancement due to the eclipsing of AR11479 which is covered 
earlier by the Moon as shown in map. Further AR1 is uncovered by the Moon which 
peaks around 00:39:40 UT.

            As the Moon progresses over the Sun's surface, the amplitudes and phases of the 

two active regions are measured every shown in the Figure 4.1. With the sensitivity of the 

instrument,  the peak amplitude for the AR1 shows ~90% increase over the quiet Sun 

region value before 00:36 UT and after 00:44 UT. 
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Figure  4.2 Time  series  of  amplitude  and  phase  variations  of  AR2  in  right  hand 
polarization at 2.56 GHz. 

           As seen in the amplitude plots in Figure 4.2, at the selected channel of frequency 

2.56 GHz, the peak brightness temperature corresponding to second active regions also 

shows 90% increase over the quiet Sun region value (taken after 00:57 UT).

          A spectrum is a brightness temperature distribution given by the Rayleigh-Jeans 

approximation for the Plank function

where Sν is the flux density (W m-2 Hz-1) at frequency, ν (Hz), from the solid angle, dΩ, kB 

is the Boltzmann constant and Tb is the brightness temperature.

             A spectrum records the changing peaks in intensity as they evolve in frequency. 

Over the frequency band of 2 to 4 GHz, the brightness distribution dynamic spectra of 

AR1 as a function of time is shown in the Figure below. Few channels in the whole 16 
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channel  band  are  blank  as  seen  in  the  spectra.  The  peak  intensity  enhancement  is 

observed at  frequencies  3.3 and 3.4 GHz, which validates  the results  of the study of 

change in the emission mechanism by Gary and Hurford 1987. At these frequencies, the 

source region show a quick broadening and then continues with increasing frequency. 

The enhancement due to AR 11479 is consistent in almost all the frequencies at around 

00:37:00UT. The features of parallel spikes are observed after 00:42:00 UT continue to 

the end, which may be real or artifacts.          

  

 

Figure 4.3 Dynamic spectrum of AR1 as a function of frequency (2 to 4 GHz) with time 
averaged  over  10  s  in  left,  right  hand  circular  polarization  and  total  intensity  for  a 
selected baseline.  
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4.3 Mapping

Initially, for mapping the visibility data, single frequency channel at 2.56 GHz is selected 

for the whole time range of 10 s integrated data of the eclipse observation. The running 

difference of each 10 s data represents the spatial features on the Sun's surface with the 

corresponding movement of the Moon. Because the window is moving across the active 

region, the flux variation with time represents the one-dimensional spatial variation (Gary 

and Hurford, 1987). The Figure 4.4 shows such a single differenced 10 s map overlaid 

with the positions of the Sun and the Moon limbs calculated from J2000 coordinates. The 

feature at -20,150 in the map tend to follow the Moon's limb over the time period. Even 

though it does not show much variations in its size, it shows intensity enhancement at the 

peak occultation than the regions where the Moon is away from the active region. 

           

Figure 4.4  Uncleaned map with the Sun's (blue) and Moon's (green) limbs marked for 
AR2 at 2.56 GHz, 00:52:10 UT. As the Moon occults the Sun's surface, a feature at (-
20,150) is seemed to follow the Moon's limb over time.
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            This difference map represents only the true information of a narrow annulus of 

1.2 arcsec wide covered by the two consecutive positions of the Moon in 10 s. With the 

determined Moon's limb position, the restricted narrow annulus is extracted individually 

for every 10 s in the whole time duration of the Moon's passage over the active regions.

4.4 CLEAN Technique

     Each annulus/strip of information is subjected to 'clean' with the parameters assuming the 

image to be an extended source.  Clean Miriad task takes a dirty map and beam, and 

produces an output map which consists of the Clean components.  This output can be 

input to 'Selfcal' routine to self-calibrate visibilities.

         These cleaned maps of strips are merged one by one over time in a mosaic to 

generate a complete map of the active region (Gary and Hurford 1987) with intensity 

enhancements, if any. The resulting cleaned maps of both the active regions are shown in 

Figure 4.5 at 2.56 GHz in the whole period of Moon occulting the Sun's surface. The 

negative  intensity  pixels  are  constrained  to  non  negative  value  in  each  clean  map. 

However, a clear view of the active region is not extracted, but active region like feature 

at the centre of the map in AR1. The oscillatory structures in both the maps are due to the 

positive and negative side lobes of the synthesized beam.
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Figure 4.5 Cleaned maps merged over time give the orientation of the lunar limb to view 
the picture of the active regions AR1 (left) and AR2 (right) at 2.56 GHz.

The same procedure for  clean imaging is  used to  view the  complete  occulted 

region by the Moon in all the 16 frequency bands in 2 to 4 GHz in right and left hand 

circular polarization. With the increase in the frequency, it is expected to see the change 

in  the  size  and  features  of  the  active  region  for  the  brightness  distribution  at  each 

frequency.  When  viewed  with  a  movie  clip  of  these  frequency  maps,  the  brightness 

emission moves continually downwards with frequency, which is not expected, if it is a 

fixed source like an active region. The same characteristics are observed for both the 

active regions. 

4.5 Correlation with Space Borne Observation

The merged maps are overlaid on HMI magnetogram images at  the peak differenced 

intensity (or at the Moon's limb over the intense activity part of the region). The overlay 

allows to correlate the actual position of the active region on the disk with the brightness 

distribution  of the created  cleaned radio map.  The Figure 4.6 below shows the HMI 
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image when AR1 is at the peak magnitude of the eclipse at 00:38 UT. The clean map is at 

3.3 GHz channel rotated by the position angle of -19.1 degrees.

Figure  4.6  The  JVLA  eclipse  clean  map  of  AR1  at  3.3  GHz  overlaid  on  HMI 
magnetogram. The bright source like feature seen in the clean map at (600,250) coincides 
with the active region 1.

          The overlay maps show a good correlation between the orientation of the lunar 

limb in the clean map and the active region location in the HMI map. The overlay of AR2 

clean map on the eclipse peak magnitude HMI map at 00:53 UT with position angle 

correction is shown in the Figure 4.7. 
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Figure 4.7 The JVLA clean map overlaid with the HMI magnetogram at 00:53, peak of 
the eclipse on AR2. The contour overlay of clean map at 90, 80, 70 and 60% seems to 
coincide with the active region location.

            The contour map of the clean map coincides with the active region but with some  

error (which may be due to the position angle correction of the HMI map aligned with the 

clean map). The features seen at the lower right of the map are the side lobes of the main 

source. 
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CHAPTER 5

CONCLUSION

The Objective of annular eclipse observation is to provide high spatial resolution of the 

obscured regions on the Sun’s surface during the eclipse with radio measurements. The 

eclipse is observed in the solar minimum activity  period of solar cycle 24, where no 

prominent  flare  events  are  reported.  Hence,  the  observations  allowed  to  study  the 

structure of active regions and quiet Sun regions.

Rather than observing the Sun during the eclipse as a whole map of the entire 

field of view, differential technique is used to map strips of the field of view covered and 

obscured by the Moon's limb. This study is an attempt to understand the active region 

structures and the quiet Sun regions by realizing the change in the intensity levels of the 

observation than the intensity itself.  At the selected frequency of 2.56 GHz, the peak 

brightness temperature corresponding to both the active regions show 90% increase over 

the quiet Sun region value.

Even though the bright source like feature in the synthesis map does not show 

much variations in its size, it shows intensity enhancement at the peak occultation than 

the regions (quiet Sun) where the Moon is away from the active region. As the synthesis 

mapping from the data does not produce very good high spatial maps of complex coronal 

structure, it is required to check with the calibration errors and improve the mapping as 

its further analysis. However, the HMI overlay with the radio map gives a reasonable 

correlation.
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